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1 Introduction

The AdS/CFT duality is a brilliant concept that allows us to describe strongly coupled

conformal field theories with their gravity duals [1–3]. Certainties of this correspondence

have been confirmed in so many examples, and it has been applied to various theories with

much success. It is tempting to use this powerful tool to study strongly coupled systems

with physical importance.

Recently, the applications of the AdS/CFT duality to condensed matter physics have

been intensively investigated.1 For example, superconductivity is modeled by gravity duals.

First, it was pointed out that the black holes in AdS can accommodate scalar hairs [11]: a

scalar field can have nonzero condensate outside the horizon of the black holes if tempera-

ture is sufficiently low. Based on this idea, a holographic model of superconductivity was

then proposed in [12], and many generalizations were considered. (For instance, see [13–

16]. See also references in [4–10].) Since gravity duals describe strongly coupled systems,

it is hoped that holographic superconductors would unveil the mechanism of high-TC su-

perconductivity.

In condensed matter systems, considering the effect of impurities is often important

since their presence can drastically change the physical properties of the systems. Im-

purities can be used to control the conductivity of semiconductors. In superconductors,

systems can show gapless superconductivity in the presence of impurities. Apart from such

practical applications, it also generates physically interesting phenomena like Kondo effect.

In this paper, we study the effect of impurities for strongly coupled system using

the gravity dual. We consider an s-wave holographic superconductor where two vector

fields Aµ and Bµ are introduced in the AdS space: Aµ is dual to the conserved current

1For reviews, see [4–10].

– 1 –



J
H
E
P
0
4
(
2
0
1
3
)
1
2
8

in the boundary identified as the weakly-gauged electromagnetic field in the context of

superconductivity, while the other is massive and dual to impurities. More concretely, we

assume that the impurities have another type of charge carriers like a hole, for instance,

where the hole number is not necessarily conserved due to the capturing of conduction

electrons. So we assume that the latter is dual to the massive gauge field Bµ. We postulate

a gauge invariant coupling term to describe the interaction between the two species.

The model we consider was mentioned in [17], where the massive vector field could

be introduced as impurities, but it was integrated out assuming that the impurities were

infinitely heavy. If the mass is finite, the field decays not exponentially but by a power law

at the asymptotic AdS boundary. Therefore, we do not integrate out the massive field, and

solve the model explicitly in order to focus on the dynamics in the presence of the massive

vector field. Our result will show that the mass gap of the superconductor disappears due

to the interaction.

The rest of this paper is organized as follows. In section 2, we study the model. The

action and the setups for numerical computations are provided in section 2.1. Numerical

results are shown in section 2.2. Some further possibilities of the model are discussed

in section 2.3. Comments on the normal phase are given in section 3. In section 4, we

reexamine the strategy of [17], and discuss the relation of it to ours. We conclude this

paper with future perspectives in section 5.

2 Impurity degrees of freedom by a massive vector field

We consider a holographic superconductor where an extra massive vector field is introduced

as impurities.

2.1 The model

We consider a model where a massive vector field is introduced into the s-wave holographic

superconductor of [12]. The action is2

S =

∫
d4x

√−g

(
− 1

4
FµνF

µν − |∂µΦ− iAµΦ|2 −M2Φ2

− 1

4
GµνG

µν − m2

2
BµB

µ − c

2
FµνG

µν

)
, (2.1)

where F = dA and G = dB. The scalar field Φ is charged only under Aµ, and there is

no direct coupling between Φ and Bµ. Here m2 is the mass of Bµ. It might be possible

to consider to generate this mass by some Higgs mechanism, but here we would like to

start from the Proca action for simplicity. The scalar mass is chosen to be M2 = −2 for

convenience.

