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Abstract: We develop geometric techniques to determine the spectrum and the chiral

indices of matter multiplets for four-dimensional F-theory compactifications on elliptic

Calabi-Yau fourfolds with rank two Mordell-Weil group. The general elliptic fiber is the

Calabi-Yau onefold in dP2. We classify its resolved elliptic fibrations over a general base B.

The study of singularities of these fibrations leads to explicit matter representations, that

we determine both for U(1)×U(1) and SU(5)×U(1)×U(1) constructions. We determine for

the first time certain matter curves and surfaces using techniques involving prime ideals.

The vertical cohomology ring of these fourfolds is calculated for both cases and general

formulas for the Euler numbers are derived. Explicit calculations are presented for a

specific base B = P3. We determine the general G4-flux that belongs to H
(2,2)
V of the

resolved Calabi-Yau fourfolds. As a by-product, we derive for the first time all conditions

on G4-flux in general F-theory compactifications with a non-holomorphic zero section.

These conditions have to be formulated after a circle reduction in terms of Chern-Simons

terms on the 3D Coulomb branch and invoke M-theory/F-theory duality. New Chern-

Simons terms are generated by Kaluza-Klein states of the circle compactification. We

explicitly perform the relevant field theory computations, that yield non-vanishing results

precisely for fourfolds with a non-holomorphic zero section. Taking into account the new

Chern-Simons terms, all 4D matter chiralities are determined via 3D M-theory/F-theory

duality. We independently check these chiralities using the subset of matter surfaces we

determined. The presented techniques are general and do not rely on toric data.
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1 Introduction and summary of results

Four-dimensional F-theory compactifications provide a broad domain of the string theory

landscape with the potential to derive promising particle physics consequences of string

theory. It has a number of advantages, such as encoding geometric structures of string

theory compactifications at a finite string couplings. The main focus in recent years has

been on studies of F-theory GUT models with SU(5) as well as SO(10) gauge groups,

initiated in [1–4] within local model building. Techniques for constructions of global models

were developed in [5–9], and efforts to embed local models into global ones have been

pursued, see e.g. [10–12] for reviews.

The origin of non-Abelian gauge symmetries in four-dimensional F-theory compacti-

fications is well understood since the origins of F-theory [13–15], and it is due to the full

classification of codimension one singularities of elliptically fibered Calabi-Yau fourfolds

with a section in the Weierstrass or Tate model [16–18]. Matter multiplets appear at co-

dimension two singularities and were studied originally in [13, 14, 19] and more recently

in [9–12].1 Constructions with chiral matter in four-dimensions require the addition of

1Recent efforts clarified and filled the gaps in classifications singularities at higher co-dimensions [20–22].

For most recent complementary advances, employing deformations of singularities, see [23].
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G4-flux, which belongs to the middle (vertical) cohomology on the resolved Calabi-Yau

fourfold. Specific fluxes of this type were constructed in [21, 24].

On the other hand Abelian gauge symmetries in F-theory are less understood and

studied. This is primarily due to the fact that the classification of Abelian gauge symmetries

and their matter spectrum depends crucially on the global geometry of the elliptic fibration.

Nevertheless, some aspects of Abelian gauge symmetries have been studied in local F-

theory models employing spectral cover methods [6, 25–31]. The study of higher rank

Abelian sectors in four-dimensional F-theory compactifications is also of phenomenological

interest, since it can play an important rôle in model building beyond the Standard Model

model.

Abelian gauge theory sectors appear in compactifications of F-theory on elliptic Calabi-

Yau varieties with a general fiber being an elliptic curve with rational points. Elliptic curves

with a so-called non-trivial Mordell-Weil group of rational points are a classical subject in

mathematics [32–36]. These rational points lift to rational sections of the elliptically fibered

Calabi-Yau manifold, which contribute new harmonic two-forms to the cohomology that

support Abelian gauge fields in the F- theory effective action. The number of Abelian

gauge fields is set by the rank of the Mordell-Weil group of the elliptic curve and its torsion

subgroup gives rise to non-simply connected groups [15, 37, 38]. Rank one Mordell-Weil

groups in compact elliptic fibrations have been studied recently in the F-theory literature

in a variety of contexts [39–44, 44–47]. Elliptic fibrations with elliptic fiber of D5-type

have been constructed in the context of counting BPS states in [48]. The resolutions of

their most general fibrations, which have a Mordell-Weil group of rank three, as well as

the complete induced F-theory matter spectrum have been analyzed in [49].

While a classification of possible Abelian gauge sectors in F-theory, analogous to the

well-studied non-Abelian sector, is lacking (see, however [50] for a systematic study of

rational sections on toric K3-surfaces), significant progress has been made recently for

the systematic study of U(1) × U(1) gauge symmetry on elliptically fibered Calabi-Yau

manifolds with a rank two Mordell-Weil group [46, 51].2 The analysis found that the

natural presentation of an elliptic curve with two rational points and a zero point is the

generic Calabi-Yau one-fold in dP2 and the birational map to its Tate and Weierstrass

form was derived [51]. While the discussion of its resolved elliptic fibrations was done for

a Calabi-Yau variety over a general base B, their classification was first performed for the

base B = P2 and later for any two-dimensional base B in [54]. One key finding of this

classification, which we further elaborate on also in this work, was the identification of all

topological degrees of freedom in the construction of a fibrations of a fixed elliptic curve

2The elliptic curves in P2(1, 1, 2) and P2 have also appeared in [52] and independently in [53], cf. also [48],

as F-theory duals of heterotic backgrounds with U(1)-Wilson lines. In the former, elliptic threefolds with

these elliptic fibers over Fn are constructed and the non-Abelian gauge groups are matched between the

dual theories in dependence on n as in [15]. In the latter, the Kaehler classes of these elliptic threefolds,

which are dual to the Wilson lines breaking E8 → E8−k × U(1)k, k = 0, 1, 2, in the heterotic string, are

identified by matching certain Gromov-Witten invariants with BPS-states of non-critical strings from E8−k

small instantons computed on the heterotic side. However, the detailed analysis and classification of the

Abelian sectors on the F-theory side, by studying the singularities of these elliptic fibrations, has first been

carried out in [51] and in this work using the resolved dP2-elliptic fibrations.
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over a fixed base B. These are encoded in the choice of two divisor classes S7, S9 [51].

Allowing for all their possible values yields elliptic fibrations with novel properties, most

notably with a non-holomorphic zero section, that were not constructed before because

the existence of a holomorphic zero section was enforced. Next, a thorough analysis of

the generic codimension two singularities of this most general family of elliptic Calabi-

Yau threefolds was given. This determines geometrically all the matter representations

under U(1) × U(1) and their multiplicities, that were shown to be consistent with anomaly

cancellations in the six-dimensional compactified theory. Explicit toric examples were

constructed, both with U(1) × U(1) and SU(5)× U(1)× U(1) gauge symmetries.

It is the purpose of this paper to develop explicit techniques for the calculation of

the matter spectrum and their chiralities for four-dimensional F-theory compactifications

with two U(1)-factors. This involves now F-theory compactifications on elliptically fibered

Calabi-Yau fourfolds with rank two Mordell-Weil groups. Furthermore the appearance of

the chiral matter requires an explicit construction of G4-flux. We would like to emphasize

that our calculations are performed for general globally defined elliptic Calabi-Yau fourfolds

and are not restricted to geometries described by toric reflexive polytopes. In particular,

we find closed formulas for the basis of the vertical cohomology groups, the consistent

G4-flux and the chiral indices for entire discrete families of Calabi-Yau fourfolds which

depend explicitly on the aforementioned degrees of freedom S7, S9 of these families. We

underline that even if each member of this family could be realized torically, it would be

hard to obtain this dependence on S7, S9 by considering reflexive polytopes. In recent

works [45, 47, 55] a classification of toric Calabi-Yau fourfolds with SU(5) and allowed

U(1) factors was given (see also [46]). Note however that techniques employed have, at

least to the knowledge of the authors, not culminated in the determination of the matter

representations and their 4D chiralities yet which are the main results of this paper.

We advance the program in several important ways:

• The general elliptic fiber is the generic Calabi-Yau one-fold in dP2 with two rational

points and a zero point (as analyzed in detail in [51]). The chosen fiber determines

the representations of the matter multiplets under U(1) × U(1) over any base B. The

spectrum for U(1) × U(1) and SU(5)× U(1) × U(1) (for a specific SU(5)) is derived

and summarized in table 1. However, the analysis is performed now over a general

three-dimensional base and the matter appears over codimension two Riemann sur-

faces in the base, denoted as matter curves. We employ explicit algebraic geometry

techniques using prime ideals3 to represent these matter curves and classify the sin-

gularities of the elliptic fibration over them using the Calabi-Yau fourfold with the

resolved elliptic fibration (see sections 2, 3.1 and 6.1). At present these techniques

allow us, however, to determine only a subset of matter surfaces (three out of six in

the U(1) × U(1) and six out of twelve in the SU(5) × U(1) × U(1) case).

• As a preparation for the construction of G4-flux on these Calabi-Yau fourfolds, we find

for the first time consistent conditions on the G4-flux in F-theory compactifications

3Note that in the case of Calabi-Yau threefolds these geometric techniques were sufficient to determine

multiplicities of all the matter multiplets. [51].
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with a non-holomorphic zero section. These conditions have to be formulated in three

dimensions after the compactification on a circle and require the use of M-theory/F-

theory duality. We show the connections between holomorphicity of the zero section

and Kaluza Klein-states via Chern-Simons (CS) terms on the 3D Coulomb branch.

In particular, there are new CS-terms for a non-holomorphic zero section.

• We develop techniques to calculate explicitly the most general G4-flux that belongs to

the vertical cohomology H
(2,2)
V resolved Calabi-Yau fourfolds (see section 3.2 and 4).

To this end we algebraically calculate the full vertical cohomology ring of these Calabi-

Yau fourfolds. These cohomology calculations allow us to compute the general ex-

pression for the Euler number and the Chern classes of these fourfolds for an arbitrary

base B, both in the U(1)×U(1) and SU(5)×U(1)×U(1) cases. As an application of

these techniques we derive an explicit basis of the cohomology group for all ellipti-

cally fibered Calabi-Yau fourfolds with fiber in dP2 and base B = P3.4 Again these

techniques are general and not restricted to toric examples. In particular the depen-

dence on the divisors S7, S9 is manifest. When the G4-flux is integrated over matter

surfaces (determined via the geometric techniques mentioned above) we obtain the

chiralities of three matter representations (second set in table 1). Chiralities of the

remaining matter representations are determined by a subset of the 3D CS-terms

of the dual M-theory invoking M-/F-theory duality. 4D anomalies are found to be

cancelled. We note that the rest of the 3D CS-terms, in particular those for the

Kaluza-Klein vector, provide an independent check for chiralities of matter multi-

plets obtained via geometric techniques. It is important to note that, given the list

of representations that are realized, all CS-terms taken together are sufficient to de-

termine chiralities of all the matter multiplets. Our geometric techniques allow us

to have an independent determination for a subset of them (see section 5). We also

perform an independent check that with the obtained spectrum the four-dimensional

anomalies are cancelled. Explicit results are presented for the most general G4-flux

for all generic resolved elliptic Calabi-Yau fourfolds over the base B = P3, both for

U(1)×U(1) and SU(5)×U(1)×U(1) (for a specific embedding of SU(5)).

We note that the fibrations over the chosen base B = P3 are generally non-flat at

a single codimension three locus. This can be circumvented in two ways. Either, one

can forbid the existence of the non-flat fiber geometrically, or restrict the allowed G4-flux

by requiring a vanishing integral of it over the non-flat fiber. Both approaches yield an

anomaly-free 4D spectrum with no chiral excess of additional light states.

The paper is organized in the following way: in section 2 we summarize the geometry

of the general elliptic curve with rank two Mordell Weil group in dP2 and classify its fibra-

tions. Section 3.1 is devoted to the analysis of the codimension two and three singularities

of the fibrations specifying, respectively, the matter content, the matter curves and sur-

faces as well as the Yukawa couplings. In section 3.2 we determine the cohomology ring and

Chern classes for resolved elliptic Calabi-Yau fourfolds with rank two Mordell-Weil group.

4These techniques have been used in the context of mirror symmetry on Calabi-Yau fourfolds in [56–58].
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U(1)×U(1) SU(5)×U(1)×U(1)

(1, 0) (0, 1) (1, 1) (5,−2
5 , 0) (5, 3

5 , 0) (5,−2
5 ,−1)

(−1, 1) (0, 2) (−1,−2) (5,−2
5 , 1) (5, 3

5 , 1) (10,−1
5 , 0)

Table 1. Matter representation for F-theory compactifications with rank- two Mordell Weil group.

While U(1)× U(1) charges for SU(5) singlets are general, U(1)× U(1) charges for the additional

non-singlet matter representations of SU(5) depend on a specific realization of the SU(5) gauge

symmetry.

Section 4 is devoted to a detailed discussion of G4-flux and conditions imposed on them

in general F-theory compactifications with a non-holomorphic zero section. This study is

based on relations between 3D Chern-Simons terms under F-theory/M-theory duality. A

special emphasis is on quantum loop corrections due to Kaluza-Klein states, that are com-

puted explicitly. In section 5 the general G4-flux is explicitly calculated (section 5.1), and

matter chiralities both geometrically and via 3D Chern-Simons terms of dual the M-theory

are derived (section 5.2). In section 5.3 anomaly cancellation of the four- dimensional field

theory is checked and in section 5.4 an explicit toric example is presented. A generaliza-

tion to F-theory compactifications with an additional SU(5) non-Abelian gauge symmetry

is spelled out in sections 6 and 7. In section 6.1 the singularities at codimension one,

two (matter representations) and three (Yukawa points) are presented. A non-flat fiber at

codimension three is discovered. The cohomology ring and the general Euler number are

calculated in 6.2. In section 7 the G4-flux and the 4D chiralities are computed and anomaly

cancellation is checked in detail for all elliptic fibrations with dP2-fiber over P3. Section 7.1

demonstrates the general construction of G4-flux in F-theory compactifications with rank

two Mordell-Weil group and a resolved SU(5)-singularity with B = P3. In section 7.2 the

4D chiralities are evaluated and anomaly cancellation is checked. We finish the section

with one concrete toric example in section 7.3. Conclusions and future directions can be

found in section 8.

This work has seven appendices. Appendix A contains formulas for all Chern classes

of dP2-elliptic fibrations over an arbitrary base B along with the Chern classes and Eu-

ler numbers for their resolved Calabi-Yau two-, three- and fourfolds. In appendix B we

present the cohomology ring of the generic fourfolds with B = P3 and dP2-elliptic fiber.

Appendix C contains the Chern classes of dP2-fibrations with resolved SU(5)-singularities,

in appendices D and E the intersections and vertical cohomology ring of fourfolds with

B = P3 are computed. Appendix F contains all 3D CS-terms and chiralities. Appendix G

concludes by describing how to systematically construct the toric polytopes for the example

of Calabi-Yau fourfolds with base B = P3.
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2 The elliptic curve in dP2 and its fibrations

In this section we review the construction of the elliptic curve E in dP2 and its Calabi-

Yau elliptic fibrations over a general B. These Calabi-Yau manifolds have a rank two

Mordell-Weil group, that gives rise to U(1)×U(1) gauge symmetry in F-theory.

In section 2.1 we review the geometry of E as the generic Calabi-Yau onefold in the del

Pezzo surface dP2 following the conventions and notations of [51], to which we also refer

for more details. The reader familiar with the geometry of this elliptic curve E can safely

skip the first part of the section. Then, in section 2.2 we construct resolved elliptically

fibered Calabi-Yau manifolds π̂ : X̂ → X over an arbitrary base B with this elliptic curve

E as the general fiber. The singular Calabi-Yau manifold is denoted by X We show that

these Calabi-Yau manifolds X̂ are classified by the choice of two divisors S7, S9 in the

base B. In particular, we work out all the line bundles that are relevant to formulate the

Calabi-Yau constraint of X̂, which is the analog of the Tate model for elliptic fibrations

with dP2-elliptic fiber.

The content of section 2.2 is a direct extension of the discussion in [51], where the

possibility of a full classification of all Calabi-Yau elliptic fibrations with general fiber E
was pointed out, but demonstrated explicitly only for B = P2.

2.1 The elliptic curve with rank two Mordell-Weil group

The hypersurface description of the elliptic curve E with a zero point P and two rational

points Q and R has been derived in [51] from the existence of a degree three ample line

bundle M = O(P +Q+R) on E . The result of this analysis is that such an elliptic curve

is naturally represented as the generic Calabi-Yau hypersurface in the del Pezzo dP2. The

Calabi-Yau constraint in dP2 takes the form

p=u(s1u
2e2

1e
2
2 + s2uve1e

2
2 + s3v

2e2
2 + s5uwe

2
1e2 + s6vwe1e2 + s8w

2e2
1) + s7v

2we2 + s9vw
2e1 ,

(2.1)

where we introduced the homogeneous coordinates [u : v : w : e1 : e2] on dP2.5 One

readily checks that p is the most general section of the anti-canonical bundle K−1
dP2

=

O(3H −E1 −E2), by noting the following divisor classes of the homogeneous coordinates,

divisor class C∗-actions

u Du = H − E1 − E2 1 1 1

v Dv = H − E2 1 0 1

w Dw = H − E1 1 1 0

e1 E1 0 −1 0

e2 E2 0 0 −1

(2.2)

Here we also introduced the divisors Du, Dv and Dw obtained by setting u, v, w to

zero, respectively. The group of divisors is generated by H, E1 and E2 whose geometric

5We deviate here from the conventions of [51] by denoting coordinates on dP2 by [u : v : w : e1 : e2] and

those on P2 by [u′ : v′ : w′].
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Figure 1. Fan of dP2. The coordinates corresponding to its rays are indicated.

interpretation we give momentarily. We note that dP2 is a toric variety with the (C∗)3-

action on the homogeneous coordinates6 specified by the last three columns of (2.2). Its

reflexive two-dimensional polytope is given in figure 1.

It is useful for our purposes to recall that a general del Pezzo surface dPn is obtained

from P2 by a blow-up at n generic points. Thus, the del Pezzo surface dP2 is the blow-up of

P2 at two generic points. In terms of the homogeneous coordinates [u′ : v′ : w′] on P2, this

blow-up is performed in our case at u′ = w′ = 0 and u′ = v′ = 0, so that the blow-down

map takes the form

u′ = ue1e2 , v′ = ve2 , w′ = we1 , (2.3)

with the two sections ei associated to the exceptional divisors Ei. We note that one can use

this map to represent the elliptic curve E in (2.1) as a non-generic Calabi-Yau onefold in

P2. As discussed in [51] this presentation of E suffices to obtain its Weierstrass model and

discriminant. However, for the understanding of elliptic fibrations the completely resolved

curve E in dP2 with is inevitable.

The divisors classes in (2.2) are the classes of the ei, i.e. the exceptional divisors Ei of

the blow-up (2.3), and the divisor class H, that is the pullback of the hyperplane class on

P2. We note the intersections on dP2 are given as

H2 = 1 , H · Ei = 0 , Ei · Ej = −δij . (2.4)

These intersections immediately follow on the one hand from the rule that two divisors

corresponding to rays of the same two-dimensional cone have intersection number one and

on the other hand from the exceptional set, the Stanley-Reissner ideal SR. The latter

encodes all rays which do not share a two dimensional cone and have intersections number

zero. From figure 1 one readily obtains

SR = {uv, uw, e1e2, e1v, e2w} . (2.5)

6Denoting one column vector in the last three columns of (2.2) by ` and the homogeneous coordinates

collectively as xi, than the corresponding C∗-action is defined as xi 7→ λ`ixi with λ ∈ C∗.
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The rational points Q and R as well as the zero point P on E are simply given by

the intersections of the three independent divisors in (2.2) with the elliptic curve (2.1).

We have chosen the three different points on E that are obtained by intersecting the three

divisors Du, E1 and E2 on dP2 with p = 0 in (2.1). Upon setting all coordinates to one that

can not vanish simultaneously with the divisor under consideration due to the exceptional

set (2.5) we obtain

P : E2 ∩ p = [−s9 : s8 : 1 : 1 : 0] , Q : E1 ∩ p = [−s7 : 1 : s3 : 0 : 1] ,

R : Du ∩ p = [0 : 1 : 1 : −s7 : s9] . (2.6)

The point P is considered as the zero point on E and the points Q, R are the rational

points. They are the two generators of the rank two Mordell-Weil group of rational points,

with the group law given by the addition of points on E . We note that these three points

are generically distinct. P is always distinct from Q, however, we observe P = R for s9 = 0

and Q = R for s7 = 0.

When considering elliptically fibered Calabi-Yau fourfolds X̂ with the curve (2.1) as

the general elliptic fiber, the points P , Q and R lift to rational sections of the fibration. We

note that the coefficients si in (2.1) are then base-dependent functions, that can vanish on

B. In particular, we see from (2.6) that the points P , Q, and R, respectively, are ill-defined

when s8 = s9 = 0, s3 = s8 = 0 and s7 = s9 = 0, respectively. This behavior is typical

for rational sections and further discussed in section 3.1. In F-theory compactifications on

such a fourfold X̂ each of the rational sections gives rise to an Abelian gauge symmetry.

Thus, Calabi-Yau fourfolds with general elliptic fiber in dP2 generically have a rank two

Abelian gauge group, i.e. an U(1)×U(1) gauge symmetry.

2.2 General Calabi-Yau fibrations with dP2-elliptic fiber

In this section we discuss the construction of resolved elliptically fibered Calabi-Yau man-

ifolds X̂ with general elliptic fiber in dP2. The following results hold for general complex

dimension of X̂, in particular for Calabi-Yau three- and fourfolds. We end this section with

the concrete example of B = P3.

Classifying dP2-fibrations and their Calabi-Yau hypersurfaces X̂

In general an elliptically fibered Calabi-Yau manifold E → X̂
π→ B with π denoting the

projection to the base B is constructed by first considering the defining equation for the

desired elliptic curve E alone and then by lifting the coefficients in this equation to sections

over the base B. In the case at hand, the elliptic curve is described by (2.1). Thus, all we

have to do to obtain an elliptic fibration is to promote the coefficients si to sections of line

bundles on the base B. Finally, the Calabi-Yau condition for (2.1) fixes the respective line

bundles for the sections si.

The procedure of lifting the si to sections of B is described as follows. First, we have

to define the ambient space in which the elliptically fibered manifold X̂ → B is embedded.

Since the constraint (2.1) merely cuts the elliptic curve E out of dP2, the ambient space is
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simply a dP2-fibration over the base B of X̂. It takes the form

dP2
// dPB2 (S7,S9)

��

B

(2.7)

which can be viewed as a generalization of a projective bundle. Here S7 and S9 are two

divisors on B associated to the vanishing loci of the sections s7 and s9 in (2.1). The total

space is denoted dPB2 (S7,S9) since it is uniquely determined by these divisors S7 and S9

if we demand that the constraint (2.1) defines a Calabi-Yau manifold X̂. In fact, we first

note that any the dP2-fibration is specified by only two divisors on B. This can be seen by

noting that in a general such fibrations the homogeneous coordinates [u : v : w : e1 : e2] on

dP2 are sections of five different line bundles on the base B, respectively. However, we can

always use the three C∗-actions in (2.2) to eliminate three of these line bundles, so that

only two of the five coordinates on dP2 take values in non-trivial line bundles. We make

the following assignment of line bundles on B to the coordinates,

u ∈ OB(S9 + [KB]) , v ∈ OB(S9 − S7) , (2.8)

where KB denotes the canonical bundle on B and [KB] the associated divisor. All other

coordinates on dP2 transform as the trivial bundle on B. We note that this parametrization

of the two line bundles for u and v is completely general, because S7 and S9 are completely

general divisors on B at the moment.

Next, we use these results to readily calculate the total Chern class of dPB2 (S7,S9)

from adjunction, see (A.2) in appendix A, from which we obtain its anti-canonical bundle

K−1
dPB

2
= O(3H − E1 − E2 + 2S9 − S7) , (2.9)

where we suppressed the dependence on S7, S9 for brevity of our notation. Then the

Calabi-Yau condition implies that the constraint (2.1) has to be a section of K−1
dPB

2
. This

immediately fixes the line bundles of all the sections si on B. We summarize the sections

defining the elliptically fibered Calabi-Yau manifold X̂ as follows

section bundle

u O(H − E1 − E2 + S9 + [KB])

v O(H − E2 + S9 − S7)

w O(H − E1)

e1 O(E1)

e2 O(E2)

section bundle

s1 O(3[K−1
B ]− S7 − S9)

s2 O(2[K−1
B ]− S9)

s3 O([K−1
B ] + S7 − S9)

s5 O(2[K−1
B ]− S7)

s6 O([K−1
B ])

s7 O(S7)

s8 O([K−1
B ] + S9 − S7)

s9 O(S9)

(2.10)

In particular we see that with the parametrization (2.8) the divisors S7 and S9 are indeed

associated to s7 and s9 as claimed at the beginning.
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Basic geometry of Calabi-Yau manifolds with dP2-elliptic fiber

Having constructed the general elliptically fibered Calabi-Yau manifolds X̂ over B, we

discuss next the group of divisors on X̂. By construction, the basis of divisors on a generic7

X̂ is induced by a basis of divisors on the ambient space dPB2 (S7,S9), which consists of

divisors of the base B and the fiber dP2. The divisors induced from a basis of divisors Db
α

of the base B are the vertical divisors Dα = π∗(Db
α) of the elliptic fibration π : X̂ → B.

Similarly, the classes H, E1, E2 of the fiber dP2 in (2.2) become divisors on X̂. Then,

the points P , Q and R in (2.6) lift to, in general, rational sections of the fibration of

π : X̂ → B, denoted ŝP , ŝQ and ŝR, with ŝP the zero section. We denote the homology

classes of the associated divisors by capital letters,

SP = E2 , SQ = E1 , SR = H − E1 − E2 + S9 + [KB] . (2.11)

In general, a rational section is a non-holomorphic map of the base B into X̂, such

as ŝP : B → X̂ for example. A rational section B → X̂ is ill-defined over codimension

two loci to the effect that it wraps entire fiber components over these loci. From a given

rational section, one can easily obtain a holomorphic section, i.e. a holomorphic map B̂ →
X̂, by a birational transformation, namely a blow-up B̂ → B at those codimension two

loci of B. Usually the zero section ŝP has been assumed to be holomorphic in F-theory.

Only lately, the possibility of a non-holomorphic zero section ŝP in F-theory has been

studied [45, 51, 55]. The group of sections excluding the zero section ŝP is the Mordell-

Weil group of rational sections on X̂, which in the case at hand is rank two and generated

by ŝQ, ŝR. For brevity of our notation, we will occasionally denote the generators of the

Mordell-Weil group and their divisor classes collectively as

ŝm = (ŝQ, ŝR) , Sm = (SQ, SR) . (2.12)

There are some characteristic intersections involving the divisors SP , SQ and SR
in (2.11) that immediately follow from the defining properties of a section. We list them

in the following and refer to [43, 44, 51, 59] for a more thorough discussion. We also give a

simple criterion to distinguish between rational and holomorphic sections. A more detailed

account on intersections in the presence of a rational zero section can be found in [55].

Here, we content ourselves with noting that ŝP is holomorphic if S9 = 0 or S8 = 0, ŝQ
is holomorphic if S3 = 0 or S7 = 0 and ŝR is holomorphic if S7 = 0 or S9 = 0, cf. the

paragraph following (2.6) and [51].

7By generic we mean the absence of Cartan divisors Di from resolutions of codimension one singularities

of the fibration of X̂. We will briefly discuss the geometry of X̂ in the presence of Di at the end of this

section. We refer to section 6 for more details.
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The following intersections and definitions will be crucial in the rest of this work:

Universal intersection:

Rational sections:

Holomorphic sections:

Shioda maps:

Height pairing:

SP · F = Sm · F = 1 with general fiber F ∼= E , (2.13)

π(S2
P + [K−1

B ] · SP ) = π(S2
m + [K−1

B ] · Sm) = 0 , (2.14)

S7 = π(SP · SR) , S9 = π(SQ · SR) , (2.15)

S2
P + [K−1

B ] · SP = S2
m + [K−1

B ] · Sm = 0 , (2.16)

σ(ŝQ) = SQ − SP − [K−1
B ] , (2.17)

σ(ŝR) = SR − SP − [K−1
B ]− S9 ,

π(σ(ŝm) · σ(ŝn))=

(
2[KB] [KB]− S7 + S9

[KB] + S7 − S9 2[KB]− 2S9

)
mn

(2.18)

Let us briefly comment on these intersections in the order of their appearance. The

intersection (2.13) is an immediate consequence of the definition of a section: its divisor

class intersects the general class of the fiber F ∼= E at a point. The relation (2.14) can

be shown by an adjunction argument, see section 3.2 for direct cohomology computations.

Here we have defined the a projection onto the homology H4(B) of the base as

π(C) = (C · Σα)Db
α , Σα

b ·Db
β = δαβ (2.19)

for every complex surface C in X̂. The intersection pairings on X̂, respectively, B are

denoted · and the Σα = π∗(Σα
b ) arise from a basis of curves Σα

b dual to the divisors

Db
α on B as indicated in the last equation in (2.19). We emphasize that in the case of

a holomorphic section, the relations (2.14) hold in the full homology of X̂ as indicated

in (2.16). The divisors S7, S9 are the codimension one loci where the sections collide in

the fiber E , as discussed below (2.6). They are encoded in the intersections (2.15). Next,

we introduce the divisors σ(ŝQ), σ(ŝR) in (2.17). The map σ is the Shioda map that takes

here the form

σ(ŝm) := Sm − S̃P − π(Sm · S̃P ) , (2.20)

where we introduced the combination [60, 61]

S̃P = SP +
1

2
[K−1

B ] . (2.21)

We refer to [33, 43, 44, 51, 59] for more details on the Shioda map and to section 6 for the

inclusion of an SU(5)-sector. We note that the divisors (2.17) support U(1)-gauge fields in

F-theory due to their vanishing intersections with vertical divisors Dα and the zero-section,

as well as potential Cartan divisors Di of non-Abelian groups. Finally, we have calculated

the intersection matrix of the Shioda map of ŝQ, ŝR in (2.18).
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We finish this section by some concluding definitions and remarks on the general struc-

ture of the fibrations (2.7) and X̂. First, we summarize the basis of divisors on X̂ as

DA = (S̃P , Dα, Di, σ(ŝm)) , A = 0, 1, . . . , h(1,1)(B̂) + rk(G) + 3 , (2.22)

where we have collectively denoted the basis (2.17) as σ(ŝm). We have also introduced one

set of Cartan divisors Di with i = 1, . . . , rk(G) in order to prepare for the presence of a

non-Abelian group G, as in section 6 with G =SU(5). These divisors Di are present for non-

generic X̂ with a resolved singularity of type G of the elliptic fibration over codimension

one in B. The Di admit a fibration

c−αi
// Di

��

SbG

(2.23)

where the general fiber is a rational curve c−αi
∼= P1 that corresponds to the simple root −αi

of G. The divisor SbG in B physically supports 7-branes that give rise to the non-Abelian

gauge symmetry G in F-theory [14, 15, 18].

