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1 Introduction

The Standard Model (SM) with one Higgs doublet is the simplest realization of electroweak

symmetry breaking and provides a very good description of all data collected so far at

hadron and lepton colliders. This includes measurements associated with the recently

discovered 125 GeV Higgs boson at the CERN LHC [1, 2]. In this model, the Higgs field

receives a vacuum expectation value (VEV), v ≈ 246 GeV, which breaks the electroweak

gauge symmetry and gives masses to the fundamental fermions and gauge bosons. The

couplings of these particles to the Higgs boson are fixed by their masses and v. On the

other hand, Higgs self interactions are controlled by the quartic coupling in the Higgs

potential, which in turn is given by the Higgs mass and v. Therefore, interactions of the

SM Higgs boson with fermions, gauge bosons and with itself are completely determined.
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Extensions of the SM commonly lead to modifications of the Higgs couplings, especially

if there exist new particles interacting with the Higgs or if there is an extended Higgs sector.

The size of these modifications may be naively estimated in the decoupling limit to be:

O
(

v2

m2
new

)
≈ O(5%)×

(
1TeV

mnew

)2

, (1.1)

where mnew is the scale of new particles. Therefore, for new particles below the TeV scale,

changes in the Higgs couplings from the SM expectations are quite small. Such an estimate

supports the fact that due to the large uncertainties in present measurements, no significant

deviations from the SM Higgs properties should be identifiable in present data, if all new

particles are at or above the TeV scale. At the same time, it stresses the need for precision

Higgs measurements to uncover possible signs of new physics.

Conversely, eq. (1.1) implies that, if in the future, refined measurements of the prop-

erties of the 125 GeV Higgs boson continue to be consistent with those of a SM Higgs

boson, no new light particles interacting with the SM-like Higgs are to be expected. How-

ever, this estimate is only valid in the so called decoupling limit, where all non-standard

Higgs bosons are significantly heavier than the Z gauge boson. On the other hand, current

searches for these particles do not exclude the possibility of additional Higgs bosons in the

hundred to several hundred GeV mass range. Given that initial data appears to disfavor

large deviations with respect to the SM Higgs description [3–10], it is of special interest to

consider models of extended Higgs sectors containing a CP-even Higgs that has properties

mimicking quite precisely the SM ones, even if the non-standard Higgs bosons are light.

A well-known example is that of general two-Higgs-doublet models (2HDMs),1 in which

the heavy CP-even Higgs could be the SM-like Higgs boson. However, in this case the

2HDM parameter space becomes very restrictive, with masses of the non-standard scalars

of the order of the W and Z boson masses, and is severely constrained by data [28–31].

On the other hand, the possibility of the lightest CP-even Higgs mimicking the SM Higgs,

referred to as “alignment” in ref. [32], is much less constrained and usually associated

with the decoupling limit. The less known and more interesting case of alignment without

recourse to decoupling deserves further study.

A few examples of “alignment without decoupling” have been considered in the liter-

ature. The first one was presented over a decade ago by Gunion and Haber in ref. [33].

Their main focus was to emphasize the SM-like behavior of the lightest CP-even Higgs of

a 2HDM in the decoupling limit. However, they also demonstrated that it can behave like

a SM Higgs without decoupling the non-SM-like scalars. Much more recently, a similar

situation was discussed in refs. [34, 35], where an extension of the Minimal Supersymmet-

ric Standard Model (MSSM) with a triplet scalar was studied. It was found that after

integrating out the triplet scalar, a SM-like Higgs boson and additional light scalars are

left in the spectrum for low values of tanβ . 10. Another recent study, ref. [32], presented

a scanning over the parameter space of general 2HDMs. Solutions were found fulfilling

alignment without decoupling and the phenomenological implications were investigated.

1For reviews see, for example, [11–13]. For examples of recent works since the discovery of the 125 GeV

Higgs boson, see [14–27].
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In general 2HDMs the alignment scenario has also been discussed in ref. [36] and with an

additional global U(1) symmetry in ref. [37].

It is obvious that the possibility of alignment without decoupling would have far-

reaching implications for physics beyond the SM searches. However, its existence has

remained obscure and has sometimes been attributed to accidental cancellations in the

scalar potential. A simple way to understand how one of the CP-even Higgs bosons in a

2HDM mimics the SM Higgs is to realize that the alignment limit occurs whenever the mass

eigenbasis in the CP-even sector aligns with the basis in which the electroweak gauge bosons

receive all of their masses from only one of the Higgs doublets.2 From this perspective, it is

clear that the alignment limit does not require the non-standard Higgs bosons to be heavy.

After presenting the general conditions for the alignment limit in 2HDMs, we analyze in

detail the possible implications for well motivated models containing two Higgs doublets.

In particular, we consider the MSSM as well as its generalization to the next-to-minimal

supersymmetric standard model (NMSSM), where an extra singlet is added. Along the

way, we analyze the extent to which precision measurements of Higgs-fermion couplings

could be useful in probing regions of parameters that are difficult to access through direct

non-standard Higgs boson searches.

This article is organized as follows. In the next section we define the notation and

briefly review the scalar potential and the Higgs couplings in general, renormalizable

2HDMs. In section 3 we derive the alignment condition in the decoupling regime in terms

of the eigenvectors of the CP-even Higgs mass matrix, which provides a simple analytical

understanding of alignment. We then write down the general conditions for alignment

without decoupling. In section 4 we study the alignment limit in general 2HDMs and

provide new perspectives on previous works. Detailed studies on the parameter space of

the MSSM and beyond are presented in section 5, which is followed by the conclusion in

section 6.

2 Overview of 2HDM

2.1 Scalar potential

We follow the notation in ref. [38] for the scalar potential of the most general two-Higgs-

doublet extension of the SM:

V = m2
11Φ
†
1Φ1 +m2

22Φ
†
2Φ2 −m2

12(Φ
†
1Φ2 + h.c.) +

1

2
λ1(Φ

†
1Φ1)

2 +
1

2
λ2(Φ

†
2Φ2)

2

+λ3(Φ
†
1Φ1)(Φ

†
2Φ2) + λ4(Φ

†
1Φ2)(Φ

†
2Φ1)

+

{
1

2
λ5(Φ

†
1Φ2)

2 + [λ6(Φ
†
1Φ1) + λ7(Φ

†
2Φ2)]Φ

†
1Φ2 + h.c.

}
, (2.1)

where

Φi =

(
φ+i

1√
2
(φ0i + ia0i )

)
. (2.2)

2This would imply that the other, non-standard CP-even Higgs has no tree-level couplings to the gauge

bosons. However, there are still couplings to SM fermions in general. Therefore the non-standard Higgs

boson is not inert.
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We will assume CP conservation and that the minimum of the potential is at

〈Φi〉 =
1√
2

(
0

vi

)
, (2.3)

where

v ≡
√
v21 + v22 ≈ 246GeV , tβ ≡ tanβ =

v2
v1
. (2.4)

We choose 0 ≤ β ≤ π/2 so that tβ ≥ 0 and write v1 = v cosβ ≡ vcβ and v2 = v sinβ ≡ vsβ.

The five mass eigenstates are: two CP-even scalars, H and h, with mh ≤ mH , one CP-odd

scalar, A, and a charged pair, H±. The mass parameters, m2
11 and m2

22, can be eliminated

by imposing the minimization condition [38]:

m2
11 − tβm2

12 +
1

2
v2c2β(λ1 + 3λ6tβ + λ̃3t

2
β + λ7t

3
β) = 0 , (2.5)

m2
22 − t−1β m2

12 +
1

2
v2s2β(λ2 + 3λ7t

−1
β + λ̃3t

−2
β + λ6t

−3
β ) = 0 , (2.6)

where λ̃3 = λ3 + λ4 + λ5. It then follows that [38]

m2
A =

2m2
12

s2β
− 1

2
v2(2λ5 + λ6t

−1
β + λ7tβ) , (2.7)

and the mass-squared matrix for the CP-even scalars can be expressed as

M2 =

(
M2

11 M2
12

M2
12 M2

22

)
≡ m2

A

(
s2β −sβcβ
−sβcβ c2β

)
+ v2

(
L11 L12

L12 L22

)
, (2.8)

where

L11 = λ1c
2
β + 2λ6sβcβ + λ5s

2
β , (2.9)

L12 = (λ3 + λ4)sβcβ + λ6c
2
β + λ7s

2
β , (2.10)

L22 = λ2s
2
β + 2λ7sβcβ + λ5c

2
β. (2.11)

The mixing angle, α, in the CP-even sector is defined as(
H

h

)
=

(
cα sα
−sα cα

)(
φ01
φ02

)
≡ R(α)

(
φ01
φ02

)
, (2.12)

where sα ≡ sinα and cα ≡ cosα. This leads to

RT (α)

(
m2
H 0

0 m2
h

)
R(α) =

(
M2

11 M2
12

M2
12 M2

22

)
. (2.13)

From the (1, 2) component in the above equation we see

(m2
H −m2

h)sαcα =M2
12 , (2.14)
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which implies sαcα has the same sign as M2
12. The choice for the domain of α is not

physical, however, for simplicity one would want to chose it such that the sign of M2
12

corresponds to either the sign of sα or cα respectively:

(I) −π
2
≤ α ≤ π

2
: cα ≥ 0 and Sign(sα) = Sign(M2

12) , (2.15)

(II) 0 ≤ α ≤ π : sα ≥ 0 and Sign(cα) = Sign(M2
12). (2.16)

We will adopt the convention that cα is always positive, sign choice (I), which is the usual

sign convention followed in the literature.