The action (2.1) has an interaction term between Fµν and Gµν . These vector fields

are dual to two currents with different dimensionality, and this interaction represents a

2We set the gauge coupling of Aµ as e = 1. Some other works introducing another “conserved” U(1)

gauge field to the s-wave holographic superconductor with different motivations to ours can be found in [18–

20], where the interaction term we consider was not considered.
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coupling of the two currents [17]. One of the currents is conserved fermion number, and

Aµ is identified as the gauge field of the weakly-gauged U(1) electromagnetic symmetry in

the context of superconductivity. The other field Bµ represents the impurities. If we allow

the difference between the anomalous dimensions of the two current operators, the vector

field dual to the impurities can be massive and associated with the Proca field.

We work in a limit in which the matter fields do not give back-reactions to the back-

ground metric.3 This limit is called the probe limit. The gravity background we consider

is the AdS-Schwarzschild black hole,

ds2 =
1

z2

(
−f(z)dt2 +

dz2

f(z)
+ dx2 + dy2

)
, f(z) = 1− z3, (2.2)

where we use units in which the AdS radius is unity, and the location of the black hole

horizon is at z = 1. Such parameter fixings are possible thanks to the isometry of the AdS

space, and can be confirmed by examining the symmetry of the equations of motion.

The equations of motion of (2.1) are

∇λF
λµ + c∇λG

λµ − 2|Φ|2Aµ + i(Φ∗∂µΦ− ∂µΦ∗Φ) =0, (2.3)

∇λG
λµ + c∇λF

λµ −m2Bµ =0, (2.4)

1√−g
(∂µ − iAµ)

(√−ggµν(∂ν − iAν)Φ
)
−M2Φ =0. (2.5)

The kinetic terms of Aµ and Bµ can be separated. From (2.3) and (2.4), we obtain

(1− c2)∇λF
λµ − 2|Φ|2Aµ + cm2Bµ + i(Φ∗∂µΦ− ∂µΦ∗Φ) =0, (2.6)

(1− c2)∇λG
λµ − m2Bµ + 2c|Φ|2Aµ − ic(Φ∗∂µΦ− ∂µΦ∗Φ) =0. (2.7)

We can realize the superconducting phase, where the scalar operator dual to Φ acquires

nonzero condensate 〈O〉. The ansatz is A = At(z)dt, B = Bt(z)dt, and Φ = φ(z). The

equations of motion become

A′′
t −

2φ2At

(1− c2)z2f
+

c m̃2Bt

z2f
= 0, (2.8)

B′′
t − m̃2Bt

z2f
+

2c φ2At

(1− c2)z2f
= 0, (2.9)

φ′′ +

(
f ′

f
− 2

z

)
φ′ +

(
2

z2f
+

A2
t

f2

)
φ = 0. (2.10)

The prime denotes the derivative with respect to z: A′
t = ∂zAt. We find it convenient to

define an effective mass of Bµ,

m̃2 ≡ m2

1− c2
. (2.11)

3If we recover the gauge coupling e and rescale each field by a factor of 1/e, then there is a factor 1/e2

appearing in front of the right hand side of (2.1). Backreactions on the metric are suppressed in the limit

e2 → ∞ with the fields fixed. The result takes the same form as (2.1), where e = 1.
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The system is not well-defined if c = 1. If we consider a small deformation from a

system without the impurity coupling, then 0 ≤ c < 1 would be reasonable.4 For the

strong coupling regime, we can take c > 1. In this case, however, At is tachyonic, and

there can be some instability as we will discuss in section 2.3. We consider the case that

0 ≤ c < 1 first.

The data of the boundary theory are extracted from the asymptotic behavior of the

bulk fields near the boundary (z → 0). Let us start from the c = 0 case, where Bµ decouples

from Aµ and φ. The asymptotic solutions to (2.8) and (2.10) take the form,

At = µ− ρz + · · · , (2.12)

φ = φ1z + φ2z
2 + · · · , (2.13)

where µ, ρ, φi (i = 1, 2) are integral constants. The coefficients of higher-order terms are

determined in terms of these four constants. Here µ and ρ are the chemical potential and

charge density of the U(1) gauge field, respectively, and φi corresponds to the source or

condensate of the scalar field. We impose boundary conditions such that the source of

the scalar field is zero. We may consider either φ1 = 0 or φ2 = 0: Since M2 = −2 is

below the unitarity bound [21], the conformal dimension given by ∆(∆− 3) = M2 has two

normalizable solutions ∆ = 1, 2. The boundary conditions φ2 = 0 and φ1 = 0 correspond

to ∆ = 1 and ∆ = 2, respectively.