Next, we expand the canonical bundle KB of the base B in terms of the vertical divisors

Dα as

[KB] = KαDα (2.24)

with coefficients Kα. Similarly, we expand the divisors

S7 = nα7D
b
α , S9 = nα9D

b
α , (2.25)

with general positive integral coefficients nα7 , nα9 , α = 1, . . . , h(1,1)(B). It is important

to emphasize that the coefficients nα7 , nα9 are in general further bounded from above by

the requirement that all sections si in (2.10) are generic, i.e. that the line bundle of si
admits sufficiently many holomorphic sections. If this is not the case we expect additional

singularities in X̂, potentially corresponding to a minimal (non-Abelian) gauge symmetry

in F-theory. For this reason, we will in the rest of this work assume that X̂ can be

constructed with generic si.

Despite these restrictions on the integers nα7 and nα9 we would like to point out that

the constructions of the fibration (2.7) and of X̂ hold in general for an arbitrary base B

and arbitrary complex dimension. In particular this analysis applies to an arbitrary choice

of divisors S7 and S9 within these bounds. In particular the general construction here

reproduce immediately the classification in [51] with B = P2 as a special case.

dP2-fibrations over B = P3 with generic Calabi-Yau hypersurfaces X̂

We conclude with the discussion of the special case B = P3, which will be considered in

later sections of this work. In this case, there is only one divisor in the base, the hyperplane

HB, so that the dP2-fibration (2.7) is specified only by two integers n7 ≡ n1
7, n9 ≡ n1

9. In

– 12 –



J
H
E
P
0
4
(
2
0
1
4
)
0
1
0

00 22 4 6 8
0

2

4

6

8

n7

n
9

Figure 2. Each dot corresponds to a dP2-fibration over P3 with generic Calabi-Yau X̂.

this case we use the notation

dP2
// dP2(n7, n9)

��

P3

(2.26)

where we suppress the base B = P3 when denoting the total space (2.7) of the fibration if

the context is clear.

We note that K−1
P3 = OP(4). In this case all sections si exist iff all bundles in the

second table in (2.10) have non-negative degree. This puts the following conditions on the

integers n7, n9,

0 ≤ n7, n9 ≤ 8 , n7 + n9 ≤ 12 , 0 ≤ 4 + n7 − n9 , 0 ≤ 4 + n9 − n7 . (2.27)

The domain of allowed valued for n7 and n9 are displayed in figure 2. As we will see in

section 5.4 we can torically construct the Calabi-Yau fourfolds X̂ for a wide range of values

of n7, n9. The general strategy to build the corresponding reflexive polytopes is outlined

in appendix G. It is satisfying, that in the toric context the conditions (2.27) are enforced

by reflexivity of the toric polytope, i.e. for values n7, n9 exceeding the bounds (2.27) the

toric polytope is no longer reflexive.

3 Calabi-Yau fourfolds with rank two Mordell-Weil

In this section we analyze F-theory compactifications to four dimensions on a generic

elliptically fibered Calabi-Yau fourfold X̂ over a base B with general fiber E in dP2. These

compactifications have a gauge theory with U(1)×U(1) gauge group and a number of chiral

matter fields in representations 1(q1,q2). The possible U(1)×U(1)-charges (q1, q2) have been

determined recently in [46, 51] and the full 6D anomaly-free spectrum including matter

multiplicities has been derived for B = P2 in [51].

Here we extend this geometric analysis to fourfolds. The main difference to the 6D

case is that matter is not localized anymore at points in B, but on in general rather

complicated matter curves. The determination of these matter curves and some of their

associated matter surfaces, along with the Yukawa points, is presented in section 3.1. Then,

in section 3.2 we present a method to determine the cohomology ring of the fourfold X̂. We
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use these techniques to derive general expressions for the Euler number of X̂ and its second

Chern class. For the example of B = P3 we finally compute the full vertical cohomology

group. These calculations serve as a preparation for the computation of 4D chiralities in

section 5, which requires both the knowledge of matter surfaces and the construction of

G4-flux.

3.1 Singularities of the fibration: matter Surfaces & Yukawa points

We organize this section into a detailed discussion of codimension two singularities in

section 3.1.1 and a very brief account on codimension three singularities in section 3.1.2.

3.1.1 Matter: codimension two

In general, the determination of the matter sector in F-theory vacua with general gauge

group requires a detailed analysis of singularities of the elliptic fibration of the Calabi-Yau

fourfold at codimension two in the base B, where the elliptic fiber E becomes reducible.

Then one has to identify the isolated rational curve cw in the fiber over these loci, since these

correspond in F-theory to matter in a representation R from wrapped M2-brane states.

These curves are in one-to-one correspondence to the weights w of the representations

R and accordingly labeled. In the case of elliptically fibered Calabi-Yau fourfolds, the

codimension two matter loci are Riemann surfaces of genus g, the so-called matter curves

ΣR in B conveniently labeled by the corresponding matter representation R. In addition,

for the determination of four-dimensional chirality, compare section 5, we have to know

the homology classes of the associated matter surfaces

cw // CwR

��

ΣR

(3.1)

which are constructed as the fibration of the rational curve cw corresponding to a given

weight w of the representation R fibered over ΣR.

In this section we determine the matter curves ΣR and the matter surfaces CwR for

the six representations occurring in the Calabi-Yau fourfold X̂. As we demonstrate, their

determination is complicated by the fact that three of the six the codimension two loci in

the base B where the elliptic fiber E becomes reducible are themselves reducible curves.

Their irreducible components are multiple different matter curves ΣR. Some of these

matter curves, denoted ΣR′ , fail to be complete intersection and can only be described in

terms of their prime ideals. These prime ideals are straightforwardly constructed from the

two equations of the original reducible codimension two locus. However, the isolation of

rational curves cw over those matter curves ΣR′ is very involved. Thus, in these cases we

can not determine the corresponding matter surfaces (3.1) explicitly. Fortunately, we can

obtain the other three matter surfaces straightforwardly, and are still able to determine

the full F-theory matter spectrum for the fourfold X̂, as outlined in section 5. It would be

desirable, however, to reproduce the results obtained there invoking M-/F-theory duality
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by direct geometric computation based on a better understanding of the matter surfaces

CR′ in general.

In any case, we can qualitatively describe all the matter surfaces CwR by recalling

the construction of the resolved fourfold X̂. The smooth fourfold X̂ is formed by two

consecutive blow-ups of a singular Weierstrass model X. We depict this schematically as

X̂ ⊂ dPB2 (S7,S9)

generic CY
π̂ //

π2
''

X ⊂ (P2(1, 2, 3)→ B)

non-generic WSF

X̃ ⊂ (P2 → B)

non-generic cubic

π1

66

(3.2)

where the full blow-down map π̂ : X̂ → X is consequently a composition π̂ = π1 ◦ π2.

On the left we have the smooth geometry with elliptic fiber constructed in section 2. It

can be understood as a toric blow-up π2 : X̂ → X̃ from a non- generic cubic in P2, with

corresponding fourfold denoted by X̂. A final blow-down π1 yields the singular Weierstrass

form (WSF) X with P2(1, 2, 3)-fiber. The birational map π1 is derived in detail in [51], see

its defining equations eqs. (3.18) and (3.20) therein.

Having the diagram (3.2) in mind, the three matter surfaces CR which have a simple

description are those generated in the blow-up π2. There are three simple codimension

two singularities in X̃, which are precisely the three simple matter curves ΣR. Their pull-

backs under π2 are precisely the matter surfaces CR = π∗2(ΣR). Because of the simplicity

of both ΣR and the blow-up π2, these surfaces have a description as a simple complete

intersection in the ambient space dP2(S7,S9). In contrast, the other three matter curves

ΣR′ are the loci of codimension two singularities in the WSF X, which are resolved by the

map π1. However, these curves Σ′R have a description only in terms of prime ideals and

the map π1 is not a simple toric blow-up but a fully-fledged birational map [51]. These two

complications make an explicit determination of the surfaces CwΣ′R hard. Nevertheless, the

matter surfaces are again abstractly given by CR′ = π∗1(Σ′R), which are ruled surfaces over

Σ′R. Thus, the determination of the exceptional loci of the map π1 might be a first step

towards an understanding of these matter surfaces.

Summary of matter representations & their matter curves

Before going into technical calculations of matter curves and surfaces, let us briefly sum-

marize the matter content as it has been determined in [46, 51].

There are six different matter representations R = 1(q1,q2) in the F-theory compact-

ification on the fourfold X̂. The list of realized U(1)×U(1)-charges, together with the
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Figure 3. I2-fiber from resolving a codimension two singularity of the fibration of X̂.

cohomology class of the corresponding matter curves ΣR determined below, reads

Matter Homology class of ΣR in B

1(1,0) 6[K−1
B ]2 + 4[K−1

B ] · S7 − 5[K−1
B ] · S9 + S2

9 + S7 · S9 − 2S2
7

1(0,1) 6[K−1
B ]2 + 4[K−1

B ] · (S7 + S9)− 2S2
7 − 2S2

9

1(1,1) 6[K−1
B ]2 + 4[K−1

B ] · S9 − 5[K−1
B ] · S7 + S2

7 + S7 · S9 − 2S2
9

1(−1,1)

(
[K−1

B ] + S7 − S9

)
· S7

1(0,2) S7 · S9

1(−1,−2) S9 ·
(
[K−1

B ] + S9 − S7

)
(3.3)

Here we used as before the notation [K−1
B ] for the anti-canonical divisor of the base and

denoted the intersection on B as ‘·’. These representations of matter fields are model-

independent and in particular do not depend on the choice of base B. The last three

matter representations arise from rational curves created in the blow-up π−1
2 in (3.2).

Their matter curves are simply described by s3 = s7 = 0, s7 = s9 = 0 and s8 = s9 = 0 in

the order of their appearance in (3.3). The first three representations arise from rational

curves from the blow-up π−1
1 in (3.2). The determination of their matter curves is more

involved and presented below.

All the matter representations in (3.2) arise from M2-branes on rational curves cw with

wight w = (q1, q2). These charges are calculated by the intersection of the curve cw with

the Shioda maps σ(ŝQ), σ(ŝR) defined in (2.17) as

qm ≡ σ(ŝm) · cw = (Sm · cw)− (SP · cw) , (3.4)

All curves cw are part of an I2-fiber. Along the matter surfaces in (3.3) the general elliptic

fiber E splits into two rational curves c1, c2
∼= P1 intersecting in two points with one curve,

say c1, the original singular fiber and the other curve c2 ≡ cw. We write this as

I2-fiber : E = c1 + c2 , c1 · c2 = 2 . (3.5)

A cartoon of such a reducible fiber together with possible locations of the points P , Q and

R is depicted in figure 3. In terms of the Calabi-Yau constraint (2.1) the split of E into an

I2-fiber is visible as a factorization at a point pt ∈ ΣR as

p|pt = p1 · p2 . (3.6)

Here the two rational curves in (3.5) are described by one of these two factors, for example

c1 = {p1 = 0, pt ∈ ΣR} and c2 = {p2 = 0 , pt ∈ ΣR}.
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Matter surfaces C(−1,1), C(0,2), C(−1,−2) and their homology classes

Next, we determine the matter surfaces CwR for the last three representations in (3.3). As

we will see, this is straightforward since the matter curves ΣR in these cases are irreducible

varieties of the simple form si = sj = 0 for appropriate i, j. This implies that the

factorization of the elliptic fiber E = c1 + c2 is manifest over the entire matter curve ΣR

and the matter surfaces CwR can be described by a complete intersection of three constraints

in the ambient space dPB2 (S7,S9). Then its homology class is given simply by the product

of the divisor classes of each of these constraints.

The resulting homology classes of matter surfaces read

Matter surface Homology class

C1(−1,1)
([K−1

B ] + S7 − S9) · S7 · E1

C1(0,2)
S7 · S9 · ([K−1

B ] + S9 − S7 + 2H)

C1(−1,−2)
([K−1

B ] + S9 − S7) · S9 · (3H − E1 − 2E2 + 2S9 − S7)

(3.7)

Here we suppressed the weight w since it is identical to the charges (q1, q2). We obtain the

homology class of the first matter surface C1(−1,1)
by noting its description as the complete

intersection

C1(−1,1)
= {s3 = s7 = 0 , e1 = 0} (3.8)

in the ambient space dPB2 (S7,S9). Here the first two equations describe the matter curve

Σ1(−1,1)
= {s3 = s7 = 0} over which the Calabi-Yau constraint (2.1) factorizes as p = p1p2

with one factor given by e1, cf. section 4.3 of [51]. Thus, the rational isolated curve is

described as c(−1,1) = {e1 = 0, pt ∈ Σ(−1,1)} over all the points of Σ(−1,1). The homology

class in the first line of (3.7) for C1(−1,1)
in the ambient space dPB2 (S7,S9) is then easily

obtained from (3.8) employing the assignments (2.10) of line bundles to s3, s7 and e1.

Similarly we obtain the homology classes of the matter surfaces C1(0,2)
and C1(−1,−2)

.

In the former case the matter curve is Σ1(0,2)
= {s7 = s9 = 0} over which the Calabi-Yau

constraint (2.1) factorizes globally with the isolated rational curve given by [51]

c(0,2) = {s1e
2
1e

2
2u

2 + s2e1e
2
2uv + s3e

2
2v

2 + s5e
2
1e2uw + s6e1e2vw + s8e

2
1w

2 = 0} . (3.9)

Here it is understood that the sections si are evaluated on Σ1(0,2)
. The homology class

of this complete intersection is the product of the class of c(0,2) and of Σ1(0,2)
and we

immediately reproduce the second line in (3.7) using (2.10). Finally, the matter curve for

1(−1,−2) is given by Σ1(−1,−2)
= {s8 = s9 = 0} and the isolated rational curve is [51]

c(−1,−2) = {s1e
2
1e2u

3 + s2e1e2u
2v + s3e2uv

2 + s5e
2
1u

2w + s6e1uvw + s7v
2w = 0} , (3.10)

where as before the si are evaluated on Σ1(−1,−2)
. Then, the matter surface is again a

complete intersection in the ambient space (2.7) and its homology class, employing the line

bundles (2.10), is indeed given by the third line in (3.7).
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Matter curves Σ(1,0), Σ(0,1), Σ(1,1) and their prime ideals

As mentioned before, the three remaining matter curves ΣR′ are themselves no simple

complete intersections, but contained in a reducible codimension two subvarieties in B

that are complete intersections. To isolate the component ΣR′ of interest we have to

determine its prime ideal. This prime ideal is generated by more than two constraints,

but still describes a codimension two variety in B. In addition, the factorization (3.6)

describing the split E = c1 + c2 of the elliptic curve does not occur globally over the matter

curves ΣR′ , but is manifest only at generic points of ΣR′ . These combined effects render

the determination of the homology class of the matter surfaces CR′ unfeasible. However, we

can obtain the homology class of the matter curves ΣR′ as shown next. For completeness

we will also present the prime ideal for one illustrative example. In general the prime

ideals are needed for a thorough analysis of codimension three singularities presented in

section 3.1.2.

We begin with the determination of the homology classes of the matter curves ΣR′ .

They can be obtained by first determining the homology class of the two equations for

the reducible codimension two locus in B and by then subtracting the classes of those

components ΣR we are not interested in. As in the six-dimensional case [51] we have

to subtract the components ΣR with the right multiplicity, which is computed by the

resultant8 of the two equations at the root corresponding to ΣR. The resulting homology

classes of this computations give the first three lines of (3.3). We work out these homology

classes in detail in the remainder of this section.

First we present the equations for the reducible codimension two loci in B that contain

the three matter curves ΣR that we are interested in as irreducible components. These

codimension two loci read [51]

loc1 = {s7s
2
8 + s9(s5s9 − s6s8) = s3s

2
8 − s2s8s9 + s1s

2
9 = 0} , (3.11)

loc2 = {s3s6s8 − s2s7s8 − s3s5s9 + s1s7s9 = s2
3s

2
8 + s7 (s1s7s8 + s2s5s9 − s2s6s8)

+s3

(
s2

6s8 − s5s7s8 − s5s6s9 − s2s8s9 + s1s
2
9

)
= 0} ,

loc3 = {2s3
7s

3
8 + s3s

3
9(s5s9 − s6s8) + s2

7s8s9(2s5s9 − 3s6s8)− s7s
2
9(s5s6s9 + s2s8s9 − s2

6s8

−2s3s
2
8 − s1s

2
9) = s4

7s
4
8 + 2s3

7s
2
8s9(s5s9 − s6s8) + s7s

3
9(2s3s8 − s2s9)(s5s9 − s6s8)

−s2
7s

2
9(2s5s6s8s9 + s2s

2
8s9 − s2

6s
2
8 − 2s3s

3
8 − s2

5s
2
9) + s3s

4
9(s3s

2
8 + s9(s1s9−s2s8))=0}

By calculating the associated prime ideals9 of loc1 we see that it has two irreducible

components. One is obviously the matter curve Σ1(−1,−2)
= {s8 = s9 = 0} and the other

one is the matter curve Σ1(1,1)
. Then we determine the homology class of the reducible

variety loc1. We further recall from [51] that the order of the root (s8, s9) = (0, 0) of the

two polynomials in loc1 is 4. Thus, decompose the class of loc1 as

[loc1] = (2[K−1
B ] + 2S9 − S7) · (3[K−1

B ] + S9 − S7) ∼= Σ(1,1) + 4Σ(−1,−2)

⇒ Σ(1,1)
∼= 6[K−1

B ]2 + 4[K−1
B ] · S9 − 5[K−1

B ] · S7 + S2
7 + S7 · S9 − 2S2

9 , (3.12)

8In general, the resultant gives the order of a root of two polynomials in two variables.
9The ideal generated by loc1 is the intersection of its associated primary ideals. An ideal I is primary

ideal if ab ∈ I implies a ∈ I or bn ∈ I for some n > 0. If n = 1, the ideal I is a prime ideal.
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where we used (2.10) and denote the equivalence relation in homology as ‘∼=’. Here we also

used that the homology class of Σ1(−1,−2)
as given in the third line of (3.7) by the first two

factors. Thus, we have obtained the homology class of Σ1(1,1)
as in (3.3).

Similarly, we obtain the homology class of Σ1(1,0)
. We calculate four associated prime

ideals of loc2 in (3.11) that correspond to four different irreducible components. These

components are the curves Σ1(−1,1)
= {s3 = s7 = 0}, Σ1(−1,−2)

= {s8 = s9 = 0}, Σ1(1,1)

and finally Σ1(1,0)
. By calculating the resultants of loc2 at the relevant roots, we obtain

multiplicities one for all irreducible components. Thus, we obtain the homology class of

Σ(1,0) from decomposition of the class of loc2 as

[loc2] = 12[K−1
B ]2 = Σ(−1,1) + Σ(−1,−2) + Σ(1,1) + Σ(1,0)

⇒ Σ(1,0)
∼= 6[K−1

B ]2 + 4[K−1
B ] · S7 − 5[K−1

B ] · S9 + S2
9 + S7 · S9 − 2S2

7 , (3.13)

where we have used (2.10), the homology classes of matter curves in (3.7) as well as in (3.12).

This is the result in (3.3).

Finally, we determine the homology class of the matter curve Σ1(0,1)
. The ideal loc3

in (3.11) has five prime ideals corresponding to the matter curves Σ1(−1,1)
, Σ1(0,2)

, Σ1(−1,−2)
,

Σ1(1,1)
and the matter curve Σ1(0,1)

we are interested in. The multiplicities of the irreducible

components we are not interested are calculated as one, 16, 16, one, respectively, by the

corresponding resultants of loc3. Thus, we calculate the homology class of the curve Σ1(0,1)

from the homology class of loc3 as

loc3 = 12[K−1
B ]2 = Σ(−1,1) + 16 · Σ(0,2) + 16 · Σ(−1,−2) + Σ(1,1) + Σ(0,1)

⇒ Σ(0,1) = 6[K−1
B ]2 + 4[K−1

B ] · (S7 + S9)− 2S2
7 − 2S2

9 , (3.14)

where we used the homology class of the matter curves in (3.7) and (3.12). This is the

homology class in (3.3).

We conclude this discussion by presenting the associated prime ideal of selected matter

surfaces as an instructive preparation of section 3.1.2. The prime ideal of Σ1(1,1)
reads

P =
{
s2

3s
2
5 + s7

(
s2

2s5 − s1s2s6 + s2
1s7

)
+ s3

(
−s2s5s6 + s1

(
s2

6 − 2s5s7

))
,

s3s
2
5s9 + s2s5 (s7s8 − s6s9) + s1

(
−s6s7s8 + s2

6s9 − s5s7s9

)
,

s3s5s8 − s1s7s8 − s2s5s9 + s1s6s9, s3s6s8 − s2s7s8 − s3s5s9 + s1s7s9,

s3s
2
8 + s9 (−s2s8 + s1s9) , s7s

2
8 + s9 (−s6s8 + s5s9)

}
. (3.15)

The dimension of P is calculated to be six in the ring generated by the si which confirms

that the irreducible variety described by it is codimension two in B as expected. It is evident

from (3.15) that the two irreducible components Σ1(1,1)
and Σ1(−1,−2)

= {s8 = s9 = 0} of

loc1 intersect at points in B. These points may correspond to Yukawa points in F-theory

since the fiber in the resolved space X̂ splits further into three components, as can be seen

by a prime ideal analysis. We also determine the prime ideal of the matter curve Σ1(1,0)
as

P =
{
−s2

2s
2
8 + s2

(
s5s6s8 − s2

5s9 + 2s1s8s9

)
− s1

(
s2

6s8 − s5s6s9 + s1s
2
9

)
,

s2s5s7 − s1s6s7 − s2s3s8 + s1s3s9, s3s5s7 − s1s
2
7 − s2

3s8,

s3s6s7 − s2s
2
7 − s2

3s9, s3s6s8 − s2s7s8 − s3s5s9 + s1s7s9

}
. (3.16)
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From this ideal we see that Σ1(1,0)
intersects the matter curve Σ1(−1,1)

, where again there

is an additional split of the fiber.

3.1.2 Yukawa couplings: codimension three

At codimension three the singularities of the fibration enhance further signaling the pres-

ence of a Yukawa point. In the case at hand we find an enhancement to an I3-singularity,

which is resolved into three intersecting P1’s in X̂. The loci of I3-fibers are determined by

looking at zeros of higher order of the discriminant and by checking whether the fiber in

the resolution X̂ splits further. We find the following loci,

Loci Yukawa

s8 = s9 = s7 = 0 1(−1,−2) × 1(0,2) × 1(1,0)

s3 = s7 = s9 = 0 1(0,2) × 1(1,−1) × 1(−1,−1)

Σ1(1,0) ∩ Σ1(1,0) ∩ Σ1(1,0) 1(−1,−1) × 1(1,0) × 1(0,1)

Σ1(1,0) ∩ {s3 = s7 = 0} 1(1,−1) × 1(−1,0) × 1(0,1)

Σ1(1,1) ∩ {s8 = s9 = 0} 1(1,1) × 1(−1,−2) × 1(0,1)

(3.17)

We note that the first three agree with earlier results, see [46]. The last two loci also

produce reducible fibers with three irreducible components that can be described in terms

of the prime ideals. The study of these new Yukawa points, along with a more thorough

discussion of the use of prime ideals, will be postponed to future work.

3.2 The cohomology ring and the Chern classes of X̂

In this section we abstractly calculate the cohomology ring of the fourfold X̂. The central

result of these computations is the basis of surfaces or dual (2, 2)-forms in H(2,2)(X̂), which

is relevant for the construction of G4-flux, see section 5.1. Furthermore, for the calculation

of the D3-brane tadpole and the quantization of the G4-flux, we use these techniques to

calculate the general expression for the Euler number and the second Chern class of X̂ for

a general base B. In addition, we derive the full cohomology ring explicitly for B = P3,

leaving the straightforward generalization to other bases for future works.

We note that the presentation of the cohomology of X̂ used here has been employed

in the context of toric mirror symmetry for a long time and is in this sense not new.

For an F-theory context see e.g. [58, 62] and references therein. We refer also to [21] for

cohomology calculations in the same spirit. However, we emphasize that, except for the

language that we borrow from toric geometry, the following discussion is based only on rea-

sonable assumptions on the intersections of X̂. Thus, we expect the following procedure to

work also in the non-toric case. In particular, not all fourfolds considered here have, to our

knowledge, a description in terms of a reflexive polytope, which does, however, not keep us

from using them for F-theory and computing their full chiral 4D spectrum.

The basic idea to calculate the cohomology ring H
(∗,∗)
V (X̂) of a general elliptically

fibered Calabi-Yau fourfold X̂ over a base B with general fiber the elliptic curve in dP2 is
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to exploit the Stanley-Reissner (SR) ideal10 SR of the ambient space dPB2 (S7,S9) together

with the linear equivalences of divisors. After dividing out the linear equivalences, the

cohomology ring H
(∗,∗)
V (X̂) can be represented as the quotient ring R of the form11

H
(∗,∗)
V (X̂) ∼=

C[Dα, SP , SQ, SR] ·
[
X̂
]

SR
, (3.18)

where the basis (2.11) together with the vertical divisors Dα are the variables of the free

polynomial ring C[Dα, SP , SQ, SR] and SR is considered as an ideal in this ring. For this

purpose, the ideal SR has to be translated into intersection relations of those divisors. Note

that we have to multiply by the homology class of X̂ in dPB2 (S7,S9) in (2.9) to restrict the

intersections on the ambient space dPB2 (S7,S9) to X̂.12 By the Calabi-Yau condition this

class is precisely given as O(X̂) = K−1
dPB

2
.

The quotient ring (3.18) is graded with each graded piece being finitely generated by

monomials in the divisors Dα, SP and Sm of appropriate degree. We denote this ring by

R. The k-th graded piece is then identified with

H
(k,k)
V (X̂) = R(k) , (3.19)

after restriction to X̂, i.e. after dropping the overall factor K−1
dPB

2
in (3.18). More pre-

cisely, at grade zero we obtain H(0,0)(X̂) = 〈1〉, at grade one we have H(1,1)(X̂) =

〈Dα, SP , SQ, SR〉. At higher grade we obtain naively as many generators as homogeneous

monomials of appropriate degree in the divisors in (3.18). However, due to equivalence re-

lation in R the number of independent monomials is in general smaller. In fact, by Poincaré

duality the rings R(3), and R(4) are fixed, i.e. the corresponding Hodge numbers are related

as h(3,3)(X̂)
!

= h(1,1)(X̂) = 3 +h(1,1)(B) and h(4,4)(X̂)
!

= h(0,0)(X̂) = 1. At degree k ≥ 5 we

trivially have R(k) = {0} by reasons of dimensionality. In this sense the only non-trivial

piece is R(2) ∼= H
(2,2)
V (X̂), and the corresponding Hodge-number h

(2,2)
V (X̂). Furthermore,

it is precisely the elements H
(2,2)
V (X̂) of independent surfaces on X̂ into which the general

G4-flux on X̂ has to be expanded, as discussed in section 5.1.

The main advantage of the representation (3.18) compared to concrete toric models is

that it allows us to determine the cohomology ring for all fibrations dPB2 (S7,S9) in (2.7)

over a given base B with general divisors S7, S9. Of course the relevant computations

depend on the geometry of the base B since the ideal SR in (3.18) in general is generated

by the SR-ideal (2.5) of the fiber dP2 and of the base B, which differs from case to case.

Nevertheless, as we demonstrate next, it is possible to calculate the total Chern class c(X̂)

and Euler number χ(X̂) of X̂ for any base B using minimal assumptions.

10We merely borrow this term from toric geometry. In general, SR can be any ideal containing all

vanishing intersections of divisors on dPB
2 (S7,S9), which not necessarily has to be a toric variety.

11We note that this polynomial ring is only the primary vertical cohomology H
(∗,∗)
V (X̂) [63]. This is the

subspace of H(∗,∗)(X̂) relevant for G4-flux inducing chirality in F-theory. Its complement in H(2,2)(X̂) is

the horizontal cohomology H
(2,2)
H (X̂) that encodes complex structure moduli of X̂. See e.g. [58] for an

analysis of G4-flux in H
(2,2)
H (X̂) in F-theory.

12Generally, not all divisors on X̂ arise as restrictions of divisors on the ambient space. However, for

generic X̂ with elliptic fiber in dP2, only divisors in B can potentially miss this assumption. We exclude

those B in the following. Note that non-generic X̂ can have additional divisors, see the footnote 13.
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3.2.1 Second Chern class and Euler number of X̂: general formulas

For the purpose of finding the general expression for c(X̂) and, thus, the Euler number

χ(X̂), it suffices to know, that the intersections of more than three vertical divisors Dα

in both dPB2 (S7,S9) and X̂ are zero. The latter is true because of the properties of

fibrations. Thus, we are working in the following with the ideal of vanishing intersections

on dPB2 (S7,S9) generated by the ideal (2.2) of the fiber dP2 supplemented by the vanishing

of quartic intersection of vertical divisors,

SR′ = {SR · (SR + SQ − S7 − [KB]) , SR · (SR + SP − S9 − [KB]), SQ · SP , (3.20)

SQ · (SR + SQ − S7 − [KB]) , SP · (SR + SP − S9 − [KB]) , Dα ·Dβ ·Dγ ·Dδ} .

Here we have employed (2.10) in combination with (2.11) to translate (2.5) into intersection

relations. The prime in SR′ reminds us that we are not working with the full SR-ideal

of the base B, but just assume vanishing quartic intersections. As before ‘·’ denotes the

intersections product in dPB2 (S7,S9).

Next we can perform the calculation of the total Chern class of X̂. For this purpose

we first compute the formal expression of the Chern class c(X̂) by adjunction,

c(X̂) =
c(dPB2 )

1 + c1(O(X̂))
. (3.21)

The numerator denotes the total Chern class of dPB2 (S7,S9) and the denominator is the

Chern class of its anti-canonical bundle (2.9), which is the class of X̂ as mentioned above.

Then, we reduce this expression in the quotient ring (3.18) with SR replaced by the

reduced ideal SR′ in (3.20). We refer to appendix A for the detailed calculations leading to

the following results, as well as for the general expression of the total Chern classes c(dPB2 )

and c(X̂) for Calabi-Yau two-, three- and fourfolds. We obtain for the second Chern class

c2(X̂) of X̂ the expression

c2(X̂) = 3c2
1 + c2 − 2S2

Q − 3S2
P + c1(2SQ + SP + 4SR − 2(S7 + S9))

+2S7(SQ − SP ) + S9(3SP − 2SQ − SR + S7) , (3.22)

where we have expressed all cohomology classes in terms of the basis of divisors (2.11) on

the fiber dP2 and the first and second Chern classes c1 ≡ c1(B), respectively, c2 ≡ c2(B)

of the base B. By abuse of notation we denote a divisor and its Poincaré dual (1, 1)-form

by the same symbol.