The eigenvector associated with the eigenvalue m2
h corresponds to the second row in

R(α), eq. (2.12), and satisfies(
M2

11 M2
12

M2
12 M2

22

)(
−sα
cα

)
= m2

h

(
−sα
cα

)
, (2.17)

giving rise to two equivalent representations for tα ≡ tanα:

tα =
M2

12

M2
11 −m2

h

=
M2

22 −m2
h

M2
12

. (2.18)

The equivalence of the two representations is guaranteed by the characteristic equation,

Det(M2 −m2
h I) = 0, where I is the 2× 2 identity matrix. Moreover, since

m2
h ≤M2

ii ≤ m2
H , for i = 1, 2 , (2.19)

due to the “level repulsion” of eigenvalues of symmetric matrices, in both representations

Sign(tα) = Sign(M2
12), consistent with the sign choices specified above.

Eq. (2.18) allows us to solve for the mixing angle, α, in terms of {M2
11,M2

12,m
2
h} or

{M2
22,M2

12,m
2
h}, depending on one’s preference. For example, in the sign choice (I) we

have the following two representations:

sα =
M2

12√
(M2

12)
2 + (M2

11 −m2
h)2

, m2
H =

M2
11(M2

11 −m2
h) + (M2

12)
2

M2
11 −m2

h

, (2.20)

sα = Sign(M2
12)

M2
22 −m2

h√
(M2

12)
2 + (M2

22 −m2
h)2

, m2
H =

M2
22(M2

22 −m2
h) + (M2

12)
2

M2
22 −m2

h

, (2.21)

where the expression for m2
H follows from solving for the corresponding eigenvalue equation

for m2
H .

One can verify that eqs. (2.20) and (2.21) lead to the expected limiting behavior when

M2
12 → 0. For example, for eq. (2.20), if M2

11 >M2
22, the smaller mass eigenvalue, m2

h,

is given by M2
22. Then in eq. (2.20) we have sα → 0 and m2

H → M2
11. As expected the

lightest CP-even Higgs is mostly Φ2 in this case. On the other hand, if M2
11 <M2

22 then

h is mostly Φ1 and sα → 1, since

(M2
11 −m2

h) =
(M2

12)
2

|M2
11 −M2

22|
+O

(
(M2

12)
4
)
, (2.22)

which also implies m2
H →M2

22 in this case. The behavior of eq. (2.21) can be verified in a

similar fashion.
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2.2 Higgs couplings

The Higgs boson couplings to gauge bosons in 2HDMs follow from gauge invariance and

have the same parametric dependence on the CP-even mixing angle, α, and the angle β in

any 2HDM, namely,

ghV V = sβ−α gV , gHV V = cβ−α gV , (2.23)

where gV = 2m2
V /v is the SM value for V = W,Z bosons.

The fermion couplings, on the other hand, take different forms in different 2HDMs.

However, it is common to require the absence of tree-level flavor-changing neutral cur-

rents (FCNC) by imposing the Glashow-Weinberg condition [39]. This condition requires

fermions with the same quantum numbers to couple to a single Higgs doublet and leads

to four different types of 2HDMs [11–13].3 Amongst them the most popular ones are: the

type I model, where all SM fermions couple to one doublet, and the type II model, where

the up-type fermions couple to one doublet and down-type fermions couple to the other.

In one of the other two models, up-type quarks and leptons couple to the same doublet,

while down-type quarks couple to the other. The remaining one has all the quarks coupled

to one Higgs doublet while the leptons couple to the other one. In what follows we base

the discussion on the type II model, although our analysis can be easily adapted to all four

types of 2HDMs.

In type II models, where at tree-level Φ1 and Φ2 only couple to down-type and up-type

fermions, respectively, the tree-level Higgs couplings to fermions are

ghdd = −sα
cβ
gf = (sβ−α − tβ cβ−α) gf , ghuu =

cα
sβ
gf = (sβ−α + t−1β cβ−α) gf , (2.24)

gHdd =
cα
cβ
gf = (cβ−α + tβ sβ−α) gf , gHuu =

sα
sβ
gf = (cβ−α − t−1β sβ−α) gf , (2.25)

where gf = imf/v is the coupling of the Higgs to the corresponding fermions in the SM.

We are interested in the alignment limit, where the lightest CP-even Higgs mimics

the SM one. We will begin by solving for the conditions for which the Higgs couplings

to fermions have the same magnitude as in the SM: |ghuu/gf | = |ghdd/gf | = 1. There are

four possibilities, however, as can be seen from eq. (2.24), once we confine ourselves to sign

choice (I), ghuu/gf is always positive. Hence there are only two cases allowed:

i) ghdd = ghuu = gf ,

ii) ghdd = −ghuu = −gf .

Demanding case i) leads to

sα = −cβ , cα = sβ , (2.26)

which then implies

cβ−α = 0 and sβ−α = 1. (2.27)

3Typically the Glashow-Weinberg condition requires a discrete symmetry: Φ1 → −Φ1, which demands

λ6 = λ7 = 0 and m2
12 = 0 in the general scalar potential given in eq. (2.1).
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Couplings of the CP-even Higgs bosons now become

ghV V → gV , ghff → gf , gHV V → 0 , gHdd → tβ gf , gHuu → −t−1β gf , (2.28)

This is the alignment limit. The heavy CP-even Higgs couplings to SM gauge bosons vanish

in this limit since it does not acquire a VEV. In other words, the alignment limit is the

limit where the mass eigenbasis in the CP-even sector coincides with the basis where the

gauge bosons receive all of their masses from one of the doublets. As such, the non-SM-like

CP-even Higgs does not couple to the gauge bosons at the tree-level. However, in this basis

H still has non-vanishing couplings to SM fermions. This feature remains true in all four

types of 2HDMs, as can be seen, for example, by inspecting table 2 in ref. [32].

On the other hand, fulfillment of case ii) requires

sα = cβ , cα = sβ , (2.29)

which gives

cβ−α = s2β , sβ−α = −c2β. (2.30)

We see that the hV V coupling does not tend to the SM value in this case and alignment

is not reached. However, in the limit tβ � 1,

s2β =
2tβ

1 + t2β
≈ 2

tβ
, c2β =

1− t2β
1 + t2β

≈ −1 , (2.31)

we observe that the CP-even Higgs couplings become, to linear order in t−1β ,

ghV V = gV , ghdd = −gf , ghuu = gf , (2.32)

gHV V = 2t−1β gV , gHdd = tβgf , gHuu = t−1β gf . (2.33)

Hence, if eq. (2.29) is required, one obtains that the lightest CP-even Higgs couplings to

down-type fermions have the opposite sign as compared to its couplings to both the vector

bosons and up-type fermions, although all couplings have the same strength as in the SM.

If, instead of the large tβ limit, one takes tβ � 1, then it is straightforward to check that

now ghuu has the opposite sign to both ghdd and ghV V . It is worth noting that, in type II

2HDMs, tβ � 1 leads to an unacceptably large top Yukawa coupling and should be avoided.

However, the scenario of “wrong-sign” down-type fermion couplings of the SM-like Higgs

in the large tβ limit is clearly of phenomenological importance. A detailed study of this

scenario is beyond the scope of the present work.

Similar arguments can be made in the case in which it is the heavy Higgs that behaves

as the SM Higgs. For this to occur,

sβ−α = 0 (2.34)

and therefore cβ−α = 1. In the following, we shall concentrate on the most likely case in

which the lightest CP-even Higgs satisfies the alignment condition. The heavy Higgs case

can be treated in an analogous way.

– 7 –
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We also comment on the Hhh coupling since it may have a significant impact on

strategies in direct searches [32]. The coupling of the heavy Higgs to the lightest Higgs is

given by [33]

gHhh =
v

4

[
−12 λ1cβcαs

2
α − 12 λ2sβsαc

2
α + λ̃3(−4cα−β + 6s2αsα+β)

+3λ6(−4s2αsα+β + 8sαc
2
αcβ) + 3λ7(8s

2
αcαsβ − 4c2αsα+β)

]
. (2.35)

One can rewrite eq. (2.35) as

gHhh = −3vsβc
3
β

{[
sαβcαβ

(
λ1sαβ + λ̃3t

2
βcαβ + λ6tβ(2cαβ + sαβ)

)
+ λ7t

3
βc

3
αβ

]
−
[
sαβcαβ

(
λ2t

2
βcαβ + λ̃3sαβ + λ7tβ(2sαβ + cαβ)

)
+ λ6t

−1
β s3αβ

]}
− λ̃3cα−β,

(2.36)

where sαβ ≡ (−sα/cβ) and cαβ ≡ (cα/sβ) tend to 1 in the alignment limit. We shall

demonstrate in the next section that the alignment conditions in general 2HDMs imply

that the Hhh coupling vanishes.

