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1 Introduction

The propagators of Yang-Mills theory have been widely investigated because, on one hand,

they provide the starting point for calculations of hadronic observables and investigations of

the phase diagram of strongly interacting matter as described by quantum chromodynamics

(QCD). On the other hand, they provide some direct insight into the mechanisms behind

non-perturbative phenomena like confinement and dynamical chiral symmetry breaking.

Typically, in the Landau gauge the ghost-gluon vertex has been a pivotal object in such

studies when using functional methods, since its simple structure is the basis for most

truncation schemes. The original motivation for this was Taylor’s non-renormalization ar-

gument for the Landau gauge [1]. The employed truncation schemes were so successful

that the complications arising by including the vertex dynamically into numeric calcula-

tions have been postponed for some time. In the meantime additional information was

gathered [2–9] with functional methods backed up by calculations on the lattice [10–13]

that solidified the reliability of the used truncation schemes and supported the expecta-

tions that the modifications induced by a self-consistent inclusion of the vertex are small
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and only on the quantitative level. Here we test these expectations by including the ghost-

gluon vertex dynamically into the system of equations we solve, in order to assess any

quantitative or even qualitative differences.

While major qualitative changes are certainly not expected, the extent to which quanti-

tative modifications occur is not clear. At least some effects are anticipated, as comparisons

of calculations with different vertex models show [14]. Since the ghost-gluon vertex is an

important part of the Yang-Mills sector, we should study it as well as possible to ensure

that we fully understand the non-perturbative infrared regime of Landau gauge QCD.

Furthermore, it recently turned out that a simple ghost-gluon vertex as employed in the

vacuum is insufficient for non-zero temperature calculations [15]. Finally, it is desirable to

improve existing results for the propagators quantitatively in order to become more com-

petitive with lattice results. The inclusion of the ghost-gluon vertex constitutes one step in

this direction, also because it is a prerequisite for the investigation of other quantities like

the gluonic vertices. The lowest one, the three-gluon vertex, is expected to have even more

quantitative influence on the propagators. In order to test this assumption, we investigate

a new three-gluon vertex model. It is Bose symmetric, has the correct ultraviolet (UV)

anomalous dimension and features a zero crossing as observed in three-dimensional lattice

data. The latter property has not been clearly observed in four dimensions yet. Thus

we also compute the infrared (IR) leading contribution of the three-gluon vertex for one

momentum configuration to confirm this.

Perturbatively the ghost-gluon vertex is well studied. A detailed one-loop calculation

for general external momenta can be found in ref. [16] and a three-loop calculation for

the so-called asymmetric point in ref. [17]. An often used argument about its IR behavior

goes back to Taylor [1]. We will comment on it in more detail below in section 2.2.

Further analytic studies have been performed with Dyson-Schwinger equations (DSEs) [5,

6] and first functional renormalization group calculations for non-zero temperature were

also done [15]. An operator product expansion analysis can be found in ref. [8]. It was

subsequently used for an indirect determination of the parameters by studying its effects

in the ghost DSE [9]. On the lattice the vertex was investigated in refs. [10–13], but

unfortunately the results are by far not as detailed as for the propagators. Still, they are

the most reliable source of quantitative information. Semi-perturbative results from DSEs

can be found in [3, 18]. Here we will present the first calculation with full momentum

dependence and back coupling effects.

The dynamical inclusion of the ghost-gluon vertex required at the same time to improve

on the three-gluon vertex model. The reason is that in the gluon propagator DSE the

contributions of the ghost and gluon loops naturally balance to keep the gluon dressing

function positive. If we now change the ghost-gluon vertex this balance might get lost and

the gluon loop could take over in the mid-momentum regime rendering the gluon propagator

negative. This gives a natural constraint on any vertex model and was one motivation for

introducing the new model for the three-gluon vertex that takes into account the known

properties from lattice [13] and Dyson-Schwinger studies [6, 19]. The improved vertex

has a considerable effect in the mid-momentum regime, where the difference to lattice

calculations is most evident.
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Figure 1. Full two-point Dyson-Schwinger equations of Landau gauge Yang-Mills theory. All

internal propagators are dressed. Thick blobs denote dressed vertices. Wiggly lines are gluons,

dashed ones ghosts.

We start with an overview of the Green functions employed here and their DSEs in

section 2. There also some remarks about the Taylor theorem can be found and the model

for the three-gluon vertex is explained. The employed methods are reviewed in section 3.

Results are presented in sections 4 and 5. We conclude with a summary in section 6. In

two appendices we present the kernels of the DSEs and further details on the UV behavior

of the propagators. In ref. [20] a short summary of this article can be found.

2 The system of Dyson-Schwinger equations

2.1 The two-point Dyson-Schwinger equations

The DSEs for the ghost and gluon dressing functions, G(p2) and Z(p2), respectively, read

1

G(p2)
= Z3 +Nc g

2 Z̃1

∫
q
Z(q2)G

(
(p+ q)2

)
KG(p, q)ΓAc̄c(q; p+ q, p) (2.1)

1

Z(p2)
= Z̃3 +Nc g

2 Z̃1

∫
q
G(q2)G

(
(p+ q)2

)
Kgh
Z (p, q)ΓAc̄c(p; p+ q, q)

+Nc g
2 Z1

∫
q
Z(q2)Z

(
(p+ q)2

)
Kgl
Z (p, q)ΓA

3
(p, q,−p− q) , (2.2)

where
∫
q stands for

∫
d4q/(2π)4 and Z̃1 and Z1 are the renormalization constants of the

ghost-gluon and three-gluon vertices, respectively, whereas Z̃3 is the renormalization con-

stant of the ghost propagator and Z3 that for the gluon propagator. The quantities

ΓAc̄c(k; p, q) and ΓA
3
(k, p, q) are dressing functions of the ghost-gluon and three-gluon ver-

tices, respectively. The two DSEs are shown diagrammatically in figure 1. The ghost and

gluon propagators Dgh(p2) and Dgl,µν(p2) and their dressing functions are related by

Dgh(p2) := −G(p2)

p2
, Dgl,µν(p2) := Pµν(p)

Z(p2)

p2
. (2.3)

The kernels KG, Kgh
Z and Kgl

Z are given explicitly in appendix A. The coupled system for

the two propagators was investigated many times in the literature with functional methods,
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see, for example, [2, 5, 7, 14, 21–32]. Recently it has even been solved in the complex p2-

plane to extract the corresponding spectral functions for gluons and ghosts in complete

agreement with local quantum field theory but with the expected positivity violations [33].

For complementary Euclidean results from Monte Carlo simulations see, e.g., [34–49].