As a first sanity check we note that (3.22) is consistent with the formula for the second

Chern class of a fourfold with a generic E6-elliptic fiber, i.e. with the elliptic curve in

P2. In fact, in the limit S7 = S9 = 0, the total space dPB2 (S7,S9) formally turns into

P(OB⊕K−1
B ⊕K

−1
B ), the sections SP , SQ and SR become indistinguishable and fuse into a

single holomorphic three-section σ, following conventions in the literature. Then the second

line in (3.22) vanishes and we use the relation (2.16) for σ2 to rewrite the first line as

c2(X̂) → c2(XE6) = 3c2
1 + c2 + 12σc1 , (3.23)
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where we denote by XE6 the fourfold with E6-elliptic fiber. This expression is in line with

the results obtained in [53].

Similarly, the Euler number of X̂ is calculated from the integration of the fourth Chern

class c4(X̂) as

χ(X̂) = 3

∫
B

[
24c3

1 + 4c1c2 − 16c2
1(S7 + S9) + c1(8S2

7 + S7S9 + 8S2
9 )− S7S9(S7 + S9)

]
.

(3.24)

Here the integral over X̂ has been reduced to an integral over the base B by first consecutive

application of the relation (2.14) and then by employing (2.13), which can be rewritten for

Calabi-Yau fourfolds as the intersection relation

SP ·Dα ·Dβ ·Dγ = Sm ·Dα ·Dβ ·Dγ = (Dα ·Dβ ·Dγ)|B . (3.25)

Here Sm collectively denotes the divisors SQ, SR of the sections ŝQ, ŝR and Dα, Dβ, Dγ

are general vertical divisors. We emphasize that our expression of the Euler number (3.24)

reproduces the Euler number of [53] as the special case S7 = S9 = 0. As before SP , SQ
and SR become homologous and we obtain

χ(X̂E6) = 72

∫
B
c3

1 + 12

∫
B
c1c2 . (3.26)

As another consistency check, and also for the sake of the discussion of general flux

quantization and the D3-brane tadpole in section 5.1, we calculate the arithmetic genus

χ0(X̂) on X̂. It is calculated from the Todd class Td4(X̂) by the Hirzebruch-Riemann-

Roch index theorem. Since X̂ is a simply-connected Calabi-Yau fourfold, its arithmetic

genus has to be two,

χ0(X̂) :=
∑
p

(−1)ph(p,0)(X̂)
!

= 2 . (3.27)

This immediately follows from h(0,0)(X̂) = h(4,0)(X̂) = 1 and h(p,0)(X̂) = 0 otherwise.

From index theory, however, we obtain

χ0(X̂) =

∫
X̂

Td4(X̂) =
1

720

∫
X̂

(3c2(X̂)2 − c4(X̂)) =
1

720

(
3

∫
X̂
c2(X̂)2 − χ(X̂)

)
. (3.28)

Evaluating this integral using our expressions (3.22), (3.24) for the second Chern class and

Euler number on X̂, cf. appendix A for details, we obtain

χ0(X̂) =
1

12

∫
B
c1c2 = 2χ0(B)

!
= 2 . (3.29)

Here the first equality is due to a remarkable cancellation of all terms containing the divisors

S7, S9 in the second Chern class and Euler number of X̂. In the second equality we used

the index theorem for the arithmetic genus of the base

χ0(B) =
1

24

∫
B
c1c2 , (3.30)
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and the last equality follows from the constraint (3.27). Thus we see, that the arithmetic

genus χ0(X̂) = 2 precisely iff χ0(B) = 1. In general, one demands the stronger conditions

h(1,0)(B) = h(2,0)(B) = h(3,0)(B) = 0 since non-trivial (p, 0)-forms of the base B would

pull back to (p, 0)-forms on X̂ under the projection π : X̂ → B, which we excluded by

assumption.

We note that our result (3.29) for the arithmetic genus is in line with the computations

in [57, 64], whose analysis we followed. We also refer to [21] for an application of these

techniques to F-theory with SU(5) gauge group.

3.2.2 The full cohomology ring of X̂: base B = P3

As we demonstrate next, the representation (3.18) for a concrete base B allows us to

calculate the full cohomology ring for a general Calabi-Yau fourfold X̂ in dPB2 (S7,S9) with

general divisors S7, S9. We exemplify this in the following for the base B = P3, but note

that this analysis can be generalized to other bases. For all details of the intersection

calculations as well as the quartic intersections, we refer the reader to appendix B.

In the case B = P3 the cohomology H(1,1)(X̂) is generated according to (2.22) by the

divisors DA. We choose the following basis,

H(1,1)(X̂) = 〈HB, SP , SQ, SR〉 , (3.31)

where HB is the only vertical divisor of the fibration, which is pullback of the hyperplane

of P3 to X̂. The three other divisors are related to the in general rational sections ŝP , ŝQ
and ŝR. Employing (2.10) and (2.11), their associated divisor classes are

SP = E2 , SQ = E1 , SR = H − E1 − E2 + (n9 − 4)HB , (3.32)

where we have used c1(KP3) = −c1(P3) = −4HB. We recall that the divisors S7, S9 on P3

are specified by integers n7, n9 in the region in figure 2 specifying the total space (2.26) of

the dP2-fibration over P3.

We set up the construction of the cohomology ring of π : X̂ → P3 via (3.18) by

specifying the ideal SR. We note that the SR-ideal in the case of B = P3 is generated

by the Stanley-Reissner ideal (2.5) of the fiber dP2 and the base, which is just H4
B = 0.

Thus, using the divisor classes (3.31), the resulting ideal is identical to (3.20) with all

vertical divisors equal to HB and with K−1
P3 = OP3(4). Then, we need the anti-canonical

bundle K−1
dP2(n7,n9) of dP2(n7, n9). It is given in general in (2.9) and easily specialized

to B = P3 using S7 = n7HB and S9 = n9HB as well as expressed in the basis (3.32).

Now we are equipped with all the necessary quantities to construct the quotient ring

representation (3.18) of the cohomology ring H
(∗,∗)
V (X̂).

We begin by summarizing the Hodge numbers of the vertical cohomology of X̂ as

h(0,0)(X̂) = h(4,4)(X̂) = 1 , h(1,1)(X̂) = h(3,3)(X̂) = 4 , h
(2,2)
V (X̂) = 5 (4) , (3.33)
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where the subscript V indicates that we are considering the vertical subspace, and the

number in the bracket denotes the non-generic case with (n7, n9) on the boundary13 of the

allowed region in figure 2. These are the lines n7 = 0, n9 = 0, n9 = 4 + n7 for n7 ≤ 4,

n9 = n7 − 4 and n9 = 12− n7, both of the latter two for 4 < n7.

Indeed, we obtain these Hodge numbers as follows from the ring (3.18). At degree

zero, which is H(0,0)(X̂), the only generator is the trivial element 1. The graded piece

R(1) ∼= H(1,1)(X̂) is generated by the four divisors DA. At degree two, i.e. H
(2,2)
V (X̂),

there are ten different combinations DA ·X̂ DB, of which, however, only five are generically

inequivalent. As outlined in appendix B a choice of basis, denoted in general by Cr with

r = 1, . . . , h
(2,2)
V (X̂), for H

(2,2)
V (X̂) is given by

H
(2,2)
V (X̂) = 〈H2

B, HB · SP , HB · σ(ŝQ), HB · σ(ŝR), S2
P 〉 . (3.34)

Here σ(ŝQ), respectively, σ(ŝR) are the Shioda maps (2.17) of the sections ŝQ, ŝR. In the

case at hand these take the form

σ(ŝQ) = SQ − SP − 4HB , σ(ŝR) = SR − SP − (4 + n9)HB (3.35)

We can evaluate the 5 × 5-intersection matrix η(2) in the basis (3.34) using the quartic

intersections in (B.4) as

η(2) =


0 1 0 0 −4

1 −4 0 0 16 + (n7 − n9 − 4)n9

0 0 −8 n7 − n9 − 4 n9 (4− n7 + n9)

0 0 η
(2)
34 −2 (4 + n9) 2n9 (4− n7 + n9)

−4 η
(2)
25 η

(2)
35 η

(2)
45 −64− (8 + n7 − 2n9) (n7 − n9 − 4)n9

 . (3.36)

Here entries η
(2)
rs that are determined by symmetry are omitted and denoted by η

(2)
sr . We

note that for values of (n7, n9) on the boundary of figure 2, there are only four inequivalent

such surfaces. A quick way to see this is by calculating the rank of the matrix (3.36) which

is generically five, but decreases to four in these cases. In all these cases we can drop the

basis element S2
P in (3.34) since it becomes homologous to the other four basis elements,

cf. (B.8), (B.10), (B.11) and (B.12) in appendix B. The corresponding intersection matrix

η(2) is then obtained from (3.36) by deleting the last row and column. We note that both

the knowledge of the basis (3.34) as well as of the intersections (3.36) is essential for the

construction of G4-flux in section 5.1.

At degree three, there are 20 combinations of three divisors DA, however, there are only

four inequivalent ones, which is expected by duality of H(3,3)(X̂) and H(1,1)(X̂). Finally,

at degree four, which is H(4,4)(X̂), there are 35 different quartic monomials in the DA,

13We note that for the two special values (n7, n9) = (4, 8), (8, 4) there is one additional divisor on X̂ that

is not induced from the ambient space. For these special values we see from (2.10) that X̂ is not generic

since s1, s2, s3, respectively, s1, s5, s8 are constants. Then, we can perform a variable transformation on

the fiber coordinates to achieve s1 = 0, i.e. the elliptic curve will have an additional section at u = 1,

v = w = 0. The elliptic fiber can then be embedded into dP3 with all sections toric. We thank Jan Keitel

for pointing out the existence of a non-toric divisor for non-generic X̂ → P3.
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of which there is only one inequivalent combination. This combination is precisely the

quartic intersections on X̂. The higher graded pieces of H(k,k)(X̂), k > 4 vanish, which is

intuitively clear since there are at most quartic intersections on a Calabi-Yau fourfold.

We conclude by summarizing some key intersections on X̂ which are discussed in

section 2.2 as general properties of the fibrations, that can, however, be proven explicitly

using the representation (3.18). Of the complete quartic intersections summarized in B.4

of appendix B we highlight the following intersections,

SP · SR ·H2
B = n9S∗ ·H3

B , SQ · SR ·H2
B = n7S∗ ·H3

B , S∗ ·H3
B = 1 , S2

∗ ·H2
B = −4 ,

(3.37)

where S∗ collectively denotes all the divisor classes SP , SQ and SR of the sections. Here

the first two relations are the versions of (2.15), respectively, on B = P3. The third relation

implies that a section of the elliptic fibration of X̂ intersects the generic fiber F = π∗(pt)

for a generic point pt in B precisely at one point, cf. (2.13). Finally, the last relation is

the analog of (2.14) on B = P3. We note that for a holomorphic section, this relation

holds without intersection with H2
B. Indeed, this is confirmed by the concrete cohomology

calculation in appendix B for the zero-section SP in (B.12).

4 G4-flux conditions in F-theory from CS-terms: Kaluza-Klein states on

the 3D Coulomb branch

In this section we discuss the construction of G4-flux in F-theory compactifications on

general elliptically fibered Calabi-Yau fourfolds X̂ with a non-trivial Mordell-Weil group

and a non-holomorphic zero section.

We define G4-flux in F-theory through the M-theory compactification on the resolved

fourfold X̂, that is dual to F-theory reduced on a circle to 3D. The general constraints

on G4-flux in M-theory compactifications are reviewed in section 4.1. In addition to these

conditions, G4-flux that is admissible for an F-theory compactification has to obey addi-

tional constraints. The form of G4-flux that yields a consistent F-theory has been derived

first in [65] by requiring a Lorentz-invariant uplift to four dimensions. Here we discuss

a different logic to obtain constraints on the G4-flux. As we point out in section 4.2,

these constraints are appropriately formulated as the requirement of the vanishing of cer-

tain Chern-Simons (CS) terms on the Coulomb branch of the effective three-dimensional

theory.14 In particular, consistent conditions on the G4-flux are obtained only if one-loop

corrections of both massive states on the 3D Coulomb branch as well as Kaluza-Klein (KK)

states are taken into account. Most importantly, the presence of a non-holomorphic zero

section is linked to the existence of new CS-terms for the KK-vector, that are generated

by KK-states, whereas other CS-terms receive additional shifts.

We present for the first time a consistent set of conditions on G4-flux in F-theory

compactifications with a non-holomorphic zero section. We also evaluate explicitly the

14See also [66, 67] for recent related studies of connections between CS-terms and contact terms in 3D

effective field theories with background fields in the context of F-maximization.
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corrections of massive states to 3D CS-levels for the F-theory/M-theory compactification

on the fourfold X̂ with dP2-elliptic fiber.

The following discussion is an extension of [44], where KK-states have first been dis-

cussed in the context of 4D anomaly cancellation, and inspired by the analogous six-

dimensional analysis in [55],15 see also [68] for the relevance of KK-states in the description

of self-dual two-forms in 6D/5D.

4.1 A brief portrait of G4-flux in M-theory

Let X̂ denote an arbitrary smooth Calabi-Yau fourfold. In general, G4-flux in M-theory can

only be defined on such a smooth manifold, that in the context of F-theory typically arises

from resolutions of both codimension one singularities from non-Abelian gauge groups or,

as in the case considered here, from higher codimension singularities in the presence of a

non-trivial Mordell-Weil group.

Then, G4-flux in F-theory is defined as G4-flux in M-theory with as set of additional

F-theoretic restrictions discussed in the next section 4.2. G4-flux in M-theory is consistent

if it obeys two basic conditions. First, G4 has to be quantized as [69]

G4 +
c2(X̂)

2
∈ H4(X̂,Z) , (4.1)

which depends on the second Chern class c2(X̂) of X̂. In addition, the M2-brane tadpole

has to be cancelled [64, 70],16

χ(X̂)

24
= n3 +

1

2

∫
X̂
G4 ∧G4 , (4.2)

where χ(X̂) is the Euler characteristic of X̂ and n3 the number of spacetime-filling M2-

branes. This tadpole lifts to the D3-brane tadpole in F-theory with n3 denoting the number

of D3-branes.

In addition, one can distinguishG4-flux further by decomposingH4(X̂) into its primary

vertical and horizontal subspaces H4(X̂) = H4
V (X̂) ⊕H4

H(X̂) [63]. As mentioned before,

only G4-flux in the vertical homology induces 4D chirality as well as gaugings of axions in

F-theory and is considered here. A general G4-flux in the vertical cohomology H
(2,2)
V (X̂)

than has an expansion as

G4 = mrCr , (4.3)

where Cr with r = 1, . . . , h
(2,2)
V (X̂) denotes an integral basis of H

(2,2)
V (X̂) and mr are the

flux-quanta with integrality fixed by the quantization condition (4.1).17 Such a basis can

be constructed explicitly, as demonstrated in sections 3.2 and 6.2, for concrete examples.

15We are grateful to Thomas W. Grimm for explanations and comments on the importance of Θ00.
16We are working here in the carefully checked conventions of [71], where also comparison with other,

inconsistent sign choices in the literature can be found.
17In general, c2(X̂) has to be decomposed into the integral basis of H

(2,2)
V (X̂). However, the determination

of this basis is very involved and requires more sophisticated techniques that would exceed the scope of this

work. We refer to [58] for the application of mirror symmetry to fix the integral basis. See also [72] for a

discussion of potential conflicts between the split of H4(X̂) into vertical and horizontal subspace and the

choice of an integral basis.
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4.2 Deriving conditions on G4-flux in F-theory

The additional constraints on the G4-flux in F-theory compactifications are most conve-

niently formulated in the three-dimensional theory obtained after compactification of the

4D N = 1 effective action of F-theory on S1. Then we can use the basic duality between

three-dimensional F-theory on X̂ × S1 and M-theory on X̂. Consideration of the resolved

fourfold X̂ means in terms of the 3D N = 2 effective theory obtained in the circle reduction

to go to the 3D Coulomb. The corresponding fields acquiring a VEV are the adjoint val-

ued scalars ζA, A = 0, . . . , h(1,1)(B) + rk(G) +nU(1), along the Cartan directions of the 4D

gauge group G×U(1)nU(1) . The zeroth component denotes the scalar in the multiplet of the

KK-vector. Then the 3D gauge group is broken in an ordinary Higgs effect to the maximal

torus U(1)h
(1,1)(B)+rk(G)+nU(1)+1 and in addition the charged fermions, in particular those

from the 4D massless matter multiplets, obtain a mass (shift) as m = qA · ζA, where qA
denotes the full 3D charge vector.

This Coulomb branch then describes the IR dynamics of the dual M-theory compact-

ification on the fourfold X̂ in the supergravity approximation. It is the key point of the

following analysis that the matching of the two dual descriptions works only on the level

of the quantum effective action after massive degrees of freedom have been integrated out

on the F-theory side. As we emphasize in the following, also corrections due to KK-states

have to be considered. In fact, consistent conditions on the G4-flux in the presence of a

non-holomorphic zero section are only obtained if new CS-terms for the KK-vector are

taken into account.

The general approach of matching F- and M-theory in 3D initiated in [73] has been

exploited recently in [42, 44, 45, 74] to study various aspects of the F-theory effective action.

We refer to these references for the background of the following discussion.

4.2.1 F-theory conditions from KK-states corrected CS-terms

First we recall that G4-flux in M-theory induces CS-terms for the U(1)-gauge fields AA on

the 3D Coulomb branch that read

S
(3)
CS = −1

2

∫
ΘM
ABA

A ∧ FB ΘM
AB =

1

2

∫
X̂
G4 ∧ ωA ∧ ωB . (4.4)

This can be shown by reducing the M-theory three-form C3 along (1, 1)-forms ωA on the

fourfold X̂ that are dual to the basis of divisors DA, A = 0, 1, . . . , h(1,1)(X̂)− 1. We recall,

cf. (2.22) for the case nU(1) = 2, that this basis is given by h(1,1)(B) vertical divisors Dα,

the divisor S̃P = SP + 1
2 [K−1

B ], see (2.21), associated to the zero section, the Shioda maps

σ(ŝm) for a rank nU(1) Mordell-Weil group and rk(G) Cartan divisors Di in the presence

of a four- dimensional non-Abelian gauge group G.

Now the strategy to formulate conditions on the G4-flux for a valid F-theory compact-

ification is as follows. We require that the CS-levels on the F-theory side, denoted ΘF
AB,

have to agree with the M-theory CS-levels, denoted ΘM
AB and given by the flux integral

in (4.4),

ΘF
AB

!
= ΘM

AB . (4.5)
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This means, whenever a non-vanishing CS-level ΘF
AB is there on the F-theory side, as a

classical CS-level or generated by loops of massive matter on the 3D Coulomb branch, then

the same CS-level has to be there on the M-theory side, i.e. it has to be generated by the

G4-flux. In contrast, when a CS-term is not there on the F-theory effective field theory side,

the corresponding flux integral in (4.4) for the same CS-term in M-theory has to vanish.

However, the critical point is to allow in the corresponding F-theory loop-computation also

for loops with an infinite tower of KK-states. If KK-states are not included, the G4-flux is

in general over-constrained, in particular in the presence of a non-holomorphic zero section.

In addition, certain CS-levels get shifted by KK-states and a consistent match of CS-terms

in F- and M-theory is only possible if these corrections are included.

The general form for the correction to the classical CS-level on the F-theory side,

denoted by ΘF
cl, AB, has been worked out in [75–77]. The correction is one-loop exact with

all 3D massive fermions contributing in the loop. Assuming a fermion with charge vector

qA, the loop corrected CS-term takes the simple form

ΘF
AB = ΘF

cl, AB +
1

2

∑
q

n(q)qAqB sign(qAζ
A) , (4.6)

where n(q) is the number of fermions with charge vector q and the sum runs over all these

charge vectors. We note that since real masses can be negative in 3D, the sign-function

is non-trivial. We can rewrite this expression further by noting the general form of thee

charge vector

qA = (n, qα, qi, qm) , (4.7)

where we recall the 3D gauge group U(1)h
(1,1)(B)+rk(G)+nU(1)+1 on the Coulomb branch and

that the charge under the KK-vector A0 is just the KK-label of KK-states, q0 ≡ qKK = n.

Next, we assume that in a theory obtained by circle reduction from 4D, there are no

states with charge under the Aα, since these do not correspond to a 4D gauge symmetry,

i.e. we assume qα = 0.18 We consider in the following the massive charged states obtained

from the reduction of four-dimensional massless chiral matter to 3D, along with their KK-

states. Denoting their charge vectors as qA = (n, 0, qi, qm) with qi the Dynkin labels of

their non-Abelian representations R under G, we write the loop-correction (4.6) as

ΘF
00 =

1

2

∑
Rqm

∑
q∈Rqm

χ(Rqm)

∞∑
n=−∞

n2sign(mCB + n ·mKK) ,

ΘF
0Λ =

1

2

∑
Rqm

∑
q∈Rqm

qΛ χ(Rqm)
∞∑

n=−∞
n sign(mCB + n ·mKK) ,

ΘF
ΣΛ =

1

2

∑
Rqm

∑
q∈Rqm

qΣ qΛ χ(Rqm)

∞∑
n=−∞

sign(mCB + n ·mKK) , (4.8)

where we invoked the absence of classical CS-terms. Here we have suppressed a labeling

of the KK-charges n by the weights w of the representation Rqm and unified the labels i

18One might wonder whether these states correspond, on the M-theory side, to M2-branes wrapping

curves in the base B, e.g. generated from resolved conifolds in B.
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and m as Λ = (i,m) and χ(Rqm) denote the 4D chiralities of chiral matter fields. We have

also defined the Coulomb branch mass mCB = qΣζ
Σ and the KK-mass mKK = 1

RKK
with

RKK the radius of the S1. The terms (4.8) are, bearing our assumptions on the spectrum

of massive fermions in mind, the only CS-terms receiving loop-corrections via (4.6). Other

CS-terms are classically generated, either in 4D or in the 3D reduction.

We summarize all CS-terms, the presence of classical terms, the potential correction

via loop-effects, their physical interpretation and a related reference in the following,

ΘF
AB ΘF

cl, AB loop-corr. G4-condition interpretation

ΘF
00 - yes - 4D chiralities

ΘF
0α yes -

!
= 0 S1-circle fluxes [60]

ΘF
0i - yes - 4D chiralities

ΘF
0m - yes - 4D anomaly cancellation [44]

(for holomorphic ŝP )

ΘF
αβ - (?) -

!
= 0 non-geometric flux?

ΘF
αi yes -

!
= 0 4D gaugings by GUT Cartans

ΘF
αm yes - - 4D gaugings by U(1)m

(4D GS-mechanism)

ΘF
ΣΛ - yes - 4D chiralities

(4.9)

Here we also mention in one column whether the corresponding CS-term is used to impose

a condition on the G4-flux. Indeed, the effect of CS-terms ΘF
0α is the induction of circle

fluxes along the S1 in compactification from 4D and, thus, not a physical effect in 4D.

Therefore, we impose these CS-terms to vanish. Then, the CS-terms ΘF
αβ obstruct the lift

back to 4D [73], potentially by non-geometric effects, and are required to vanish. Finally,

the CS-terms Θαi correspond to 4D gaugings of axions via the maximal torus of the GUT

and are thus set to zero. Thus, using the M-/F-theory duality relation (4.5) we formulate

the F-theory conditions on the G4-flux in terms of 3D CS-levels ΘAB as

G4-flux conditions: Θ0α = Θαβ = Θiα = 0 (4.10)

We note that these conditions on the G4-flux look much weaker than the ones considered in

the literature before. We claim that these conditions are the appropriate ones, in particular

in cases with a non-holomorphic the zero section ŝP . In contrast, however, in compacti-

fications with a holomorphic zero section, the vanishing of the CS-levels in (4.10) implies

the vanishing of other, dependent CS-levels. We discuss this in the following and contrast

it to the situation with a non-holomorphic ŝP .

4.2.2 KK-corrected 3D CS-terms: field theory computations

In certain cases, the loop-corrections (4.8) can vanish, leading to additional vanishing

CS-terms. In particular, for a holomorphic zero-section, the CS-term ΘF
00 in field theory
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vanishes, and consistently also the geometric CS-term ΘM
00 in M-theory. The latter can be

seen easily using the conditions (4.10) in the relation

Θ00 =
1

4
KαKβΘαβ , (4.11)

which is derived employing the definition (2.21), the intersection property (2.16), and Kα

introduced in (2.24). In order to see the same from the field theory side and, in general, to

compute the loop-corrections to the CS-terms, we first have to evaluate the sign-function

in (4.8).

We calculate the sign-function geometrically, recalling from the discussion of section 3.1

that to every weight w of a representation Rqm realized in F-theory there is a corresponding

curve cw, cf. (3.1). The sign-function in (4.8) is then determined by testing whether the

curve cw associated to a given weight w with Dynkin labels qΛ and KK-charge n is in the

Mori cone M(X̂) of effective curves on X̂. We define

sign(qAζ
A) =

{
1 , cw ∈M(X̂) ,

−1 , otherwise .
(4.12)

Here the KK-charge q0 = n of a curve cw is obtained geometrically as

n = cw · S̃P . (4.13)

In general, a curve is in the Mori cone if it is described by holomorphic equations and an

analysis of the geometry allows in general to find all holomorphic curves corresponding to

matter, cf. sections 3.1 and 6.1 as well as [51].19 In the toric context, the relevant parts of

the Mori cone can be constructed systematically as recently demonstrated in [55].

Now, in the presence of a holomorphic zero section the sign-function is centered around

0 because no curve cw has KK-charge. This follows from the simple geometric fact that

by definition any rational curve cw does not intersect SP , which always goes through the

original singular curve, cf. figure 3. This implies that the loop-corrections in (4.8) that are

odd in the KK-level n vanish since KK-states with charge −|n| cancel those with charge

|n|. In particular, ΘF
00 = 0, confirming the geometric result (4.11). In addition, the sum

over KK-states in ΘF
ΛΣ reduces to

ΘF
ΛΣ =

1

2

∑
Rqm

∑
q∈Rqm

qΣ qΛ χ(Rqm) sign(mCB) , (4.14)

which has been used in [42, 44].

In contrast, the CS-levels Θ0Λ receive an infinite loop-correction that has to be regu-

larized by zeta-function regularization. In [44] this zeta function regularization has been

19In general, the values of the sign-function on a given representation Rqm depend on the phase of X̂,

respectively, of the 3D gauge theory. See [78] for a detailed discussion of phases structure of Calabi-Yau

fourfolds and 3D SU(5) gauge theories. However, it can be shown by a similar argument as in [79] that 4D

observables like the chiralities χ(Rqm) are not expected to depend on the phase.
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performed and it was shown that the field theory result for Θ0m agrees with the 4D mixed

Abelian-gravitational anomaly,

ΘF
0m = − 1

12

∑
q

n(q)qm , (4.15)

with n(q) denoting the number of fermions in 4D with U(1)-charge vector q. In particular,

anomaly cancellation follows then using the M-/F-theory relation (4.5) and the geometric

result

ΘM
0Λ =

1

2
KαΘM

αΛ , (4.16)

where the right side is immediately identified with the 4D Green-Schwarz term for Λ = m,

cf. section 5.3. Here we used the general result SP ·DΛ = 0 for a holomorphic zero section.

We also infer from (4.16) that the CS-terms Θ0i are set to zero recalling (4.10).

In the presence of a non-holomorphic section ŝP the only thing that changes on the field

theory side is a shift of the sign function in (4.12). It is no longer centered symmetrically

around the origin of the sum over KK-labels n. This is geometrically clear because there are

now rational curves cw in the Mori cone that have non-zero intersection with the rational

zero section ŝP , i.e. that have non-zero KK-charge (4.13). These curves have to be located

precisely at the loci where the rational zero section is ill-defined and wraps a whole P1

in the fiber, which is the original singular curve. Everywhere else in the base B the zero

section is only a point on the original singular fiber and does not intersect curves cw.

The effect of the shift of the sign-function is dramatic because now KK-states with pos-

itive and negative KK-label |n|, respectively, −|n| do no longer cancels in corrections (4.8)

that are odd in n. The infinite parts of the sums over KK-states still cancel, but with a

non-zero remainder. Thus, the CS-term ΘF
00 that was zero for a holomorphic zero section is

now generated by a contribution of a finite number of KK-states. For example, assuming,

with k denoting an integer, a sign-function of the form

sign(mCB + n ·mKK) =

{
1 , for n ≥ −k ,
−1 , for n < −k ,

(4.17)

for only one weight of a single matter multiplet Rqm the loop induced CS-term in (4.8)

reads

ΘF
00 =

k(k + 1)(2k + 1)

6
χ(Rqm) . (4.18)

See e.g. [55] for a formal derivation or the following for an intuitive understanding,

Integers −k − 1 −k −k + 1 . . . 0 1
∑
n

n2sign

n2sign(n) −(k + 1)2 −k2 −(k − 1)2 . . . 0 1 0

n2sign(n+ k) −(k + 1)2 k2 (k − 1)2 . . . 0 1
k(k + 1)(2k + 1)

3

(4.19)

Here the unshifted sum was normalized to zero, then the shifted sum differs only by the

amount obtained as the finite sum over the differences between the first and second row

in (4.19) for each column.
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Thus we see that ΘF
00 in (4.18) is directly proportional to one chirality. Consequently,

imposing ΘM
00 = 0, as done in the literature with holomorphic zero sections, also in the

non-holomorphic case would unnecessarily set this chirality to zero. We will see that

the loop-correction to ΘF
00 precisely takes the form (4.18) for dP2-elliptic fibrations, both

without and with an additional SU(5) gauge group, cf. sections 5.2 and 6.1, since only one

singlet has a non-trivial KK-charge n = 2 and, thus, a shifted sign-function (4.17) with

k = −2.

We conclude by mentioning that the CS-terms ΘΛΣ are shifted in a similar way, where

as in (4.19) the shift originates from a finite number of KK-states. We note that this shift

has to be taken into account when we determine certain 4D chiralitites via 3D CS-terms in

sections 5.2 and 7.2. In addition, also the relation (4.15) is modified by a finite correction

due to KK-states. Assuming again that only one weight in the representation Rqm has a

non-trivial KK-charge with shifted sign-function (4.17), we obtain the corrected expression

ΘF
0m = − 1

12

∑
q

n(q)qm −
k(k + 1)

2
χ(Rqm)qm . (4.20)

Thus, we see that these CS-levels are no longer directly related to the 4D mixed Abelian-

gravitational anomaly as in (4.15) with a holomorphic zero section. Geometrically this is

also clear since in general SP · σ(ŝm) 6= 0 in compactifications with rational zero sections.

Thus, (4.16) does not hold and the cancellation of 4D mixed Abelian-gravitational anomaly

is not geometrically implied. However, after subtracting the contribution of KK-states

in (4.20), 4D anomaly cancellation requires the remaining piece to again equal 1
2K

αΘαm.