3 Alignment without decoupling

3.1 Derivation of the conditions for alignment

One of the main results of this work is to find the generic conditions for obtaining alignment

without decoupling. The decoupling limit, where the low-energy spectrum contains only

the SM and no new light scalars, is only a subset of the more general alignment limit in

eq. (2.27). In particular, quite generically, there exist regions of parameter space where

one attains the alignment limit with new light scalars not far above mh = 125 GeV.

It is instructive to first derive the alignment limit in the usual decoupling regime but

in a slightly different manner. Consider the eigenvalue equation of the CP-even Higgs mass

matrix, eq. (2.17), which, using eq. (2.8), becomes(
s2β −sβcβ
−sβcβ c2β

)(
−sα
cα

)
= − v2

m2
A

(
L11 L12

L12 L22

)(
−sα
cα

)
+
m2
h

m2
A

(
−sα
cα

)
. (3.1)

Decoupling is defined by taking all non-SM-like scalar masses to be much heavier than

the SM-like Higgs mass, m2
A � v2,m2

h. Then we see that at leading order in v2/m2
A

and m2
h/m

2
A, the right-hand side of eq. (3.1) can be ignored, and the eigenvalue equation

reduces to (
s2β −sβcβ
−sβcβ c2β

)(
−sα
cα

)
≈ 0 , (3.2)

leading to the well-known decoupling limit [33]: cβ−α = 0. This is also exactly the align-

ment limit.

Here we make the key observation that while decoupling achieves alignment by ne-

glecting the right-hand side of eq. (3.1), alignment can also be obtained if the right-hand

– 8 –
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side of eq. (3.1) vanishes identically, independent of mA:

v2

(
L11 L12

L12 L22

)(
−sα
cα

)
= m2

h

(
−sα
cα

)
. (3.3)

More explicitly, since sα = −cβ in the alignment limit, we can re-write the above matrix

equation as two algebraic equations:4

(C1) : m2
h = v2L11 + tβv

2L12 = v2
(
λ1c

2
β + 3λ6sβcβ + λ̃3s

2
β + λ7tβs

2
β

)
, (3.4)

(C2) : m2
h = v2L22 +

1

tβ
v2L12 = v2

(
λ2s

2
β + 3λ7sβcβ + λ̃3c

2
β + λ6t

−1
β c2β

)
. (3.5)

Recall that λ̃3 = (λ3 + λ4 + λ5). In the above mh is the SM-like Higgs mass, measured to

be about 125 GeV, and Lij is known once a model is specified. Notice that (C1) depends

on all the quartic couplings in the scalar potential except λ2, while (C2) depends on all the

quartics but λ1.
5 If there exists a tβ satisfying the above equations, then the alignment

limit would occur for arbitrary values of mA and does not require non-SM-like scalars to

be heavy!

Henceforth we will consider the coupled equations given in eqs. (3.4) and (3.5) as

required conditions for alignment. When the model parameters satisfy them, the lightest

CP-even Higgs boson behaves exactly like a SM Higgs boson even if the non-SM-like scalars

are light. A detailed analysis of the physical solutions will be presented in the next section.

3.2 Departure from alignment

Phenomenologically it seems likely that alignment will only be realized approximately,

rather than exactly. Therefore it is important to consider small departures from the align-

ment limit, which we do in this subsection.

Since the alignment limit is characterized by cβ−α = 0, it is customary to parametrize

the departure from alignment by considering a Taylor-expansions in cβ−α [32, 33], which

defines the deviation of the ghV V couplings from the SM values. However, this parametriza-

tion has the drawback that deviations in the Higgs coupling to down-type fermions are

really controlled by tβ cβ−α, which could be O(1) when tβ is large. Therefore, we choose

to parametrize the departure from the alignment limit by a parameter η which is related

to cβ−α by

cβ−α = t−1β η , sβ−α =
√

1− t−2β η2. (3.6)

Then at leading order in η, the Higgs couplings become

ghV V ≈
(

1− 1

2
t−2β η2

)
gV , gHV V ≈ t−1β η gV , (3.7)

ghdd ≈ (1− η) gf , gHdd ≈ tβ(1 + t−2β η)gf , (3.8)

ghuu ≈ (1 + t−2β η) gf , gHuu ≈ −t−1β (1− η)gf . (3.9)

4The same conditions can also be derived using results presented in ref. [33].
5If we subtract (C1) and (C2) we find an equation that is independent of mh and is equivalent to

the condition for the cancelation of the quartic coupling term, λ′
7 (H†

2H2H
†
2H1 + h.c.), in the Higgs basis

(H2 = φ1 cosβ + φ2 sinβ, H1 = −φ1 sinβ + φ2 cosβ), in which only H2 acquires a VEV. This allows to us

make contact with the results presented in refs. [33, 36].
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We see η characterizes the departure from the alignment limit of not only ghdd but also

gHuu. On the other hand, the deviation in the ghuu and gHdd are given by t−2β η, which is

doubly suppressed in the large tβ regime. Moreover, terms neglected above are of order η2

and are never multiplied by positive powers of tβ, which could invalidate the expansion in

η when tβ is large.

There are some interesting features regarding the pattern of deviations. First, whether

the coupling to fermions is suppressed or enhanced relative to the SM values, is determined

by the sign of η: ghdd and gHuu are suppressed (enhanced) for positive (negative) η, while

the trend in ghuu and gHdd is the opposite. In addition, as η → 0, the approach to the SM

values is the fastest in ghV V and the slowest in ghdd. This is especially true in the large tβ
regime, which motivates focusing on precise measurements of ghdd in type II 2HDMs.

Our parametrization of cβ−α = t−1β η can also be obtained by modifying eq. (3.2), which

defines the alignment limit, as follows:(
s2β −sβcβ
−sβcβ c2β

)(
−sα
cα

)
= t−1β η

(
−sβ
cβ

)
. (3.10)

The eignevalue equation for mh in eq. (3.3) is modified accordingly,

v2

(
L11 L12

L12 L22

)(
−sα
cα

)
= m2

h

(
−sα
cα

)
−m2

A t
−1
β η

(
−sβ
cβ

)
. (3.11)

From the above, taking η � 1 and expanding to first order in η, we obtain the “near-

alignment conditions”,

(C1′) : m2
h = v2L11 + tβv

2L12 + η
[
tβ(1 + t−2β )v2L12 −m2

A

]
, (3.12)

(C2′) : m2
h = v2L22 + tβ

−1v2L12 − η
[
t−1β (1 + t−2β )v2L12 −m2

A

]
. (3.13)

We will return to study these two conditions in the next section, after first analyzing

solutions for alignment without decoupling in general 2HDMs.

4 Alignment in general 2HDM

In what follows we solve for the alignment conditions (C1) and (C2), assuming all the

scalar couplings are independent of tβ. This is not true in general, as radiative corrections

to the scalar potential often introduce a tβ dependence in the quartic couplings that are

not present at the tree-level. However, this assumption allows us to analyze the solutions

analytically and obtain the necessary intuition to understand more complicated situations.

When all the quartics are independent of tβ, the conditions (C1) and (C2) may be

re-written as cubic equations in tβ, with coefficients that depend on mh and the quartic

couplings in the scalar potential,

(C1) : (m2
h − λ1v2) + (m2

h − λ̃3v2)t2β = v2(3λ6tβ + λ7t
3
β) , (4.1)

(C2) : (m2
h − λ2v2) + (m2

h − λ̃3v2)t−2β = v2(3λ7t
−1
β + λ6t

−3
β ). (4.2)
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Alignment without decoupling occurs only if there is (at least) a common physical solution

for tβ between the two cubic equations.6 From this perspective it may appear that align-

ment without decoupling is a rare and fine-tuned phenomenon. However, as we will show

below, there are situations where a common physical solution would exist between (C1)

and (C2) without fine-tuning.

Regarding the coupling of the heaviest CP-even Higgs to the lightest one, it is now easy

to see from eqs. (4.1) and (4.2) that each term inside the square brackets in eq. (2.36) tends

to m2
h(1 + t2β)/v2 in the alignment limit, and hence, as stated in ref. [32], gHhh vanishes.

4.1 Alignment for vanishing values of λ6,7

It is useful to consider solutions to the alignment conditions (C1) and (C2) when λ6 =

λ7 = 0 and λ1 = λ2, which can be enforced by the symmetries Φ1 → −Φ2 and Φ1 → Φ2.

Then (C1) and (C2) collapse into quadratic equations:

(C1) → (m2
h − λ1v2) + (m2

h − λ̃3v2)t2β = 0 , (4.3)

(C2) → (m2
h − λ̃3v2) + (m2

h − λ1v2)t2β = 0. (4.4)

We see that a solution exists for tβ = 1 whenever

λSM =
λ1 + λ̃3

2
, (4.5)

where we have expressed the SM-like Higgs mass as

m2
h = λSMv

2. (4.6)

From eq. (4.5) we see that the above solution, tβ = 1, is obviously special, since it demands

λSM to be the average of λ1 and λ̃3.