If c = 0, eq. (2.9) reduces to

B′′
t − m2Bt

z2f
= 0. (2.14)

The asymptotic solution to this equation takes the form

Bt = β−z
a
− + · · ·+ (β+ + b+ log z)za+ + · · · , a± =

1

2

(
1±

√
1 + 4m2

)
, (2.15)

where β± are integral constants: β− and β+ correspond to the source and the condensate,

respectively. Logarithmic terms may appear only if a+ − a− ∈ Z. The same statement

applies later without mentioning explicitly. Solutions exist when the mass is above the BF

bound [22], m2 ≥ −1/4. If m2 = 0, the U(1) symmetry of Bµ is restored, and a± = 0, 1.

Now we take into account the coupling in the equations of motion. The series expan-

sions (2.12), (2.13) and (2.15) are modified so that the asymptotic solutions accommodate

the interaction terms. For simplicity, we focus on the case that α± defined below are inte-

gers. We also impose that the source of Bt is absent: β− = 0. The asymptotic solutions

then take the form

At = µ− ρz + · · ·+ (a+z
α+ + · · · ) log z + · · · , (2.16)

Bt = β+z
α+ + · · ·+ (b+z

α+ + · · · ) log z + · · · , (2.17)

φ = φ1z + φ2z
2 + · · ·+ (ϕ+z

α++2 + · · · ) log z + · · · , (2.18)

4If c is negative, solutions of Bµ flips the sign.
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where

α± =
1

2

(
1±

√
1 + 4m̃2

)
. (2.19)

Note that the presence of the possible logarithmic terms is due to the impurity coupling.

The expansions contain five integral constants µ, ρ, β+, φ1, and φ2. We further impose that

the source of the scalar is absent: φi = 0 (i = 1 or 2). We will later show the asymptotic

solutions in the cace that m̃2 = 2.5

For the asymptotic solutions at the horizon, we require that the gauge fields are zero

at the horizon, while the scalar field can have a finite value. The series expansions take

the form

At = A
(1)
t (z − 1) +A

(2)
t (z − 1)2 + · · · , (2.20)

Bt = B
(1)
t (z − 1) +B

(2)
t (z − 1)2 + · · · , (2.21)

φ = φ(0) + φ(1)(z − 1) + φ(2)(z − 1)2 + · · · , (2.22)

where A
(1)
t , B

(1)
t and φ(0) are integral constants, and higher-order coefficients are deter-

mined in terms of them.

We will numerically solve (2.8), (2.9), and (2.10) to compute the condensate. Imposing

the boundary conditions, we are left with four undetermined integral constants at the

boundary, while there are three at the horizon. Thus we obtain one-parameter family

solutions. Each solution is characterized by the temperature T of the system.

It should be noted that Bt can become nontrivial in the bulk due to the coupling term

in (2.9), which is nonzero if the scalar condensate is nonzero. In this case, Bt is inevitable

to become nontrivial in the bulk even though the boundary conditions are Bt|z=0, z=1 =

0. Eventually, we should obtain spontaneous condensation of Bt coming along with the

condensation of the scalar field.