In other words, we can formulate the relation

1

4

∫
X̂
SP · σ(ŝm) ·G4 =

k(k + 1)

2
qmχ(Rqm) (4.21)

on the fourfold X̂ as a necessary and sufficient condition for 4D anomaly cancellation. It

would be nice to proof this relation purely geometrically. Finally, we note that also the

CS-terms ΘF
0i need no longer vanish, since geometrically ΘM

0i 6= 1
2K

αΘM
αi . However, in the

geometry X̂ at hand, cf. section 6.1, this relation still holds since the singularity of the zero

section happens away from the resolved SU(5) singularity and, thus, no SU(5)-matter has

non-trivial intersections with SP . Moreover, we obtain S̃P ·Di = 0 for all SU(5)-Cartan

divisors Di in section 6.2.

5 G4-flux & chiralities on fourfolds with two U(1)s

In this section we analyze chirality-inducing G4-flux in F-theory on the fourfolds X̂ with

dP2-elliptic fiber and a non-holomorphic zero section. In section 5.1 we first construct the

general G4-flux for the fourfold π : X̂ → P3, where we also comment on the general D3-

brane tadpole. Then in section 5.2 we outline first our general strategy to obtain chiralities

on Calabi-Yau fourfolds with higher rank Mordell-Weil group and a rational zero section,

before applying it again to the fourfold X̂ with B = P3. Then in section 5.3 we first review

anomaly cancellation conditions in general 4D effective field theories. Then we show that
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the general spectrum obtained for the Calabi-Yau fourfold X̂ is anomaly-free for the entire

allowed region of figure 2. We conclude in section 5.4 with a concrete toric example to

exemplify the general findings.

The case of an un-Higgsed SU(5) GUT-group is considered separately in section 6.

5.1 G4-flux on fourfolds with two rational sections

In this section we first show that on a general fourfold X̂ with dP2-elliptic fiber the D3-brane

tadpole can always be solved by adding a sufficient amount of nD3 of integral D3-brane

charge. Then we construct viable G4-flux for F-theory on a general fourfold X̂ with base

B = P3. We show that for different elliptic fibrations, i.e. for different values of the integers

n7, n9, the number of independent G4-flux quanta changes.

Integral D3-tadpole on general fourfolds with U(1)×U(1)

In the following we prove the necessary condition for D3-tadpole cancellation on X̂, namely

that the induced D3-brane charge from the combination of the Euler number and the

quantized G4-flux in the tadpole equation (4.2) is always integral. The following discussion

is an application of the arguments in [57, 64, 69], that immediately carry over to elliptic

fibrations X̂ with dP2-elliptic curve.

To this end, we use the relation (3.28) between the arithmetic genus χ0(X̂) and the

Euler number χ(X̂) to rewrite the tadpole (4.2) as

nD3 =
χ(X̂)

24
− 1

2

∫
X̂
G2

4 = −60 +
1

2

∫
X̂

(
1

4
c2(X̂)2 −G2

4

)
. (5.1)

Here we have also employed that χ0(X̂) = 2, cf. (3.29). Using the flux quantization

condition (4.1) this can be written as

nD3 = −60− 1

2

∫
X̂

(
x2 − x ∧ c2(X̂)

)
, (5.2)

where we used x = G4 + 1
2c2(X̂). By flux quantization (4.1) we know that x is integral,

i.e. an element in H4(X̂,Z). This implies by Wu’s theorem that x2 ∼= c2(X̂)∧x mod 2 [69],

so that the integrand in (5.2) is divisible by two. Thus, the number nD3 of D3-branes is

integral for every elliptically Calabi-Yau fourfold X̂ with general elliptic fiber in dP2.

The G4-flux on X̂ with B = P3

Next we explicitly determine the G4-flux on X̂ for a general elliptic fibration over the base

B = P3, i.e. for all integers n7, n9 in the allowed region in figure 2.

We begin by expanding the G4-flux according to (4.3) into the basis of H
(2,2)
V (X̂)

determined in (3.34),

G4 = a1H
2
B + a2HB · SP + a3HB · σ(ŝQ) + a4HB · σ(ŝR) + a5S

2
P , (5.3)

for general coefficients ai, where as before the application of Poincaré duality is understood.

Then we calculate the CS-levels (4.4) employing the intersection ring (B.4) in the basis of
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Figure 4. The region of allowed values for (n7, n9) from figure 2. On the entire region, there

are two conditions on the flux. In the interior of this region, (5.4) holds. On the red and the

blue boundary, there are only four independent (2, 2)-forms in the expansion (5.3). On the blue

boundary, ŝP is holomorphic.

divisors (3.31), but with S̃P = SP + 2HB as defined in (2.21) replacing the zero section

SP . The generic solution is a three-parameter family of G4-flux given by

G4 = a5n9 (4− n7 + n9)H2
B + 4a5HB · SP + a3HB · σ(ŝQ) + a4HB · σ(ŝR) + a5S

2
P , (5.4)

which is valid for all values of n7 and n9 in the allowed region figure 2.

This generic three-parameter solution for the G4-flux is expected since there are gener-

ically five different surfaces in (5.3) and two independent conditions (4.10), namely Θ0α =

Θαβ = 0 with α, β = 1. However, the situation becomes more interesting at special values

for (n7, n9). First, we recall that for (n7, n9) on the boundary of the region in figure 2, the

dimensionality of H
(2,2)
V (X̂) decreases to 4. The surface S2

P becomes linearly dependent in

homology on the four other surfaces, as noted below (3.36). At the same time, the number

of independent conditions on the G4-flux remains two. Thus, we find two independent

G4-fluxes on the boundary. We have depicted this situation in figure 3

In all these cases we can obtain the expression for the G4-flux by specializing (5.4).

This ensures that all quantities, in particular the chiralities of 4D charged matter, that

are calculated from the most general G4-flux specialize correctly for non-generic values

of (n7, n9). We discuss this specialization at the end of this subsection, but note that the

reader may want to skip these details on a first read and proceed with the chirality formulas

in section 5.2.

Before delving into the details of this analysis, we evaluate the D3-brane tadpole (4.2)

for the Calabi-Yau fourfold X̂ → P3 and the G4-flux (5.4). First, we calculate the individual

terms in the D3-brane tadpole. We obtain the Euler number for X̂ with B = P3 from the

general formula (3.24) as

χ(X̂) = 4896 + 3
[
−256(n7 + n9) + 4(8n2

7 + n7n9 + 8n2
9)− n7n9(n7 + n9)

]
, (5.5)

where we employed c1(P3) = 4HB, c2(P3) = 6H2
B. We note that this expression is mani-

festly positive due to the bounds on n7 and n9 in (2.27), respectively, figure 4. Then we
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calculate the contribution of the G4-flux (5.4) to the D3-tadpole as∫
X̂
G2

4 = −8a2
3 + 2a3a4 (n7 − n9 − 4) + a2

5n9 (2n9 − n7) (n7 − n9 − 4)− 2a2
4 (4 + n9)

+2a5 (a3 + 2a4)n9 (4− n7 + n9) . (5.6)

Finally, for the purpose of G4-flux quantization via (4.1) we note the following expression

for the second Chern-class of X̂,

c2(X̂) = (182 + 3n9(n7 − n9 − 4))H2
B + 28HB · SP + 2(8− n9)HB · σ(ŝQ)

+(16 + 2n7 − 3n9)HB · σ(ŝR)− 5S2
P , (5.7)

where we expanded the general expression (3.22) for a better comparison with the G4-

flux (5.4) in the basis (3.34) of the vertical cohomology. Also for completeness we calculate

the square of the second Chern-class from the general formula (A.15) as∫
X̂
c2(X̂)2 = 2112− 256(n7 + n9) + 4(8n2

7 + n7n9 + 8n2
9)− n7n9(n7 + n9) . (5.8)

Comparing this with the Euler number (5.5) we reconfirm the general relation (3.28) be-

tween the arithmetic genus and the Euler number of a Calabi-Yau fourfold.

Finally, we conclude by a discussion of (5.4) for non-generic values of (n7, n9). Along

each component of the boundary we have to use the homology relations between S2
P and the

four remaining basis elements (3.34) of H
(2,2)
V (X̂). The relevant relations are (B.8), (B.10),

(B.11) and (B.12) worked out in the appendix. In all these cases the general formula (5.4)

for the G4-flux can be shown to reduce to the two-parameter

G4 = ã3HB · σ(ŝQ) + ã4HB · σ(ŝR) . (5.9)

Here the coefficients ã3 and ã4 are the following linear combination of a3, a4 and a5 on the

three boundary components,

{n7 = 0} : ã3 = a3 , ã4 = a4 − n9a5 , {n9 = n7 + 4} : ã3 = a3 − n7a5 , ã4 = a4 − 4a5 ,

{n9 = 12− n7} : ã3 = a3 + (n7 − 8)a5 , ã4 = a4 + (n7 − 8)a5 ,

{n9 = n7 − 4} ∪ {n9 = 0} : ã3 = a3 , ã4 = a4 . (5.10)

It is satisfying to see that the parameters ã3, ã4 are continuous at the intersection points

of boundary components. We note that the blue boundaries in figure 4, n9 = 0 and

n9 = n7 − 4, are special because ŝP is holomorphic.

We conclude with one remark on the form of the G4-flux obtained here. In some cases,

Type IIB seven-brane gauge fluxes F (1), F (2) of two single D7-branes can be lifted into

F-theory by considering a G4-flux of the type

G4 = F (1) · σ(ŝQ) + F (2) · σ(ŝR) . (5.11)

We note that the flux (5.9) is precisely of this form. In contrast,t he interpretation of the

general G4-flux in (5.4) in terms of Type IIB quantities, if possible, is less clear and would

be very interesting to investigate.
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5.2 4D chiralities from matter surfaces & 3D CS-terms

Finally we are prepared to calculate the chirality of matter in four-dimensional F-theory

compactifications on X̂ with U(1)×U(1) gauge group. We demonstrate that the chirality

of all six matter representations discussed in section 3 can be determined uniquely. Half

of the chiralities are determined by integration of the G4-flux over matter surfaces CwR ,

the other half from the 3D CS-terms ΘΣΛ. As we see explicitly, the 3D CS-terms ΘΛΣ

are not sufficient to fix all chiralities, in contrast to earlier works with a holomorphic zero

section. However, supplemented by new CS-terms present only for non-holomorphic zero

sections, see section 4.2, the chiralities can be obtained also exclusively via 3D CS-terms.

We emphasize that this analysis requires the inclusion of KK-charges for all curves cw. In

the fourfold X̂ only the representation 1(−1,−2) has non-trivial KK-charge qKK = 2.

We outline the general strategy to obtain 4D chiralities in section 5.2.1 before we

determine them explicitly in section 5.2.2 The concrete calculations are performed for the

Calabi-Yau fourfold X̂ with base B = P3 for the entire allowed region in figure 2.

5.2.1 General strategy to determine 4D chiralities

We begin our discussion by recalling how to extract the chiral index of 4D matter in

a representation R under a gauge group G in a global F-theory compactification on an

arbitrary resolved elliptically fibered Calabi-Yau fourfold X̂.

As explained in section 3, each matter representation R possesses an associated ruled

surface, the matter surface CwR , where w denotes a weight of R. Then, the chiral index of

charged matter in this representation R is given by the flux integral20 [1, 21, 40, 80]

χ(R) = −1

4

∫
CwR
G4 , (5.12)

where the G4-flux is a quantized M-theory flux subject to the conditions (4.10). It is

important to note that these conditions, more precisely the conditions Θiβ = 0, imply that

the integral (5.12) is independent on the choice of a particular weight w, since different

weights w, w′ of the same representation R are related by a root αi, w −w′ = αi.

In cases where all the matter surfaces CwR are known, the integral (5.12) is the most

direct and geometric way of calculating the chirality χ(R). However, for the fourfold X̂

at hand, but also for the fourfold X̂SU(5) with an additional resolved SU(5) singularity

constructed in section 6, the homology class of all matter surfaces CwR is not known. For-

tunately, since we know the expected matter spectrum from the geometric analysis there

is to determine the missing chiralities χ(R) indirectly via 3D CS-terms.

For this purpose we recall the three-dimensional M-/F-duality explained in section 4.2.

There we have seen that the 3D CS-terms (4.4) for the U(1)-vector fields AΛ = (Ai, Am) on

the Coulomb branch can be calculated in two independent ways. On the one hand, after

solving the G4-flux condition (4.10), one can calculate all CS-terms ΘM
ΛΣ on the M-theory

side by evaluating the classical flux integrals in (4.4). On the other hand, the CS-levels

20The factor − 1
4

has been introduced to be consistency with the conventions of [44]. It can be reabsorbed

into the G4-flux.
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ΘF
AB on the F-theory side are generated and corrected at one-loop from integrating out

charged matter and, thus, contain, as shown in section 4.2, cf. (4.8), the 4D chiral indices

χ(Rqm) of all 4D matter. Since we know which representations Rqm are there from our

geometric analysis in section 3.1 and the later section 6.1 for the SU(5) case, we can solve

the matching condition (4.5) for the chiralities χ(Rqm).

We note that in both fourfolds X̂ and X̂SU(5) we know the homology classes for a

number of matter surfaces CwR , but not for all. For these matter surfaces, we can evaluate the

index (5.12) directly. The remaining chiralities can be fixed, as demonstrated in sections 5.2

and 7.2 by the matching of the CS-terms ΘΛΣ, that are given on the F-theory side by the

loop-expression given in (4.8). However, we can also obtain all 4D chiralities by taking

into account the CS-terms Θ00 and Θ0m in (4.8), respectively, in (4.18) and (4.20). As

we will see concretely, the obtained results agree with the direct computations via (5.12),

confirming the validity of application of the M-/F-theory duality (4.5) to the determination

of 4D chiralities.

We conclude by noting that the matching (4.5) of CS-terms ΘΣΛ has been used in [42,

44, 45] to calculate successfully the chiralities of F-theory compactifications with SU(5)

and SU(5)×U(1) gauge symmetry. In this work, however, we encounter the novel situation

that the conditions arising from ΘΣΛ are not sufficient to determine the chiralities of

the full spectrum with both U(1)×U(1) as well as SU(5)×U(1)×U(1) gauge symmetry as

outlined in the following and in section 6. The reason for this is precisely the existence

of a non-holomorphic zero section. However, either supplemented by the chiralities that

can be directly determined by the flux integrals (5.12) or by the CS-terms Θ00 and Θ0m,

we obtain all chiralities. For an application of the latter resolution, see also the analogous

analysis of [55] in 6D.

One might wonder whether the CS-terms always provide enough conditions to solve

for the chiralities of a known F-theory spectrum. By a simple counting argument assuming

a rank nU(1) Mordell-Weil group, we enumerate the number of conditions arising from the

matching of these CS-terms as

#(CS-terms) =
(nU(1) + 2)(nU(1) + 1)

2
. (5.13)

If all these conditions remain independent, the CS-terms might indeed be sufficient to

determine the chiralities in F-theory compactifications with more U(1)-symmetries. This

can be seen by a similar estimate on the growth of the number of different representations

as a function of the rank nU(1) of the Mordell-Weil group.

5.2.2 Chiralities on X̂ with B = P3: matter surfaces & CS-terms

In the following we calculate for the first time 4D chiralities χ(R) of an F-theory compacti-

fication on a general elliptically fibered Calabi-Yau fourfold X̂ with rank two Mordell-Weil

group and with the full matter spectrum analyzed in section 3. The following is a direct

extension of the six-dimensional analysis in [51] to a 4D chiral theory.

As mentioned before, the 4D chirality of a given representation R is computed by

the flux integrals (5.12) given the G4-flux and the corresponding matter surfaces CwR . The
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matter surfaces for the matter fields 1(q1,q2) with the three different U(1)2-charges (q1, q2) =

(−1, 1), (0, 2), (−1,−2) have been determined in (3.7). Using the general G4-flux (5.4) on

X̂ → P3 we obtain the following chiralities

χ(1(−1,1)) = −1

4

∫
C(−1,1)

G4 =
1

4
(a3 − a4)n7 (4 + n7 − n9) ,

χ(1(0,2)) = −1

4

∫
C(0,2)

G4 =
1

4
n7n9(−2a4 + a5(4− n7 + n9)) ,

χ(1(−1,−2)) = −1

4

∫
C(−1,−2)

G4 =
1

4
n9(4− n7 + n9)(a3 + 2a4 + a5(n7 − 2n9)) . (5.14)

In order to evaluate the involved intersections we have made use of the topological metric

η(2) on the cohomology H
(2,2)
V (X̂) calculated in (3.36).

In order to obtain the chiralities for the matter fields 1(q1,q2) with charges (q1, q2) =

(1, 0), (0, 1), (1, 1), we have to use the 3D CS-levels and the matching condition (4.5). For

this purpose we have to determine the KK-charges of all six matter representations on X̂.

As mentioned before, a non-trivial KK-charge is calculate by the intersection (4.13) of the

curve cw and the zero section S̃P . Such a non-trivial intersection can only occur at loci,

where the zero section is ill-defined and wraps fiber components. This is precisely the case

at the loci s8 = s9 = 0, where 1(−1,−2) is supported. Since the fiber is an I2-fiber over all

matter loci, we obtain a KK-charge

qKK(1(−1,−2)) = c(−1,−2)· S̃P = 2 , (5.15)

and zero for all other matter representations. We note that (5.15) implies that the sign-

function (4.12) is given by the shifted sign-function (4.17) with k = −2 whereas the other

matter fields retain a point-symmetric sign-function.

We can immediately cross-check this result using the field theory computations of

sections 4.2.2. We first calculate the CS-level ΘF
00 for the 3D KK-vector on the field theory

side. Using the general expression (4.18) for k = −2 we obtain

ΘF
00 = −χ(1(−1,−2)) , (5.16)

with the chirality χ(1(−1,−2)) determined in (5.14). We readily calculate the corresponding

flux integral ΘM
00 via (4.4) and immediately reproduce (5.16). Next we check the rela-

tion (4.20) for the CS-level Θ0m, respectively, (4.21). Again we start with the field theory

result for the right hand side of (4.21) which requires

1

4

∫
X̂
SP · σ(ŝQ) ·G4

!
= −χ(1(−1,−2)) ,

1

4

∫
X̂
SP · σ(ŝR) ·G4

!
= −2χ(1(−1,−2)). (5.17)

We confirm this relation easily by calculating the intersections on the left hand side directly

from the G4-flux (5.4). Thus, as we have just demonstrated the results for the chiralities

in (5.14) obtained from the matter surface integrals can be employed as an independently

check of the field theory expressions for the CS-levels in 4.2.2 and the M-/F-theory duality

relation (4.5).
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Next we proceed with the computation of the other CS-levels Θmn, m,n = 1, 2, for

the two U(1) gauge fields Am corresponding to the divisors σ(ŝQ), respectively, σ(ŝR).

Beginning with the M-theory expressions, we obtain using the Shioda maps (3.35), (4.4)

and the general G4-flux (5.4),

ΘM
11 =

1

2
[a3(96− n7(4 + n7) + n9(4 + n9)) + a5(4− n7 + n9)n9(n7 − 12− 2n9))

+a4(n2
7 + 2(4 + n9)(6 + n9)− n7(8 + 3n9))

]
,

ΘM
12 =

1

2

[
a3(n2

7+2(4+n9)(6+n9)−n7(8+3n9))+(4−n7+n9)(a5(−12+3n7−5n9)n9

+a4(12+5n9))] ,

ΘM
22 =

1

2
[96a4 + a3(4− n7 + n9)(12 + 5n9) + 2a4n9(32− 4n7 + 5n9)

−2a5n9(4− n7 + n9)(12− 2n7 + 5n9)] , (5.18)

with ΘM
21 = ΘM

12 . Here we have used the quartic intersections (B.4) in appendix B.

Then we compute the one-loop CS-terms ΘF
mn in (4.8) on the F-theory side. For the

matter spectrum at hand, cf. (3.3), we obtain

ΘF
11 =

1

2
(χ(1(1,0)) + χ(1(1,1)) + χ(1(−1,1))− 3χ(1(−1,−2)))) ,

ΘF
12 =

1

2
(χ(1(1,1))− χ(1(−1,1))− 6χ(1(−1,−2))) ,

Θ22 =
1

2
(χ(1(0,1)) + χ(1(1,1)) + χ(1(−1,1)) + 4(χ(1(0,2))− 3χ(1(−1,−2)))) . (5.19)

We note that the factor of −3 in front of χ(1(−1,−2)) occurs due to the shifted sign-

function (4.17) with k = −2. Indeed, the relevant sum over KK-states in this case yields∑
n

sign(n+ k) = −3 . (5.20)

We note that the matching of 3D CS-terms (4.5) only using the Θmn yields three

conditions for the six a priori unknown chiralities in (5.19). Thus, it is impossible to

determine the full matter spectrum from these CS-terms alone, which is in contrast to

earlier studies in the literature with holomorphic zero sections. We emphasize that the same

complication arises in the case of SU(5)×U(1)2 gauge group considered in section 6, since

the representations in the SU(5)-singlet sector will be identical to the six representations

considered here. However, we can either use the results (5.14) from the integral of the G4-

flux over the matter surfaces or have to incorporate the CS-terms Θ00 and Θ0m to obtain

three further conditions and to fix all six chiralities.

Consequently, taking into account the results (5.14), we apply the matching condi-

tion (4.5) for the dual CS-terms (5.18) and (5.19) we obtain the remaining three chirali-

ties as

χ(1(1,0)) =
1

4

[
a5n7n9 (4− n7 + n9) + a3

(
2n2

7 − (12− n9) (8− n9)− n7 (16 + n9)
)]
, (5.21)

χ(1(0,1)) =
1

2
[a5n9 (4− n7 + n9) (12− n9)− a4 (n7 (8− n7) + (12− n9) (4 + n9))] ,

χ(1(1,1)) =
1

4

[
2a5n9(4−n7+n9)(12−n9)−(a3+a4)(n2

7+n7(n9−20) + 2(12−n9)(4+n9))
]
.
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We conclude by noting that the chiralities we obtain include factors of 1
2 and 1

4 . These

factors should disappear once the G4-flux has been quantized appropriately according

to (4.1). The precise quantization will, however, depend on the values of n7, n9 and

has to be done in a case by case analysis. In addition, for concrete n7, n9 the factors

in the numerator (5.14) and (5.21) have different divisibility properties and can cancel

the denominators. Therefore, in order to not obscure these cancellation effects, we keep

the normalization in (5.14), (5.21) and the mild fractions of 1
2 and 1

4 . In concrete toric

examples, they can be cancelled appropriately.

5.3 4D anomaly cancellation: F-theory with multiple U(1)s

Finally, after having calculated the matter spectrum of an F-theory compactification, we

check consistency of the obtained low-energy effective physics. One check is anomaly

cancellation. In the following we introduce the necessary quantities to analyze anomalies

and refer to [44] for more details on anomalies in general and, in particular, in F-theory.

Then we use these techniques to show that the general spectrum found in section 5.2 for

F-theory compactifications on X̂ → P3 with gauge group U(1)2 is anomaly-free.

5.3.1 4D anomaly cancellation: general discussion

In the following we assume a 4D gauge group G with a single non-Abelian factors, see for

example [44] for the general case, and with a number nU(1) of Abelian factors. Charges are

summarized by a charge vector q = (qm) and the number of left Weyl fermions in a matter

representation Rq are denoted in general by n(Rq). The number of fermions in a repre-

sentation R irrespective of their U(1)-charges is denoted by n(R), whereas n(q) indicates

the number of fermions with charges q regardless of their non-Abelian representation. All

these numbers can be expressed in terms of the chiralities χ(Rq).

The conditions for 4D anomaly cancellation via the generalized Green-Schwarz (GS)

mechanism [81, 82] yield a system of linear equations involving the spectrum of the theory

as well as parameters encoding the GS-counter terms and the gaugings of axions. These

conditions for cancellation of 4D purely non-Abelian, purely Abelian, mixed Abelian-non-

Abelian and mixed Abelian-gravitational anomalies read, in the same order,

purely non-Abelian anomaly :
∑
R

n(R)V (R) = 0 ,

U(1)k ×U(1)l ×U(1)m-anomaly :
1

6

∑
q

n(q)q(mqnqk) =
1

4
bα(mnΘk)α ,

U(1)m-non-Abelian anomaly :
1

2

∑
R

∑
q

n(Rq)U(R)qm =
1

4λ
bαΘαm ,

U(1)m-gravitational anomaly :
1

48

∑
q

n(q)qm = − 1

16
aαΘmα . (5.22)

Here V (R) and U(R) denote group theoretical constants that arise when rewriting traces

in the representation R as traces in the fundamental representation f . Letting F denote

– 41 –



J
H
E
P
0
4
(
2
0
1
4
)
0
1
0

the non-Abelian field strength, we set

trRF
3 = V (R)trfF

3 , trRF
2 = U(R)trfF

2 . (5.23)

Similarly, we note that λ = 2cG/V (adj) with cG the dual Coxeter number of G and adj

its adjoint representation. Note that λ = 1 for G = SU(N), the case of interest here.

There are some remarks in order. The left hand sides of (5.22) are the actual one-loop

triangle anomalies of the field theory. These are determined entirely by the spectrum.

The right hand sided of (5.22) are the contribution of the anomalous tree-level GS-counter

terms. In an F-theory compactification on a Calabi-Yau fourfold X̂ over a base B they are

identified as follows [44, 83]

Θmα = ΘM
mα , bαmn = −π(σ(ŝm) · σ(ŝn)) · Σα

b , bα = SbG · Σα
b , aα = Kα . (5.24)

Here the CS-terms ΘM
AB are defined in (4.4), the Néron-Tate height pairing has been intro-

duced in (2.18) for two sections and can be straightforwardly generalized to an arbitrary

number of sections, Σα
b denotes a basis of curves defined in (2.19), SbG is the divisor in the

base B supporting the gauge symmetry G, cf. 2.23, and Kα is the coefficient (2.24) in the

expansion of KB.

5.3.2 Anomaly cancellation in 4D F-theory with a U(1)2-sector: B = P3

The spectrum of the F-theory compactification to four dimensions on the fourfold X̂ → P3

has been calculated in (5.14) and (5.21). The various anomalies for this spectrum read

A
U(1)
111 : 2[a3(n9 − n7 − 12) + a5n7 (4− n7 + n9)] ,

A
U(1)
222 : n7 (a3 + a5 (4− n9)) (4 + n9) ,

A
U(1)
112 :

1

6

[
a5n7

(
48+n2

7+n2
9−2n7 (4+n9)

)
+a3

(
n2

7−2n7 (n9−8)+(n9−12) (4+n9)
)]
,

A
U(1)
122 :

1

6

(
a5n7 (n7−n9−4) (n9−12)+a3

(
−2n2

7+n7 (4+n9)+(n9−12) (4+n9)
))
,

A
U(1)-grav
1 : a3 (n9 − n7 − 12) + a5n7 (4− n7 + n9) ,

A
U(1)-grav
2 : 2n7 (a3 + a5 (4− n9)) , (5.25)

where we brought all numerical factors in (5.22) to the left hand sides. We denoted by

A
U(1)
klm the U(1)k × U(1)l × U(1)m- and by A

U(1)−grav
k the U(1)-gravitational anomalies.

Clearly, there are no non-Abelian anomalies due to the absence of a non-Abelian group G,

however, see section 6 for the inclusion of G = SU(5). Thus, since the anomalies (5.25) are

all non-vanishing, a non-trivial GS-mechanism is required for consistency of the theory.

Therefore, all that is left to check cancellation to prove anomaly cancellation of these

F-theory compactifications is to calculate the quantities on the right of (5.24) that encode

the GS-mechanism. First, we obtain

Θαm =

(
1

4
[(−12− n7 + n9)a3 + n7(4− n7 + n9)a5],

1

2
n7[a3 + (4− n9)a5]

)
m

,

bαmn =

(
8 4− n7 + n9

4− n7 + n9 8 + 2n9

)
, aα = −4 . (5.26)
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where we evaluated the CS-terms (4.4) for the flux (5.4), computed the height pairing (2.18)

and (2.24) for KP3 = OP3(−4). We note that the index α = 1 since the only vertical divisor

is the hyperplane HB and m = 1, 2 for the two rational sections ŝQ, ŝR. Equipped with the

coefficients in (5.26) we finally calculate the GS-terms on the right side of (5.22), which

precisely yield (5.25). Thus, we see that all anomalies are cancelled by the GS-mechanism.

We conclude note that the spectrum calculated in section 5.2 is the uniquely determined

anomaly-free spectrum if only one chirality χ(1(q1,q2)) is calculated independently. Anomaly

cancellation is not sufficient to fix the spectrum completely, since the U(1)3
1-anomaly is

proportional to the U(1)1-gravitational anomaly as is evident from (5.25).

5.4 A toric example

We conclude the analysis of F-theory compactifications with U(1)×U(1) gauge group with

explicit toric constructions of the fourfolds X̂ with dP2-elliptic curve E . We focus on

elliptically fibered Calabi-Yau fourfolds X̂ → P3 over P3.

First we note that we can construct using the algorithm of appendix G toric fourfolds

realizing a wide variety of values for n7 and n9 inside the allowed region in figure 2 of dP2-

fibrations over P3 with generic Calabi-Yau hypersurface X̂. In the following, we present

the case n7 = 4 and n9 = 5 to illustrate key ideas of the toric construction.

The toric reflexive polytope defining the toric variety dP2(4, 5) takes the form

variable vertices C∗-action divisor class

z0 1 1 1 -1 -1 1 0 0 0 HB

z1 -1 0 0 0 0 1 0 0 0 HB

z3 0 -1 0 0 0 1 0 0 0 HB

z2 0 0 -1 0 0 1 0 0 0 HB

u 0 0 0 1 0 0 1 1 -1 H − E1 − E2 +HB

v 0 0 0 0 1 0 1 0 0 H − E2 +HB

w 0 0 0 -1 -1 -1 0 1 0 H − E1

e1 0 0 0 0 -1 0 0 -1 1 E1

e2 0 0 0 1 1 0 -1 0 1 E2

(5.27)

Here the first column denoted the projective coordinates on the toric variety dP2(4, 5), the

next five columns are the vertices of the polytope, that are given as five-dimensional row

vectors. Next we displayed the four C∗-actions of dP2(4, 5) along with the divisor classes

in the last column.

Comparing the divisor classes in (5.27) with the general assignments in (2.10) we

immediately confirm that the above polytope indeed describes a fibration with divisors

S7 = 4HB and S9 = 5HB. This can also be checked explicitly by torically calculating

the intersections (2.15) in the toric variety associated to the single star triangulation of

the polytope specified in (5.27). The Euler number, as well as the Hodge numbers, of the

fourfold X̂ in dP2(4, 5) read

χ(X̂) = 1620 , h(1,1)(X̂) = 4 , (0) , h
(2,2)
V (X̂) = 5 , h(3,1)(X̂) = 258 , (0) ,

(5.28)
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where the zeros in parenthesis indicate the absence of any non-toric divisors, respectively,

complex structure moduli on X̂ as expected by construction. The Euler number χ(X̂) as

well as the number h
(2,2)
V (X̂) of independent surfaces in (5.28) agree with the general for-

mula in (5.5), respectively, the cohomology calculations leading to (3.34). The topological

metric η(2) of these five classes is read off from (3.36) with n7 = 4, n9 = 5.