In section 5 we will compare our results also to lattice data. Thus we shortly want

to recall a few facts concerning the calculation of propagators on the lattice. It is often

claimed that all lattice results show an unequivocal picture for the propagators. However,

several open issues exist that need clarification. For example, it is well known that Gribov

copies have an effect on the propagators [12, 35, 50–52]. An interpretation of this in

terms of non-perturbative gauge completion was put forward in ref. [51]. With functional

equations one finds two types of solutions [5, 30, 53] characterized by the value of the

ghost dressing function at zero momentum: if it is finite, the family of decoupling solutions

emerges which has a non-zero gluon propagator at zero momentum [5, 29, 30, 53, 54]. The

second type is the scaling solution, for which the ghost dressing diverges and the gluon

propagator vanishes [21]. Of course it is tempting to look for a direct correspondence

between the choice of Gribov copies and the family of solutions. However, Monte Carlo

methods sample different Gribov copies in a way not accessible to functional methods,

so that unveiling such a relation is in no way trivial [55]. Attempts to deal with Gribov

copies with continuum methods include the Gribov-Zwanziger framework [56–58] and its

“refined” [54, 59, 60] or “alternative refined” form [61] and that of ref. [62] where an

averaging over Gribov copies is performed. An important observation in this respect is that

the form of functional equations is not changed by restriction to the first Gribov region [24,

28] as automatically done in Monte-Carlo simulations. Using the Gribov-Zwanziger action

for functional equations confirmed that the IR part of the solution remains unaffected by

such a restriction [31, 63]. Recently promising new results in the opposite direction, i.e.,

selecting Gribov copies on the lattice such that results change as expected from functional

methods, were presented [49]: choosing Gribov copies by the value of the lowest eigenvalue

of the Faddeev-Popov operator seems to lead to changes in the propagators akin to those

obtained when varying the boundary conditions in the DSEs. Another point in need of

better understanding is the behavior in the strong coupling regime, for which all momenta

can be considered below ΛQCD and thus in the IR. There two solution branches are found

with characteristics of decoupling and scaling solutions [64–66]. Due to these ambiguities it

is in principle important to consider the details of the gauge-fixing algorithm used to sample

the Gribov copies of Landau gauge on the lattice when comparing the infrared behavior

of the propagators with lattice data. All lattice data used for comparisons herein were

obtained from sampling, with some algorithm-specific bias, local minima of the standard

gauge-fixing potential for lattice Landau gauge thus yielding decoupling.

2.2 The ghost-gluon vertex Dyson-Schwinger equations

The ghost-gluon vertex has two different DSEs which differ by the field that is attached

to the bare vertex, see figure 2. Of course both full equations are equivalent and we can

choose the one most suitable for our calculations. It seems tempting to employ the DSE

with the ghost leg attached to the bare vertex, because it has only four diagrams. However,
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Figure 2. The ghost-gluon vertex DSEs. All internal propagators are dressed. Top: version with

the bare vertices attached to the gluon leg. Bottom: version with bare vertices attached to the

ghost leg. Thick blobs denote dressed vertices. Wiggly lines are gluons, dotted ones ghosts.

both UV and IR consistent truncations depend on the dressed three-gluon vertex for which

we use a model. To make our calculations as much model independent as possible we thus

want to avoid the dressed three-gluon vertex in the ghost-gluon vertex DSE. We therefore

consider the first DSE in figure 2.

In the UV the leading diagrams are the two triangle diagrams. The two other one-loop

diagrams, the gluon and the ghost loops with quartic ghost-gluon and ghost interactions,

respectively, are UV subleading because the four-point functions therein are not primitively

divergent. At the same time the triangle diagrams contain the leading IR corrections. This

can be seen most easily for the scaling type solution: there, the two IR leading diagrams as

indicated by the power counting scheme [19] are the two diagrams with a bare ghost-gluon

vertex. However, one of them contains a quartic ghost vertex which behaves as (p2)κ in

the IR. We expect the contribution from this diagram to be suppressed as compared to

the triangle diagram with a bare ghost-gluon vertex because there is no tree-level four-

ghost coupling in Landau gauge. It corresponds to a two-loop contribution as can be seen

explicitly by inserting the DSE of the quartic ghost vertex. For the decoupling type solution

no IR enhancements of the vertices are expected [5], so the main corrections should also

come from the one-loop terms. Note that this truncation is almost the same as the first

three diagrams of the other ghost-gluon vertex DSE depicted at the bottom of figure 2

except for the dressed three-gluon vertex. Consequently all information of the diagrams

neglected in our truncation is contained in the full three-gluon vertex and the ghost-gluon

scattering kernel.
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The dressed ghost-gluon vertex is described by two dressing functions. A typical

choice is

ΓAc̄c,abcµ (k; p, q) := fabcΓAc̄cµ (k; p, q) := i g fabc
(
pµA(k; p, q) + kµB(k; p, q)

)
. (2.4)

Here the momenta k, p, q refer to the gluon, anti-ghost and ghost legs, respectively, as indi-

cated in the superscript of ΓAc̄c. By convention we have all momenta ingoing. The dressing

A(k; p, q) is symmetric under exchange of the ghost momenta, A(k, p, q) = A(k; q, p), but

B(k; p, q) is not [2]. In the Landau gauge only A(k; p, q) contributes to Green functions

due to the transversality of the gluon propagator. However, it is slightly misleading to

call A(k; p, q) the transverse dressing of the ghost-gluon vertex, as is often done. A clear

separation between transverse and longitudinal parts can be achieved with [2, 67]:

ΓAc̄c,abcµ (k; p, q) := i g fabc
(
Pµν(k)pνD

Ac̄c
t (k; p, q) + kµD

Ac̄c
l (k; p, q)

)
, (2.5)

where Pµν(k) is the transverse projector gµν−kµkν/k2. The relations between the two sets

of dressings are

DAc̄c
t (k; p, q) = A(k; p, q) , (2.6)

DAc̄c
l (k; p, q) = B(k; p, q) +A(k; p, q) p · k/k2 (2.7)

from which one sees that A(k; p, q) also appears in the longitudinal dressing func-

tion and that the transverse part is symmetric under exchange of the ghost momenta,

DAc̄c
t (k; p, q) = DAc̄c

t (k; q, p). The bare vertex is obtained for A(k; p, q) = 1, B(k; p, q) = 0

and DAc̄c
t (k; p, q) = 1, DAc̄c

l (k; p, q) = k · p/k2, respectively. Note that the choice of a

ghost-gluon vertex that ensures the IR transversality of the gluon DSE as in refs. [2, 30]

corresponds to setting the longitudinal dressing DAc̄c
l (k; p, q) to zero in the IR. However,

when using the transversely projected gluon DSE DAc̄c
l (k; p, q) does not enter anyway and

only appears when testing if the longitudinal components of the gluon propagator vanish.

Using the transverse/longitudinal basis one can easily see that the ghost-gluon vertex

has no transverse part for zero ghost momentum purely for kinematical reasons:

ΓAc̄cµ (−p; p, 0) = i g
(
Pµν(−p)pνDAc̄c

t (−p; p, 0)− pµDAc̄c
l (−p; p, 0)

)
= −i g pµDAc̄c

l (−p; p, 0) .

(2.8)

Note that this makes no statement about the transverse dressing function. We come back

to this below. This property of the ghost-gluon vertex is useful for the so-called M̃OMh

scheme [68] which is an asymmetric momentum subtraction scheme defined by subtracting

the radiative corrections to the ghost-gluon vertex at vanishing incoming ghost momentum.