Once we obtain nonzero condensate of the scalar field, we shall examine the proper-

ties of this ordered phase by computing the optical conductivity. The ansatz of electric

perturbations is Ax = Ax(z)e
−iωt and Bx = Bx(z)e

−iωt. The equations of motion are

A′′
x +

f ′

f
A′

x +

(
ω2

f2
− 2φ2

(1− c2)z2f

)
Ax +

c m̃2Bx

z2f
= 0, (2.23)

B′′
x +

f ′

f
B′

x +

(
ω2

f2
− m̃2

z2f

)
Bx +

2c φ2Ax

(1− c2)z2f
= 0. (2.24)

We impose the ingoing boundary condition at the horizon. The asymptotic solutions at

the horizon hence take the form

Ax = f−iω/3
(
Ã(0)

x + Ã(1)
x (z − 1) + Ã(2)

x (z − 1)2 + · · ·
)
, (2.25)

Bx = f−iω/3
(
B̃(0)

x + B̃(1)
x (z − 1) + B̃(2)

x (z − 1)2 + · · ·
)
. (2.26)

5We obtain (α
−
, α+) = (−1, 2) when m̃2 = 2.
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Higher-order coefficients are determined in terms of the integral constants Ã
(0)
x and B̃

(0)
x .

One of these constants can be fixed thanks to the scaling symmetry of (2.23) and (2.24)

under (Ax, Bx) → (λAx, λBx) with some λ. For instance, we may fix Ã
(0)
x = 1. The

asymptotic solutions at the boundary in general take the form

Ax = A(−)
x zα− + · · ·+A(0)

x +A(1)
x z + · · ·+ (ã0 + · · ·+ ã+z

α+ + · · · ) log z + · · · , (2.27)

Bx = B(−)
x zα− + · · ·+B(+)

x zα+ + · · ·+ (b̃0 + · · ·+ b̃+z
α+ + · · · ) log z + · · · . (2.28)

There are four integral constants at the boundary: A
(0)
x , A

(1)
x , B

(−)
x and B

(+)
x . Other

coefficients can be given in terms of them.

The currents dual to these fluctuations Ax and Bx are computed from the on-shall

action. The action (2.1) can be separated into the bulk and boundary terms, S = Sbulk+Sb,

where the former becomes zero because of the equations of motion, and the latter is used in

computing correlation functions under the AdS/CFT prescription. The boundary action

is obtained as

Sb =
1

2

∫
d3x [Ax∂z(Ax + cBx) +Bx∂z(Bx + cAx)]z→0 , (2.29)

To compute the on-shell boundary action, we substitute the asymptotic expansions (2.27)

and (2.28) into the boundary action, and then carry out the holographic renormaliza-

tion [23, 24]. As a result, we obtain a quadratic action for fluctuations Ax and Bx. The

quadratic action could be computed with general m̃2. For simplicity, however, we denote

the resultant quadratic action just as S
(2)
b here, and will show an explicit computation in

the case that m̃2 = 2 in the next section.

The AdS/CFT correspondence tells us that the currents of Ax and Bx are computed

from the quadratic boundary action,

JA
x =

δS
(2)
b

δA
(0)
x

, JB
x =

δS
(2)
b

δB
(−)
x

. (2.30)

We call JA
x as an electric current, and JB

x as a hole current. Using these, we can give the

two electric conductivity σA and γB associated with two types of charge carriers,

σA(ω) =
JA
x

Ex

∣∣∣∣
B

(−)
x =0

, γB(ω) =
JB
x

Ex

∣∣∣∣
B

(−)
x =0

, (2.31)

where the external electric field applied on the system is given by Ex = −∂tA
(0)
x . We

numerically solve the equations of motion using the shooting method, and compute the

conductivity in the superconducting phase.

2.2 Results

For simplicity, we consider the case that m̃2 = 2. We choose the coupling c = 0.5. The

boundary condition of the scalar field is either φ2 = 0 or φ1 = 0, corresponding to ∆ = 1 or

∆ = 2, respectively. In figures, the orange dotted lines correspond to the case that c = 0,

while the blue real lines correspond to the case of nonzero c.
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Figure 1. The scalar condensate 〈O〉 as a function of temperature. The blue real lines are when

m̃2 = 2, c = 0.5. The orange dotted lines reproduce the results in [12].