The codimension two singularities of this concrete Calabi-Yau fourfold X̂ yield the full

spectrum (3.3) of six different singlet representations 1(q1,q2). The cohomology classes of

the three sections are given by the toric divisors SP = E2, SQ = E1 and SR = H − E1 −
E2 +HB in (5.27) and agree with the general expression (3.32). We obtain the (1, 1)-forms

inducing the U(1)×U(1)-gauge fields by evaluating the Shioda map of the sections ŝQ, ŝR
following (3.35) as

σ(ŝQ) = SQ − SP − 4HB , σ(ŝQ) = SR − SP − 9HB . (5.29)

The Nero-Tate height pairing bαmn of these two classes follows from (5.26) with n7 = 4,

n9 = 5.

Finally, we calculate the general G4-flux on X̂ employing the procedure of section 5.1.

We precisely obtain the G4-flux in (5.4) in the case n7 = 4, n9 = 5. With this re-

sult, we readily calculate the chiralities for the matter representations, along with the

CS-terms (4.4), again obtaining a perfect match with the results (5.14), (5.21) and (5.18)

evaluated for n7 = 4, n9 = 5. Then we also calculate the GS-terms (5.26), most prominently

the gaugings Θmα, and show, following section 5.3, that all anomalies are cancelled.

6 Calabi-Yau fourfolds with SU(5)×U(1)×U(1)

Building on the results of previous sections, the aim of this section is to develop tools for the

construction of phenomenologically appealing F-theory compactifications with additional

non-Abelian gauge symmetries. For concreteness we consider in this section a Calabi-Yau

fourfold X̂SU(5) with a resolved SU(5)-singularity, while maintaining the rank two Mordell-

Weil group. Compactifications of F-theory on X̂SU(5) give rise to a four-dimensional GUT

with SU(5)×U(1)×U(1) gauge group.

We consider here one particular geometric way of adding and resolving the SU(5)-

singularity. Once this non-Abelian sector is added, it is rather straightforward to implement

the techniques developed in previous sections for the rank-two Abelian symmetry. As

the first step in section 6.1 we describe the resolution to X̂SU(5), determine the matter

representations as well as Yukawa points and the matter surfaces for a subset of matter

multiplets. We note, that the spectrum that we obtain in this analysis has not been found

via the toric classification of SU(5)-TOPs in [46]. As the next step we calculate the vertical

cohomology ring H
(∗,∗)
V (X̂SU(5)) in section 6.2. For a general base B we derive expressions

for the Chern classes and Euler number of X̂SU(5), before we calculate the full vertical

cohomology for the fourfold with B = P3 explicitly.

We emphasize one finding of our analysis. With the addition of an SU(5)-singularity

we encounter at one codimension three locus a non-flat fiber (NFF), i.e. at this particular

codimension three locus the fiber of X̂SU(5) is no longer a complex one-dimensional elliptic
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curve, but a complex two-dimensional surface CNFF . We note that this was also observed

in [46]. The physics of non-flat fibers has been studied in [84], to which we refer for more

details. In summary, the complex surface in the fibration can be wrapped by an M5-brane,

that gives rise, in the blow-down of the resolved fibration of X̂SU(5), to a charged tensionless

string with an infinite tower of massless excitations. In addition, further light states are

contributed by M2-branes wrapping holomorphic curves in the surface of the non-flat fiber.

Compactifications of F-theory with such a spectrum of additional light states are prob-

lematic for phenomenology. One obvious way out is to geometrically avoid the presence

of the Yukawa couplings supporting the dimension two fiber. This can be achieved by

considering a base B where the dangerous Yukawa coupling does not exist but all the

other physical features of the compactification on X̂SU(5) are retained. See also [45] for a

toric analysis. Such bases are easily constructed and realize phenomenologically interesting

F-theory compactifications [85].

Another way to deal with the non-flat fiber is to forbid at least a chiral excess of the

additional light states induced by CNFF . This requires the G4-flux on X̂SU(5) to integrate

to zero over CNFF ,

Non-flat fiber condition:

∫
CNFF

G4 = 0 , (6.1)

Following this approach later in section 7, we show explicitly that we can obtain a physical

and consistent low-energy spectrum with all 4D field theory anomalies cancelled even in

the presence of a non-flat fiber at codimension three. It would be interesting to investigate

the microscopic meaning of (6.1) in more detail.

6.1 Singularities of the fibration: gauge group, matter & Yukawa Couplings

In this section we analyze the codimension one, two and three singularities and their

resolutions in X̂SU(5). We thoroughly determine all matter representations and determine

some of the associated matter surfaces.

Before going into the details of this geometric analysis of X̂SU(5) it is instructive to

introduce some terminology and the following simple geometric picture. We construct

X̂SU(5) by first considering a non-generic Calabi-Yau fourfold X̂ with an SU(5)-singularity

over codimension one in B. Then we resolve all singularities and obtain the smooth X̂SU(5).

Thus, the smooth Calabi-Yau fourfold X̂SU(5) is schematically obtained from a singular

Weierstrass model X as,

X̂SU(5)

πSU(5)−→ X̂
π̂−→ X . (6.2)

Here πSU(5) blows down the four Cartan divisors of SU(5) and π̂ = π1 ◦ π2 is the two-step

blow-up in (3.2). Thus the fourfold X̂SU(5) is constructed via a combination of a total of

six resolutions starting from the singular Weierstrass model X.

6.1.1 Explicit resolution of a codimension one SU(5)-singularity

In the following we first engineer and then resolve an SU(5)-singularity over codimension

one in B. We introduce the section z ∈ O(SSU(5)) that vanishes along the divisor SbSU(5)
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Figure 5. Each dot represents a dP2-fibration over P3 with generic Calabi-Yau X̂SU(5). The red

region is the set of dP2-fibration with generic X̂ without SU(5), cf. figure 2.

in the base B of SU(5)-singularities of the elliptic fibration of X̂. Here we focus on the

interplay between the non-Abelian and Abelian sector and choose one particular SU(5)-

singularity first constructed in [51] that has been missed in the literature before.

The SU(5)-singularity of interest is obtained by considering non-generic coefficients si
in the Calabi-Yau equation (2.1) of the form

s1 = z3s′1 , s2 = z2s′2 , s3 = z2s′3 , s5 = zs′5 . (6.3)

Since the si are still required to be sections of the bundles (2.10) by the Calabi-Yau con-

dition, this implies that the s′i have to be sections of the following line bundles:

section bundle

s′1 O(3[K−1
B ]− S7 − S9 − 3SSU(5))

s′2 O(2[K−1
B ]− S9 − 2SSU(5))

s′3 O([K−1
B ] + S7 − S9 − 2SSU(5))

s′5 O(2[K−1
B ]− S7 − SSU(5))

(6.4)

We note that we assume in the following that we obtain a fourfold X̂SU(5) that is a generic

besides the resolved SU(5)-singularity, i.e. that all the si respectively s′i in (2.10) and (6.9)

exist. As before in the U(1)2-case, this poses upper and lower bounds on the coefficients nα7 ,

nα9 in the expansion (2.25) of S7, S9, that depend on the base B. For the case B = P3 that

is of most interest in this work, these bounds replace (2.27) and read, using K−1
P3 = OP3(4)

and SSU(5) = HB,

0 ≤ n7 ≤ 7 , 0 ≤ n9 ≤ 6 , n7 + n9 ≤ 9 , 0 ≤ 2 + n7 − n9 , 0 ≤ 4 + n9 − n7 . (6.5)

The allowed region is displayed in figure 5.

Next we confirm that the specialization 6.3 of the coefficients indeed gives rise to an

SU(5)-singularity. The discriminant takes the form

∆ = −z5
(
β4

5P + zβ2
5P2R+O(z2)

)
(6.6)
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where we defined

β5 = s6 , P := P1P2P3P4P5 = (s′2s
′
5 − s′1s6)s7(s′2s7 − s′3s6)s8(s6s9 − s7s8) , (6.7)

and R is a polynomial in si with no common factors.

We note that the factor z5 in (6.6) signals an A4-singularity over the divisor z = 0,

as desired. In addition, we see that the singularity gets further enhanced at β5 = 0 to

D5 and at P = 0 to A5, indicating appearance of matter multiplets at codimension two

singularities. Yukawa points are located at the codimension three loci.

In order to resolve all singularities, we perform four blow-ups of the ambient space (2.7)

that induce two blow-ups and two small resolutions on the Calabi-Yau fourfold. The blow-

down map πSU(5) : X̂SU(5) → X̂ of this resolution then reads [51],

πSU(5) : w = d1d
2
2d

3
3d

2
4w̃ , v = d1d2d3d4ṽ , u = d3d4ũ , z = d1d2d3d4z̃ , (6.8)

where we have introduced new coordinates w̃, ṽ, ũ and z̃ as well as the di which are sections

of the line bundles O(Di) associated with the exceptional divisors Di for i = 1 . . . 4. The

latter are the Cartan divisors of X̂SU(5) and admit the fibration structure (2.23) with

SSU(5) = π(SbG). In the following it will be convenient to denote the new class of z̃ as D0

and supplement the Cartan divisors as DI = (D0, Di)I with I = 0, 1, . . . , 4. The divisor

classes of all homogeneous coordinates in (6.8) are then given by

section bundle

ũ O(H − E1 − E2 + S9 + [KB]−D3 −D4)

ṽ O(H − E2 + S9 − S7 −D1 −D2 −D3 −D4)

w̃ O(H − E1 −D1 − 2D2 − 3D3 − 2D4)

z̃ O(D0) ≡ O(SSU(5) −D1 −D2 −D3 −D4)

(6.9)

The total transform of the Calabi-Yau hypersurface (2.1) then reads

p = s6(e1e2)uvw + s7(d1d2)e2v
2w + s8(d2d

2
3d4)e2

1uw
2 + s9(d1d4d

2
3d

2
2)e1vw

2 (6.10)

+z2s5(d4d3)e2
1e2u

2w + z2
2s2(d1d4)e1e

2
2u

2v + z2
2s3(d2

1d2d4)e2
2uv

2 + z3
2s1(d1d

2
4d3)e2

1e
2
2u

3 ,

where we dropped, by abuse of notation, all tildes of the coordinates in (6.8) and all primes

of the sections in (6.9). The hypersurface (6.10) is a section of the anti-canonical bundle

of the new ambient space, denoted d̂P
B

2 (S7,S9), after the blow-up (6.8). It reads

K−1

d̂P
B

2

= π∗SU(5)

(
K−1
dPB

2

)
− 2D1 − 3D2 − 5D3 − 4D4 , (6.11)

where K−1
dPB

2
denotes the anti-canonical bundle (2.9) of dPB2 (S7,S9) that is pulled back via

the blow-down map (6.8).

There is one caveat when working with a particular resolution such as (6.8). It has

been discussed in detail in [20–22], but has also been long clear in the toric context,

see e.g. [41, 42, 44, 78] for recent studies, that the resolution of an SU(5)-singularity over

codimension one in B is not unique. The different resolutions are related by mild birational
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transformations. In the context of toric geometry, this is visible as different phases of

the toric ambient variety21, that descend to different phases on the Calabi-Yau fourfold

X̂SU(5). One way to specify these different phases is by the Stanley-Reissner ideal SR,

which describes which divisors in (6.9) do not intersect. However, we can always restrict

ourselves to one particular resolution in order to extract physical quantities like the matter

content, Yukawa points and chiralities in F-theory. This is intuitively clear since the

resolved geometry X̂SU(5) is just a tool to analyze the geometry and not physical in F-

theory. This can be argued more precisely in the dual M-theory compactification similar

to the discussion in [79].

Thus, we focus here on one particular phase of the resolution (6.8) to extract the

effective physics of F-theory on X̂SU(5). Following the spirit of toric geometry, we specify

the precise resolution (6.8) by stating a specific SR-ideal. Here we consider an ideal of the

form

SR = {ve1, e1e2, uv, uw,we2} ∪ {zd3, d1d3, d1d4} ∪ {d1e1, ze1, d2e1, d4e1, d1u,

d2u, d1e2, d2e2, d3e2, d4e2, zw, d1w, d4w, d3v, d4v, zd2v} ∪ π∗SU(5)(SRB) . (6.12)

We immediately recover the SR-ideal (2.5) of the dP2-fiber as the first set in (6.12), ensuring

the intersections (2.4) of the fiber. The second set gives rise to the correct intersections of

the Cartan divisors to obtain the intersection pattern of the A4 Dynkin diagram. The third

part encodes the intersections of the Cartan divisors with the sections ŝP , ŝm. The last

part in (6.12) is the pull-back of the SR-ideal SRB of the base B under the blow-down map

πSU(5) in (6.8). We will comment on the structure of this ideal in more detail in section 6.2.

For now we just state that it contains the SR-ideal of the base and additional intersections

involving the Di and the vertical divisors, that take care of the split of the divisor z into

multiple components under the blow-up map (6.8).

Let us next discuss the structure of the resolution X̂SU(5) at codimension one in B.

The general fiber of X̂SU(5) is the dP2-elliptic curve E . However, over SbSU(5) the fiber

becomes reducible. One way to see this is by noting the following intersections of the

Cartan divisors DI ,

DI ·DJ ·Dα·Dβ = −CIJSSU(5)·SP ·Dα, ·Dβ (6.13)

where Dα, Dβ are arbitrary vertical divisors and CIJ is the extended Cartan matrix of

SU(5) reading

(−CIJ) =


−2 1 0 0 1

1 −2 1 0 0

0 1 −2 1 0

0 0 1 −2 1

1 0 0 1 −2

 . (6.14)

21In general, there can also be phases of the toric variety and X̂SU(5) that do not correspond to different

resolutions but for example to different phases of B or of the general fiber E . These might even change the

intersections e.g. of the fiber E from the ones considered in section 2.1 by going for instance into a phase

corresponding to F1 blown up at a point. We exclude these phases here and in particular in sections 5.4

and 7.3.
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Figure 6. I4-fiber over SbSU(5) marked according to the intersections of the nodes with SP , SQ, SR,

corresponding to a 2− 3-split of a spectral cover.

We note that (6.13) can be calculated via the abstract presentation (3.18) of the cohomology

ring of X̂SU(5), see section 6.2 and appendix D for details. The intersections (6.13) then

immediately imply that the divisors DI resolve a singularity of type G = SU(5). Indeed,

we note first that (6.13) implies a fibration structure (2.23) of the Cartan divisors π :

DI → SbSU(5) with the rational fibers c−αI corresponding to the simple roots −αi and the

extended root −α0 =
∑

i αi of SU(5). The latter conclusion can be shown by representing

the individual curves c−αI as intersections of the divisors Di with a curve Σb dual to SbSU(5)

in the base, i.e. assuming SbSU(5)·Σb = 1 we obtain

DI · Σb = c−αI . (6.15)

Then, we immediately confirm from (6.13) and (6.14) that the c−αI in fact intersect as the

affine Dynkin diagram of SU(5), see figure 6, justifying the assignment c−αI ↔ −αI .
Next we turn to the behavior of the rational sections of X̂SU(5). Generically, the

sections are points in the fiber and only intersect one of its irreducible components. As

we have just seen the fiber over SbSU(5) splits into five rational curves. The component

which is pierced by the three sections ŝP , ŝQ and ŝR can be determined by calculating the

intersections of their divisor classes SP , SQ,R with the curves (6.15). We find that SP and

SR intersect c−α0 , and SQ passes through c−α3 , i.e.

SP · c−αI = SR · c−αI = (1, 0, 0, 0, 0)I , SQ · c−αI = (0, 0, 0, 1, 0, 0)I . (6.16)

This situation is summarized in figure 6. We note that this intersection pattern of the

rational sections would correspond to a 2 − 3 split in the language of spectral covers.

Again, the result (6.16) can be obtained via the abstract intersection computation outlined

in section 6.2 and in appendix D.

Equipped with these intersections of the sections with the nodes of the Dynkin diagram,

we can calculate the Shioda maps of the sections ŝQ, ŝR. We obtain

σ(ŝQ) = SQ−SP − [K−1
B ]+

1

5
(2D1 +4D2 +6D3 +3D4) , σ(ŝR) = ŜR−SP − [K−1

B ]−S9 .

(6.17)
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Here we have used the general formula for the Shioda map in the presence of one set of

Cartan divisors Di due to a codimension one singularity of type G of the elliptic fibration,

σ(ŝm) := Sm − S̃P − π(Sm · S̃P ) +
(
C−1

)ij
(Sm · c−αi)Dj . (6.18)

The first two terms are identical to those in the Shioda map (2.20), whereas the last term

incorporates the presence of G and involves the fibral curves c−αi corresponding to the

simple roots of G as well as the inverse of the normalized coroot matrix Cij of G. For the

case of SU(5) considered here Cij is identical to the Cartan matrix Cij .

6.1.2 Matter: codimension two

Now we proceed to analyze the resolved codimension two singularities in X̂SU(5). There are

five loci z = Pi = 0, i = 1, . . . , 5, in (6.7) where the order of vanishing of the discriminant

enhances, indicating the presence of an I5-singularity and of 5 representations in F-theory.

In addition, there is one codimension two loci z = β5 = 0, where the singularity enhances

to type D5 and where matter in the 10 representation is located F-theory.

We analyze in the following the splitting of the nodes of the A4-fiber over all these

codimension two loci, determine the U×U(1)-charges (q1, q2) of all the non-Abelian repre-

sentations along with their KK-charges, which we find to be zero. As in the U(1)×U(1) case

there will be only the SU(5)-singlet 1(−1,−2) with non-trivial KK-charge. We also deter-

mine which weights of the respective representations are realized as holomorphic curves and

thus lie in the Mori cone of X̂SU(5). This fixes the sign-function in (4.12) for each of these

representation and allows for the field theoretic computations outlined in section 4.2, that

will be used in section 7. We conclude with a determination of some matter surfaces CwR .

The analysis of the splitting of nodes at codimension two presented in this section is

very similar to the ones performed earlier in the literature based on the Tate model of

elliptic fibrations. Therefore, our discussion will be brief and we refer to [21, 22] for more

background on the general methodology.

The 5-representations and their U(1)×U(1)-charges

In the following we study the codimension two loci z = P1 = 0 in detail. The analysis

of the other loci z = Pi = 0 of 5-representations is very similar. Therefore, we will only

summarize the results of our computations at the end of this section.

At the loci P1 = (s2s5 − s1s6) = 0 defined (6.7) the second node in figure of the fiber

becomes reducible, as depicted figure 7. This can be observed by intersecting the locus

d2 = P1 = 0 with the Calabi-Yau equation (6.10). Since we are only interested in the split

of the fiber, we evaluate all coefficients si at generic points on B, cf. (6.15). Then, we

locally obtain

p|d2=P1=0 =
1

s1
(s2v + s1d3d4z)

(
s5w + s1d1d4z

2
)
. (6.19)

This means that the class of the curve c−α2 splits into two curves c1, c2 when restricted to

the non-generic loci P1 = 0 . From the perspective of the ambient space d̂P
B

2 (S7,S9) we

can write this splitting using (6.19) as

c−α2 = c1 + c2 , [c1] = H3
B · [v] , [c2] = H3

B · [w] , (6.20)
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Figure 7. Splitting of the generic I4-fiber over P1 = 0.

where we denoted the homology classes of the curve ci as [ci] and used the shorthand

notation [v] for the homology class of v, cf. (6.9). In order to arrive at this result we first

have to use the SR-ideal 6.12 and the fact that H4
B = 0.

The splitted curves c1, c2 correspond to a weight w, respectively, −w of the 5-

representation according to the general correspondence between isolated rational curves

over codimension two in B and matter in F-theory explained before (3.1). The Dynkin

label22 (qi) of a weight w is calculated in general geometrically as the intersection

qi = Di · cw , (6.21)

which is in complete analogy with the formula (3.4) for the computation of U(1)-charges.

We apply (6.21) for the curves in (6.20) to obtain the Dynkin labels of c1 and c2 as

Di · c1 = (1,−1, 0, 0)i , Di · c2 = (0,−1, 1, 0)i , (6.22)

respectively. As an immediate consistency check we recover the Dynkin label of −α2 as the

sum of these Dynkin labels. We also note, for completeness, that in this case, none of the

curves c1, c2 intersect the rational sections, as can be seen by calculating intersections as

in (6.16). This is again expected since the original unsplitted curve c−α2 does not intersect

the rational sections either, see figure 7.

The first set of Dynkin labels in (6.22) is recognized as the Dynkin label of the weight

−(µ5 − α1), where −µ5 is the highest weight with Dynkin label Λ5 = (−1, 0, 0, 0). Since

the Cartan divisors correspond to −αi, however, we interpret this as 5-representation The

second Dynkin label corresponds to the weight (µ5 − α1 − α2) of the 5 representation. All

the other weights of 5 can then be obtained by adding appropriately one of the curves c1,2

and a number of curves c−αi of the simple roots c−αi . We exemplify this here to obtain

the remaining weights of the 5,

Dynkin label Curves

(-1,0,0,0) c1 + c−α1

(1,-1,0,0) c1

(0,1,-1,0) −(c2)

(0,0,1,-1) −(c2 + c−α3)

(0,0,0,1) −(c2 + c−α3 + c−α4)

(6.23)

22The Dynkin label of w is the vector of ‘U(1)-charges’ of w under all Cartan generators.
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From this table we can directly see which curves are in the Mori cone of X̂SU(5). The

two curves c1, c2 are effective because we explicitly know their holomorphic representa-

tion (6.19) . Also by construction, the curves associated to the simple roots c−αi are

effective and so are the sums of effective curves with positive coefficients. This implies that

we can now evaluate the sign-function (4.12). It is positive for the first two representations

in table 6.23, but negative for the other three curves, that are not in the Mori cone. We

summarize these findings, along with the signs of the other representations in (6.27).

Next, we calculate the U(1)×U(1)-charge using the first equality in the charge for-

mula (3.4). For the U(1) associated to the SQ section, we intersect the Shioda map σ(ŝQ)

in (6.17) with any of the curves in (6.23) of the representation. For example using the lo-

cations in figure 7 of the sections on the fiber, as well as the intersections (6.13) and (6.22)

we obtain

q1 = σ(ŝQ)· (c1 + c−α1) = 0− 0 + (−1, 0, 0, 0)
1

5


4 3 2 1

3 6 4 2

2 4 6 3

1 2 3 4




0

0

1

0

 = −2

5
, (6.24)

The second U(1)-charge related to the section SR follows similarly as

q2 = σ(ŝR)· (c1 + c−α1) = 0. (6.25)

In summary, we have found the matter representation 5(− 2
5
,0) is realized at the codimension

two loci P1 = z = 0.

A similar analysis can be performed at all other loci z = Pi = 0, i = 2, 3, 4, 5 of 5-

representations. The computations are completely analogous to the ones performed above,

but not very enlightening. In all cases we obtain a split of nodes similar to the one in figure 7

and obtain an I5-fiber. The U(1)×U(1)-charges can be straightforwardly calculated. We

skip these details and just summarize all charges of 5 representations we obtain:

Locus P1 = 0 P2 = 0 P3 = 0 P4 = 0 P5 = 0

(q1, qe) (−2
5 , 0) (−2

5 , 1) (3
5 , 0) (3

5 , 1) (−2
5 ,−1)

(6.26)

We note that we are working in a normalization of charges which allows for fraction. We

can rescale our charges as usually done in the literature in this case by a factor of 5 to

obtain integral charges.

We also summarize which curves cw of which weights are in the Mori cone of X̂SU(5).

As before we use this to determine the values of the sign-function in (4.12). We obtain the

following results:

Weight 5(− 2
5
,0) 5(− 2

5
,1) 5( 3

5
,0) 5( 3

5
,1) 5(− 2

5
,−1)

(−1, 0, 0, 0) + + + + -

(1,−1, 0, 0) + + + + -

(0, 1,−1, 0) - + + + -

(0, 0, 1,−1) - - - + -

(0, 0, 0, 1) - - - + -

(6.27)
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Figure 8. D5-curve over z = β5 = 0.

The 10-representation and its U(1)×U(1)-charges

For completeness, we briefly discuss the fiber at the loci z = β5 = 0. In this case more

curves c−αi become reducible. Repeating the same procedure as above, we insert z = β5 = 0

and di = β5 = 0 into the Calabi-Yau equation (6.10), we obtain the following splitting of

nodes,

Node splits into Cartan charges

z = 0 ca : d4s8u+ d1d2d4s9v + d1e2s7v
2 = 0 (0, 1, 0, 0)

cb : d2 = 0 (1,−1, 0, 1)

d1 = 0 c−α1 : d2s8 + s5z2 = 0 (−2, 1, 0, 0)

d2 = 0 cb : z2 = 0 (1,−1, 0,−1)

c−α4 : d4 = 0 (0, 0, 1,−2)

cc : d1d3d4s1z
2
2 + d1s2vz2 + d3s5w = 0 (0,−1, 0, 1)

d3 = 0 c−α3 : d2d4s3u+ d4e1s2u
2 + d2s7w = 0 (0, 1,−2, 1)

d4 = 0 c−α4 : d4 = 0 (0, 0, 1,−2)

(6.28)

We observe that both the curves c−α0 and c−α2 split into two, respectively, three compo-

nents, denoted ca, cb, respectively, cb, c−α4 and cc, where we note that the curve ca is the

extended note, i.e. the original singular fiber. The fact that the curves cb and c−α4 appear

twice means that they have multiplicity two. The intersection numbers between all the

curves in (6.28) can be calculated taking into account the SR-ideal of the ambient space.

The intersection pattern of the curves reproduces a D5-curve, see figure 8.

The curves ca,b,c,d carry some weights of the 10 and 10 representations. All the other

weights are obtained as before by addition of curves c−αi . The U(1)×U(1)-charges of the 10

representation are determined by intersections with the Shioda maps σ(ŝm) of the rational

sections. We obtain the representation

10(q1,q2) = 10( 1
5
,0) . (6.29)

Finally, we enumerate which curves cw of this representation are in the Mori cone of X̂SU(5).
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As before we indicate this by the values of the sign-function (4.12), which reads

Weight Sign

(0,−1, 0, 0) +

(−1, 1,−1, 0) +

(1, 0,−1, 0) +

(−1, 0, 1,−1) +

(1,−1, 1,−1) +

Weight Sign

(−1, 0, 0, 1) +

(0, 1, 0,−1) -

(1,−1, 0, 1) +

(0, 1,−1, 1) -

(0, 0, 1, 0) -

(6.30)

KK-charges

We note that at all codimension two singularities inside the divisor SSU(5) the section SP is

holomorphic. This means for these type of matter the KK-charges vanish, qKK = 0. The

only representation with non-trivial KK-charge is, as before in section 5.2 the matter field

1(−1,−2). Its KK-charge is qKK = 2.

Matter surfaces

We conclude the discussion of codimension two singularities by constructing the classes of

certain matter surfaces CwR . As before in section 3.1 we are able to obtain these classes

only for a subset of the representations.

We first comment on the calculation of matter curves in the base. A very convenient

way to calculate all matter curves ΣR is by projecting the intersections d?i = Pl = 0,

l = 1, . . . , 5 or d?i = β5 = 0 to the base, where d?i is the coordinates associated to the

Cartan divisor Di that has split at that codimension two loci under consideration. The

homology classes of the matter surfaces are then given as

ΣR
∼= [B]· [D?

i ]· [Pi] = [B] · [SSU(5)]· [Pi] , (6.31)

where the divisor D?
i has to correspond to the node that has split at the location of the

matter representation R. Here we have used the property π(DI) = SSU(5) in the second

equality.

As in the Abelian case, we can only specify some matter surfaces completely. As

before, this complication arises since we are only able to isolate the irreducible components

in the elliptic fiber locally, but can not infer the total space of the fibration CwR → ΣR.

The subset of matter surfaces, that we can explicitly determine, along with their homology

classes, reads,

Rep. Matter curve ΣR Matter surface CR
5(− 2

5
,0) SSU(5)· ([s2] + [s5]) -

5(− 2
5
,1) SSU(5)· S7 ([K−1

B ]+S9−S7+2H−2D1−3D2−4D3−3D4)·D3· S7

5( 3
5
,0) SSU(5)· ([s3] + [K−1

B ]) -

5( 3
5
,1) SSU(5)· [s8] (S9+2H−E1−D1−2D2−4D3−3D4)·D0· ([K−1

B ]+S9−S7)

5(− 2
5
,−1) SSU(5)· (S7 + S9) -

10( 1
5
,0) SSU(5)· [K−1

B ] D0·D2· [K−1
B ]

(6.32)
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Here we made use of the SR-ideal (6.12), the assignments of sections given in (6.4), (6.9)

and have abbreviated the divisors class of the si as [si]. In addition, we have suppressed

the intersection with the class of the base B when denoting the matter curves ΣR and by

abuse of notation used same symbol for vertical divisors and divisor in the base.

The matter surfaces for the singlets 1(−1,1), 1(0,2) and 1(−1,−2) have been analyzed in

detail in section 3.1 in the case of a U(1)×U(1) gauge group only. In the presence of an

SU(5) at codimension one, the matter surfaces determined in (3.7) change. Taking into

account the new classes (6.4), (6.9) and the new equation of the Calabi-Yau fourfold (6.10)

we obtain the matter surfaces as

Matter surface Homology class

C1(−1,1)
([K−1

B ] + S7 − S9 − 2SSU(5)) · S7 · E1

C1(0,2)
S7 · S9 · ([K−1

B ] + S9 − S7 + 2H − 2D1 − 3D2 − 4D3 − 3D4)

C1(−1,−2)
([K−1

B ]+S9−S7)· S9· (3H−E1−2E2+2S9−S7−2D1−3D2−5D3−4D4)

(6.33)

This can be seen by specializing (6.10) to the matter curves Σ1(−1,1)
= {s′3 = s7 = 0},

Σ1(0,2)
= {s7 = s9 = 0}, respectively, Σ1(−1,−2)

= {s8 = s9 = 0} and, then, by multiplying

with the class of the isolated rational curves over each matter curves. We recall that the

latter are given by c(−1,1) = {e1} as well as the total transforms of (3.9) and (3.10).

6.1.3 Yukawa couplings: codimension three

We focus in this section on the determination of those Yukawa points that involve at least

one the non-trivial representations under SU(5). For an analysis of the Yukawa points of

the singlets, we refer to the discussion in section 3.1.2, that applies without any changes.

Further enhancement of singularity type of the elliptic fibration can be read directly

from the discriminant (6.6) of X̂SU(5). Our strategy in determining these loci is to look

for two polynomials, typically describing two matter curves, such that at their common

vanishing locus the discriminant vanishes with order n greater than five, i.e. ∆ ∼ zn for

n > 5. Then we check explicitly that the fiber of the resolution X̂SU(5) splits further. We

perform this analysis in the following for all present matter representations of X̂SU(5).

We begin with the loci of the single 10 representation. We note that here, since

β5 = s6 = 0, the discriminant already vanishes to degree seven and takes the form

∆ = −16z7(s5s7)3(s2s8s7)2 +O(z8) . (6.34)

Vanishing of any of these prefactors will enhance the zero of the discriminant to degree

eight or higher. First, we analyze the vanishing s6 = s5 = 0 on the divisor z = 0. The

polynomial P1 vanishes but no other Pi does, so this point belongs both to the matter curve

of 52/5,0 and of 10. Although the fiber does not degenerated to an E6-fiber the Yukawa

coupling exists. The gauge invariant coupling we read off is

s5 = s6 = z = 0 : 10( 1
5
,0) × 10( 1

5
,0) × 5(− 2

5
,0) , (6.35)
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Next, we study the vanishings of s2 or s8 with s6 = z = 0. In this case we obtain

couplings of the type 5 × 5 × 10. We note that the fiber does not enhance to a D6-fiber,

but the Yukawa is still realized geometrically.