Since the vertex is bare in this limit, its renormalization constant Z̃M̃OMh
1 is 1 in Landau

gauge, which was explicitly confirmed up to three loops in [17]. In terms of A and B

eq. (2.8) reads

ΓAc̄cµ (−p; p, 0) = i g fabcpµ
(
A(−p; p, 0)−B(−p; p, 0)

)
. (2.9)

This observation is related to what has become known as Taylor’s non-renormalization

argument [1]. However, the argumentation in ref. [1] was different. Taylor started from the
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following parametrization of the vertex, which is based on the transversality of the gluon

propagator:

ΓAc̄cµ (k, p, q) = i g pµ + pνqρFµνρ(k, p, q) . (2.10)

For p2 = q2 = k2 = 0 the second term should equal zero because of the factor qρ [69] leading

to Z̃1 = 1 if the vertex is renormalized by momentum subtraction at p2 = q2 = k2 = 0.1

However, this statement implicitly assumes that the value of the ghost-gluon vertex is the

same independent from which direction the IR is approached. For the scaling solution it

was already observed in refs. [3, 4, 6] that the limits p2, q2, k2 → 0 and q2 → 0, p2 → 0 are

not equal. Furthermore, any possible singularities in Fµνρ(k, q, p) are disregarded. So there

seem to be some caveats in the original argument why the ghost-gluon vertex becomes bare

in the limit of vanishing incoming ghost momentum q. A third way to obtain this result is

based on the ghost-gluon vertex Slavnov-Taylor identity (STI) [22]:

1

ξ
∂yµ〈Abµ(y)c̄c(z)ca(x)〉 − 1

ξ
∂zµ〈Acµ(z)c̄b(y)ca(x)〉 =

1

2
g fade〈cd(x)ce(x)c̄c(z)c̄b(y)〉 . (2.11)

If one ignores the connected part of the ghost scattering kernel one arrives at

i kµΓµ(k; p, q)G−1(k2) + i qµΓµ(q; p, k)G−1(q2) = g p2G−1(p2) . (2.12)

If the connected part is maintained, the following conclusions remain consistent but a

rigorous proof is lacking. Of course, since this is an STI, it only provides information

about the longitudinal part of the ghost-gluon vertex in agreement with the observation

in eq. (2.8). Assuming that the longitudinal dressing function DAc̄c
l (k; p, q) has no strong

divergence for k → 0, we can take q or k to zero and use limq2→0 q
2G−1(q2) = 0, which is

valid for both decoupling and scaling solutions, to obtain

DAc̄c
l (−p; p, 0) = −1 . (2.13)

This is equivalent to

Γµ(−p; p, 0) = i g pµ , (2.14)

i.e., the ghost-gluon vertex reduces to the tree-level contribution in this limit as expected.

From eq. (2.13) we can switch to the dressings A(k; p, q) and B(k; p, q) and obtain

B(−p; p, 0)−A(−p; p, 0) = −1 . (2.15)

This relation was noted also, for example, in ref. [70]. Interestingly, it also means that the

transverse dressing is not necessarily zero, because of DAc̄c
t (−p; p, 0) = A(−p; p, 0). Thus

when we calculate A(k; p, q) or DAc̄c
t (k; p, q) it may not vanish for q → 0 and the vanishing

of the radiative corrections to the ghost-gluon vertex for zero ghost momentum is only of

kinematic origin.

1Note that Z̃1 = 1 is automatically true for renormalization schemes based on minimal subtraction

like MS [70] or MiniMOM [71], because all diagrams are finite. In the Landau gauge the M̃OMh and the

MiniMOM schemes are thus equivalent [71].
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In order to calculate the ghost-gluon vertex one can either project out the dressings

to obtain scalar equations, which is most easily done for the DAc̄c
t/l basis, or decompose

the appearing vector integrals into scalar ones, which is the method of choice for the A/B

basis. Here we follow the latter approach. The truncated DSE for the vertex reads then

A(k; p, q) =

1+
Nc g

2

∆(p, k)

∫
r

KAc̄c
1 (k, p, r)Dgh(r2)Dgh

(
(r+k)2

)
Dgl

(
(p−r)2

)
A(r − p; p,−r)A(p− r; k + r,−k −p)

+
Nc g

2

∆(p, k)

∫
r

KAc̄c
2 (k, p, r)Dgh

(
(r−p)2

)
Dgl(r

2)Dgl

(
(r+k)2

)
A(r; p, p− r)A(k + r; p− r,−k − p)

(2.16)

with ∆(p, k) = p2k2 − (p · k)2. The kernels KAc̄c
1 (k, p, r) and KAc̄c

2 (k, p, r) are given in

appendix A. Since the dressing B(k; p, q) is not required for the Landau gauge, we do not

give the corresponding expressions.

2.3 Three-gluon vertex

For the three-gluon vertex we will employ an ansatz. In the past different expressions have

been used. The main guideline in their construction was the correct UV behavior for the

gluon propagator, but also other aspects like quadratic UV divergences in the gluon DSE

played a role, see section 3.1 and, for instance, refs. [22, 26, 30, 72, 73]. Since we use the

transversely projected gluon two-point DSE we only deal with the completely transverse

part of the vertex, which is unrestricted by Slavnov-Taylor identities. Quantitatively the

vertex is expected to contribute to the closing of the gap between DSE and lattice results

for the gluon dressing function in the mid-momentum regime. Another source of missing

strength there are two-loop diagrams, of which one, the so-called squint diagram (the last

one in figure 1) also contains the three-gluon vertex. Using the functional renormalization

group the propagators can be calculated such that this gap practically vanishes [30], but

due to the different structure of the corresponding equations, it can not be inferred how

much additional support in the mid-momentum regime is expected from which source in

DSEs: two-loop diagrams or the dressing of the three-gluon vertex in the gluon loop. First

calculations of two-loop diagrams in DSEs were performed in [74, 75].

The IR behavior of the three-gluon vertex shows some interesting features. For the

scaling type solution it was found that the uniform IR limit, i.e., when all momenta ap-

proach zero simultaneously, obeys the power law (p2)−3κ [19] and that possible kinematic

soft divergences can occur that go like 1− 2κ [5]. However, for the transversely projected

vertex the degree of divergence is reduced to 3/2 − 2κ [6, 7] and such divergences play

no role. For decoupling type solutions no IR divergences in the three-gluon vertex are

expected [5].

In light of the discussion of possible ambiguities in the IR behavior of the solutions

of Landau gauge Yang-Mills theory it is interesting to consider the three-gluon vertex as

obtained with Monte Carlo simulations: while in four dimensions the data does not show

a zero crossing in the IR [13, 76, 77], probably because of too small lattices, the data in

three dimensions becomes negative at low momenta [13]. Also in two dimensions [78] a
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zero crossing is found and additionally the data agrees with the expected power law from

a scaling solution [67, 79]. This is not unexpected, because it has become by now clear

that in two dimensions no decoupling solution exists [67, 80, 81]. However, in three and

four dimensions only the decoupling type solution is found on the lattice and hence the

realization of such a power law would indeed be unexpected. Since no IR singularities

are expected [5], the vertex most likely approaches a constant but negative value at zero

momenta. Further lattice results are therefore desirable for clarification of the exact IR

behavior of the vertex. Based on the qualitative similarity of the propagators of three and

four dimensions we assume that the zero crossing also exists in four dimensions and it is

therefore included in our vertex model here as well. Further evidence in support of this is

presented in section 4 from a DSE calculation of the three-gluon vertex.

The employed construction of the three-gluon vertex is based on the one introduced

in refs. [26, 72, 73]:

DA3
(p, q,−p− q) =

1

Z1

[G(y)G(z)]1−a/δ−2a

[Z(y)Z(z)]1+a
, (2.17)

where Z1 is the renormalization constant of the three-gluon vertex, y = q2, z = (p+q)2 and

δ = −9/44 is the anomalous ghost dimension, related to that of the gluon by 1+γ+2δ = 0.

a is a parameter which is irrelevant in the UV where it drops out. A typical choice is a = 3δ,

which renders the dressing finite at vanishing momenta in case of the scaling solution [72].