We next relax the λ1 = λ2 condition while still keeping λ6 = λ7 = 0. Recall that

the Glashow-Weinberg condition [39] on the absence of tree-level FCNC requires a discrete

symmetry, Φ1 → −Φ1, which enforces λ6 = λ7 = 0 at the tree-level. The two quadratic

equations have a common root if and only if the determinant of the Coefficient Matrix of

the two quadratic equations vanishes,

Det

(
m2
h − λ̃3v2 m2

h − λ1v2

m2
h − λ2v2 m2

h − λ̃3v2

)
= (m2

h − λ̃3v2)2 − (m2
h − λ1v2)(m2

h − λ2v2) = 0. (4.7)

Then the positive root can be expressed in terms of (λ1, λ̃3),

t
(0)
β =

√
λ1 − λSM
λSM − λ̃3

. (4.8)

We see from eqs. (4.7) and (4.8), that a real value of t
(0)
β can exist only if the set of

parameters {λSM, λ1, λ2, λ̃3} has one of the two orderings

λ1, λ2 ≥ λSM ≥ λ̃3 , (4.9)

6Since tβ > 0 in our convention, a physical solution means a real positive root of the cubic equation.
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or

λ1, λ2 ≤ λSM ≤ λ̃3. (4.10)

A solution for t
(0)
β can be found using the following procedure: once one of the conditions

in eqs. (4.9) or (4.10) is satisfied, eq. (4.8) leads to the alignment solution t
(0)
β for a given

(λ1, λ̃3). However, eq. (4.7) must also be satisfied, which is then used to solve for the

desired λ2 so that t
(0)
β is a root of (C2) as well. More specifically, the relations

λ2 − λSM =
λSM − λ̃3(
t
(0)
β

)2 =
λ1 − λSM(
t
(0)
β

)4 (4.11)

must be fulfilled. Therefore, the alignment solution demands a specific relationship between

the quartic couplings of the 2HDM. In addition, it is clear from eqs. (4.8) and (4.11) that

if all the quartic couplings are O(1), t
(0)
β ∼ O(1) as well, unless λ̃3 and λ2 are very close to

λSM, or λ1 is taken to be much larger than λSM. For examples, t
(0)
β ∼ 5 could be achieved

for (λ1, λ̃3, λ2) ∼ (1., 0.23, 0.261), or for (λ1, λ̃3, λ2) ∼ (5., 0.07, 0.263). Our discussion so

far applies to alignment limit scenarios studied, for instance, in refs. [32, 34, 35], both of

which set λ6 = λ7 = 0.

4.2 Alignment for non-zero λ6,7

The symmetry Φ1 → −Φ1 leading to λ6 = λ7 = 0 is broken softly by m12. Thus a

phenomenologically interesting scenario is to consider small but non-zero λ6,7. Therefore,

in this subsection we study solutions to the alignment conditions (C1) and (C2) under the

assumptions

λ6,7 � 1. (4.12)

Although general solutions of cubic algebraic equations exist, much insight can be

gained by first solving for the cubic roots of (C1) as a perturbation to the quadratic

solution t
(0)
β ,

t
(±)
β = t

(0)
β ±

3

2

λ6

λSM − λ̃3
± λ7(λ1 − λSM)

(λSM − λ̃3)2
+O(λ26, λ

2
7). (4.13)

The solutions t
(±)
β lie in the same branch as t

(0)
β , to which they reduce in the limit λ6,7 → 0.

In addition, both solutions are again O(1) given our assumptions. More importantly,

similar to t
(0)
β , specific fine-tuned relations between the quartic couplings are required to

ensure t
(±)
β are also cubic roots of (C2).

However, a new solution also appears,

t
(1)
β =

λSM − λ̃3
λ7

− 3λ6

λSM − λ̃3
− λ7(λ1 − λSM)

(λSM − λ̃3)2
+O(λ26, λ

2
7). (4.14)

The solution t
(1)
β belongs to a new branch that disappears when λ7 → 0 and exists provided

the condition

Sign(λSM − λ̃3) = Sign(λ7) (4.15)
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is satisfied. For |λSM − λ̃3| � |λ7|, as is natural due to the assumption |λ7| � 1, we are

led to t
(1)
β � 1. As an example, for (λ1, λ̃3, λ6, λ7) = (0.5,−0.1, 0.01, 0.01), one obtains

t
(1)
β ∼ 35 by solving for the cubic root of (C1) exactly. Lower values of t

(1)
β = O(10) may

be obtained for somewhat larger values of λ7 and/or larger values of λ̃3.

The t
(1)
β solution is an example of alignment without decoupling that does not require

fine-tuning. This is because the condition (C2), in the limits λ6, λ7 � 1 and tβ � 1,

becomes insensitive to all quartic couplings but λ2:

m2
h − λ2v2 = O

(
1

t2β
,
λ7
tβ
,
λ6
t3β

)
. (4.16)

Unlike the fine-tuned relation in eq. (4.7), in this case λ2 is determined by the input

parameter mh, or equivalently λSM, and is insensitive to other quartic couplings in the

scalar potential. Therefore, provided the condition given in eq. (4.15) is fulfilled, the value

of the quartic couplings, λ̃3 and λ7, are still free parameters and thus can be varied, leading

to different values of tβ for which alignment occurs.

For the purpose of demonstration, let us again use the example below eq. (4.15),

(λ1, λ̃3, λ6, λ7) = (0.5,−0.1, 0.01, 0.01). The condition that t
(1)
β ∼ 35 is also a root of (C2)

requires

λ2 ≈ 0.26 +

(
λ̃3
−0.1

)
× 8× 10−5 −

(
λ7

0.01

)
× 8× 10−4 −

(
λ6

0.01

)
× 8× 10−7. (4.17)

From this we see that the required value of λ2 is very insensitive to the values of the other

quartic couplings in the potential, and is determined only by mh.

The solution t
(1)
β is perhaps the most interesting among the three branches of solutions

because its existence does not require specific relationships amongst the quartic couplings,

and to our knowledge has never been studied in the literature. The crucial observation

to arrive at this scenario of alignment without decoupling is to turn on small but non-

vanishing λ7, which arises automatically in 2HDMs without tree-level FCNC. In this case,

we see alignment without decoupling is not only a generic feature of the model, but also

a “natural” phenomenon, and can occur at tβ = O(10) for which direct searches for non-

standard Higgs bosons become difficult. In fact, in the next section we will see that this

solution can be realized in one of the most popular models for beyond the SM physics, the

MSSM.

4.3 Departure from alignment

So far we have analyzed solutions for the alignment conditions (C1) and (C2) in general

2HDMs. However, it is likely that the alignment limit, if realized in Nature at all, is

only approximate and the value of tβ does not need to coincide with the value at the

exact alignment limit. It is therefore important to study the approach to alignment and

understand patterns of deviations in the Higgs couplings in the “near-alignment limit,”

which was introduced in section 3.2.
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Although we derived the near-alignment conditions (C1′) and (C2′) in eqs. (3.12)

and (3.13) using the eigenvalue equations, it is convenient to consider the (near-)alignment

limit from a slightly different perspective. Adopting the sign choice (I) in eq. (2.15) and

using the expression for the mixing angle, α, in eq. (2.20), we can re-write the ghdd and

ghuu couplings as follows

ghdd = −sα
cβ
gf =

A√
A2c2β + B2s2β

gf , (4.18)

ghuu =
cα
sβ
gf =

B√
A2c2β + B2s2β

gf . (4.19)

where

A = −M
2
12

cβ
=
(
m2
A − (λ3 + λ4)v

2
)
sβ − λ7v2sβtβ − λ6v2cβ , (4.20)

B =
M2

11 −m2
h

sβ
=
(
m2
A + λ5v

2
)
sβ + λ1v

2 cβ
tβ

+ 2λ6v
2cβ −

m2
h

sβ
. (4.21)

Again it is instructive to consider first taking the pseudo-scalar mass to be heavy: mA →∞.

In this limit we have A → m2
Asα and B → m2

Asα, leading to −sα/cβ → 1 and cα/sβ → 1.

We recover the familiar alignment-via-decoupling limit. On the other hand, alignment

without decoupling could occur by setting directly

A = B , (4.22)

where, explicitly,

B −A =
1

sβ

(
−m2

h + λ̃3v
2s2β + λ7v

2s2βtβ + 3λ6v
2sβcβ + λ1v

2c2β

)
= 0 , (4.23)

is nothing but the alignment condition (C1) in eq. (3.4). The alignment condition (C2)

would be obtained if the representation in eq. (2.21) is used instead, leading to A =

−Sign(M2
12)(M2

22 −m2
h)/cβ and B = |M2

12|/sβ. Further, mh is the mass of the lightest

CP-even Higgs boson and M2
ii − m2

h > 0, i = {1, 2} by eq. (2.19). Therefore eq. (4.22)

implies

A ≥ 0 and B ≥ 0 (4.24)

at the alignment limit.