Finally, we consider the last enhancement of the vanishing of (6.34) with s7 = s6 = 0.

In this case the intersection of the Cartan divisor D4 with the Calabi Yau hypersurface is

automatically zero. Since we are now only specifying three conditions d4 = s6 = s7 = 0 in

a five-dimensional ambient space, the fiber has to be complex two-dimensional, namely the

whole del Pezzo surface dP2. The elliptic fibration of X̂SU(5) is non-flat, with a complex

two-dimensional fiber over codimension three. We note that this effect occurs also for other

SU(5)-embeddings [46].

The physics of this a non-flat fibration has been discussed in [84]. As mentioned before,

an M5-brane can wrap the surface in the non-flat fiber, and give rise to a string in a three-

dimensional M-theory compactification. In addition, M2-branes can wrap holomorphic

curves in dP2. In the blow-down of X̂SU(5), and in particular in the F-theory limit, the

states associated to these degrees of freedom become massless. For phenomenology these

additional light states are usually undesired and can render the compactification unphysical,

since we have to deal with an infinite tower of charged excitations of the string, which cannot

easily be represented by a finite number of fields.

As discussed in the introduction of the section, one attempt to deal with the presence

of the extra degrees of freedom from the non-flat fiber is to forbid a chiral excess of states.

As we will demonstrate in section 7 this can be achieved by tuning the G4-flux as in (6.1),

so that it integrates to zero over the non-flat fiber. Alternatively, we can simply forbid the

Yukawa point with the non-flat fiber geometrically. Recalling [s6] = [K−1
B ], cf. (2.10), and

π(D4) = SSU(5), all we have to demand is that

S7· [K−1
B ]· SSU(5) = 0 (6.36)

One obvious but drastic solution is S7 = 0 since it deprives us from some singlets and non-

singlets representations. A more sophisticated solution to (6.36) is obtained as follows. We

recall the basis expansion (2.25) of the divisor S7 and in addition expand

SSU(5) = nαSU(5)Dα . (6.37)

Then, it is possible over an appropriate base B to tune the integers nα7 and nαSU(5) in such

a way to only forbid the dangerous Yukawa point (6.36) without restricting the spectrum

of X̂SU(5) and the other Yukawa points. As a concrete simple example one can choose B =

BlP3, the blow-up of P3 along the curve xi = xj = 0. Then (6.36) yields n1
SU(5)(4n

1
7 +3n2

7)+

3n2
SU(5)n

1
7 = 0 for Dα = {H,H −E} with H the hyperplane and E the exceptional divisor

and K−1
Bl1P3 = 4H − E. Clearly, this can be solved without removing other codimension

two or three singularities.
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We summarize all Yukawa couplings involving the 10-representation at s6 = z = 0 in

the following table,

Loci Yukawa coupling

s5 = 0 5(− 2
5
,0) × 10( 1

5
,0) × 10( 1

5
,0)

s2 = 0 5(− 2
5
,0) × 5( 3

5
,0) × 10(− 1

5
,0)

s8 = 0 5( 3
5
,1) × 5(− 2

5
,−1) × 10(− 1

5
,0)

s7 = 0 Non-flat fiber

(6.38)

Besides these Yukawa couplings there are additional Yukawa couplings involving sin-

glets and the 5-representations. All these Yukawa couplings are localized at z = s7 = 0.

Evaluating the discriminant at this locus we obtain the first non-vanishing terms as

∆ ∼= −s2
3s

5
6(s2s5 − s1s6)s8s

2
9. (6.39)

Setting each prefactor to zero we obtain Yukawa couplings, that we summarize in the

following table,

Loci Yukawa coupling

s3 = 0 5( 2
5
,−1) × 5( 3

5
,0) × 1(−1,1)

(s2s5 − s1s6) = 0 5(− 2
5
,0) × 5( 2

5
,−1) × 1(0,1)

s8 = 0 5( 2
5
,−1) × 5( 3

5
,1) × 1(−1,0)

s9 = 0 5( 2
5
,−1) × 5(− 2

5
,−1) × 1(0,2)

(6.40)

6.2 The cohomology ring and the Chern classes of X̂SU(5)

In this section we apply the techniques described in section 3.2 to perform computations in

the vertical cohomology H
(∗,∗)
V (X̂SU(5)) of the Calabi-Yau fourfold X̂SU(5) with a resolved

SU(5)-singularity over SSU(5). The computations are completely analogous to the ones

performed to obtain the cohomology of X̂. All we have to do is to add the Cartan divisors

Di, i = 1, . . . , 4, as additional variables to the polynomial ring R in (3.18). We note that

the extended node D0 = SSU(5)−
∑

iDi corresponding to z is then automatically included.

We also have to replace the ideal SR in (3.18) by the ideal (6.12) arising after the resolution

process (6.8). Finally, we have to employ the anti-canonical bundle (6.11), which is the

class of X̂SU(5) in the blown-up ambient space d̂P
B

2 (S7,S9). We summarize the presentation

of the vertical cohomology ring of X̂SU(5) as

H
(∗,∗)
V (X̂SU(5)) ∼=

C[Dα,SSU(5), SP , SQ, SR, Di] ·
[
X̂SU(5)

]
SR

, (6.41)

with the ideal SR given in (6.12). Here we have singled out the vertical divisor SSU(5) of

the original SU(5)-singularity.

We begin by using these techniques to calculate the Euler number and Chern classes of

X̂SU(5) for a general base B. Then we construct the full cohomology in the case of B = P3.

In the following discussion we will quote the main results from this analysis and refer to
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appendix D for more details on the calculation, in particular the full quartic intersections

of X̂SU(5) from which all the following is derived.

6.2.1 Second Chern classes and Euler number of X̂SU(5): general formulas

The strategy for the computation of the Euler number is is a mixture of the strategy in

section 3.2 and the approach of [21] to compute Chern classes of fourfolds with a resolved

SU(5)-singularity. The key point is to find a SR-ideal that contains sufficiently fine infor-

mation to do concrete calculations, but that is sufficiently coarse in order to not depend

on the details of B. The starting point is the SR-ideal (6.12). The only degree of freedom

here is the pullback πSU(5)(SRB) of the SR-ideal of the base. Instead of using the full ideal

that depends on the details of B we again work with a simplified version denoted SR′B
that is based on some universal geometric properties of the fibration of X̂SU(5).

As in (3.20) we assume that SR′B contains all quartic intersections of the vertical

divisors Dα. In addition we assume as in [21] that three vertical Dα never intersect the

Cartan divisors Di due to a too large codimension in the base. Thus we use the ideal

SR′B = {Dα ·Dβ ·Dγ ·Dδ, Dα ·Dβ ·Dγ ·Di} (6.42)

instead of πSU(5)(SRB) in (6.12). As we demonstrate next this is sufficient to calculate the

Chern classes and Euler number as well as to check basic intersections of X̂SU(5), as for the

fourfold X̂ considered in section 3.2.

Next we calculate the total Chern class of X̂SU(5). All we need is the Chern class of

the blown-up ambient space d̂P
B

2 (S7,S9) and to apply adjunction. The computation of the

Chern class of the ambient space is straightforward, but lengthy and little illuminating.

We simply use the result (C.2) and refer to appendix C for details. Then we use adjunction

as in (3.21) to obtain the total Chern class of X̂SU(5). We present here the results of the

second Chern class c2(X̂SU(5)) that reads

c2(X̂SU(5)) = c2(X̂)− c1(4D1 + 6D2 + 2D3 +D4) + 2D1D2 +D2
2 + 2D3D4 (6.43)

+SSU(5)(D1 +D2 +D4 − 2SQ) + S7(D1 + 2D2 −D4) + S9(D1 +D2 +D4) ,

where c2(X̂) denotes the second Chern class (3.22) on X̂. As a sanity check we take the

blow-down limit by formally setting Di → 0 and SSU(5) → 0 in which we precisely recover

the Chern class (3.22) before resolution.

Next we calculate the Euler number on X̂SU(5). For this purpose we can either boot-

strap ourselves and use (6.43) in combination with the relation (3.28) or calculate the

fourth Chern class on X̂SU(5) directly by expanding (C.2) to higher order in the adjunction

formula expression for the Chern class for X̂SU(5). In either case we obtain

χ(X̂SU(5)) = χ(X̂)− 3

∫
B
SSU(5)

(
52c2

1 − c1(41SSU(5) + 17S7 + 31S9) + 10S2
SU(5)

+SSU(5)(5S7 + 13S9) + 5S2
7 + 2S7S9 + 5S2

9

)
, (6.44)

where χ(X̂) denotes the Euler number (3.24) of X̂ before the blow-up, to which our re-

sult (6.44) specializes correctly in the limit Di,SSU(5) → 0.
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Figure 9. Number of independent surfaces h
(2,2)
V (X̂SU(5)) for the various values of allowed n7, n9.

On the blue boundary and at n7 = n9 = 0 we have a holomorphic zero section.

The full cohomology ring of X̂SU(5): B = P3

Next we compute the full vertical cohomology of X̂SU(5) with base B = P3. In this case,

there is only one divisor in the base, the hyperplane HB, thus, we have Dα = HB. Fur-

thermore, the resolved SU(5)-singularity of X̂SU(5) is located over SbSU(5) = HB.

The Hodge numbers are calculated to be

h(1,1)(X̂SU(5)) = h(3,3)(X̂SU(5)) = 8 , h
(2,2)
V (X̂SU(5)) ∈ [10, 13] , (6.45)

where the number of independent surfaces as in the Abelian case depends on the values of

n7, n9 = 0, see figure 9. As the basis of H(1,1), we use the following divisors

H(1,1)(X̂) = 〈HB, SP , SQ, SR, Di〉 , (6.46)

that fixes by Poincaré duality the basis of H
(3,3)
V (X̂SU(5)). All quartic intersections of the

divisors (6.46) can be found in (D.1).

Then we compute the grade two piece R(2) of the ring (6.41). We obtain 64 different

monomials in two divisors, but due to equivalence relations in (6.41) at most 13 of them

are independent, with jumps along the boundary of the allowed region of n7, n9 in figure 9.

A carefully chosen basis of H
(2,2)
V (X̂SU(5)), thus, has to have always the correct number

of surfaces for the entire allowed region. The analysis of appendix E proves that one

convenient basis is given by

H
(2,2)
V (X̂SU(5)) = 〈H2

B, HB·SP , HB·σ(ŝQ), HB·σ(ŝR), SP ·σ(ŝR), σ(ŝQ)·σ(ŝR),

σ(ŝQ)2, HB·D1, HB·D2, HB·D3, HB·D4, D2·D4, D
2
1〉 . (6.47)

At the boundaries of figure 9, one or more elements in H
(2,2)
V (X̂SU(5)) become linearly

dependent. Thus, they can be expressed in terms of as smaller basis that one obtains
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by dropping the linearly dependent elements from (6.47). The expansions of the linearly

dependent elements in terms of this reduced basis for the various boundary components of

figure 9 can be found in appendix E. The result of this analysis is that we can obtain a

basis on all boundaries from the basis 6.47 by successively dropping the elements SP ·σ(ŝR),

HB·σ(ŝQ) and D2·D4. This way we obtain, as required, in steps twelve, eleven and ten

independent surfaces on the relevant boundary components.

7 G4-flux & chiralities on fourfolds with SU(5)×U(1)2

With the cohomology ring at hand we finally calculate the general G4-flux, see section 7.1,

and 4D chiralities in this section. As before, the lack of knowledge of all the matter surfaces

forces us to employ the 3D Chern-Simons terms and M-/F-theory duality to determine the

remaining chiralities, cf. section 7.2. It turns out again, that the Chern-Simons terms by

themselves are sufficient to determine all the chiralities. The chiralities determined by

geometric techniques for a subset of matter therefore provide an independent check. We

also check that for the obtained spectrum all four-dimensional anomalies are cancelled.

Full explicit results are again presented for the base B = P3. We also present one concrete

toric examples in section 7.3.

There is one accompanying appendix F with further details on the G4-flux and the full

expressions for the 4D chiralities.

We recall that there can be non-flat fibers at codimension three in X̂SU(5). As men-

tioned before, these can be avoided for general bases B, but are generically present for

B = P3.23 We deal with these complications here by forbidding a chiral excess of the addi-

tional light degrees of freedom associated to the non-flat fiber. This is achieved by requiring

one additional condition on the G4-flux, namely the vanishing of the integral (6.1). As we

demonstrate here, this ensures that the 4D chiralities can successfully be determined both

via geometric techniques and M-/F-theory Chern-Simons terms, and that the resulting

chiral spectrum cancels all anomalies of the four-dimensional quantum field theory.

7.1 G4-flux on fourfolds with two rational sections & SU(5)

The construction of G4-flux presented in this section is very similar to the one of section 5.

Therefore, we will keep the following discussion as brief as possible and choose, as before,

the base B = P3 to demonstrate our techniques.

We begin by expanding the G4-flux in the generically 13-dimensional basis (6.47)

of the cohomology group H
(2,2)
V (X̂SU(5)), see (4.3). We note that the dimensionality of

H
(2,2)
V (X̂SU(5)) jumps at the boundaries of figure 9, however, our general formulas for the

G4-flux derived in this section will remain valid. Then we enforce the generically six inde-

pendent flux-conditions (4.10). Again we emphasize, that unlike in compactifications with

a holomorphic zero section, the CS-terms ΘM
00 , ΘM

0i must not be required to vanish, nor

vanish automatically.

23As mentioned above, we can forbid these points by setting S7 = 0, however, at the cost of losing many

representations of the general spectrum obtained from X̂SU(5), too.
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Since we are imposing generically six independent conditions 4.10 on the 13-parameter

G4-flux, we obtain a seven-dimensional G4-flux,

G4 = a3G
(3)
4 + a4G

(4)
4 + a5G

(5)
4 + a6G

(6)
4 + a7G

(7)
4 + a12G

(12)
4 + a13G

(13)
4 , (7.1)

where the ai denote the free parameters of the G4-flux. The independent fluxes G
(i)
4 read

G
(3)
4 = HB · σ(ŝQ), G

(4)
4 = HB · σ(ŝR) , G

(12)
4 = D4 · (D2 − 4HB) ,

G
(5)
4 = −2H2

Bn9(4− n7 + n9) + SP · σ(ŝR) ,

G
(6)
4 =

1

25

[
4n7D1 ·HB + 8n7D2 ·HB + 12n7D3 ·HB + 6D4n7 ·HB

+50 ·H2
B(4− n7 + n9)(2 + n9) + 25HB · SP (4− n7 + n9) + 25σ(ŝQ) · σ(ŝR)

]
,

G
(7)
4 =

1

125

[
− 2D3 ·HB(282 + 31n7 − 35n9)− 2D1 ·HB(144 + 7n7 − 15n9)

−4D2 ·HB(144 + 7n7 − 15n9) +D4 ·HB(−282− 31n7 + 35n9)

+125 ·H2
B

(
136

5
+ n9(4− n7 + n9)

)
+ 850 ·HB · SP + 125σ(ŝQ)2

]
,

G
(13)
4 =

1

5

[
5D2

1 + 18D1 ·HB − 24D2 ·HB − 16D3 ·HB − 8D4 ·HB + 40 ·H2
B

+3n9D1 ·HB + 6n9D2 ·HB + 4n9D3 ·HB + 2n9D4 ·HB + 10HB · SP
]

(7.2)

The general G4-flux (7.1) specializes correctly at the boundaries of figure 9 and the

concrete expressions for it can be obtained at every boundary component, completely

analogous to the discussion of section 5.1. The necessary analysis of the behavior of the

basis (6.47) along with the homology relations between linearly dependent elements on the

respective boundaries can be found in appendix E.

7.2 4D chiralities from matter surfaces & 3D CS-terms

In this section we finally calculate the chiralities of the total matter content of the F-

theory compactification on X̂SU(5), that we have determined in section 6.1. We recall that

there are six singlets, five different 5-representations and one 10, cf. section 6.1. After

having determined these chiralities, we check cancellation of 4D anomalies at the end of

this section. We find that all anomalies are cancelled in general.

As mentioned before, all chiralities can in principle be calculated from the G4-flux

in (7.1) and the matter surfaces by evaluating the index (5.12). However, as in the dis-

cussion of section (5.2), we only have the explicit homology classes of the six matter sur-

faces (3.7) and (6.32). Again, we can obtain all chiralities by combining this information

with the matching of 3D Chern-Simons terms as outline in section 5.2.1. We first calculate

the chiralities from the six matter surfaces for the general G4-flux (7.1) and then impose

the non-flat fiber condition (6.1). Only then it is possible to obtain the remaining chiralities

from the matching of 3D CS-terms.
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The chiralities for the six representations whose surfaces CwR we know, cf. (6.33)

and (6.32), are calculated for the general G4-flux (7.1) employing (5.12) as

χ
(
5(− 2

5
,1)

)
= − 1

500
n7

[
− 50a3 + 125a4 + 5(21n7 − 5(8 + 3n9))a6

+(158− 111n7 + 115n9)a7 + 500a12 + 50(n9 − 4)a13

]
,

χ
(
5( 3

5
,0)

)
= − 1

500
(4− n7 + n9)

[
75a3 + 125a4 + 5(21n7 − 65n9 − 160)a6

+(14n7 − 135n9 − 742)a7 + 50(n9 − 24)a13

]
,

χ
(
10( 1

5
,0)

)
=

1

125

[
− 25a3 − 5(2n7 − 5(4 + n9))a6 + (134 + 7n7 + 20n9)a7

+125n7a12 + 50(−27 + 5n7 − 2n9)a13

]
,

χ(1(−1,1)) = − 1

20
n7(2 + n7 − n9)

[
− 5a3 + 5a4 + (5n7 − 4)a6 + (58− 10n7 + 5n9)a7

]
,

χ(1(0,2)) =
1

100
n7n9

[
−50a4+50(n7−n9−4)a5+5(64−15n7+15n9)a6+162a7+50a13

]
,

χ(1(−1,−2)) = − 1

20
(4− n7 + n9)n9

[
− 5a3 − 10a4 + (10n7 − 20n9)a5

+(60− 15n7a6 + 25n9)a6 + (54− 5n7 + 10n9)a7 + 10a13

]
, (7.3)

We then obtain the other chiralities by using the identification (4.5) of 3D CS-levels for

ΘΣΛ. Both the CS-levels ΘM
ΣΛ on the M-theory side and the loop-generated CS-levels ΘF

ΣΛ

on the F-theory side are readily computed. All we have to know for the computation of the

CS-terms ΘF
ΣΛ is the KK-charge of the matter representations. We recall from section 6.1

that only the singlet 1(−1,−2) has a non-trivial KK-charge qKK = 2 and thus a shifted

sign-function (4.17) with k = −2. All the other matter representations have qKK = 0 and

a symmetric sign-function. Then, all the computations are straightforward but lengthy.

Thus, we refer the interested reader to appendix F, where the results of these calculations

are presented.

We make a short stop to show some interesting results/checks of the CS-levels and the

discussion in section 4.2.2. First, we calculate the CS-term Θ00 for the KK-vector. On the

F- theory side, we have to evaluate the loop-corrections of KK-states as in (4.18). Since

only the singlet 1(−1,−2) has a non-trivial KK-charge, we again obtain the result (5.16).

On the M-theory side, ΘM
00 is calculated directly from G4-flux and we obtain

ΘM
00 = − 1

20
(4− n7 + n9)n9

[
− 5a3 − 10a4 + (10n7 − 20n9)a5

+(60− 15n7a6 + 25n9)a6 + (54− 5n7 + 10n9)a7 + 10a13

]
= χ(1(−1,−2)) , (7.4)

where we used (7.3) in the last equality. Thus, we confirm the result (5.16).

Similarly, we check the matching of the CS-levels Θ0m. As before, a matching of the

M- and F-theory expression for these CS-levels requires the relation (5.17) to hold,

1

4

∫
X̂
SP · σ(ŝQ) ·G4

!
= −χ(1(−1,−2)) ,

1

4

∫
X̂
SP · σ(ŝR) ·G4

!
= −2χ(1(−1,−2)) . (7.5)

Indeed, we evaluate the flux integral on the left to confirm this equality.
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Finally, we comment on the CS-terms Θ0i. From the direct computation of the relevant

integrals of the G4-flux, cf. (4.4), we obtain ΘM
0i = 0, since SP ·Di = 0 in the homology of

X̂SU(5), cf. (D.5) in appendix D. This immediately agrees with the field theory result ΘF
0i

in (4.8) since there the only charged matter states in 3D with non-trivial KK-charge is the

singlet 1(−1,−2), which however has qi = 0 for all i.

Coming back to the calculation of chiralities, we recall that for n7 > 0 there is a non-

flat fiber, since the codimension three point s6 = s7 = d4 = 0 exists, cf. section 6.1.3. If we

ignore this fact and try to solve for the chiralities using the matching condition 4.5 we find

ΘF
i=2,j=4 = ΘM

i=2,j=4 ,

0 =
2

5
n7a12 ,

ΘF
i=4,m=1 = ΘM

i=4,m=1 ,

0 = 2n7a12 ,

ΘF
i=4,m=2 = ΘM

i=4,m=2 ,

0 = n7a12 ,
(7.6)

where the left hand sides are functions of chiralities. These equations are obviously in-

consistent on the F-theory side. However, this is not surprising since the existence of a

non-flat fiber implies the presence of additional light states, that we have not taken into

account on the field theory side. Since these states are probably unwanted in setups aimed

at the construction of phenomenologically appealing F-theory compactifications, we require

the absence of a chiral excess of these light states. As we see from (7.6) the appropriate

condition to impose is to demand the vanishing of the second line.

It is satisfying to see that the vanishing of this second line is precisely the non-flat fiber

condition (6.1) on the G4-flux. Indeed, using the general G4-flux (7.1) and the homology

class of the loci of the non-flat fiber on the left of equation (6.36), we obtain∫
X5

G4D4· S7· [s6] = −8n7a12
!

= 0 , (7.7)

which implies exactly a vanishing of the second line in (7.6). Thus, we see that we obtain

a consistent set of equations in (7.6) if we impose the non-flat fiber condition (6.1), as

claimed.

In summary, for n7 = 0 the vanishing of (7.7) does not impose any additional conditions

on the G4-flux, whereas for for n7 > 0 its vanishing implies the additional condition

a12
!

= 0. (7.8)

Thus, the number of free parameters in the G4-flux in (7.1) is reduced to six. Furthermore,

as we demonstrate in the following imposing the condition (7.7) will yield a consistent 4D

chiral spectrum with all anomalies cancelled. For a better overview over the conditions we

impose, we summarize the number of independent elements in the G4-flux graphically in

figure 10.

Imposing now the condition (7.8) we solve the first line of (7.6). The solutions are

straightforwardly obtained, but lengthy and can be found in appendix F. However, instead

of parametrizing the chiralities in the parameters ai of the G4-flux in (7.1), we can alter-

natively express the chiralities in terms of the chiralities of the 5- representations and one

singlet. This will, on the one hand, reduce the length of the expressions we obtain and, on
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Figure 10. There are six independent constraints on the G4-flux from the CS-terms. In order

to obtain an anomaly free spectrum, for n7 > 0, we force the vanishing condition (7.7), respec-

tively, (7.8). The small number in orange next to each point is the final number of parameters in

G4-flux. The maximal number is six in the bulk.

the other hand, guarantee that all chiralities are parametrized in terms of integers.24 We

then obtain the following chiralities,

χ
(
5(− 2

5
,0)

)
= c1, χ

(
5(− 2

5
,1)

)
= c2, χ

(
5( 3

5
,0)

)
= c3,

χ
(
5( 3

5
,1)

)
= c4, χ

(
5(− 2

5
,−1)

)
= c5, χ(1(−1,−2)) = c6, (7.9)

with integral parameters ci in terms of which the other chiralities are expressed as

χ
(
10( 1

5
,0)

)
= −c1 − c2 − c3 − c4 − c5 , χ(1(0,2)) = c6 + (c2 + c4 − c5)n9 ,

χ
(
1(1,0)

)
= −22c2−c3−3(2(c4+c5)+3c6)+2(c2+c4−c5)n7+2c1(n9−6)−2(c4−2c5)n9 ,

χ(1(1,1)) = −14c5 + 3c6 + 2c5n7 − (c2 + 3c5)n9 + c4(5− n7 + n9) + c1(n7 − 2(4 + n9)) ,

χ(1(0,1)) = 14c4−5c5−2c6+c2(21−2n7)−2c5n7−2c4n9+4c5n9+c1(8−2n7+2n9) ,

χ(1(−1,1)) = −2c2 − c6 + c1n7 + 2c2n7 + c4n7 − (c2 + c4 − c5)n9 . (7.10)

We note that the chirality of the representation 10( 1
5
,0) has the opposite sign of the ci. For

positive ci this would yield a negative chirality of left-handed Weyl fermions in 10( 1
5
,0),

which has to be understood as left-handed Weyl fermions in the representation 10(− 1
5
,0).

We adapt this convention in the following.

7.2.1 Anomaly cancellation

We conclude this general discussion of the spectrum by checking the cancellation of 4D

anomalies. For a short review, see section 5.3, or see [44] for more details.

24As mentioned before, the determination of the integral basis of H
(2,2)
V (X̂SU(5)) is a subtle and difficult

problem, that requires the application of more advanced techniques like mirror symmetry.

– 64 –



J
H
E
P
0
4
(
2
0
1
4
)
0
1
0

Having derived the spectrum in the previous paragraph, all we have to calculate to

check anomaly cancellation are the gaugings Θαm for m = 1,m = 2, cf. (5.22). The results

of this computations in terms of the parameters ai of the G4-flux can be found in ap-

pendix F. As mentioned before, we can alternatively use the chiralities (7.9) as parameters.

Then we obtain

Θα,m=1 = −2(c1 + c2 + c5) , Θα,m=2 = 2(c2 + c4 − c5) . (7.11)

The coefficients bαmn of the GS-counter terms change slightly compared to the U(1)×U(1)-

case of section 5.3 because of the altered Shioda map (6.17), with and aα remaining the

same. We obtain

bαmn =

(
34
5 4− n7 + n9

4− n7 + n9 8 + 2n9

)
, aα = −4 . (7.12)

We readily check that all anomalies in (5.22) cancel beautifully. First, the purely

non-Abelian anomaly vanishes trivially

χ(10(− 1
5
,0)) =

∑
(q1,q2)

χ(5(q1,q2)), (7.13)

where the sum is over all different 5-representations, that are labeled by their charges

(q1, q2), and where we used the representation 10(− 1
5
,0) as explained below (7.10). The

purely Abelian anomalies are

A
U(1)
1,1,1 : −17

5
(c1 + c2 + c5),

A
U(1)
1,1,2 :

1

15
(17c4 − 37c5 + 5c5n7 + c2(5n7 − 5n9 − 3) + 5c1(n7 − n9 − 4)− 5c5n9),

A
U(1)
1,2,2 :

1

3
(−8c5 − c2n7 + c5n7 − 2c5n9 − c1(4 + n9) + c4(4− n7 + n9)),

A
U(1)
2,2,2 : (c2 + c4 − c5)(4 + n9), (7.14)

The mixed non-Abelian-Abelian, and Abelian-gravitational anomalies read

A
U(1)-SU(5)
1 = A

U(1)-grav
1 :

1

2
(−c1 − c2 − c5) , A

U(1)-SU(5)
2 = A

U(1)-grav
2 :

1

2
(c2 + c4 − c5) .

(7.15)

Using the gaugings (7.11) and the coefficients (7.12) of the GS-terms, we confirm that the

4D anomaly cancellation conditions (5.22) hold.

7.3 A toric example

In this concluding subsection we construct explicitly a toric model with all characteristics

described in this section, i.e. an SU(5)×U(1)2 4D gauge group, the full spectrum computed

in sections 6.1, 7.2 and with a non-flat fiber.

The concrete fourfold X̂SU(5) we construct has n7 = n9 = 4 in figure 5 and has

SSU(5) = HB. It is engineered following the general guideline of appendix G. The vertices
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specifying the reflexive polytope, along with their associated homogeneous coordinates and

divisor classes, are as follows,

variable vertices divisor class

z0 1 1 1 0 0 HB

z1 -1 0 0 0 1 HB

z3 0 -1 0 -1 -1 HB

z2 0 0 -1 1 0 HB −D1 −D2 −D3 −D4

d1 0 0 -1 0 0 D1

d2 0 0 -1 -1 -1 D2

d3 0 0 -1 -1 -2 D3

d4 0 0 -1 0 -1 D4

u 0 0 0 1 0 −3HB +H −D2 −D3 − E1 − E2

v 0 0 0 0 1 H −D1 −D2 −D3 −D4 − E2

w 0 0 0 -1 -1 H −D1 − 2D2 − 3D3 − 2D4 − E1

e1 0 0 0 0 -1 E1

e2 0 0 0 1 1 E2

(7.16)

Here we follow the notation of section 6.1, i.e. HB is the hyperplane of P3, the Di are the

Cartan divisors of the SU(5) and H, E1, E2 are the classes of the dP2-fiber.