For the decoupling type solution the corresponding choice is a = −1. For our construction

described below two observations are important: first, this vertex construction is not Bose

symmetric; the momenta p and q are the external and internal momenta, respectively, in the

gluon loop. Secondly, it contains the inverse of the renormalization constant of the three-

gluon vertex to cancel the Z1 appearing in the gluon loop of the gluon DSE due to the bare

three-gluon vertex. By construction this model ensures the corrected logarithmic running

of the gluon loop according to resummed perturbation theory. However, it also means that

the anomalous dimension of the three-gluon vertex model itself is off by a factor of two. In

earlier works this was remedied by replacing Z1 by a momentum dependent function [22].

Because the correct anomalous dimension requires also contributions of order g4 and higher,

this cannot be reproduced directly with the employed truncation of the gluon DSE and

we will use a similar renormalization group improvement term. Other models with Bose

symmetry and the correct anomalous dimension of the vertex were used in ref. [82], in

the context of the quark-gluon vertex DSE, and in ref. [14] for the Yang-Mills propagator

system. However, in the latter the anomalous dimension of the gluon propagator was only

reproduced by interpolating between these models in the IR and the one of eq. (2.17)

with a = 0 in the UV [83] so that in effect the employed model did not have the correct

anomalous dimension.

We first address the issue of Bose symmetry. Naively adding factors of G(x) and Z(x)

with x = p2 does not work, but instead we use a Bose symmetric combination of momenta:2

DA3,UV(p, q,−p− q) = G

(
x+ y + z

2

)α
Z

(
x+ y + z

2

)β
. (2.18)

2We acknowledge discussions with Christian S. Fischer and Stefan Strauss who employ a similar con-

struction.
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In order to determine α and β we demand that the vertex has the correct anomalous

dimension:

δ α+ γ β = γ3g . (2.19)

From the Slavnov-Taylor identity Z1 = Z3/Z̃3 we know γ3g = 1+3δ = 17/44. Furthermore

we require IR finiteness, i.e.,

δc α+ δA β = 0 , (2.20)

where δc and δA are the IR exponents of the ghost and gluon propagators, respectively.

This leads for the scaling solution to α = −2 − 6δ and β = −1 − 3δ. For decoupling we

have α = 3 + 1/δ and β = 0. Note that IR finiteness is not per se required, since we will

control the IR behavior by another term, but for the current model it is advantageous that

DA3,UV(p, q,−p− q) does not vanish at zero momentum.

Next, we modify the IR behavior in order to incorporate the zero crossing expected

from lattice calculations by the following expression:

DA3,IR(p, q,−p− q) = hIRG(x+ y + z)3
(
f3g(x)f3g(y)f3g(z)

)4
, (2.21)

with the damping factors

f3g(x) :=
Λ2

3g

Λ2
3g + x

. (2.22)

A similar construction to obtain the zero crossing was employed in two dimensions [67].

The exponent of the damping functions is 4 in order to reproduce the fast change seen

in three-dimensional lattice calculations. The impact of this IR part is controlled by the

two parameters hIR and Λ3g. Naturally hIR is negative to produce a zero crossing. From

currently available lattice data [13] one can estimate bounds for the parameters, which,

however, is not a straightforward procedure because the conversion from internal to physical

units can only be done a posteriori. The total vertex employed in this study is given by

DA3
(p, q,−p− q) = DA3,IR(p, q,−p− q) +DA3,UV(p, q,−p− q) . (2.23)

Finally, we want to incorporate the correct UV behavior of the gluon propagator by

adding a corresponding improvement term in the gluon loop. As mentioned above, this is

necessary because the bare vertex in the gluon loop does not give any contribution to the

anomalous dimension. Note that this problem would be absent, if we had both three-gluon

vertices dressed. This is the case for the functional renormalization group [30] and also for

equations of motion obtained from nPI effective actions [84]. Earlier studies accounted for

this in the construction of the three-gluon vertex model by using an anomalous dimension

a factor two too large [26, 30, 72, 73]. However, since we want to use lattice calculations

as input to improve on the vertex model, we have to split the renormalization group

improvement term and the three-gluon vertex model. In analogy to the three-gluon vertex

model we choose a Bose symmetric expression:

DA3

RG(p, q,−p− q) =
1

Z1
DA3,UV(p, q,−p− q) . (2.24)
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This term and the three-gluon vertex model are combined in the function ΓA
3
(p, q,−p− q)

in the gluon DSE:

ΓA
3
(p, q,−p− q) = DA3

(p, q,−p− q)DA3

RG(p, q,−p− q) (2.25)

Here it becomes obvious why we required IR finiteness of the UV part, because otherwise

the whole expression could vanish for zero momenta. The presented model for the three-

gluon vertex is compared with lattice data in section 4.

3 Methods

3.1 Quadratic divergences in the gluon DSE

The use of a UV regularization which is not gauge invariant entails that the gluon DSE is

plagued by quadratic divergences. Several ways of dealing with them have been employed

in the literature. For example, subtractions at the level of the integrands [72, 73] or

modifications of the vertices [30] were used. Another possibility is the projection with the

so-called Brown-Pennington projector [14, 83, 85], which, however, leads to the dependence

on the longitudinal part of the ghost-gluon vertex. It also introduces a spurious dependence

on an additional gauge parameter [2, 86], which should be irrelevant in the Landau gauge.

Thus we employ the usual transverse projection.

Here we use the following method to handle the quadratic divergences: instead of

adding an additional term in the kernel of the gluon loop to subtract the quadratic diver-

gences of both loops as done, for instance, in refs. [72, 73], we add such terms for each loop

separately. This has, for example, the advantage that truncations that take only the ghost

loop into account can be used. Another benefit is that a standard fixed-point iteration be-

comes a viable solution method, because if the quadratic divergences are subtracted only

via the gluon loop in this case, instabilities are introduced in the iterative procedure and

no solution is found [87]. This made the Newton method a crucial aspect of most previous

solution processes.

Since quadratic divergences are a problem of the UV regime, we want to avoid any

interference with the IR part. Thus the additional terms are suppressed in the IR by a

damping factor. The corresponding expressions can be found in appendix B.

3.2 Solution method

The system of the three DSEs is split into two subsystems, which are iterated in turn

until a given precision is reached. The first subsystem consists of the propagator DSEs, for

which we employ the Newton method. This method is used throughout the literature and

we refer for details, for example, to refs. [23, 26, 72, 87, 88]. Alternatively we used a direct

fixed point iteration for all three equations. We solved the equations on CPUs, but note

that recently it was demonstrated that implementing such a system on GPUs can lead to

a significant speedup [89].