Now in the near-alignment limit, where the alignment is only approximate, one can

derive

ghdd =
A

B
√

1− (1−A2/B2)c2β
gf (4.25)

=

[
1− s2β

(
1− A
B

)
+O

(
(1−A/B)2

)]
gf , (4.26)
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which, when comparing with eq. (3.8), implies

η = s2β

(
1− A
B

)
= s2β

B −A
B

. (4.27)

Therefore, the ghdd coupling is enhanced (suppressed) if B−A < 0 (> 0). It is easy to verify

that the above equation is identical to the near-alignment condition (C1′) in eq. (3.12).

The condition (C2′) could again be obtained using eq. (2.21).

It is useful to analyze eq. (4.26) in different instances. For example, when λ6 = λ7 = 0,

one obtains

ghdd '

1 + sβ

(
λSM − λ̃3s2β − λ1c2β

)
v2

B

 gf . (4.28)

Hence, for λ̃3 > λSM > λ1, a suppression of ghdd will take place for values of tβ larger than

the ones necessary to achieve the alignment limit. On the contrary, for λ1 > λSM > λ̃3,

larger values of tβ will lead to an enhancement of ghdd.

On the other hand, for λ7 6= 0 and large values of tβ, one obtains

ghdd '

1 + sβ

(
λSM − λ̃3 − λ7tβ

)
v2

B

 gf , (4.29)

which shows that for λSM > λ̃3 and λ7 positive, ghdd is suppressed at values of tβ larger

than those necessary to obtain the alignment limit, and vice versa.

One can in fact push the preceding analysis further by deriving the condition giving

rise to a particular deviation from alignment. More specifically, the algebraic equation

dictating the contour ghdd/gf = r, where r 6= 1, can be obtained by using eq. (4.25):

m2
A =

1

R(β)− 1

A− B
sβ

+
m2
h

s2β
− v2λ5 − λ1v2t−2β − 2λ6v

2t−1β , (4.30)

where

R(β) =
tβ r√

1 + t2β − r2
. (4.31)

When r is close to unity, the above equation becomes

R(β) ≈ 1 +
r − 1

s2β
. (4.32)

Several comments are in order. First, for r ≈ 1− η with η � 1, R(β) ≈ 1 + η/s2β. Second,

once all the scalar quartic couplings are known, which in general could also depend on

tβ, eq. (4.30) gives the contour corresponding to ghdd/gf = r in the mA − tanβ plane.

Third, if we consider a slice of constant tβ away from the alignment limit then larger

values of mA correspond to values of R(β), and hence r, closer to 1. Therefore, large

deviations from r = 1 lie in regions with small mA and tβ far from the alignment limit.
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r = 1

r = 1+ ∆1

r = 1- ∆1

r = 1+ ∆2

r = 1+ ∆3

r = 1- ∆2

r = 1- ∆3

mA

ta
n
Β

ghdd � ghddSM= r

Figure 1. General behavior of contours with constant ghdd/ghddSM = r in the mA − tanβ plane.

r = 1 corresponds to the alignment limit. At constant tβ , moving toward smaller mA results in

larger deviations from r = 1. In the plot δi for i = 1, 2, 3 can be either positive or negative and

|δ3| > |δ2| > |δ1|.

These considerations allow for an understanding of the general behavior of contours with

constant r in the mA − tanβ plane, which is shown in figure 1. To a large extent, the

various examples we will consider later simply correspond to zooming in on figure 1 in

different regions of parameters of interest in representative scenarios like the MSSM and

the NMSSM. However, as we shall explain in the next section, radiative corrections induce

a departure of the MSSM Higgs sector from the type II 2HDM behavior. This does not

change the qualitative behavior shown in figure 1, but leads to a modification of the contours

of constant r at large values of tβ.

5 Alignment in supersymmetry

In this section we first give a detailed overview of the Higgs mass dependance on the

general 2HDM quartics and the constraints this implies for the MSSM parameters, given

mh ≈ 125 GeV. We then present detailed analyses of alignment without decoupling in the

MSSM and in the NMSSM.

5.1 MSSM Higgs mass and quartic couplings

The tree-level Higgs sector in the MSSM belongs to the so-called type II 2HDM, where one

doublet couples to the up-type fermions, denoted by Hu, and the other doublet couples to

the down-type fermions, denoted by Hd. Both the tree-level and higher-order contributions

to the CP-even mass matrix are well-known. At tree-level we have

M2
MSSM,tree =

(
m2
As

2
β +m2

Zc
2
β −(m2

A +m2
Z)sβcβ

−(m2
A +m2

Z)sβcβ m2
Ac

2
β +m2

Zs
2
β

)
. (5.1)
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Typically one is interested in the region where mA & mZ and tβ & 1.7 ThenM2
11 >M2

22 in

M2
MSSM,tree and it is conventional to use the sign choice (I) in eq. (2.15), −π/2 ≤ α ≤ π/2.

In addition,M2
12 < 0 at tree-level and one is further restricted to −π/2 ≤ α ≤ 0. However,

beyond tree-level one could have α > 0 in the MSSM.

Only four of the quartic couplings are non-zero at tree-level in the MSSM,

λ1 = λ2 =
1

4
(g21 + g22) =

m2
Z

v2
, (5.2)

λ3 = −1

4
(g21 − g22) = −

m2
Z

v2
+

1

2
g22 , (5.3)

λ4 = −1

2
g22 , (5.4)

λ5 = λ6 = λ7 = 0. (5.5)

Therefore we see that the Higgs sector of the MSSM at tree-level is an example of 2HDMs

in which the condition λ6 = λ7 = 0 and λ1 = λ2 is fulfilled. Moreover, λ̃3 < 0 and

λ1,2 = −λ̃3 < λSM, so the alignment conditions, eqs. (4.9) and (4.10) cannot be fulfilled.

As a result, alignment without decoupling never happens at the tree-level in the MSSM.

At the loop level, however, λ1−4 are modified and, furthermore, the remaining three

couplings λ5−7 acquire non-zero values. These radiative corrections to the quartic couplings

depend relevantly on the values of tβ.

At moderate or large values of tβ ≡ vu/vd, Hu acquires a VEV, vu . v, while vd � v.

Therefore, the SM-like Higgs is approximately identified with the real component of H0
u,

and its squared mass is approximately given by the (2,2) component of the CP-even Higgs

mass matrix. More precisely, multiplying both sides of eq. (2.17) from the left by the row

vector (−sα, cα) and using the alignment relation, (β − α) = π/2, we obtain

m2
h = M2

22s
2
β + 2M2

12sβcβ +M11c
2
β

= v2
(
λ2 s

4
β + 4λ7s

3
βcβ + 2λ̃3s

2
βc

2
β + 4λ6sβc

3
β + λ1 c

4
β

)
,

= m2
Zc

2
2β + v2

(
∆λ2 s

4
β + 4λ7s

3
βcβ + 2∆λ̃3s

2
βc

2
β + 4λ6sβc

3
β + ∆λ1 c

4
β

)
, (5.6)

where the ∆λi’s denote a change of the corresponding quartic coupling, λi, due to radiative

corrections. Hence we see that the tree-level value of the SM-like Higgs mass in the MSSM

is bounded above by mZ , (
m2
h

)tree ≤ m2
Zc

2
2β. (5.7)

Since we are focusing on tβ & 1, this upper bound is maximized for large values of tβ. It

is well known that in the MSSM loop corrections to the quartic couplings are necessary

to raise the SM-like Higgs mass from values below mZ to values consistent with the LHC

measured value, mh ' 125 GeV. Note that since the upper bound on the tree-level mh is

minimized for tβ = 1, the radiative corrections required to raise the Higgs mass from its

7Values of tβ . 1 lead to such large values of the top-quark Yukawa coupling that the perturbative

consistency of the theory is lost well below the grand unification scale, MG ' 2 × 1016 GeV. In this work

we shall assume that tβ is moderate or large so that the perturbativity of the top Yukawa is not a concern.
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small tree-level value must be very large for tβ ∼ 1. Such radiative corrections may only

be obtained for very heavy scalar top-quarks, with masses far above the TeV scale.

At moderate or large values of tβ, sβ ' 1 and the Higgs mass is mostly governed by

λ2, as can be seen from eq. (5.6), although other terms may become relevant for smaller

values of tβ. The most important contributions to the quartic couplings come from the stop

sector. When the two stop masses are close to each other, (m2
t̃2
−m2

t̃1
) < 0.5(m2

t̃1
+ m2

t̃2
),

one can approximate the Higgs mass including the most relevant two loop corrections,

namely [46–57]

m2
h ' m2

Zc
2
2β +

3

8π2
h4t v

2

[
1

2
X̃t + t+

1

16π2

(
3h2t
2
− 32παs

)(
t X̃t + t2

)]
, (5.8)

where ht is the top Yukawa coupling, M2
SUSY = (m2

t̃1
+m2

t̃2
)/2 and t = logM2

SUSY/m
2
t . The

parameter X̃t is defined as

X̃t =
2Ã2

t

M2
SUSY

(
1− 1

12

Ã2
t

M2
SUSY

)
,

Ãt = At − µ cotβ , (5.9)

where At is the trilinear Higgs-stop coupling, µ is the Higgsino mass parameter and the

running couplings in the MS scheme must be evaluated at the top quark mass scale.