First, we compute the condensate in the superconducting phase. As announced, we

show the asymptotic solution at the boundary when m̃2 = 2, after β− = 0 is imposed,

At = µ− ρz +

(
µφ2

1 − c β+ +
2c2µφ2

1

3(1− c2)
log z

)
z2 + · · · , (2.32)

Bt =

(
β+ − 2cµ φ2

1

3(1− c2)
log z

)
z2 +

c φ1(ρ φ1 − 2µφ2)

2(1− c2)
z3 + · · · , (2.33)

φ = φ1z + φ2z
2 − µ2φ1

2
z3 +

φ1 + 2µρφ1 − µ2φ2

6
z4 + · · · . (2.34)

Figure 1 shows the results of scalar condensate. The critical temperature TC does not

change regardless of c because Bt = 0 at T = TC , where φ = 0. Thus we normalize the

temperature by TC ∼ 0.23
√
ρ in the case that ∆ = 1, and TC ∼ 0.12

√
ρ in the case that

∆ = 2. We find that the scalar condensate is almost the same as the c = 0 case, although

there can be seen slight deviations in low temperatures.

Figure 2 shows the condensate of Bt, given by 〈B〉 = (1 − c2)β+ + cµφ2
1/3. The

absolute value of 〈B〉 is plotted with a power of 1/3.6 The source of Bt is absent, and

the condensation is triggered by µ, but the condensation is present only if the scalar field

has nonzero condensate. Figure 2 tells us that the qualitative behavior of 〈B〉 is similar

to that of 〈O〉. However, 〈B〉 goes to zero linearly at T → TC . It looks diverging in low

temperatures in the case that ∆ = 1, and backreactions on the gravity background will

be important in the low temperatures. The condensate 〈B〉 becomes nonzero once c is

nonzero, and the magnitude becomes larger as we increase c.

We compute the conductivity in the superconducting phase. First, we prepare the

explicit forms of σ(ω) and γ(ω) in the case that m̃2 = 2. The asymptotic solutions of Ax

6The sign of 〈B〉 is flipped if the sign of c is negative.
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Figure 2. The condensate of Bt as a function of temperature when m̃2 = 2, c = 0.5. In both

panels, the condensate goes to zero linearly at TC : 〈B〉 ∝ T − TC .

and Bx at the boundary (2.27) and (2.28) are obtained as

Ax =− cB
(−)
x

z
+A(0)

x +
(
A(1)

x − 2c φ2
1B

(−)
x log z

)
z

+

(
A(0)

x

(
φ2
1 −

ω2

2

)
− c(B(+)

x + 2φ1φ2B
(−)
x )

+
2c2A

(0)
x φ2

1 + 2cB
(−)
x (1− c2(1 + 4φ1φ2))

3(1− c2)
log z

)
z2 + · · · , (2.35)

Bx =
B

(−)
x

z
+

(
ω2

2
− c2φ2

1

1− c2

)
B(−)

x z

+

(
B(+)

x − 2cA
(0)
x φ2

1 + 2B
(−)
x (1− c2(1 + 4φ1φ2))

3(1− c2)
log z

)
z2 + · · · . (2.36)

By making use of them, the currents dual to Ax and Bx are computed as

JA
x =

δS
(2)
b

δA
(0)
x

= A(1)
x + cB(−)

x

(
ω2

2
− (8− 5c2)φ2

1

3(1− c2)

)
, (2.37)

JB
x =

δS
(2)
b

δB
(−)
x

= (1− c2)B(+)
x + cA(0)

x

(
ω2

2
− (8− 5c2)φ2

1

3(1− c2)

)
. (2.38)

Thus, the two conductivity are given by

σA(ω) = − iA
(1)
x

ωA
(0)
x

∣∣∣∣∣
B

(−)
x =0

, (2.39)

γB(ω) = − i

ωA
(0)
x

(
(1− c2)B(+)

x + cA(0)
x

(
ω2

2
− (8− 5c2)φ2

1

3(1− c2)

))∣∣∣∣∣
B

(−)
x =0

. (2.40)

Notice that the second term in γB can be found only in the imaginary part.