For the ghost-gluon vertex a standard fixed point iteration is employed. Therefor

we put the ghost-gluon dressing function A(k; q, p) on a grid and use linear interpolation

– 11 –



J
H
E
P
0
4
(
2
0
1
3
)
1
4
9

for intermediate points. If points outside the grid are encountered we take the value at

the boundary, since the vertex is constant in the IR and the UV. The validity of this

procedure can also be confirmed a posteriori from the results. As variables we choose

the momenta squared of the gluon and the anti-ghost, k2 and q2, respectively, and the

cosine of the angle, ct = cos θ, between these two momenta. The allowed intervals for

the variables are then [0,∞], [0,∞] and [−1, 1]. If we used a basis with three momenta

squared, the intervals would depend on the values of the other variables through momentum

conservation which would complicate the calculations unnecessarily; hence this choice is

here more advantageous. Since the dressing function of the ghost-gluon vertex has to be

calculated on a three-dimensional grid, the computing time increases considerably when

compared with the propagator system. Furthermore, the kernels are more complicated and

the integrations are three- instead of two-dimensional, with two angle variables θ1 and θ2.

For the propagators in total three integrations have to be performed, because the radial

momentum integration is split at the value of the external momentum. The integration

of the vertex requires similar splittings [18] at r2 = p2 with θ2 = 0 and at r2 = k2 with

θ1 = π and θ2 = π − θ, where r is the radial integration variable and θ1 and θ2 are the

angle integration variables. Thus in total six integrations have to be done.

The two subsystems are iterated in turn until the required precision is reached. The

framework CrasyDSE [87] was employed for all calculations. Color factors were used

throughout for the gauge group SU(3).

4 Effects of the three-gluon vertex

In this section we illustrate the quantitative effects of the three-gluon vertex model and

investigate the impact of the position of its zero crossing by considering the system of

propagators. The ghost-gluon vertex is set to tree-level. By construction the UV behavior

of the propagators is not subject to any change. The most crucial modifications will be

seen in the mid-momentum regime. For the IR only quantitative changes are expected,

like a varying value of the gluon propagator at zero momentum.

We start by comparing three different three-gluon vertex models: the one of eq. (2.17),

the Bose-symmetrized one (2.18), and the IR enhanced one, viz. eq. (2.23) with a non-zero

hIR. The results for a decoupling type solution are shown in figure 3. As can clearly be

seen, both the Bose symmetrization and the IR enhancement enlarge the bump in the gluon

dressing function. Also the zero value of the gluon propagator changes and raises to higher

values. The ghost propagator, on the other hand, remains nearly unaffected. In section 5

we will compare the propagators also to lattice results and will see that the enlarged bump

considerably reduces the gap between DSE and lattice results.

What we need for the three-gluon vertex model are values for its parameters. Ideally we

could get them from lattice data. However, due the presently large uncertainties this is still

somewhat ambiguous. Thus we test several values and their influence on the propagators.

For simplicity we fix the parameter hIR = −1 and only vary Λ3g. In figure 4 we show

results for values of Λ3g between 0 and 1.7 GeV. The choice Λ3g = 0 GeV means that the

IR enhanced part is dropped. In addition to the propagator dressing functions we also show
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Figure 3. Comparison of different three-gluon vertex models: model of eq. (2.17) (blue/dotted

line), Bose symmetrized model (eq. (2.23) with hIR = 0; green/dashed line), Bose symmetrized

model with IR enhancement (eq. (2.23) with hIR = −1, Λ3g = 1.7 GeV; red/continuous line). Top:

gluon dressing function (left) and propagator (right). Bottom: ghost dressing function, for which

the three lines almost lie on top of each other.

a comparison of the three-gluon vertex model with lattice data at the symmetric point.

This data is for SU(2), but since it is known that the propagators look extremely similar

for SU(2) and SU(3) [90] one might expect the same for the three-gluon vertex. The two

other available configurations (orthogonal momenta of equal magnitude, or one momentum

vanishing) look similar. One can see from the lattice data that the turnover to negative

values has to proceed rather rapidly. This is the reason why the exponent of the damping

functions in eq. (2.21) is chosen as 4. For the plot of the three-gluon vertex in figure 4

the final propagators were used in the model. As can be seen, the shown models have a

zero crossing at higher values than indicated by the data. Such high values were chosen

to demonstrate the effect it has on the gluon dressing function: only for a zero crossing

at momenta high enough the gluon dressing is affected. This is evident in the plot of the

gluon dressing functions where the first three curves, corresponding to no zero crossing and

crossings below 600 MeV, show not much difference. For higher values of the zero crossing

the bump increases faster. Again we see no effect on the ghost dressing function and only

a small one on the zero momentum value of the gluon propagator.

The observations on the dependence on the place of the zero crossing lead to the

conclusion that the actual value of the three-gluon vertex in the deep IR is not very

important for the propagators. Indeed, for values of up to roughly 0.7 GeV for Λ3g we

do not find any difference to the propagators obtained with a three-gluon vertex without
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Figure 4. Comparison of different parameters for the three-gluon vertex model: hIR = −1, Λ3g =

0, 0.86, 1.08, 1.31, 1.53, 1.7 GeV. Top left : symmetric configuration of the vertex model. Thick

lines from left to right correspond to rising values of the parameter Λ3g. The thin line is the IR

leading contribution of the three-gluon vertex calculated from its DSE showing a zero crossing

at very low momenta. Individual points are lattice data from ref. [13]: red circles correspond to

N = 16/β = 2.2, green squares to N = 16/β = 2.5, blue diamonds to N = 22/β = 2.2 and orange

triangles to N = 22/β = 2.5. Top right : ghost dressing function. All curves lie almost on top of

each other. Bottom: gluon dressing function (left) and propagator (right). Curves from low to high

correspond to values of Λ3g from low to high.

zero crossing. This is not too surprising considering that the three-gluon vertex in the

gluon loop is multiplied by two gluon propagators. For the scaling solution this leads to

an IR suppression of (p2)κ and for decoupling solutions to (p2)2.

In order to shed more light on the question of the existence of a zero crossing, we

calculated the IR leading part of the three-gluon vertex for the symmetric momentum

configuration. In the IR the so-called ghost triangle is the dominant contribution. Since

it contains no three-gluon vertices there are no back coupling effects and the calculation

consists of only one iteration. Of course, the mid-momentum and UV behavior are not

described accurately in this rough truncation. Using the ghost propagators from the prop-

agator calculations and bare ghost-gluon vertices, the ghost triangle indeed yields a negative

contribution leading to a zero crossing. The inclusion of the other diagrams, which are sup-

pressed in the IR, may change its position slightly but they will not make it disappear. A

more detailed investigation of the three-gluon vertex was done in ref. [67] for two dimen-

sions. There it was found that gluonic diagrams indeed do not affect the IR part. Note

that the ghost propagator is hardly affected by the different three-gluon vertex models and

consequently all curves for the ghost triangle contribution are essentially the same.
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5 Influence of a dynamical ghost-gluon vertex

The ghost-gluon vertex is central for any truncation scheme of functional equations in the

Landau gauge, where usually a bare vertex is employed. Deviations from tree-level might

yield quantitative corrections in the mid-momentum regime, because here the difference to

a bare vertex is largest. In this section we add the ghost-gluon vertex dynamically to the

set of equations to be solved in order to assess how much quantitative change this entails

for the propagators. For the three-gluon vertex we will use the model of eq. (2.23).