In addition to the stop sector, m2
h also receives negative radiative corrections propor-

tional to the fourth power of the bottom and/or tau Yukawa couplings. However, these

corrections become relevant only at very large values of tβ, where the bottom and/or tau

Yukawa couplings become comparable to the top Yukawa (see, for example, ref. [59])

∆m2
h ' −

v2h4bµ
4

32π2M4
SUSY

− v2h4τµ
4

96π2M4
τ̃

. (5.10)

where µ is the higgsino mass parameter. In the above M2
τ̃ is the average stau mass-squared

and hb(hτ ) is the Yukawa coupling for the bottom quark (τ lepton). We have also assumed

the sbottom masses to be of the same order as the stop masses and, for simplicity, neglected

higher loop corrections.

5.2 Couplings of the down-type fermions to the Higgs in the MSSM

It is also important to recall that the MSSM Higgs sector is a type II 2HDM only at the

tree-level. Beyond tree-level, however, supersymmetry breaking effects induce Hu couplings

to down-type fermions, denoted by ∆hd. These loop-induced couplings modify the relation

between the down-type fermion Yukawa couplings and their running masses, namely

hb/τ '
√

2 mb/τ

vcβ(1 + εb/τ tβ)
, (5.11)

where εb/τ = (∆hb/τ/hb/τ ) are the one-loop corrections whose dominant contribution de-

pends on the sign of (µM3) and (µM2), respectively [60–63]. Positive values of (µM3)
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induce positive contributions to εb which reduces the bottom Yukawa coupling, hb. Smaller

values of hb, in turn, reduce the negative sbottom effect on the Higgs mass and increase

the values of tβ for which the theory remains perturbative up to the GUT scale. Nega-

tive values of (µM3), instead, give the opposite trend. On the contrary, positive values of

(µM2) tend to induce negative values for ετ , increasing the τ -Yukawa coupling and hence

the impact of the stau sector.

These effects give small negative corrections to the Higgs mass, O(∼ few GeV), how-

ever, they could be quite relevant to the couplings at hand. Including these loop effects, the

couplings of the lightest Higgs to the bottom quarks and the tau leptons are [12, 64–67],

ghdd = − md sα
v cβ(1 + ∆d)

(
1− ∆d

tβ tα

)
, (5.12)

where ∆d ≡ εdtβ and d = b or τ respectively. Although the down-type couplings, ghdd,

depend in a relevant way on εd, in the alignment limit we have tαtβ → −1. Thus the down

couplings approach the SM values independently of εd.

5.3 Alignment: µ�MSUSY and moderate tanβ

When |µ| � MSUSY and 1 � tβ � mt/mb, then both the µ induced and tβ enhanced

corrections associated with the bottom and tau-Yukawa couplings are negligible [56, 57].

Therefore, the only relevant radiative corrections affecting the Higgs sector are those coming

from the top-stop sector, affecting ∆λ2 and leading to eq. (5.8). In this case λ6 and λ7
remain very small and the conditions for alignment to occur are still determined to a good

approximation by eqs. (4.9) and (4.10). However, neither of these two alignment conditions

are fulfilled in this corner of the MSSM, which has the following relation

λSM > λ1 > λ̃3. (5.13)

We can reach the same conclusion by using eq. (2.20) for sα in this regime,

sα =
−(m2

A +m2
Z)sβcβ√

(m2
A +m2

Z)2s2βc
2
β +

(
m2
As

2
β +m2

Zc
2
β −m2

h

)2 , (5.14)

which, for mA
>∼ 2mh and moderate tβ implies

− sα
cβ
'
m2
A +m2

Z

m2
A −m2

h

. (5.15)

This clearly demonstrates that in this case the deviation of (−sα/cβ) from 1 depends

only on mA and is independent of tβ. In other words, alignment is only achieved in the

decoupling limit, m2
A � m2

Z ,m
2
h.

This also agrees with our expressions regarding the approach to the alignment limit

via decoupling, eq. (4.27). In this regime λ5,6,7 are very small implying

B ' m2
A −m2

h, and B −A ' −(m2
Z +m2

h). (5.16)

– 19 –



J
H
E
P
0
4
(
2
0
1
4
)
0
1
5

Figure 2. Ratio of the value of the down-type fermion couplings to Higgs bosons to their SM

values in the case of low µ (L1j ∼ 0), as obtained from eq. (5.14), and εd ' 0.

In figure 2 we display the value of −sα/cβ in the mA − tanβ plane, for low values of µ, for

which the radiative corrections to the matrix element L11 and L12 are small, eq. (5.14). As

expected from our discussion above, the down-type fermion couplings to the Higgs become

independent of tβ in large regions of parameter space, and the ratio to their SM values is

well described by eq. (5.15). We see that under these conditions, a measurement of the

down-type fermion coupling to the Higgs that deviates from the SM value by 3% or less

will allow us to infer that the non-standard Higgs boson masses are at or above the TeV

range. The strong enhancements of the down-type couplings at low values of mA would

also imply a correlated enhancement of the Higgs width, leading to a suppression of the

decay branching ratio of the Higgs into photons and weak gauge bosons. The above results

imply that such suppression is only weakly dependent on tβ, which explains the numerical

results of ref. [69] where the relevant Higgs decays are studied.

5.4 Alignment: µ ∼ O(MSUSY) and large tanβ

The situation is quite different for µ ∼ O(MSUSY), since in this case there may be important

radiative corrections to quartic couplings, leading to non-vanishing values for λ5,6,7. Instead

of just taking the alignment conditions in terms of the quartic couplings, we shall rewrite

them in terms of the radiative corrections to the matrix elements M11 and M12, since it

allows us to get a clear idea of where the important contributions are coming from. We

shall then make contact with previous expressions. Quite generally, from eq. (2.20),

sα =
−(m2

A+m2
Z)sβcβ+v2(s2β ∆L12+sβcβ ∆L̃12)√[

(m2
A+m2

Z)sβcβ−v2(s2β ∆L12+sβcβ ∆L̃12)
]2

+
(
m2
As

2
β+m2

Zc
2
β−m2

h+v2 ∆L11s2β

)2
(5.17)
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where, as before, the ∆Lij denote variation due to radiative corrections. We have further

separated out the corrections to the L12 component into ∆L12 and ∆L̃12, which contribute

with different tβ factors. In terms of the quartics these loop corrections are

∆L12 ' λ7, ∆L̃12 ' ∆ (λ3 + λ4) , ∆L11 ' λ5, ∆L22 ' λ2. (5.18)

In the above, we have only kept terms which are relevant for moderate or large values of tβ,

and we have included ∆L22 for future use. In particular, since c2β � 1, we have dropped

the λ1 term which is proportional to c2β and the λ6cβ term, since λ6 is already a small

quantity, generated by radiative corrections. We have kept the ∆L̃12 contribution to the

matrix element L12 since it has the same tβ dependance as the tree-level contribution, and

for sizable µ but small µAf , with f = {t, b, τ}, may also be competitive to the radiatively

generated λ7 contribution.

Since tβ � 1, and hence sβ ' 1, the condition in eqs. (3.4) and (3.5) now read

m2
h = −m2

Z + v2
(

∆L11 + ∆L̃12 + tβ∆L12

)
, (5.19)

m2
h = m2

Z + v2
(

∆L22 + c2β∆L̃12 + cβ∆L12

)
. (5.20)

Observe that for moderate or large values of tβ the second expression above just shows

that the Higgs mass is strongly governed by λ2, while the first expression shows that one

reaches the alignment limit for values of tβ given by

tβ '
m2
h +m2

Z − v2(∆L11 + ∆L̃12)

v2∆L12
=
m2
h − v2λ̃3
v2λ7

(5.21)

in agreement with eq. (4.14) derived in the previous section. This is also equivalent to

eq. (2.15) in ref. [68] after using eqs. (5.19) and (5.20).

5.4.1 Radiative loop corrections

The radiative corrections to the quartic couplings λ̃3 and λ7, for small differences between

the values of the two stops, sbottoms and stau masses, have been computed previously in

refs. [38, 56, 57, 59]. Using these expressions one obtains

∆L12 '
1

32π2

[
h4t

µAt
M2

SUSY

(
A2
t

M2
SUSY

− 6

)
+ h4b

µ3Ab
M4

SUSY

+
h4τ
3

µ3Aτ
M4
τ̃

]
, (5.22)(

∆L̃12 + ∆L11

)
' 3 µ2

16π2M2
SUSY

[
h4t

(
1− A2

t

2M2
SUSY

)
+ h4b

(
1−

A2
b

2M2
SUSY

)
+h4τ

M2
SUSY

3M2
τ̃

(
1− A2

τ

2M2
τ̃

)]
, (5.23)

where, for simplicity, we have ignored two-loop corrections.