In figure 3, we plot the real part of the electric conductivity as a function of ω normal-

ized by the scalar condensate. The conductivity is computed for T/TC = 0.60, 0.30, 0.20

– 8 –
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Figure 3. The real part of the electric conductivity as a function of ω normalized by the condensate.

The left panel is when ∆ = 1, and the right panel is when ∆ = 2. The blue lines correspond to

c = 0.5. The orange lines go to zero exponentially in low temperatures. However, the blue lines

follow power-law behaviors even in low temperatures.

Figure 4. The imaginary part of the electric conductivity as a function of ω normalized by the

condensate. The left panel is when ∆ = 1, and the right panel is when ∆ = 2.

when ∆ = 1, while T/TC = 0.70, 0.35, 0.20 when ∆ = 2. The rightmost lines correspond

to the lowest temperatures.

Let us first recall the interpretation in the case that c = 0 (orange lines). In the

superconducting phase, there is a particular feature that a gap turns up when T/TC is

lowered. There is no gap until some T = Tg as Re(σ)|ω→0 is well above zero. However,

when T/TC is small so that Re(σ)|ω→0 is close to zero, the gap quickly shows up when

T < Tg. This suggests that no quasiparticles are excited up to some ω.

If there is the coupling to the impurities, however, agitation appears in low frequencies

as observed in figure 3. The exponential growth of the conductivity in the case of c = 0 is

now replaced with a power-law behavior. The curve in the small frequency region can be

fitted with a power function,

Re(σ) ∝
(

ω

Λi

)2

, (2.41)

where Λ1 ≡ 〈O1〉 and Λ2 ≡
√

〈O2〉. Thus, this phase is gapless.

Figure 4 is the imaginary part the conductivity as a function of ω normalized by the

scalar condensate. Im(σ) is diverging as ω → 0. This behavior corresponds to the presence

of the delta function at ω = 0 of the real part of the conductivity. The plot lines slightly

shift toward the small-ω direction.
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Figure 5. Comparisons of the real part of the conductivity for c = 0 (orange dotted lines) and

c = 0.2, 0.3, 0.4, 0.5 (blue real lines) computed when T/TC = 0.20. The left panel is when ∆ = 1,

and the right panel is when ∆ = 2. Exponential and power-law behaviors are interpolated by

changing c.

It is expected that the effects of the coupling turn up gradually as the coupling is

increased from c = 0. To discuss this, we compare cases of different c. We compute the

conductivity for c = 0.2, 0.3, 0.4, 0.5, by fixing m̃2 for simplicity. We have to be careful

that this gives the results corresponding to different values of m2 in the action (2.1). For

instance, if m̃2 = 2 is fixed, the computations are for m2 = 1.92, 1.82, 1.68, 1.5 when

c = 0.2, 0.3, 0.4, 0.5, respectively.7 However, we see that comparing with fixed m̃2 can

give qualitatively reasonable understandings for the behavior of the conductivity under the

change of c. In particular, we can discuss the presence or absence of the mass gap.

Comparisons of the real part of the conductivity with respect to different c are given in

figure 5. The graphs are computed when T/TC = 0.20. We see that, as c is increased, the

conductivity gradually changes from exponential to power-law behavior at small frequency.

It looks that the transition is continuous, and there would not be a clear phase transition

from the gapped to ungapped phases under the increase of c.

In figure 6, we would like to present a schematic description of the phase diagram of

our model under the change of c. The strength of the coupling c might be interpreted as

the density of impurities. We expect that the regions of the gapped and ungapped phases

are smoothly connected under the change of the density. The boarder would not be given

by a clear phase transition. When c = 0, the gap starts to show up at about some Tg.

As c increases, the temperature for the appearance of the gap looks to be lowered. There

may be some critical c = c∗ above which there is no gapped phase even at T = 0, or c∗
may be located at c → 1. It will be interesting to look for such a quantum critical point.

However, to discuss the zero temperature limit, we will need to carry out precise analysis

by including back reactions on the gravity backgrounds [16].