5.1 Propagators

In order to obtain a solution for the DSEs consisting of the propagator and the ghost-gluon

vertex equations, the three-gluon vertex model plays a crucial role. For example, using the

model of eq. (2.17) it turns out that the gluon loop can dominate over the ghost loop in the

gluon DSE which results in a negative gluon dressing function. Thus the changes induced

by the Bose symmetrization and the IR part are required in order to obtain a solution. Of

course, the inclusion of two-loop diagrams might eventually change that. However, since

they are neglected here, we take them into account indirectly by choosing appropriate

parameters for the three-gluon vertex model. Thus we define what we call the optimized

effective three-gluon vertex model as eq. (2.23) with the parameters chosen such that the

propagators are reproduced as good in agreement with lattice data as possible. Note that

other sources of deviations are neglected tensor structures of the three-gluon vertex or

the truncation of the ghost-gluon vertex DSE. All these effects are included effectively in

our choice of parameters, but without further studies we cannot say how much each one

contributes.

We compare the resulting propagators to lattice results in figure 5. For reference we

also show the result from a propagator only calculation with the three-gluon vertex of

eq. (2.17). Clearly, the gap between lattice and DSE results in the mid-momentum regime

can be considerably diminished. The changes for the ghost dressing are small. For the

gluon propagator the IR part looks overenhanced. However, this region is very sensitive to

the scale setting, which was done here by placing the maximum of the gluon dressing at

the same position as in the lattice data. This implies that we have fixed the scale to be the

same as in the corresponding lattice simulations. There, the coupling defined by [21, 22]

α(p2) = α(µ2)G(p2)2Z(p2) , (5.1)

where α(µ2) = g2/4π, corresponds to Λ
Nf=0

MS
of roughly 260 MeV [91, 92]. The correspond-

ing plot can be found in figure 5. We obtain good agreement with the coupling from the

lattice, for example we have α(178.5 GeV2) = 0.143 and α(1785 GeV2) = 0.110,3 which

is in good agreement with the Nf = 0 results of roughly 0.142(2) and 0.107(1), respec-

tively [92]. The Schwinger function of the gluon propagator, which shows clear signs of

positivity violation, can be found in ref. [20]. The corresponding scaling solution is shown

in figure 6.

3These momentum values correspond to 1000 and 10000 in units of the Sommer scale r20.
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Figure 5. Comparison of the results for the gluon propagator dressing function Z(p2), the

gluon propagator Z(p2)/p2 and the ghost dressing function G(p2) with lattice data [12]. The

red/continuous line was obtained with a dynamic ghost-gluon vertex and the optimized effective

three-gluon vertex, eq. (2.23) with parameter set 2 of table 1. For reference the green/dashed line is

shown, which was obtained with the three-gluon vertex model of eq. (2.17) and a bare ghost-gluon

vertex. Lattice data is for β = 6 and lattice sizes of L = 32 (blue circles) and L = 48 (orange

squares). The lower right plot shows the corresponding coupling calculated via eq. (5.1) from the

propagators obtained from the DSEs.
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Figure 6. The gluon propagator dressing function Z(p2) and the ghost dressing function G(p2)

with a dynamic ghost-gluon vertex for decoupling (red/continuous line, same as in figure 5) and

scaling (green/dashed line). The parameter Λ3g for the latter is 2.05 GeV.

Assessing the effect on the propagators of the ghost-gluon vertex alone is not straight-

forward, because the three-gluon vertex model depends on the propagators which are in

turn changed by the ghost-gluon vertex. Thus even for the same parameters the model is

not the same with or without a dynamic ghost-gluon vertex. The following comparison is
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Figure 7. Comparison of the results for the gluon propagator dressing function Z(p2), the gluon

propagator Z(p2)/p2 and the ghost dressing function G(p2). A dynamic (red/continuous line,

parameter set 1) and a bare (green/dashed line, parameter set 2) ghost-gluon vertex are used

together with the corresponding optimized effective three-gluon vertices. The blue/dotted line

(parameter set 3) stems from a calculation using the same parameters as in the dynamic calculation

and a bare ghost-gluon vertex. See table 1 for details on the parameter sets.

parameter set hIR Λ3g ghost-gluon vertex

1 −1 2.1 GeV dynamic

2 −1 1.8 GeV bare

3 −1 2.1 GeV bare

Table 1. Used parameters for the three-gluon vertex model. Sets 1 and 2 correspond to the

optimized effective three-gluon vertex model for the respective choice of the ghost-gluon vertex.

therefore to be considered with a grain of salt. In figure 7 we show three solutions: the

one with a dynamic ghost-gluon vertex and the optimized effective three-gluon vertex from

above and two others with a bare ghost-gluon vertex. When using the same parameters

with a bare ghost-gluon vertex, the mid-momentum enhancement of the gluon dressing

function is too strong. Adjusting the parameters to the bare ghost-gluon vertex, however,

shows that the three-gluon vertex model can incorporate even effects of the ghost-gluon

vertex, as this solution then agrees very well with the one obtained from the dynamic

ghost-gluon vertex. Furthermore one can also see that the ghost dressing function is al-

most unaffected by changing the three-gluon vertex parameters and that it is only slightly

modified by the dynamic ghost-gluon vertex. The employed parameters for the three-gluon

vertex model are summarized in table 1.
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5.2 Ghost-gluon vertex

Next we will present results for the ghost-gluon vertex. Up to now numerical non-per-

turbative investigations of the ghost-gluon vertex were only done for specific momentum

configurations [3, 13] or were restricted to the IR part [6]. In ref. [9] a ghost-gluon vertex

model based on an operator product expansion [8] was adapted such as to properly de-

scribe the ghost dressing via its DSE. Qualitatively the vertex model with the determined

parameters resembles lattice results at least for the momentum configuration of vanishing

ghost momentum. It also contains a peak at intermediate momenta which is, however,

somewhat higher than in Monte Carlo simulations and here. Moreover, it should be noted

that the choice of parameters is not necessarily unique and while it leads to good results

for the ghost propagator, it might not be an adequate description, for instance, in the

gluon DSE. In addition, the model of ref. [9] simplifies the original proposal in ref. [8] by

setting the ghost momentum to zero what should affect the parameters. Here we follow

another approach and obtain the complete momentum dependence from a self-consistent

calculation. Thereby it turns out that the structure is in general as simple as for special

momentum configurations: the vertex is one for large momenta, develops a small peak in

the intermediate momentum regime and then settles for a constant value in the IR. To

illustrate this we show a few exemplary momentum configurations in figure 8. Additionally

typical one-scale configurations are shown in figure 9. For the so-called asymmetric mo-

mentum configuration, where the gluon momentum vanishes, we compare our result with

lattice data. More lattice results with better statistics exist for SU(2) [13]. However, in

this SU(2) data the peak of the vertex dressing occurs at somewhat larger momenta than in

our calculations. Whether this is a genuine difference between SU(2) and SU(3), whether

it indicates an inconsistency in the scale setting or whether the effect might be due to our

truncation employed for the vertex DSE remains to be further investigated.

In addition to the ghost-gluon vertex obtained with the optimized effective three-

gluon vertex model, we show in figure 9 for comparison also a result obtained with the

same hIR but a considerably larger Λ3g. Both results yield a very similar ghost-gluon

vertex. Therefore we conclude that the vertex is rather insensitive to the three-gluon

vertex model in our truncation, although this could be expected as an indirect effect via

the gluon propagator. If we proceeded one step further in the truncation of the ghost-gluon

vertex DSE, by including the dressed three-gluon vertex, this will most likely change. If

in a next step the three-gluon vertex is calculated dynamically this should yield a viable

improvement of the ghost-gluon vertex truncation in the future.