The Euler number is calculated as

χ(X̂SU(5)) = 1110 (7.17)

which agrees perfectly with general formula (6.44), where we have used χ(X̂) = 1632 and

SSU(5) = HB, S7 = S9 = 4HB. For the construction of the corresponding toric variety

we have to choose the right triangulation so that the toric Stanley-Reissner ideal is of the

same from as the Stanley-Reissner ideal in (6.12). The toric divisors of the sections are

given by (3.32) for n9 = 4 and the Shioda maps (6.17) read

σ(ŝQ) = SQ − SP − 4HB +
1

5
(2D1 + 4D2 + 6D3 + 3D4) (7.18)

σ(ŝR) = SR − SP − 8HB; (7.19)

The full basis of H
(2,2)
V is given by the 13 elements in equation (6.47). The G4-flux

follows from (7.1) by inserting n7 = n9 = 4. Since we have n7 6= 0, we have to impose

the non-flat fiber condition (7.8). Our main interest lies in the chiralities, which are then

either computed torically or follow from the general formulas in 7.2 and appendix F as

χ
(
5(− 2

5
,0)

)
=

1

2
a3 −

2

25
(40a6 + 63a7 + 75a13) ,

χ
(
5(− 2

5
,1)

)
=

1

125
(50a3 − 125a4 + 80a6 − 174a7) ,

χ
(
5( 3

5
,0)

)
=

1

250
(−225a3 + 1640a6 + 1888a7) ,

χ
(
5( 3

5
,1)

)
= −2

5
(−5a3 + 5a4 + 16a6 + 38a7) ,

χ
(
5(− 2

5
,−1)

)
=

4

5
a3 + 2a4 + 8a5 −

468

25
a6 −

1608

125
a7 + 4a13 ,

χ(10( 1
5
,0)) = −1

5
a3 +

32

25
a6 +

242

125
a7 − 6a13 , (7.20)
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for the non-trivial non-Abelian representations and

χ(1(1,0)) = −27

2
a3 − 32a5 +

596

5
a6 +

3128

25
a7 + 8a13 ,

χ(1(1,1)) = −13a3 − 13a4 − 88a5 + 200a6 +
4226

25
a7 + 16a13 ,

χ(1(0,1)) = −29a4 − 88a5 +
836

5
a6 +

2006

25
a7 + 28a13 ,

χ(1(−1,1)) = −2

5
(−5a3 + 5a4 + 16a6 + 38a7) ,

χ(1(0,2)) = −8a4 − 32a5 +
256

5
a6 +

648

25
a7 + 8a13 ,

χ(1(−1,−2)) = 4a3 + 8a4 + 32a5 − 80a6 −
296

5
a7 − 8a13 , (7.21)

for the singlets. As before, it is convenient to parametrize the chiralities as in the previous

subsections, in terms of the ci. We then obtain

χ
(
5(− 2

5
,0)

)
= c1 , χ

(
5(− 2

5
,1)

)
= c2 , χ

(
5( 3

5
,0)

)
= c3 , (7.22)

χ
(
5( 3

5
,1)

)
= c4 , χ

(
5(− 2

5
,−1)

)
= c5 , χ(1(−1,−2)) = c6 ,

χ(10( 1
5
,0)) = −c1−c2−c3−c4−c5 , χ(1(1,0)) = −4c1−14c2−c3−6c4+2c5−3c6 ,

χ(1(0,1)) = 8c1 + 13c2 + 6c4 + 3c5 − 2c6 , χ(1(−1,1)) = 4c1 + 2c2 + 4c5 − c6 ,

χ(1(0,2)) = 4c2 + 4c4 − 4c5 + c6 , χ(1(1,1)) = −12c1 − 4c2 + 5c4 − 18c5 + 3c6.

It follows that all 4D anomalies are cancelled.

8 Conclusions and future directions

In this paper we have advanced the program on F-theory compactifications on elliptic

Calabi-Yau manifolds with rank two Mordell-Weil group to four-dimensional chiral com-

pactifications.

The analysis of resolved Calabi-Yau elliptic fibrations with dP2-elliptic fiber has now

been performed for Calabi-Yau fourfolds over a general three dimensional base B, extending

earlier results in six dimensions [46, 51]. We study general compactifications with U(1)×
U(1) and a specific SU(5) × U(1) × U(1) gauge symmetry. We determined the general

matter representations associated with the codimension two singularities of the fibration

as well as its Yukawa points. However, at present the geometric techniques, relying on

the use prime ideals, that we employed allow us to determine all matter curves and only

a subset of matter surfaces. As a next step, we determine explicitly the general G4-flux

of these resolved Calabi-Yau fourfolds. Since we considered Calabi-Yau fourfolds with

a non-holomorphic zero section, we encountered the novel problem of having to define

G4-flux over these manifolds. For this purpose we had to derive the general F-theory

conditions on G4-flux on Calabi-Yau manifolds with a non-holomorphic zero section. We

have formulated these conditions in terms of Chern-Simons terms on the Coulomb branch of

the effective theory obtained by compactifying on a circle. The relevance of Kaluza-Klein
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states generating new Chern-Simons terms in order to ensure a consistent M-/F-theory

duality mapping in 3D has been pointed out

After this interlude on G4-fluxes in F-theory we constructed the most general G4-flux.

We presented explicit calculations for the three dimensional base B = P3. In both the

U(1)×U(1) and SU(5)×U(1)×U(1) case we could determine certain chiralities directly by

evaluating the chiral index (5.12) directly while the remaining matter chiralities were de-

termined by a subset of the 3D Chern-Simons terms. It turned out that Chern-Simons

terms are sufficient to determine chiralities of all the matter multiplets if also the new,

Kaluza-Klein generated Chern-Simons terms are taken into account. The geometric tech-

niques allowed an important, independent consistency check. The complications of non-flat

fibers could be successfully circumvented by imposing one additional condition on the G4-

flux, namely the vanishing of the integral of the G4-flux over the non-flat fiber. We also

presented concrete explicit examples using toric geometry. We emphasize that our tech-

niques are in line, but not restricted to toric geometry. In particular, we could calculate

the most general G4-flux and chiralities, along with the proof of anomaly cancellation, for

the entire class of all elliptically fibered Calabi-Yau fourfolds, cf. figure 2 and figure 5, with

dP2-elliptic fiber, an additional SU(5) GUT-sector and a fixed base B, here chosen to be

B = P3 for simplicity.

There paper leaves room for a number of further studies and improvements:

• The geometric techniques developed here apply to general elliptic Calabi-Yau four-

folds, and they are not restricted to toric examples. In particular, we could derived

closed formulas for e.g. the Euler number, the G4-flux and the 4D chiralities that

explicitly depend on the divisors S7, S9, introduced in section 2.2, which label the

members in the family of all inequivalent Calabi-Yau fourfolds obtained by varying

the topologically data specifying their elliptic fibration. It would be desirable to

obtain these formula for an arbitrary base B. Our results are independent of the

existence of toric realizations of the Calabi-Yau fourfolds. We emphasize that em-

ploying toric geometry techniques one can typically study only one polytope at a

time, which obscures the dependence on S7, S9.

• The finite number of choices for the divisors S7, S9 on the F-theory side fix the

topology of the fibration of dP2 over the base B. It would be interesting to understand

these new degrees of freedom from the point of view of the heterotic string. In

particular it would be important to understand how the parameters in S7, S9 enter the

heterotic vector bundle and potentially modify the spectral cover construction [85].

• Although all 4D chiralities could still be derived by a combination of geometric and

field theoretic techniques, we were at this point unable to determine explicitly the

matter surfaces for a subset of representations. It would be desirable to derive these

missing homology classes purely geometrically by further extending the geometric

techniques of section 3.1.1. For this analysis important lessons might be learned

from a geometrical interpretation of the field theoretically derived G4-flux conditions

in section 4.2.
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• While explicit results were presented for a specific three-dimensional base B = P3,

it would be important to present similar computations for systematically classified

three-dimensional bases, extending a similar analysis in 6D [86, 87]. These studies

are also motivated by a search for SU(5) GUT models with flat fibers.

• In this paper we have not systematically performed a classification of SU(5) GUT

models. We presented models for a specific SU(5) construction with a specific base

B = P3, only. The example does not have a flat fibration at codimension three,

which may lead to an infinite tower of massless states (a so-called tensionless string

spectrum). We removed chiral states in the tower by further constraining the G4-

flux. It would be important to classify SU(5) constructions by carrying over the Tate

classification to dP2-elliptic fibrations, and to construct a base B where the fibration

can be engineered to be flat. For efforts in these directions, primarily employing

toric techniques, see [46, 47]. We note that the classification of SU(n)-singularities

for general n should work similarly to the SU(5) case and thus will be facilitated by

techniques developed in this work.

• The techniques developed in this paper pave the way to phenomenological studies

of chiral four-dimensional models with rank-two Abelian sectors. However in order

to achieve these goals a number of further details have to be addressed. First, the

quantization of G4-flux is not well understood in general. However, as pointed out

in section 4 we can choose the chiralities of our matter multiplets to parameterize

the spectrum which should in turn also yield integer values for the flux-quanta in the

G4-flux. Second, the constraints imposed by the self-duality condition on the G4-flux

and by D3-brane tadpole cancellation have to be investigated. Those are important

topics for future research.
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A Chern classes of dP2-elliptic fibrations

In this appendix we analyze the total Chern-class of the total space of dP2-fibrations

dPB2 (S7,S9) over a general base B. The following discussions hold in any complex dimen-

sion, although we specialize to Calabi-Yau two-, three- and fourfolds in the following.
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The final goal of this section is the derivation of general formulas for the Euler num-

ber of smooth Calabi-Yau manifolds X̂ of complex dimension two, three and four in

dPB2 (S7,S9). For the reader only interested in these formulas, we first state the results of

the analysis and refer to the remainder of this section for a detailed derivation. The Euler

numbers for Calabi-Yau two-, three- and fourfolds are expressed as the following integrals

over the one-, two- respectively, three-dimensional base B of the Calabi-Yau manifold X̂,

d = 2 : χ(X) = 12

∫
B
c1 (A.1)

d = 3 : χ(X) =

∫
B

(−24c2
1 + 8c1S7 − 4S2

7 + 8c1S9 + 2S7S9 − 4S2
9 )

d = 4 : χ(X) = 3

∫
B

[
24c3

1+4c1c2−16c2
1(S7+S9)+c1(8S2

7 +S7S9+8S2
9 )−S7S9(S7+S9)

]
Here we denoted the Poincaré dual (1, 1)-forms by abuse of notation by the same symbol

as their corresponding divisors S7, S9 in the base B. Furthermore, wedge-products have

been omitted for brevity of our notation. We emphasize that these formulas for χ(X̂) are

a direct generalization of the formulas in [57] for fibrations by the E6 elliptic curve, that

are obtained as the special case S7 = S9 ≡ 0.

We prepare the derivation of the Euler numbers (A.1) by a computation of the to-

tal Chern class of the ambient space dPB2 (S7,S9). The total space of the dP2-fibration

dPB2 (S7,S9) in (2.7) has the structure of a generalized projective bundle: the two-dimen-

sional fiber is dP2 and it can be understood as the projectivization of a rank five vector

bundle over B by three C∗-actions. Consequently, the Chern class of the dPB2 (S7,S9) is

calculated analogous to the Chern-class of an ordinary projective bundle by adjunction.

Denoting the projective coordinates of the general dP2 fiber by [u : v : w : e1 : e2] we follow

the assignments (2.2) of line bundles over the base B from the main text. Thus we obtain

for the total Chern-class of dPB2 (S7,S9),

c(dPB2 ) = c(B)(1+H−E1−E2+S9−[K−1
B ])(1+H−E2+S9−S7)(1+H−E1)(1+E1)(1+E2) .

(A.2)

Here we suppressed the dependence on S7, S9 for brevity of our expression. By abuse of

notation we denote the divisors Ei and H and the first Chern-classes of their associated

divisor bundles by the same symbol. In addition, we used c(B) = 1 + c1(B) + c2(B) +

c3(B) + . . . to denote the total Chern class of B. We readily expand (A.2) order by order

to obtain the following Chern classes of dPB2 (S7,S9),

c1(dPB2 ) = 3H − E1 − E2 + 2S9 − S7 , (A.3)

c2(dPB2 ) = c2 − c2
1 − 2E2

1 − 3E2
2 + 2E1S7 − 2E2S7 − E1S9 + 4E2S9 −HS9 + S7S9 − S2

9

+c1(4H − 2E1 − 3E2 − 2S7 + 3S9) , (A.4)

c3(dPB2 ) = c3 − c2(E1 + E2 − 3H + S7 − 2S9) + c2
1(H − E1 − 2E2 − S7 + S9)

−c1(c2 + 2E2
1 + 3E2

2 + 2S7(E2 − E1) + S9(H + E1 − 4E2 − S7 + S9)) , (A.5)

c4(dPB2 ) = c3(3H − E1 − E2) + c2(S7(2E1 − 2E2) + S9(4E2 − E1 −H)− 2E2
1 − 3E2

2)

+c1c2(H − E1 − 2E2) , (A.6)

c5(dPB2 ) = −c3(2E2
1 + 3E2

2) = 5c3|B . (A.7)
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Here we have used the notation ci ≡ ci(B). All divisors in the above expressions are

understood as their Poincaré dual (1, 1)-forms, that are given as the first Chern class of the

associated divisor line bundle, e.g. c1(O(E1)) for O(E1). The expressions for the first to

third Chern classes are completely general, whereas we have assumed dimC(B) = 3 for the

fourth and fifth Chern class to be able to drop terms containing more than three vertical

divisors. In the last line we have used the toric intersections E2
1 = E2

2 = −1 in (2.4) since

[c3] ∼= (
∫
B c3)pt with pt denoting a point on B. All expressions in (A.3) have been reduced

modulo the ideal SR′ in (3.20).

Now we are in the position to calculate the total Chern class of the Calabi-Yau fourfold

X̂. For this purpose we apply adjunction to obtain

c(X̂) =
c(dPB2 )

1 + 3H − E1 − E2 + 2S9 − S7
(A.8)

where the numerator is to be computed using (A.2) and the denominator is the Chern class

of the anti-canonical bundle of dPB2 (S7,S9), cf. the first line in (A.3), employing that X̂ is

the anti-canonical divisor. Expanding out this expression for the total Chern class of the

fourfold X̂ yields the following individual Chern classes ci(X̂),

c1(X̂) = 0 ,

c2(X̂) = 3c21 + c2 − 2S2
Q − 3S2

P + S7(2SQ − 2SP ) + S9(3SP − 2SQ − SR + S7)

+c1(2SQ + SP − 2(S7 + S9 − 2SR)) ,

c3(X̂) = c3 − 8c31 − c1c2 + S7(2S2
Q − 2S2

P − 2SQS7 − 2SPS7 + 2SPS9 + S7S9 + S29 )

+c1(7S2
P + 2SQS7 + 6SPS7 − 2S27 + 8SQS9 − 7SPS9 − 6S7S9 − 2S29 + 7S9SR)

−c21(8SQ + SP − 8(S7 + S9 − SR))− 2SQS29 − 2SRS29 ,

c4(X̂) = c21(8S2
Q − 32S2

P − S7(22SQ − 18SP ) + S9(41SP − 41SQ − 40SR))− 2S2
QS27

−2S2
PS27 + 2SQS37 − 2SPS37 + 3S2

QS7S9 − S2
PS7S9 − 5SQS27S9 + 2SPS27S9 + 2S2

QS29
−6S2

PS29 − 2SQS7S29 − SPS7S29 − 2SQS39 + 6SPS39 − 4S39SR + 8c31(4SQ − SP + 3SR)

−c2(2S2
Q + 3S2

P − 2SQS7 + 2SPS7 + 2SQS9 − 3SPS9 + S9SR)

+c1(S7(14S2
P + 12SPS7 − 11SPS9) + 17S2

PS9 − 19SPS29 − 3S2
Q(2S7 + 3S9)

+8SQ(S27 + 2S7S9 + 2S29 ) + 23S29SR + c2(2SQ + SP + 4SR)) . (A.9)

Here we have dropped terms quartic in divisors on the base B and have reduced all ex-

pressions in the quotient ring (3.18). For the evaluation of (A.9) it proves convenient

to express all the elements in terms of the divisor classes SP = E2, SQ = E1 and

SR = H − E1 − E2 + S9 + [KB] of the sections of X̂. Then, we can make use of the

intersection relations for the sections

(S2
m + [K−1

B ] · Sm) ·Dα ·Dβ = 0 , (A.10)

where we collectively denote the divisor classes of the sections by Sm. We note that this

relation is a direct consequence of the property of the Sm being the classes of sections,

as noted before in (2.14), but it is satisfying that it can also be proven directly in the

intersection ring (3.18).
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In the following we assume that X̂ is either complex two-, three- and four-dimensional

and for each case employ (A.10) and its lower dimensional analogs to simplify the Chern

classes in (A.9) even further. We obtain for the top Chern class cd(X̂) on a d-dimensional

Calabi-Yau manifold X̂ the following results,

d = 2 : c2(X̂) = 4c1(SQ + SP + SR) + 2S7(SQ − SP ) + S9(3SP − SR − 2SQ) ,

d = 3 : c3(X̂) = −2S2
7 (SQ + SP ) + 2S7S9SP − 2S2

9 (SQ + SR)− 8c21(SQ + SP + SR)

+c1(8SPS7 + 8SQS9 − 7SPS9 + 7S9SR) ,

d = 4 : c4(X̂) = 2S3
7 (SQ − SP ) + S2

7S9(2SP − 5SQ)− S7S2
9 (2SQ + SP )− 2S3

9 (SQ − 3SP + 2SR)

+c1(14SPS2
7 − 10SPS7S9 − 13SPS2

9 + SQ(10S2
7 + 13S7S9 + 14S2

9 ) + 23S2
9SR)

+4c1c2(SQ + SP + SR)− 8c21(4SPS7 − 3SPS9 + 2SQ(S7 + 2S9) + 5S9SR)

+24c31(SQ + SP + SR) + c2(2SQ(S7 − S9)− 2SPS7 + 3SPS9 − S9SR) (A.11)

where we now in addition also dropped intersections of more than d− 1 vertical divisors.

Finally, we are in the position to calculate the Euler number for X̂. We obtain the Euler

number for X̂ being a twofold, i.e. K3, a Calabi-Yau threefold and fourfold by integrating

the above appropriate Chern classes in (A.11) over X̂. Using that Sm · Dα · Dβ · Dγ =

(Dα ·Dβ ·Dγ)|B for a fourfold X̂, respectively, analogous relations for the two- and threefold

case, we obtain that all integrals reduce to integrals over the base B. By some algebra we

immediately reproduces the results anticipated in (A.1).

As another application of the explicit formulas (A.9) for the fourfold X̂ we calculate

the Todd class Td4(X̂) of X̂. Upon integrating the Todd class over X̂ we obtain the

arithmetic genus χ0(X̂) by means of an Hirzebruch-Riemann-Roch index theorem as

χ0(X̂) :=
∑
p

(−1)ph(p,0)(X̂) =

∫
X̂

Td4(X̂) . (A.12)

In the case of a Calabi-Yau fourfold, see cf. [57] for more details, the Todd class is given as

Td4(X̂) =
1

720

(
3c2(X̂)2 − c4(X̂)

)
(A.13)

in terms of the Chern classes c2(X̂) and c4(X̂). Thus, the arithmetic genus reads

χ0(X̂) =

∫
X̂

Td4(X̂) =
1

12

∫
B
c1c2 = 2χ0(B) . (A.14)

Here we have evaluated the second equality equality using the expression (A.9) for the

fourth Chern class of X̂ and computed the square of the second Chern class c2(X̂)2 as

c2(X̂)2 = SP

[
4 (2c1 − S7)

(
c21 + c2 − c1S7

)
+ (6c2 + (2c1 − S7) (5c1 + S7))S9 + (S7 − 3c1)S2

9 + S3
9

]
+2SQ

[
4c31 + 2c2 (S7 − S9)− S7S2

9 − 2c21 (S7 + 3S9) + 2c1
(
2c2 + S2

7 + S7S9 + S2
9

)]
+SR

[
(4c1 − S9)

(
2
(
c21 + c2

)
− 3c1S9 + S2

9

)]
, (A.15)

after some algebra in the cohomology ring (3.18). In the last equality in (A.14) we employed

the relation

χ0(B) =
1

24

∫
B
c1 c2 (A.16)
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for the arithmetic genus of the base B. We observe a surprising cancellation of all terms

involving S7, S9 in the fourth Chern class in (A.9) and in c2(X̂)2 in (A.15) so that the final

result in (A.14) only depends on the Chern classes of the base B.

We conclude that for a suitable base B of a simply-connected Calabi-Yau fourfold with

χ0(X̂) = 2, which follows from h(0,0)(X̂) = h(4,0)(X̂) = 1 and h(p,0)(X̂) = 0 otherwise, we

have to require χ0(B) = 1 or, using (A.16),∫
B
c1 c2 = 24 . (A.17)

We even require the stronger conditions h(1,0)(B) = h(2,0)(B) = h(3,0)(B) = 0 for B,

since every non-trivial element in these Hodge cohomology groups would give rise via the

pullback under π : X̂ → B to a corresponding element in the Hodge cohomology of X̂.

However, this is excluded by assumption of a simply-connected fourfold.

B Intersection ring on X̂ with B = P3

In this section we work out the intersection ring H
(∗,∗)
V (X̂) of the fourfold X̂ over the base

B = P3. To this end, we relate the intersections on X̂ to intersections on the ambient space

dP2(n7, n9). On the ambient space dP2(n7, n9) the intersections are determined completely

by the intersections of the fiber dP2, the base P3 and basic properties of the fibration.

This will allow us, as demonstrated below and in the main text, to work out the basis of

H
(k,k)
V (X̂) for all k ≤ 4 on the one hand, and to calculate the quartic intersections on X̂.

We recall from the main text, cf. (3.31) and (3.32), that the basis DA of divisors on

π : X̂ → P3 reads

H(1,1)(X̂) = 〈HB, SP , SQ, SR〉 , (B.1)

where SP , SQ, SR denote the homology classes of the sections ŝP , ŝQ and ŝR, respectively.

Intersection relations and the quartic intersections

Next we begin by calculating the intersections of two divisors DA, where we denote the

intersection pairing on X̂ by a subscript. We employ the representation (3.18) for H(∗,∗)(X̂)

to relate these to intersections on the ambient space dP2(n7, n9), that we denote as ‘·’. First

we note that there are 5!
2!3! = 10 different quadratic combinations DA ·X̂ DB. We evaluate

these as

S2
P = SP (SP [K−1

B ]− (S7 − S9)(S9 − [K−1
B ])) , SPSQ = 0 ,

SPSR = −SPS9(SP − S9 + [K−1
B ]) , S2

Q = SQ(SQ[K−1
B ] + (S7 − [K−1

B ])(S7 − S9)) ,

S2
R = SR

((
S7−[K−1

B ]
) (
S9−[K−1

B ]
)
+SR[K−1

B ]
)
, SQSR = −SQS7(SQ−S7+[K−1

B ]) ,

SPHB = −SPHB(SP + S7 − 2S9) , SQHB = −SQHB(SQ + S9 − 2S7) ,

SRHB = SRHB

(
S7 + S9 − [K−1

B ]− SR
)
,

H2
B = H2

B

(
3[K−1

B ]− S7 − S9 + 2SP + 2SQ + 3SR
)
, (B.2)

where we used S7 = n7HB, S9 = n9HB and [K−1
B ] = 4HB for B = P3. Here we suppressed

the intersection product ‘·’ for brevity of our notation. The intersections on the left side of
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the equations are carried out in the Calabi-Yau fourfold X̂ and related to the intersections

on the ambient space dP2(n7, n9) on the right side of the equations.

Next, we calculate the triple intersections of divisors on X̂. There are 6!
3!3! = 20 different

cubic combinations DA ·X̂ DB ·X̂ DC with intersections

H3
B = H3

B (2SP + 2SQ + 3SR) , H2
BSP = SPH

2
B(2S9 − S7 − SP ) ,

H2
BSQ = SQH

2
B(2S7 − S9 − SQ) , H2

BSR = SRH
2
B

(
S7 + S9 − [K−1

B ]− SR

)
,

HBSPSR = −SPHBS9(SP + [K−1
B ]− S9) , HBSQSR = −SQHBS7(SQ − S7 + [K−1

B ]) ,

HBS
2
P = SPHB(SP [K−1

B ] + (S9 − S7)(S9 − [K−1
B ])) ,

HBS
2
Q = SQHB(SQ[K−1

B ] + (S7 − [K−1
B ])(S7 − S9)) ,

HBS
2
R = SRHB

((
S7 − [K−1

B ]
) (
S9 − [K−1

B ]
)

+ SR[K−1
B ]

)
,

S3
P = −SP ([K−1

B ](S9 − cS7)(S9 − [K−1
B ]) + SP ([K−1

B ]2 + (S7 − [K−1
B ])S9 − S2

9 )) ,

S3
Q = SQ(SQ(−[K−1

B ]2 + S2
7 − S7(S9 − [K−1

B ]))− [K−1
B ](S7 − [K−1

B ])(S7 − S9)) ,

S3
R = −SR

(
[K−1

B ]
(
S7 − [K−1

B ]
) (
S9 − [K−1

B ]
)

+
(
[K−1

B ]2 − S7S9
)
SR

)
,

S2
PSR = SP (SP − S9 + [K−1

B ])(S7 − S9)S9 , SPS
2
R = SP ([K−1

B ]− S7)(SP − S9 + [K−1
B ]))S9 ,

S2
QSR = −SQ(SQ − S7 + [K−1

B ])S7(S7 − S9) , SQS
2
R = −SQ(SQ − S7 + [K−1

B ])S7(S9 − [K−1
B ]) .

(B.3)

We note that all other intersections vanish, since SP · SQ = 0 and as before we suppressed

the intersection product “·” of X̂, respectively, dP2(n7, n9) on the left, respectively, right

side of the equations.

Finally we calculate the quartic intersections as

C0 = H3
BSP − 4H2

BS
2
P +

(
16 + (n7 − 4)n9 − n2

9

)
HBS

3
P +H3

BSQ − 4H2
BS

2
Q

+
((

32− 4n7 − n2
7

)
n9 + 3n7n

2
9 − 2n3

9 − 64
)
S4
P +

(
16− n2

7 + n7 (n9 − 4)
)
HBS

3
Q

−
(
64 + 2n3

7 − 3n2
7n9 − n7

(
32− 4n9 − n2

9

))
S4
Q +H3

BSR + n9H
2
BSPSR

+n9 (n9 − n7)HBS
2
PSR + (n7 − n9)2 n9S

3
PSR + n7H

2
BSQSR + n7 (n7 − n9)HBS

2
QSR

+n7 (n7 − n9)2 S3
QSR − 4H2

BS
2
R + (n7 − 4)n9HBSPS

2
R + (4− n7) (n7 − n9)n9S

2
PS

2
R

+n7 (n9 − 4)HBSQS
2
R + n7 (n7 − n9) (n9 − 4)S2

QS
2
R + (16− n7n9)HBS

3
R

+ (n7 − 4)2 n9SPS
3
R + n7 (n9 − 4)2 SQS

3
R −

(
64 + n2

7n9 + n7 (n9 − 12)n9

)
S4
R , (B.4)

where the coefficient of the polynomial C0 of DA ·X̂ DB ·X̂ DC ·X̂ DD is the corresponding

intersection number in X̂. In this computation we have used that the intersections on dP2

in (2.4) are embedded into the intersections of dP2(n7, n9) as the intersections containing

H3
B ·DA ·DB, in particular H3

B · S2
R = H3

B · S2
P = H3

B · S2
Q = −1.

Since X̂ is complex four-dimensional, intersections of more than four divisors on X̂

vanish, which is confirmed by the concrete presentation (3.18) of the intersection ring with

B = P3.

The cohomology basis of H
(∗,∗)
V (X̂)

The basis of H
(k,k)
V (X̂) for each k = 0, . . . , 4 is now determined as follows. First, we

note that there is a canonical basis both for k = 0, 1. Namely, the one-dimensional

space H(0,0)(X̂) is spanned by the generated by 1, H(0,0)(X̂) = 〈1〉, and four-dimensional

H(1,1)(X̂) is generated by theDA as indicated in (B.1). Using the quartic intersections (B.4)
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we can now calculate a basis of H
(2,2)
V (X̂). For generic n7, n9 this space is five-dimensional

and a basis is given by

H
(2,2)
V (X̂) = 〈H2

B, HB · SP , HB · σ(ŝQ), HB · σ(ŝR), S2
P 〉 . (B.5)

Here σ(ŝQ), σ(ŝR) denotes the Shioda map (2.17) of the rational sections, that takes in the

case at hand the form

σ(ŝQ) = SQ − SP − 4HB , σ(ŝR) = SR − SP − (4 + n9)HB . (B.6)

The intersection matrix η(2) in this basis is readily calculated from (B.4) as

η(2) =


0 1 0 0 −4

1 −4 0 0 16 + (−4 + n7 − n9)n9

0 0 −8 n7 − n9 − 4 n9 (4− n7 + n9)

0 0 η
(2)
34 −2 (4 + n9) 2n9 (4− n7 + n9)

−4 η
(2)
25 η

(2)
35 η

(2)
45 −64− (8 + n7 − 2n9) (−4 + n7 − n9)n9

 , (B.7)

where lengthy entries η
(2)
rs that are determined by symmetry of η(2) are omitted and denoted

by η
(2)
sr .

From this matrix it is apparent that if (n7, n9) are on the boundary of the allowed

region in figure 2, the rank is reduced to four. In this case, the five surfaces in (B.5)

become homologous. A choice of basis in this case is given by the first four surfaces

in (B.5) with the surface S2
P dropped. Consequently, the intersection matrix η(2) in this

case is the 4 × 4-submatrix of (B.7) obtained by deleting the fifth row and column. Let

us discus these non-generic cases in more detail, to illustrate the decrease from five to four

basis elements.

n7 = 0: we see from (2.10) that s7 6= 0, which implies that ŝQ and ŝR are holomorphic,

cf. the discussion below (2.12). we obtain the cohomology relation

S2
P
∼= −n9(4 + n9)H2

B − 4HB · SP − n9HB · σ(ŝR) (B.8)

in H
(2,2)
V (X̂) which follows from the relations

HBSP = HB(SP ([K−1
B ] + S9)− SR(SR + [K−1

B ]− S9)) ,

HBSR = HBSR(S9 − [K−1
B ]− SR)

S2
P =

(
[K−1

B ] + S9

) (
S9 − [K−1

B ]
)
SP + [K−1

B ]
(
[K−1

B ]− S9 + SR
)
SR . (B.9)

These relations can be proven for n7 = 0 using the presentation (3.18).

n9 = 4 + n7: in this situation, the section ŝQ is holomorphic. Analogously, as before,

we compute the homology relation on X̂ reading

S2
P
∼= −8(4 + n7)H2

B − 4HB · SP − n7HB · σ(ŝQ)− 4HB · σ(ŝR) . (B.10)
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n9 = 12− n7: in this case all sections are rational, but s1 6= 0 in (2.10). As before, we

compute the homology relation

S2
P
∼= −2(n7−12)(n7−8)H2

B−4HB ·SP +(n7−8)HB ·σ(ŝQ)+(n7−8)HB ·σ(sR) . (B.11)

n9 = 0: for this value the sections ŝP and ŝR are holomorphic. Similarly, we compute

for n9 = 0 the following relation in homology,

S2
P + 4HB · SP = 0 . (B.12)

This is immediately clear since for a holomorphic zero section the relation (2.16) holds in

the homology of X̂, which is precisely the relation (B.12). It is satisfying that this relation

is reproduced by the intersection calculation (3.18) by noting the relations

S2
P = [K−1

B ]
((
S7 − [K−1

B ]
)
SP + SR

(
[K−1

B ] + SR
))
,

SPHB = −HB

((
S7 − [K−1

B ]
)
SP + SR

(
[K−1

B ] + SR
))
, (B.13)

that are calculated for n9 = 0. Combining these two relations precisely yields (B.12).

n9 = n7 − 4: for this value the sections ŝP , but this time since s8 6= 0 as is clear

from (2.10). Thus, the relation (B.13) still holds.

Next, we note that the basis of H(3,3)(X̂) is determined by Poincaré duality from

H(1,1)(X̂). Thus, the group H(3,3)(X̂) is generated by four elements, independently of n7

and n9, which can be checked by an explicit calculation. However, we will refrain from

presenting the details, since the group H(3,3)(X̂) is of no immediate relevance for F-theory,

and leave this as an exercise for the interested reader. Finally, H(4,4)(X̂) is generated by

a single element which is the volume form normalized by the volume of X̂. It is given, up

to combinatorical factors, by C0 in (B.4).