Observe that for moderate values of |At| <
√

6MSUSY, the top contributions to ∆L12,

(λ7), become positive for negative values of At and negative for positive ones. On the other

hand, for |At| >
√

6MSUSY, the sign of ∆L12 is given by the sign ofAt. Interestingly enough,

the radiative corrections to λ2 (and therefore to mh) are maximized at |At| '
√

6MSUSY,
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leading to a Higgs mass of order 130 GeV for stop masses of the order of 1 TeV (see, for

example, refs. [46–57]). Therefore, one can get consistency with the measured Higgs mass

for values of |At| larger or smaller than
√

6MSUSY. The sbottom and stau contributions to

λ7 become relevant only at large values of tβ and are positive for (µAb,τ ) > 0. Regarding,

(∆L̃12 + ∆L11), ∆λ̃3, again we see that the sbottom and stau contributions will only

become relevant for large values of tβ. However, the sign of all of the corrections, including

the stops, does not depend on the sign of Af , but rather would be positive (negative) if

|Af | < (>)
√

2MSUSY. Further, noting the different coefficients in eqs. (5.22) and (5.23),

observe that values of |∆L̃12 + ∆L11| may be pushed to larger values compared to values

of |∆L12|.
Keeping these considerations in mind, in our numerical work we will take representative

values of these loop corrections to be 32π2∆L12 = {−1, 5} and 32π2(∆L̃12 + ∆L11) =

±25. Such values can be naturally obtained for non-extreme values of (µ/MSUSY) and

(Af/MSUSY) and lead to either no alignment or alignment at tβ ∼ 20, respectively.8

5.4.2 Values of tanβ at alignment

One can write the large tβ alignment condition in the MSSM as

tβ '
120− 32π2

(
∆L11 + ∆L̃12

)
32π2∆L12

(5.24)

where we have made use of the fact that all contributions to λ7 in eq. (5.22) are proportional

to 1/(32π2) ∼ O(1/300) and rescaled both the denominator and numerator by a factor of

32π2. The numerator of eq. (5.24) tends to remain positive and large after the inclusion

of the radiative corrections. Therefore, in order to obtain sensible values of tβ consistent

with a perturbative description of the theory, 0 < tβ . 100, it is necessary that 32π2∆L12

be positive and larger than one. This can only be achieved for large values of |µ| and of

some of the trilinear couplings, Af .

One important implication that can be inferred from eqs. (5.22) and (5.23) is that the

values of ∆L12 depend in a relevant way on the values of the bottom and tau Yukawa

couplings. Since these couplings grow with tβ, it is clear that ∆L12 (λ7) is not independent

of tβ. This leads to new solutions for the alignment condition at very large values of tβ,

that would not exist if λ7 were independent of tβ.

Figure 3 shows contour plots of the values of tβ where alignment is achieved for different

values for the ratio (µ/MSUSY) and for positive/negative values of (At/MSUSY), keeping

the tβ dependance in the Yukawas explicit. The value of tβ is obtained by solving the

corresponding algebraic equation exactly, without the approximations done in eq. (5.24).

In figure 3 we chose equal values of the (Af/MSUSY) parameters. We find two different

roots for the algebraic equation and display them in figures 3(i) and 3(ii). The second root,

displayed in figure 3(ii) appears due to the tβ dependence of the bottom and tau Yukawa

couplings.

8Sizable values of (µ/MSUSY) and (Af/MSUSY) can induce relevant contributions to flavor processes and

may also have implications for the stability of the electroweak vacuum [58].
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(i) (ii)

Figure 3. Values of tβ , at which alignment without decoupling occurs, using eqs. (5.22)–(5.23) . We

assume common masses, MSUSY and include the contribution from the bottom and tau Yukawas,

fixing Ab = Aτ = At. The branch of solutions displayed in (i) (left panel) would exist even if one

neglected the bottom and tau Yukawa couplings. Those in (ii) (right panel) appear due to the extra

tβ dependence associated with the down-type fermion Yukawa couplings.

In figure 4 we show similar results, but for At = −Ab = −Aτ . Moderate values of

tβ may be obtained for either large values of (At/MSUSY) or for negative values of this

parameter. The second root, displayed in figure 4(ii), moves now to positive values of At.

Finally, in figure 5 we show the effect of setting the Ab and Aτ parameters to zero or

to large values. Only one root appears in both cases, and the difference between the results

in the left and right panel of figure 5 is only visible for very large values of tβ, which is

when the bottom and tau Yukawa couplings become relevant.

Looking at the results presented in figures 3–5, we see that in general, one obtains a

wide range in both the values of tβ at alignment and the associated parameter space where

this would occur. However note that values of tβ . 10 at alignment are only obtained for

very large values of (Af/MSUSY), which could be significantly constrained from both the

Higgs mass and the stability of the vacuum. A detailed analysis of the phenomenological

implications for such a scenario is beyond the scope of this work.

5.4.3 Departure from alignment

As explained previously section, it is important to study the departure from the alignment

condition. The effect of this will be most readily visible in the couplings of the lightest

SM-like Higgs boson to down-type fermions. Re-writing eq. (5.12), close to alignment for

small values of εd, this coupling reads, approximately

ghdd
gf
' −sα

cβ
+ εdtβ

(
1 +

sα
cβ

)
. (5.25)
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(i) (ii)

Figure 4. Same as figure 3 but now showing alignment values of tβ under the assumptions Ab =

Aτ = −At.

(i) (ii)

Figure 5. Same as figure 3 but now showing alignment values of tβ under the assumptions: (i)

Ab = Aτ = 0 and (ii) Ab/MSUSY = Aτ/MSUSY = 3. Only one set of solutions appear in these cases.

This means that positive (negative) values of εd tend to suppress (enhance) the coupling

departures from the SM values, a tendency that is enforced for larger values of tβ. On the

other hand, at values of tβ larger than the ones leading to alignment, positive values of

∆L12 tend to suppress the departure of ghdd from SM values. Hence, the effect of negative
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(i) (ii)

(iii) (iv)

Figure 6. Blue shaded region denotes current LHC limits. The ratio of the Higgs coupling to

down-type quarks to the SM limit is shown by the red dashed contours for εd = −0.01. The top

two panels have (32/π2)∆L12 = 5 and the lower ones (32/π2)∆L12 = −1. The left panels are

for (32/π2)∆L11 = 25 and right for (32/π2)∆L11 = −25. ∆L̃12 = 0 in these figures since its

contribution in the mixing angle is suppressed by cβ and is effectively negligible.

values of εd may be partially compensated (enhanced) for positive (negative) values of

∆L12, and vice versa.

In figures 6 and 7 we display deviations with respect to the SM of the Higgs-to-down-

type-fermion couplings in the mA− tanβ plane for fixed representative values of 32π2∆Lij
and for two different signs of the one-loop contribution to the Yukawa couplings, εd = −0.01

and εd = 0.01, which could be considered to be associated with the τ and bottom couplings,
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(i) (ii)

(iii) (iv)

Figure 7. Blue shaded region denotes current LHC limits. The ratio of the Higgs coupling to

down-type quarks to the SM limit is shown by the red dashed contours for εd = 0.01. The top

two panels have (32/π2)∆L12 = 5 and the lower ones (32/π2)∆L12 = −1. The left panels are for

(32/π2)∆L11 = 25 and right for (32/π2)∆L11 = −25. ∆L̃12 is again chosen to be 0.

respectively (see eq. (5.11)). We are neglecting the tβ dependence of the quartic couplings

which eliminates additional alignment solutions that may appear at very large values of tβ,

but makes the interpretation of the results more transparent. Moreover, we show regions

that are excluded by current direct searches at the LHC [70].9

For negative values of 32π2∆L12, as shown in the lower panels, there is no alignment

solution and the deviation of the couplings from the SM values depend mostly on mA and

9Larger values of µ than those assumed in the mmax
h scenario would lead to slighter stronger bounds [40].
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not on tβ. The value of the down-type fermion couplings to the Higgs is always enhanced

with respect to the SM value, as happens whenever tβ is below the one associated with the

alignment solution. On the other hand, in the presence of alignment, as is the case in the

upper panels of figures 6 and 7, suppression of the Higgs couplings to down fermions may

be obtained for tβ larger than the ones leading to alignment (see eq. (4.29)). Additionally,

even when the tβ at alignment is large, there can be significant variations in the ghdd
couplings at much smaller values of tβ, as can be seen from the top panels in both figures 6

and 7.

In the absence of any εd corrections, the deviations in ghdd couplings are flavor universal.

The impact of non-zero εd can be seen by comparing figures 6 and 7. These corrections

are enhanced by tβ in ghdd. Any deviation in the ratio of ghbb/ghττ from its SM value,

mb/mτ , should predominantly come from the εd dependance of these couplings. Further,

independently of the value of ∆L12, the largest deviation in ghbb/ghττ occurs at low values of

mA and larger tβ, which are constrained by direct searches for non-standard Higgs bosons.

Figures 6 and 7 also illustrate the so-called wedge region which is difficult to access

using direct searches. It is commonly assumed that measurements of the Higgs couplings to

down-type fermions could effectively constrain this wedge region. However, as can be seen

from these figures and from eq. (4.29), these constraints depend strongly on the precise

value of tβ leading to alignment, and become weaker when this value becomes smaller.