The system of equations can also be solved for scaling boundary conditions, viz.

1/G(0) = 0 [2]. By varying the boundary condition to a finite value a family of decoupling

solutions can be obtained [5, 30, 53]. Above this value was chosen such to reproduce the

lattice results for the ghost dressing function. Up to now it has not been investigated

numerically if this ambiguity in the solutions also persists for the vertices. Qualitatively

no difference is expected for the ghost-gluon vertex [5]: it should become IR finite for both

types of solutions. Any difference must therefore be of quantitative nature. Indeed we find

such a difference as illustrated in figures 8 and 10 for selected momentum configurations:
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Figure 8. Selected momentum configurations of the ghost-gluon vertex for a decoupling solution.

Fixed momentum (left) or angle (right) as indicated at the top of the plots.
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Figure 9. The ghost-gluon vertex for one-scale momentum configurations. The red continuous

line is the solution with the optimized effective three-gluon vertex (hIR = −1 and Λ3g = 2.1 GeV),

the green dashed one was obtained with the same hIR but for Λ3g = 2.6 GeV. Left : symmetric

momentum configuration p2 = q2 = k2. Right : the configuration with vanishing gluon momentum

in comparison with lattice results from ref. [12] (blue circles: N = 48 at β = 6).
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Figure 10. Selected momentum configurations of the ghost-gluon vertex for the scaling solution.

Fixed momentum (left) or angle (right) as indicated at the top of the plots.

for scaling the IR value of the ghost-gluon vertex is larger than one, but for decoupling it is

exactly one, i.e., all diagrams vanish in this limit. This can be understood from IR power

counting of the dressing functions: in the Abelian diagram we have two ghost propagators

and one gluon propagator. We get in the limit that all external momenta approach zero

with one scale that the diagram scales as p2 for decoupling, i.e., it vanishes, while for scal-

ing the IR exponent is −2κ + 2κ = 0. Thus the diagram is IR finite. The non-Abelian

diagram with a bare three-gluon vertex is IR suppressed for both types of solutions. It is

important to note that our result of a ghost-gluon vertex not approaching one in the IR

is not in conflict with Taylor’s theorem, since it only concerns the longitudinal dressing

function as discussed in section 2.2.

6 Summary and outlook

In the present work we have extended typical truncation schemes of DSEs by including

the ghost-gluon vertex dynamically together with the propagators in the calculations. The

employed DSE truncations contain the IR and UV leading diagrams. The results for
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the vertex are in good agreement with available lattice data: basically it stays flat with

a small bump around 1 GeV. The influence on the propagators is most visible in the

mid-momentum regime. As far as the different types of solutions for the propagators are

concerned, this ambiguity is also present at the level of the vertex: for decoupling the

vertex approaches one in the IR, while a scaling vertex receives IR contributions from

the IR leading diagram thus settling at a value larger than one for asymptotically small

momenta.

The second improvement concerns the three-gluon vertex: while in many truncation

schemes it is adjusted so as to obtain the correct UV anomalous dimension for the gluon

propagator, we have devised a model that respects Bose symmetry and qualitatively cap-

tures the behavior seen in lattice calculations, especially the fact that its dressing function

turns negative in the IR. Since only two- and three-dimensional lattice data is unequivocal

in this respect, we have calculated the IR leading contribution of the three-gluon vertex at

the symmetric point. We did find a zero crossing, but at momenta lower than the lowest

available momentum in lattice simulations. Thus the zero crossing itself is not relevant

for the gluon DSE as all contributions in this regime get suppressed by the two attached

gluon propagators. This is also corroborated by an analysis of the influence of the IR part

in our model. However, the Bose symmetrization of the vertex leads to an increase of

the mid-momentum strength of the gluon propagator. By choosing the parameters of the

model appropriately, we could effectively incorporate the effects of two-loop diagrams in

the mid-momentum regime. With this optimized effective three-gluon vertex we were able

to close the gap to lattice data.

An important next step in extending the truncation scheme is certainly the three-gluon

vertex. If included self-consistently one can then disentangle contributions due to two-loop

diagrams from the gluon loop. For the former the three-gluon vertex will also be required as

it is contained in the so-called squint diagram. Furthermore, an extension of the truncation

of the ghost-gluon vertex DSE could be to use the DSE with the bare vertex attached to

the ghost leg. This then includes the three-gluon vertex as well. As an alternative to DSEs

it might be interesting to look also at the ghost-gluon vertex equation of motion from an

nPI effective action, where the bare vertices get dressed. This might compensate for the

neglected diagrams in the present truncation.

In summary, the presented extension of a standard truncation scheme confirms the

qualitative reliability of previous schemes. Furthermore, it shows that by including higher

vertex functions DSEs can successfully be used to obtain quantitative results, although the

underlying system of equations is infinitely large. Thus DSEs provide a rather satisfying

description of the non-perturbative regime which can be systematically improved.
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A Kernels

The kernel KG of the ghost DSE given in eq. (2.1) is

KG(p, q) =
x2 + (y − z)2 − 2x(y + z)

4xy2z
(A.1)

with x = p2, y = q2 and z = (p + q)2. The two kernels Kgh
Z and Kgl

Z of the gluon DSE

eq. (2.2) read

Kgh
Z (p, q) = −x

2 + (y − z)2 − 2x(y + z)

12x2yz
, (A.2)

Kgl
Z (p, q) =

1

24x2y2z2

(
x4+8x3(y+z)+x2(−18y2−32yz−18z2)

+(y−z)2(y2+10yz+z2)+2x(y+z)(4y2−20yz+4z2)
)
. (A.3)

The appearance of spurious quadratic divergences is discussed in appendix B. The gist is

that they are subtracted via additional terms that contain a damping function such the IR

behavior is not influenced. For the respective damping scales in the ghost and gluon loops

we used L2
UV = 10 and 2 in internal units for the ghost and gluon loops. The physical

values can only be determined at the end of the calculation when the scale is set.

Untruncated DSEs respect multiplicative renormalizability. The employed truncation

and the method for subtracting the quadratic divergences do not change this as illustrated

in figure 11. There we show the results for the dressings and the running coupling if

different values for α(µ2) are chosen. This indirectly fixes the renormalization point µ2.

For the comparison the values of the damping scale parameters LUV must have the same

physical values, which can only be determined a posteriori.

The kernels of the ghost-gluon vertex DSE eq. (2.16) read:

KAc̄c
1 =

(k · r p · k−k2p · r)
(
(p · r)2+k · r(−p2+p · r)−p2r2+p · k(p · r−r2)

)
2(p−r)4r2(k+r)2

, (A.4)

KAc̄c
2 =

1

(p−r)2r4(k+r)4

(
(k · r p · k−k2 p · r)

(
(k · r)2p · r + r2

(
p · k p · r+(p · r)2−p2r2−p · k r2

)
+k2

(
k · r p · r−(p2+p · k−p · r)r2

)
+k · r

(
p · k p · r+(p · r)2−2p2r2−2p · k r2+p · r r2

))
+(k2p2−p · k2)

(
k · r(2k · r p · r−k · r r2−p · k r2)+k2

(
k · r p · r+r2(−p · k−p · r+r2)

)))
.