C Total Chern class of d̂P
B

2 (S7,S9)

In this brief appendix we outline the calculation of the total Chern class of the resolved

space d̂P
B

2 (S7,S9), which is straightforward but tedious. We keep our discussion short,

leaving some details of the calculations for the interested reader.

The basic strategy to obtain the Chern class of d̂P
B

2 (S7,S9) is to successively mod-

ify (A.2) taking into account all changes of divisor classes in the blow-up (6.8). First we

have to use the new divisor classes (6.9) for homogeneous coordinates [ũ : ṽ : w̃ : e1 : e2].

This alters the second to fourth factors in (A.2) accordingly. Then we have to include the

classes of the Cartan divisor, which is achieved by multiplying in (A.2) by
∏
i(1 + Di).

Finally we have to modify the first factor in (A.2) to incorporate the split and shift of the

class of z by the Di as in (6.9) appropriately. All we have to do is to formally replace the

divisor SSU(5) in the expression for the Chern class of B as

SSU(5) → SSU(5) −
∑
i

Di , (C.1)
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expand and then re-express the result we get in terms of the Chern class of B and the

intersections of SSU(5). Taking all these changes into account we obtain the following

expression

c(d̂P
B

2 ) =
[
1 + c1 + c2 −D2

1 −D1D2 −D2
2 −D2D3 −D2

3 −D2D4 −D3D4 −D2
4

+
(
SSU(5)−D0

)
SSU(5)+c3−c1

(
D2

1 +D1D2+D2
2 +D2

3 +D3D4+D2
4 +D2D3+D2D4

)
+SSU(5)

(
D2

1 + 2D1D2 + (D2 +D3 +D4)2
)

+
(
SSU(5) −D0

)
SSU(5)

(
c1 − SSU(5)

)
−D2

1D2 −D1D
2
2 − (D2 +D3)(D2 +D4)(D3 +D4)

]
×(1 + [u])(1 + [v])(1 + [w])(1 + E1)(1 + E2) , (C.2)

where we used the relation SSU(5) − D0 = D1 + D2 + D3 + D4 between the extended

node D0 and SSU(5) as well as abbreviated the ambient space as d̂P
B

2 . We also denote the

classes (6.9) of the homogeneous coordinates by brackets [·]. We emphasize that the new

factors (1 +Di) from the Cartan divisors Di have been combined with the changes in the

first factor in (A.2) containing the Chern class of B.

D Intersection ring for X̂SU(5) with B = P3

In this section we present the core cohomology calculations of elliptically fibered Calabi-

Yau fourfolds π : X̂ → P3 over P3 with general elliptic fiber E in dP2 and an additional

resolved SU(5)-singularity over codimension one in P3. The geometry has been introduced

in section 6, to which we refer for more details. The following discussion is very similar

to the one in A and B. Thus, we will keep the exposition as short as possible and only

present the key results necessary for the construction of G4-flux and 3D CS-terms in the

main text.
The starting point of the calculation of the cohomology ring H

(∗,∗)
V (X̂) of X̂ is the

representation (6.41) as a quotient ring. We are working with a particular phase of the

fourfold X̂ with Stanley-Reissner ideal (6.12). The eight-dimensional basis of H(1,1)(X̂) is
given in (6.46) and the class of the anti-canonical bundle K−1

d̂P
B
2

in (6.11). Omitting lengthy

details, that are best performed using a computer algebra program, we immediately obtain
the quartic intersections on X̂ as

C0 = 12D3
1HB+4D2D3D4HB−8D2D

2
4HB+12D3

4HB−2D2
1H

2
B+D1D2H

2
B−2D2

2H
2
B+D2D3H

2
B

−2D2
3H

2
B+D3D4H

2
B−2D2

4H
2
B+(n7−7)D2D

2
3HB−4(n7−4)D2

2D3D4+8(n7−4)D2
2D

2
4

−(n7−4)D2
2D3HB−(n7−7)(n7−4)D2

2D
2
3+(n7−4)2D3

2D3−16(n7−3)D2D
3
4−(n9−7)D1D

2
2HB

−((n7−5)n7+(n9−6)(n9−5))D4
2+(4+(n7−n9)2−4n9)D3D

3
4+4(n7−n9−1)D2D

2
3D4

+(n7−n9−1)D2
3D4HB−(n7−n9−1)(2+n7−n9)D2

3D
2
4+(n9−10)D2

1D2HB+4(n9−2)D2D3D
2
4

+(6−2n7+n9)D3
3HB+(n9−n7−2)D3D

2
4HB+(1−n7+n9)2D3

3D4+(n7+n9−9)D3
2HB

+(25+(n7−14)n7+4n9)D2D
3
3+(16n7−12+(n9−20)n9)D3

1D2−(14+8n7+(n9−17)n9)D2
1D

2
2

+(21+4n7+(n9−14)n9)D1D
3
2−2(16n7−36+(n9−14)n9)D4

1−2(28+n2
7+n9(2+n9)−2n7(7+n9))D4

4

−(20+2n2
7+n9(5+n9)−2n7(7+n9))D4

3+H3
BSP +(16+(n7−n9−4)n9)HBS

3
P

−4H2
BS

2
P +(−64−(8+n7−2n9)(n7−n9−4)n9)S4

P +D3
3SQ+D2

3HBSQ+D3H
2
BSQ+H3

BSQ

−4D2
3S

2
Q−4D3HBS

2
Q−4H2

BS
2
Q+(16+n7(n9−n7−2))D3S

3
Q+(16+n7(n9−n7−2))HBS

3
Q+H3

BSR
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−(64+n7(2+n7−n9)(2n7−n9−10))S4
Q−4n7D

3
4SR−n7D

2
3HBSR+D3D4HBn7SR−2n7D

2
4HBSR

+n7(n7−n9−1)D2
3D4SR+n7(n9−n7)D3

3SR+n7(2−n7+n9)D3D
2
4SR+n9H

2
BSPSR+n7D3HBSQSR

+n9(n9−n7)HBS
2
PSR+(n7−n9)2n9S

3
PSR+n7D

2
3SQSR+n7H

2
BSQSR+n7(n7−n9−2)D3S

2
QSR

+n7(n7−n9−2)HBS
2
QSR+n7(2−n7+n9)2S3

QSR−4H2
BS

2
R−D3HBn7S

2
R+(n7−4)n7D3D4S

2
R

−2(n7−4)n7D
2
4S

2
R−(n7−3)n7D

2
3S

2
R+HB(n7−4)n9SPS

2
R−(n7−4)(n7−n9)n9S

2
PS

2
R

+n7(n9−2)D3SQS
2
R+n7(n9−2)HBSQS

2
R+(n7−4)2n9SPS

3
R+n7(n7−n9−2)(n9−2)S2

QS
2
R

−n7(n7+n9−6)D3S
3
R+(16−n7(2+n9))HBS

3
R+n7(n9−2)2SQS

3
R−(64+n7(2+n9)(n7+n9−10))S4

R .

(D.1)

As before, all intersections are understood to be evaluated on X̂ and the quartic intersec-

tions DA ·X̂ DB ·X̂ DC ·X̂ DD are read off as the coefficient of the appropriate monomial

in C0.

As one immediate application we calculate the Cartan matrix CIJ of the affine Lie

algebra of SU(5) as

CIJ = −DI ·DJ ·H2
B =


2 −1 0 0 −1

−1 2 −1 0 0

0 −1 2 −1 0

0 0 −1 2 −1

−1 0 0 −1 2

 , (D.2)

where we supplemented as before the Cartan divisors Di, i = 1, . . . , 4, by the divisor

D0 = HB−D1−D2−D3−D4 corresponding to the extended node −α0 as DI = (D0, Di). In

addition, we confirm the intersections (2.13), (2.14) and (2.15) explicitly employing (D.1).

Finally, we calculate the intersections of the sections with the nodes of the Dynkin diagram

of SU(5) as

SP ·DI ·H2
B = SR ·DI ·H2

B = (1, 0, 0, 0, 0)I , SQ ·DI ·H2
B = (0, 0, 0, 1, 0)I (D.3)

reproducing the independent findings in (6.16) and, consequently, the Shioda maps (6.17).

Here we exploited (6.15) to represent the curve c−αI corresponding to the simple root αI as

c−αI = DI ·H2
B , (D.4)

employing H2
B · SbSU(5) = H3

B = 1. We note that we can even make the stronger statement

SP ·Di = 0 (D.5)

in the homology of X̂SU(5), which will be important for the discussion of section 7.2.

The cohomology group H
(2,2)
V (X̂SU(5)) is readily calculated. We generically obtain a

13-dimensional vector space, with certain jumps in the cohomology for non-generic values

of n7 and n9, see figure 5. For the application of the construction of G4-flux, it proves

useful to make a particular choice of basis by hand. We present a thorough analysis of this

basis in the next appendix.
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E Basis of H
(2,2)
V (X̂SU(5)) with B = P3

The vector space H
(2,2)
V is 13-dimensional for arbitrary values of n7 and n9. A basis is (6.47),

that we recall here for convenience

H
(2,2)
(V,13) = 〈H2

B, HB·SP , HB·σ(SQ), HB·σ(SR), SP ·σ(SR), σ(SQ)·σ(SR),

σ(SQ)2, HB·D1, HB·D2, HB·D3, HB·D4, D2·D4, D
2
1〉. (E.1)

To obtain the smaller vector spaces of the boundaries we need to drop some elements of this

basis. The vectors that become linearly depended at the boundary have to be re-expressed

as a linear combination of the smaller basis on the boundary. In the next subsections, we

choose bases for the different boundaries. We write the linearly dependent elements, that

we can drop from the above 13-dimensional basis, as linear combinations of the rest of the

vectors in the smaller basis.

12 dimensional

At the boundaries with a twelve-dimensional basis we can take

H
(2,2)
(V,12) = H

(2,2)
(V,13)\{SP ·σ(SR)}, (E.2)

in which case the surface SP ·σ(SR) is re-expressed as:

• At n9 = 0

SP ·σ(SR) ∼= 0, (E.3)

• At the boundary n9 = n7 + 2

SP ·σ(SR) ∼= −
2

35

(
30H2

B(26 + 3n7) + 25σ(ŝQ) · σ(ŝR)

+HB ·
[
4D1n7 + 8D2n7 + 12D3n7 + 6D4n7

+150SP + 150σ(ŝQ) + 15n7σ(ŝQ) + 130σ(ŝR)
])
, (E.4)

• At the boundary n9 = 9− n7

SP ·σ(SR) ∼=
2

475

(
18D1 ·HB + 36D2 ·HB − 66D3 ·HB − 33D4 ·HB

−41100H2
B + 8400n7H

2
B − 400n2

7H
2
B − 4425HB · SP

+550n7HB · SP − 5145HB · σ(ŝQ) + 450n7HB · σ(ŝQ)

−125σ(ŝQ)2 − 2790HB · σ(ŝR) + 350n7HB · σ(ŝR)

−275σ(ŝQ) · σ(ŝR)

)
. (E.5)
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11 dimensional

We obtain an eleven-dimensional basis by choosing

H
(2,2)
(V,12) = H

(2,2)
(V,13)\{SP ·σ(SR), HB·σ(SQ)}, (E.6)

• At n7 = n9 − 4 we obtain the homology relation

SP ·σ(SR) ∼= 0,

HB·σ(SQ) ∼=
1

1220 + 150n7

(
25D2

1 + 684D3 ·HB + 342D4 ·HB − 3200H2
B

+(438− 45n7)D1 ·HB + 18(32− 5n7)D2 ·HB − 120n7D3 ·HB

−60n7D4 ·HB − 800HB · SP − 125σ(ŝQ)2

−490HB · σ(ŝR)− 275σ(ŝQ) · σ(ŝR)

)
. (E.7)

10 dimensional

Finally a ten-dimensional basis is given by

H
(2,2)
(V,12) = H

(2,2)
(V,13)\{SP ·σ(SR), HB·σ(SQ), D2 ·D4}. (E.8)

• At n7 = 0

SP ·σ(SR) ∼= 2n9

[
(4 + n9)H2

B +HB · σ(ŝR)
]
,

HB·σ(SQ) ∼= −2(2 + n9)H2
B − 2

(
2 + n9

4 + n9

)
σ(ŝR) ·HB

−
(

1

4 + n9

)
σ(ŝQ) · σ(ŝR)−HB · SP ,

D2 ·D4
∼= 4D4 ·HB. (E.9)

F CS-levels & chiralities for X̂SU(5) with B = P3

In this appendix we present the 3D Chern-Simons terms on both the M- and F-theory side

and the chiralities, all of which parametrized by the parameters ai of the general G4-flux.

F.1 Chern-Simons levels

F-theory loop induced CS terms

The one loop Chern-Simons levels read as follows. For the Cartan generators, we obtain

ΘF
ij as:

ΘF
1,3 = ΘF

1,4 = 0,

ΘF
1,1 = −1

2

[
6χ
(
10( 1

5 ,0)

)
+ 2χ

(
5(− 2

5 ,0)

)
+ 2χ

(
5(− 2

5 ,1)

)
+ 2χ

(
5( 3

5 ,0)

)
+ 2χ

(
5( 3

5 ,1)

)
− 2χ

(
5(− 2

5 ,−1)

)]
,

ΘF
1,2 = −1

2

[
− 3χ

(
10( 1

5 ,0)

)
− χ

(
5(− 2

5 ,0)

)
− χ

(
5(− 2

5 ,1)

)
− χ

(
5( 3

5 ,0)

)
− χ

(
5( 3

5 ,1)

)
+ χ

(
5(− 2

5 ,−1)

)]
,

ΘF
2,2 = −1

2

[
2χ
(
10( 1

5 ,0)

)
+ 2χ

(
5(− 2

5 ,1)

)
+ 2χ

(
5( 3

5 ,0)

)
+ 2χ

(
5( 3

5 ,1)

)
− 2χ

(
5(− 2

5 ,−1)

)]
,
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ΘF
2,3 = −1

2

[
− χ

(
10( 1

5 ,0)

)
+ χ

(
5(− 2

5 ,0)

)
− χ

(
5(− 2

5 ,1)

)
− χ

(
5( 3

5 ,0)

)
− χ

(
5( 3

5 ,1)

)
+ χ

(
5(− 2

5 ,−1)

)]
,

ΘF
3,3 = −1

2

[
2χ
(
10( 1

5 ,0)

)
− 2χ

(
5(− 2

5 ,0)

)
+ 2χ

(
5( 3

5 ,1)

)
− 2χ

(
5(− 2

5 ,−1)

)]
,

ΘF
3,4 = −1

2

[
− χ

(
10( 1

5 ,0)

)
+ χ

(
5(− 2

5 ,0)

)
+ χ

(
5(− 2

5 ,1)

)
+ χ

(
5( 3

5 ,0)

)
− χ

(
5( 3

5 ,1)

)
+ χ

(
5(− 2

5 ,−1)

)]
,

ΘF
4,4 = −1

2

[
2χ
(
10( 1

5 ,0)

)
− 2χ

(
5(− 2

5 ,0)

)
− 2χ

(
5(− 2

5 ,1)

)
− 2χ

(
5( 3

5 ,0)

)
+ 2χ

(
5( 3

5 ,1)

)
− 2χ

(
5(− 2

5 ,−1)

)]
.

(F.1)

The mixed Abelian-non-Abelian ΘF
im read

ΘF
i=1,m=1 = ΘF

i=4,m=1 = ΘF
i=1,m=2 = ΘF

i=2,m=2 = ΘF
i=4,m=2 = 0,

ΘF
i=2,m=1 = −1

2

(
−4

5
χ
(
10( 1

5
,0)

)
+

4

5
χ
(
5(− 2

5
,0)

))
,

ΘF
i=3,m=1 = −1

2

(
4

5
χ
(
5(− 2

5
,1)

)
− 6

5
χ(5(3/5,0)

)
,

ΘF
i=3,m=2 = χ

(
5(− 2

5
,1)

)
. (F.2)

The purely Abelian ΘF
mn read

ΘF
m=1,m=1 = −1

2

(
4

25
χ
(
10( 1

5
,0)

)
− 4

25
χ
(
5(− 2

5
,0)

)
+

4

25
χ
(
5(− 2

5
,1)

)
+

9

25
χ
(
5( 3

5
,0)

)
+

9

5
χ
(
5( 3

5
,1)

)
− 4

5
χ
(
5(− 2

5
,−1)

)
+ χ(1(1,0))

+χ(1(1,1)) + χ(1(−1,1))− 3χ(1(−1,−2))

)
,

ΘF
m=1,m=2 = −1

2

(
− 2

5
χ
(
5(− 2

5
,1)

)
+ 3χ(5)(3/5,1) − 2χ

(
5(− 2

5
,−1)

)
+χ(1(1,1))− χ(1(−1,1))− 6χ(1(−1,−2))

)
,

ΘF
m=2,m=2 = −1

4

(
χ
(
5(− 2

5
,1)

)
+ 5χ

(
5( 3

5
,1)

)
− 5χ(5)(−2/5,−1) + χ(1(1,1))

+χ(1(0,1)) + χ(1(−1,1)) + 4χ(1(0,2))− 12χ(1(−1,−2))

)
. (F.3)

M-theory classical CS terms

On the M-theory side we obtain for ΘM
ij :

ΘM
1,3 = ΘM

1,4 = 0, ΘM
2,4 = 2n7a12,

ΘM
(1,1) =

1

5
(6 + n9)a3 +

1

2
(4 + n9)a4 + n9(4− n7 + n9)a5

+
1

25
[−10(4 + n9)(8 + 3n9) + 3n7(14 + 9n9)]a6

+
1

250
[−2968 + n7(56 + 111n9)− n9(1148 + 115n9)]a7

−1

5
(−184 + 40n7 − 23n9 + n2

9)a13,
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ΘM
1,2 =

1

500

(
− 50(6 + n9)a3 − 125(4 + n9)a4

+250(−4 + n7 − n9)n9a5

+10[10(4 + n9)(8 + 3n9)− 3n7(14 + 9n9)]a6

+(2968− n7(56 + 111n9) + n9(1148 + 115n9))a7

+50(−184 + 40n7 + (−23 + n9)n9)a13

)
, (F.4)

ΘM
2,2 =

1

250

(
25(21− n7 + n9)a3 + 125(4 + n9)a4 + 250n9(4− n7 + n9)a5

+5[−2n2
7 − 5(4 + n9)(41 + 11n9) + n7(122 + 57n9)]a6

+[−5524 + 7n2
7 − 3n9(273 + 40n9) + n7(277 + 113n9)]a7

+25[64 + n7(−24 + n9)− (−13 + n9)n9]a13

)
,

ΘM
2,3 =

1

500

(
50(−17 + n7)a3 − 125(4 + n9)a4 + 250(−4 + n7 − n9)n9a5

+10[2n2
7 − 6n7(14 + 5n9) + 5(4 + n9)(27 + 5n9)]a6

+[8616− 14n2
7 − 5n7(94 + 23n9) + 5n9(114 + 25n9)]a7

−500n7a12 + 50(−n7(−4 + n9) + 2(6 + n9))a13

)
,

ΘM
3,3 =

1

500

(
25(50− 5n7 + 3n9)a3 − 125(n7 − 2(4 + n9))a4

+500n9(4− n7 + n9)a5 + 50(−14 + n9)n9a13

+5[−25n2
7 − 5(4 + n9)(90 + 23n9) + 2n7(210 + 73n9)]a6

+4[−3030− n9(483 + 65n9) + n7(310 + 66n9)]a7

)
,

ΘM
3,4 =

1

500

(
25(−16 + 3n7 − 3n9)a3 + 125(−4 + n7 − n9)a4 + 250(−4 + n7 − n9)n9a5

+5[720 + 21(−12 + n7)n7 + 440n9 − 86n7n9 + 65n2
9]a6

+[14(−55 + n7)n7 − 149n7n9 + 135n2
9 + 6(584 + 227n9)]a7 + 500n7a12

+50[−12 + n7(−4 + n9)− (−12 + n9)n9]a13

)
,

ΘM
4,4 =

1

10
(16− 3n7 + 3n9)a3 +

1

2
(4− n7 + n9)a4 + n9(4− n7 + n9)a5

+
1

50
[−21n2

7 − 5(4 + n9)(36 + 13n9) + n7(252 + 86n9)]a6

+
1

250
[−14n2

7 + n7(770 + 149n9)− 3(1168 + n9(454 + 45n9))]a7

−4n7a12 +
1

5
[4(3 + n7)− (12 + n7)n9 + n2

9]a13. (F.5)
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For the mixed CS-levels ΘM
im we obtain:

ΘM
i=1,m=1 = ΘM

i=1,m=2 = ΘM
i=2,m=2 = 0,

ΘM
i=4,m=1 =

2

5
n7a12, ΘM

i=4,m=2 = 2n7a12,

ΘM
i=2,m=1 =

1

625

(
25(−15 + n7 + n9)a3 + 5(−15 + n7 + n9)(2n7 − 5(4 + n9))a6

−[−3360 + 7n2
7 + (209− 5n9)n9 + n7(179 + 2n9)]a7

−25(−4 + n9)(−5 + n7 + n9)a13

)
,

ΘM
i=3,m=1 =

1

2500

(
− 25(54 + 13n7 − 9n9)a3 + 250n7a4

+5[54n2
7 − 45(−6 + n9)(4 + n9) + n7(52 + 3n9)]a6

+[−639n2
7 − 6(−6 + n9)(426 + 5n9) + n7(1690 + 677n9)]a7

−500n7a12 − 50(18 + n7 − 3n9)(−4 + n9)a13

)
,

ΘM
i=4,m=1 =

1

500
n7

(
50a3 − 125a4 + 5(40− 21n7 + 15n9)a6

+(−158 + 111n7 − 115n9)a7 − 500a12 − 50(−4 + n9)a13

)
. (F.6)

The CS-levels ΘM
αm for Dα = HB read

ΘM
α,m=1 = −17

5
a3 +

1

2
(−4 + n7 − n9)a4 + (−4 + n7 − n9)n9a5

+
[
n2

7/2 +
1

5
(4 + n9)(27 + 5n9)− 1

50
n7(208 + 75n9)

]
a6

+
1

250

[
8616− n7(312 + 125n7) + 5n9(114 + 25n9)

]
a7

+
2

5
(6 + n9)a13,

ΘM
α,m=2 =

1

2
(−4 + n7 − n9)a3 − (4 + n9)a4 + 2(−4 + n7 − n9)n9a5

+
[
24 + 16n9 +

5

2
n2

9 −
1

10
n7(56 + 25n9)

]
a6

+
[1
2
n2

7 +
1

5
(4 + n9)(27 + 5n9)− 1

50
n7(208 + 75n9)

]
a7

+(4 + n9)a13. (F.7)
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The purely Abelian CS-levels ΘM
mn read

ΘM
m=1,m=1 =

1

12500

(
25(8616− n7(312 + 125n7) + 5n9(114 + 25n9))a3

+125(1080− 208n7 + 25n2
7 + 470n9 − 75n7n9 + 50n2

9)a4

+1250(−54 + 5n7 − 10n9)(−4 + n7 − n9)n9a5

+5
[
625n3

7 − 5(4 + n9)(14016 + 5n9(854 + 125n9))

−4n2
7(1411 + 625n9) + 8n7(6834 + 5n9(893 + 125n9))

]
a6

+2
[
− 1090272− 3125n3

7 − 25n9(6130 + n9(1852 + 125n9))

+n2
7(26777 + 3125n9) + n7(82008 + 5n9(2028 + 625n9))

]
a7

+50
[
− 2968 + n7(56 + 111n9)− n9(1148 + 115n9)

]
a13

)
,

ΘM
m=1,m=2 =

1

100
(25n2

7 + 10(4 + n9)(27 + 5n9)− n7(208 + 75n9))a3

+[12 + 8n9 +
5

4
n2

9 −
1

20
n7(56 + 25n9)]a4

+
1

2
(−12 + 3n7 − 5n9)(−4 + n7 − n9)n9a5

+
[
n2

7

(
− 454

125
− 9

4
n9

)
− 1

10
(4 + n9)(228 + n9(157 + 30n9))

+
3

100
n7(1040 + n9(892 + 175n9))

]
a6

+
1

2500

[
625n3

7 − 5(4 + n9)(14016 + 5n9(854 + 125n9))

+8n7(6834 + 5n9(893 + 125n9))− 4n2
7(1411 + 625n9)

]
a7

+
1

25
(−10(4 + n9)(8 + 3n9) + 3n7(14 + 9n9))a13,

ΘM
m=2,m=2 =

[
12 + 8n9 +

5

4
n2

9 −
1

20
n7(56 + 25n9)

]
a3

+
1

2

[
− n7(1 + 4n9) + (4 + n9)(12 + 5n9)

]
a4

+(−12 + 2n7 − 5n9)(−4 + n7 − n9)n9a5

+
1

100

[
− 25(4 + n9)(12 + 5n9)2 − 6n2

7(7 + 50n9)

+5n7(688 + n9(842 + 185n9))
]
a6

+
1

500

[
− 50(4 + n9)(12 + 5n9)(27 + 5n9)

−n2
7(1278 + 625n9) + n7(12164 + 5n9(2542 + 375n9))

]
a7

+

[
−1

2
(4 + n9)(12 + 5n9) +

1

5
n7(4 + 9n9)

]
a13. (F.8)
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F.2 Chiralities

Finally, we present the rest of the chiralities obtained by matching the M-/F-theory CS-

terms. The G4-flux parameter supported along the non-flat fiber is assumed to be zero by

setting a12 = 0. The chiralities in terms of the ai in the G4-flux are:

χ
(
5(− 2

5
,0)

)
=

1

250

[
− 25(−13 + n7 + n9)a3 − 5(−13 + n7 + n9)(2n7 − 5(4 + n9))a6

+[−3092 + 7n2
7 + (249− 5n9)n9 + n7(193 + 2n9)]a7

+25(−88 + (−17 + n9)n9 + n7(16 + n9))a13

]
,

χ
(
5( 3

5
,0)

)
=

1

500

[
− 75(6 + n7 − n9)a3

+5
[
4n2

7 + 11n7(4 + n9)− 15(−6 + n9)(4 + n9)
]
a6

+[−139n2
7 − 2(−6 + n9)(426 + 5n9) + n7(458 + 149n9)]a7

−50(6 + n7 − n9)(−4 + n9)a13

]
,

χ
(
5(− 2

5
,−1)

)
=

1

500

[
50(4 + n9)a3 + 125(4 + n9)a4 + 250n9(4− n7 + n9)a5 +

10(−10(4 + n9)(7 + 3n9) + n7(38 + 27n9))a6 +

(3n7(28 + 37n9)− (4 + n9)(608 + 115n9))a7

−50(−76 + 20n7 − 15n9 + n2
9)a13

]
, (F.9)

For the chiralities of the singlets we obtain

χ(1(1,0)) =
1

100

[
25[2n2

7 − (−9 + n9)(−6 + n9)− n7(15 + n9)]a3

+50n7(−4 + n7 − n9)n9a5 + 200n7a13

+5
[
5(−9 + n9)(−6 + n9)(4 + n9)

−3n2
7(12 + 5n9) + n7(276 + n9(111 + 10n9))

]
a6

+
[
50n3

7 + 244(−9 + n9)(−6 + n9)

−3n2
7(309 + 25n9) + n7(2694 + n9(883 + 25n9))

]
a7

]
, (F.10)

χ(1(1,1)) = −1

4

[
76 + n2

7 + n7(−17 + n9) + 11n9 − 2n2
9

]
(a3 + a4)

−1

2
(−4 + n7 − n9)n9(−19 + 2n9)a5 +

[
12 +

1

2
(2 + n7 − n9)n9

]
a13

+
1

4

[
608− n7(212 + (−25 + n7)n7) + 316n9

+(−56 + n7)n7n9 + (17 + 6n7)n2
9 − 6n3

9

]
a6

+
1

100

[
n2

7(262− 25n9) + n7(−4454 + 3n9(−91 + 25n9))

−(4 + n9)(−4918 + n9(39 + 50n9))
]
a7,
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χ(1(0,1)) =
1

4

[
n7(−15 + 2n7) + (4 + n9)(−19 + 2n9)

]
a4

−1

2
(−4 + n7 − n9)n9(−19 + 2n9)a5

+
[
76 + 49n9 +

1

20
((−12 + n7)n7(1 + 10n7)

−n7(79 + 10n7)n9 + 10(7 + 2n7)n2
9 − 20n3

9)
]
a6

+
1

100

[
− 50n3

7 + n2
7(403 + 50n9) + 2n7(541 + n9(−488 + 25n9))

−(4 + n9)(−212 + n9(−449 + 50n9))
]
a7

+
1

2
[52− n9(−9 + n7 + n9)]a13. (F.11)

G Toric tuning of S7 and S9 for B = P3

In this appendix we explain how to construct the toric polytopes of dPB2 (S7,S9) with base

B = P3 for all the points in the allowed region of figure 2. In the following we present a

list of vertices, each of which realizing one possible choice of (n7, n9).

In order to find this list of vertices we follow the algorithm presented in [47] to construct

all reflexive convex polytopes for a given toric base and a given toric fiber. This algorithm

uses the GL(Z, 5) symmetry to bring all the vertices of the polytope in the following form

variable vertices

z0 1 1 1 p1 p2

z1 -1 0 0 0 0

z3 0 -1 0 0 0

z2 0 0 -1 0 0

u 0 0 0 1 0

v 0 0 0 0 1

w 0 0 0 -1 -1

e1 0 0 0 0 -1

e2 0 0 0 1 1

(G.1)

In the first four lines we see the polytope of the base, in the last five lines the polytope of the

fiber. The degrees of freedom of the fibration are parametrized by the two integers (p1, p2).

The coordinates (p1, p2) are fixed by the requirement of convexity of the polytope (G.1).

We obtain the following list of points (p1, p2) each of which giving rise to a reflexive and

convex polytope (G.1), along with the corresponding values of (n7, n9):
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p1 p2 n7 n9

-4 -4 8 4

-3 -4 7 3

-3 -3 7 4

-3 -2 7 5

-2 -4 6 2

-2 -3 6 3

-2 -2 6 4

-2 -1 6 5

-2 0 6 6

-1 -4 5 1

-1 -3 5 2

-1 -2 5 3

-1 -1 5 4

-1 0 5 5

-1 1 5 6

-1 2 5 7

0 -4 4 0

p1 p2 n7 n9

0 -3 4 1

0 -2 4 2

0 -1 4 3

0 0 4 4

0 1 4 5

0 2 4 6

0 3 4 7

0 4 4 8

1 -3 3 0

1 -2 3 1

1 -1 3 2

1 0 3 3

1 1 3 4

1 2 3 5

1 3 3 6

1 4 3 7

2 -2 2 0

p1 p2 n7 n9

2 -1 2 1

2 0 2 2

2 1 2 3

2 2 2 4

2 3 2 5

2 4 2 6

3 -1 1 0

3 0 1 1

3 1 1 2

3 2 1 3

3 3 1 4

3 4 1 5

4 0 0 0

4 1 0 1

4 2 0 2

4 3 0 3

4 4 0 4

(G.2)
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