5.5 Beyond the MSSM

In the previous section it was shown that in the region of MSSM parameter space where

µ � MSUSY and tβ is moderate, alignment without decoupling never occurs because the

quartic coupling λ̃3 is too small and the alignment conditions in eqs. (4.9) and (4.10) are

never fulfilled. However, one could increase the value of λ̃3 by augmenting the MSSM with

either a singlet scalar, as in the case of NMSSM [71–81], or a triplet scalar [34, 35]. In

these models, a gauge singlet, S, in the case of NMSSM, and a triplet scalar, Σ, in the

case of triplet augmented MSSM, are added to the superpotential with the following cubic

couplings, among others,

∆SW = λSHuHd , ∆TW = λHuΣHd. (5.26)

Since the Higgs with a mass of 125 GeV appears to be mostly a doublet scalar by all

accounts [3–10], it is reasonable to consider a limit where the singlet and triplet scalars are

much heavier than the doublet scalars so that the singlet/doublet or triplet/doublet mixing

is small. As such, the singlet and triplet scalars can be integrated out of the low energy

spectrum. However, if the superpartners of singlet and triplet scalars are also integrated

out at the same time, one would just regain the MSSM at low energies and no new insights

could be obtained relative to what was already discussed previously. Therefore we shall

consider a limit where only the scalar components of the singlet and triplet superfield are

integrated out [82]. In this scenario new contributions to λ̃3 in the scalar potential are

generated, which are not present in the MSSM. Then a solution for alignment without

decoupling could be found in the branch of tβ ∼ O(1).
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More explicitly, after integrating out the singlet or triplet fields, one finds a correction

to the quartic coupling λ̃3 given by,

δλ̃3 = c λ2 , (5.27)

where c = 1 or c = 1/2 for the NMSSM [83] or the triplet-augmented MSSM [34, 35],

respectively.

Alignment in this case would occur if the values of λ are such that the relations in

eqs. (4.7) and (4.10) are satisfied. Since λ1 ' m2
Z/v

2 ' 0.137 and thus (λSM−λ1) ' 0.123,

using eq. (4.11) we find

λ̃3 − λSM '
0.123

t2β
, λSM − λ2 '

0.123

t4β
. (5.28)

Then, in order to obtain a solution for tβ >∼ 2, not only does one have to obtain large

radiative corrections to λ2 to raise its value to be very close to λSM, but also λ̃3 has to

be adjusted so that eq. (5.28) is satisfied simultaneously. Using the tree level value of

λ̃MSSM
3 ' −0.137, we see the new coupling in the superpotential must be

λ2 =
1

c

(
0.397 +

0.123

t2β

)
. (5.29)

In the triplet-augmented MSSM (c = 1/2), for tβ ' 2.7, one gets λ ' 0.9, which is in

excellent agreement with eq. (2.21) in refs. [34, 35]. Larger values of tβ can be obtained by

simultaneously adjusting λ and λ2 so that both conditions in eq. (5.28) are satisfied.

The NMSSM has been widely studied in the literature, since for small values of tβ
large corrections to the SM-like Higgs mass may be obtained due to the non-decoupling

F -terms described above. This tree-level correction reduces the need for large radiative

corrections from the stop sector, ameliorating the fine-tuning problem. For this to happen

without spoiling the perturbative consistency of the theory up to the GUT scale, one must

have λ <∼ 0.7 [71, 72]. On the other hand, since the tree-level Higgs mass is given by(
m2
h

)tree
= M2

Zc
2
2β + 2λ2v2s2βc

2
β , (5.30)

a large tree-level contribution to the Higgs mass, beyond the one obtained in the MSSM,

may only be obtained if λ >
√

2MZ/v ' 0.5, and a sizable reduction of fine tuning demands

even larger values of λ and tβ = O(1). Therefore, there is a small range of values of λ and

tβ for which the fine-tuning is reduced without spoiling the perturbative consistency of the

theory.

Interestingly enough, for c = 1 and tβ > 1, eq. (5.29) shows that alignment can also be

obtained for 0.65 <∼ λ <∼ 0.75, with smaller values of λ corresponding to the larger values of

tβ necessary to satisfy the alignment conditions. Therefore, there is an overlap between the

widely studied NMSSM parameter space, tβ ∼ O(1) and λ ' 0.7, and the ones necessary to

satisfy the alignment conditions. Small departures of tβ from the alignment values lead to

a variation of the bottom and tau couplings with respect to the SM values. Smaller values
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(i) (ii)

(iii) (iv)

Figure 8. Blue shaded region denotes current LHC limits. The ratio of the Higgs coupling to

down-type quarks to the SM limit is shown by the red dashed contours for various values of λ.

of tβ lead to an enhancement of these couplings and larger values to a decrease in them.

This is shown in figure 8 where the ratio of the down fermion coupling to the Higgs with

respect to the SM values is presented for different values of λ as a function of the heavy

CP-odd Higgs mass, mA. We have assumed that the singlet states are decoupled and do

not affect the heavy Higgs bounds.
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In general, due to the presence of alignment, values of 0.75 ≥ λ ≥ 0.6 lead to a drastic

variation of ghdd with respect to the SM expectations as compared to the small µ case

in the MSSM (λ = 0) represented in figure 2 and eq. (5.15). The variations of these

couplings depend very strongly on the precise value of λ.10 As happened in the MSSM

case, suppression is obtained for values of tβ larger than the one leading to alignment, while

enhancement is obtained otherwise. However, note that unlike in the MSSM, alignment

can occur for small values of tβ . 5. This implies that one can go to very low values of mA

without significant variations of the Higgs couplings to fermions and gauge bosons (figure 8

(iii)). In addition, as can be seen from figures 8 (i) and (ii), it is possible to have significant

suppression of the down-type couplings in the wedge, unlike the MSSM case.

6 Conclusions

Models with an extended Higgs sector appear in many theories beyond the SM. Among

them, 2HDMs represent some of the simplest extensions of the SM Higgs sector and are

realized in both supersymmetric and non-supersymmetric theories. When masses of the

non-standard scalar are much larger than the Z mass, it is well-known that the mass

eigenbasis, described by the mixing angle, α, in the CP-even sector, aligns with the basis

characterized by the angle β, in which the Higgs VEV resides in only one of the doublets.

This leads to the alignment limit where cos(α − β) = 0 and the lightest CP-even Higgs

behaves as the SM one. It has also been known for a long time that alignment can be

obtained without having to decouple the non-standard Higgs scalars [33]. However, to the

best of our knowledge a comprehensive study of the conditions for which alignment occurs

in 2HDMs has not been carried out. In this article we present such an analysis.

In general 2HDMs, absence of tree-level FCNC could be achieved by a discrete sym-

metry forbidding the λ6 and λ7 couplings, in which case we show that alignment occurs for

specific values of the quartic couplings. More specifically, alignment only happens when tβ
is a common solution to two independent algebraic equations and is therefore not a natural

occurrence in this scenario. Furthermore, if certain orderings in the quartic couplings are

not satisfied, alignment would never occur; this is the case for the MSSM at tree-level.

More interestingly, if λ6 and λ7 are non-zero but much smaller than the other couplings

in the theory, perhaps as a result of a softly broken symmetry, we discover that alignment

could exist for generic values of the quartic couplings. In this case, one can show that

alignment may occur at both small and large values of tβ. In particular, the large tβ
solution may be realized in a wide region of parameter space. Furthermore, this solution

may be realized in the MSSM, where the coupling λ7 is generated radiatively. A positive

λ7 is required in this case. Moreover, we obtain that small values of (µ/MSUSY) are not

compatible with alignment without decoupling. Therefore, small deviations from the SM

expectations in the Higgs couplings to fermions and weak gauge bosons without any signal

10Because there is such strong dependance on the precise value of λ, the tβ at alignment could be very

sensitive to small loop corrections to λ̃3, which enter into δλ̃3 as in eq. (5.26), which have been neglected

in this analysis.
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of non-standard Higgs bosons in direct searches, would imply either large mA or large

values of (µ/MSUSY).

Other realizations of alignment without decoupling in supersymmetric theories can be

obtained by going beyond the MSSM, which relaxes the strict relations among the tree-level

quartic couplings of the MSSM Higgs potential. One simple possibility is to extend the

MSSM Higgs sector by adding more scalars, such as an electroweak singlet (the NMSSM) or

a triplet. When one takes the limit that the singlet/triplet scalars are heavy and integrated

out, new contributions to the scalar quartic couplings are generated. More specifically, new

contributions to λ̃3 are generated, thereby allowing for alignment without decoupling even

if λ6 and λ7 continue to be zero.

Last but not least, we consider the effectiveness of using precision measurements of

Higgs couplings to fermions to probe the wedge region in the mA − tanβ plane. If in

the future no relevant deviations of the Higgs-fermion couplings from their SM values

are observed, it could be naively inferred that large values of mA are required, thereby

disfavoring the wedge region. The possibility of alignment without decoupling opens up

this region of parameter space, implying that new physics beyond the SM would have

to be probed by other means. These would include, for example, measurements of loop-

induced Higgs couplings, flavor physics, relic density and direct detection of dark matter,

as well as direct searches for new physics beyond the 2HDMs. Moreover, alignment without

decoupling also highlights the necessity of devising new search strategies to look for light

non-standard Higgs bosons. We will return to these important topics in the near future.
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