(A.5)

They were generated automatically using the program DoFun [95, 96] and implemented in

C++ with CrasyDSE [96]. The kernels given here and those for B(k; p, q) were compared

with those given in ref. [18]. Except for a minus sign in front of the Abelian diagram the
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Figure 11. Test of multiplicative renormalizability, here for the scaling solution: the gluon and

ghost dressing functions (top left and right, respectively) depend on the renormalization point,

which is indirectly fixed by the choice of α(µ2). The red/continuous curve is for α(µ2) = 1,

the green/dashed one for α(µ′2) = 0.5. The running coupling (bottom) is renormalization group

invariant and thus does not change. The small deviation in the UV is a numeric artifact: the

physical values for LUV do not match exactly, because the scale is set at the end and we can only

get approximately equal values.
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Figure 12. Dressing functions A(k; p, q) and B(k; p, q) after one iteration for the same momentum

configurations and the same analytic expressions for the propagators as in refs. [3] from our kernels,

i.e., with the signs of the kernels of the Abelian diagram changed. The main differences arise in the

IR, where the Abelian diagram is dominant.

expressions agree. We repeated the calculation of ref. [18] with our kernels. The results

are shown in figure 12. Note that the different sign leads to an IR value which also differs

from that in ref. [18].
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B UV behavior of the propagator Dyson-Schwinger equations

In the asymptotic UV regime the propagator dressing functions have a logarithmic

behavior:

G(x) = G(s)

(
ω log

(
x

s

)
+ 1

)δ
, (B.1)

Z(x) = Z(s)

(
ω log

(
x

s

)
+ 1

)γ
, (B.2)

where δ and γ are the anomalous dimensions and s is some high UV momentum. If

both one loop diagrams are taken into account, ω is 11Ncα(s)/12π, δ = −9/44 and γ =

−13/22 [72, 73]. We will show how these values emerge from the propagator DSEs with

the model for the three-gluon vertex.

We follow the calculation outlined in ref. [23], where the anomalous dimensions for the

ghost-loop only truncation were calculated using the Brown-Pennington projector [85] for

the gluon equation. For illustration purposes we use here as in refs. [72, 73] a generalized

projector:

P ζµν(p) = gµν − ζ
pµpν
p2

. (B.3)

At the end we set ζ = 1 to recover the transverse projector. Acting with this projector

onto the gluon DSE yields:

1

Z(p2)
= Z̃3 +Nc g

2

∫
q
G(q2)G

(
(p+ q)2

)
Kgh,ζ
Z (p, q)

+Nc g
2

∫
q
Z(q2)Z

(
(p+ q)2

)
Kgl,ζ
Z (p, q)ΓA

3
(p, q,−p− q) (B.4)

with the new kernels

Kgh,ζ
Z (p, q) =

2x(y + z) + x2(−2 + ζ)− (y − z)2ζ

12x2yz
, (B.5)

Kgl,ζ
Z (p, q) =

z2ζ

24x2y2
+
z(5x− xζ + 4yζ)

12x2y2
+
x2(−19 + ζ) + 2xy(−17 + ζ)− 18y2ζ

24x2y2

+
(x− y)2(x2 + 10xy + y2ζ)

24x2y2z2
+

4x3 + xy2(−17 + ζ) + 4y3ζ − x2y(15 + ζ)

12x2y2z
(B.6)

with x = p2, y = q2 and z = (p+ q2). As P ζ also projects onto the longitudinal part of the

ghost-gluon vertex, we already replaced it at this point by the bare expression.

Here we are interested only in high external momenta p2, for which the integral is

dominated by the region x < y < L2, where L is a UV cutoff. Since the dressing functions

G(p2) and Z(p2) vary only slowly for high momenta, we replace (p+ q)2 by q2. This allows
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to calculate the angle integrals analytically:

1

G(p2)
→ Z3 +

Nc g
2

64π2

∫ L2

x
dy
x− 3y

y2
Z(y)G(y) (B.7)

1

Z(p2)
→ Z̃3 +

Nc g
2

192π2

∫ L2

x
dy
−y(ζ − 4) + x(ζ − 2)

x y
G(y)G(y)

+
Ncg

2

384π2

∫ L2

x
dy

7x2 + 12y2(−4 + ζ)− 2xy(24 + ζ)

xy2
G(y)2αZ(y)2+2β. (B.8)

Here the Bose symmetric three-gluon vertex including the renormalization group improve-

ment term from eq. (2.23) but without IR part is used. The quadratically divergent parts

are those proportional to ζ − 4. We deal with them by adding terms to the kernels that

cancel them. Since this is a UV problem and we do not want these terms to affect the IR or

mid-momentum regime they are multiplied by appropriate damping factors. The kernels

become

Kgh,ζ
Z (p, q)→ Kgh,ζ

Z (p, q)− 1

12
(4− ζ)

1

xy
fUV(y) , (B.9)

Kgl,ζ
Z (p, q)→ Kgl,ζ

Z (p, q) +
1

2
(4− ζ)

1

xy
fUV(y) , (B.10)

where

fUV(y) = tanh

(
y

L2

)
. (B.11)

Using these kernels every loop takes care of its own quadratic divergences. This approach

is similar to the one adopted in ref. [30], where the vertices were modified for this purpose.

Since the quadratic divergences are only introduced due to the use of a gauge-variant

regularization, they are completely artificial and can consequently be subtracted as done

here. However, such a subtraction is not unique and can possibly change the finite parts.

Thus we choose the parameter L in an interval for which the results depend least on it.

Next we discuss the parameters α and β. In order to reproduce the expected UV

behavior, they have to fulfill the following condition:

2δ = 2α δ + γ (2 + 2β) . (B.12)

In order to fix them completely, we demand that this part of the vertex becomes finite in

the IR, so that it does not interfere with the IR enhanced part, eq. (2.21). i.e.,

β = 0 (B.13)

for decoupling and

2β = α (B.14)

for scaling. For the decoupling and scaling solutions we obtain then α = 3 + 1/δ, β = 0

and α = −2− 6δ, β = −1− 3δ, respectively.

– 25 –



J
H
E
P
0
4
(
2
0
1
3
)
1
4
9

The values for δ and γ can be obtained by performing the final integral after plugging

in the perturbative expressions from eqs. (B.1) and (B.2) with s chosen such that G(s) =

Z(s) = 1:(
ω log

(
x

s

)
+1

)−δ
= Z3−

3Nc g
2

64π2(1+γ+δ)ω

[(
1+ω log

(
L2

s

))1+γ+δ

−
(

1+ω log

(
x

s

))1+γ+δ]
(B.15)(

ω log

(
x

s

)
+1

)−γ
= Z̃3+

(
(ζ−2)−(24+ζ)

)
Nc g

2

192π2(1+2δ)ω

[(
1+ω log

(
L2

s

))1+2δ

−
(

1+ω log

(
x

s

))1+2δ]
.

(B.16)

The dependence on ζ cancels between the two loops. The terms divergent for L → ∞
are canceled by the renormalization functions Z3 and Z̃3. From the rest the consistency

conditions

1 + γ + 2δ = 0 , (B.17)

3Nc g
2

64π2(1 + γ + δ)ω
= 1 , (B.18)

13Nc g
2

96π2(1 + 2δ)ω
= 1 (B.19)

follow. We obtain for the anomalous dimensions and ω:

δ = − 9

44
, (B.20)

γ = −13

22
, (B.21)

ω =
11α(s)Nc

12π
, (B.22)

with α(s) = g2/4π.
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