We may consider to vary the mass m̃2. When this is heavier, we find that the effects

on the conductivity is smaller. Technically, this would be because α+ is larger and Bµ

decays faster at the boundary. Hence the effects on Ax from Bx would be smaller at the

boundary. If the mass is heavier, the massive vector field becomes more non-dynamical,

7If we fixed m2 = 1.5, the effective masses would be m̃2 = 1.56, 1.65, 1.79, 2 when c = 0.2, 0.3, 0.4, 0.5,

respectively. We would do computations by employing different asymptotic expansions with respect to

different values of m̃2.
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Figure 6. A schematic description of the phase diagram expected. Here 〈B〉 = 0 if c = 0, while

〈B〉 6= 0 once c 6= 0 and T < TC . Gapped and ungapped phases would be interpolated smoothly.

There may be some critical c = c∗ above which there is no mass gap. Figure 5 corresponds to

looking at a horizontal slice of this diagram at T/TC = 0.20.

and thus the effects might be harder to appear.

Let us come back to the case that m̃2 = 2 and c = 0.5. The results of γ(ω) are

given in figures 7 and 8, corresponding to the real and imaginary parts, respectively. The

conductivity is zero at T = TC since Bx = 0 in the normal phase, although we do not plot

T = TC case in the figures. As the temperature is decreased from T = TC , the conductivity

starts to grow. There cannot be seen a gap in the small frequency region of the real part

as in the case of the electric conductivity σ. Hence, Re(γ) can be fitted with a power-law

function,

Re(γ)

Λi
−R0 ∝

(
ω

Λi

)2

, (2.42)

where Λ1 ≡ 〈O1〉 and Λ2 ≡
√
〈O2〉, and R0 ≡ limω→0Re(γ)/Λi is an intercept. In figure 7,

a peak can be found in Re(γ) at w1 ∼ 1.2 when ∆ = 1, and w2 ∼ 1 when ∆ = 2. The peak

becomes more apparent as the temperature is lowered, and it is expected that Re(γ)/Λi

converges to a finite height curve in the low temperature limit. The nonzero slope in the

large-ω region of Im(γ) is due to the direct contribution of the electric field.

Similar to the case of the electric conductivity, we compare the dependence of γ on c.

The results for the real part when T/TC = 0.20 are given in figure 9. Since Bµ is decoupled

from Aµ when c = 0, γ is not induced by the electric perturbations in this limit. From

this figure, it can be seen that the position of the peak slightly moves to larger ω as c is

increased. The magnitude of the peak looks to become larger as c is increased. However,

since Re(γ) is proportional to (1 − c2), the magnitude of γ would be suppressed if c is

sufficiently large. It is expected in the heavy mass limit of m̃2 that Bµ would be hard to

be excited, and this would mean the suppression of γ in the c → 1 limit.
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Figure 7. The real part of γ as a function of ω normalized by the condensate. The left panel

is when ∆ = 1, and the right panel is when ∆ = 2. Larger magnitude lines correspond to lower

temperatures.

Figure 8. The imaginary parts of γ as a function of ω normalized by the condensate. The left

panel is when ∆ = 1, and the right panel is when ∆ = 2. Larger magnitude lines correspond to

lower temperatures.

Figure 9. Comparisons of the real part of γ for c = 0 (orange dotted lines) and c = 0.2, 0.3, 0.4, 0.5

(blue real lines) computed when T/TC = 0.20. The left panel is when ∆ = 1, and the right panel

is when ∆ = 2. Lines with larger magnitude correspond to larger c.

2.3 The possibility of negative effective mass

In the previous section, we considered the case that 0 ≤ c < 1 and m̃2 = 2. However, since

the BF bound for the massive vector field is m2 = −1/4, it can be possible that the effective

mass of Bµ, m̃
2 = m2/(1− c2), is negative. One possibility is that the system is in strong

coupling: c > 1 with m2 > 0. The other possibility is that the mass squared is negative

m2 < 0 but 0 < c < 1. In the latter case, we obtain |m2| < |m̃2|. Therefore, m2 satisfies

the BF and unitarity bounds, −1/4 < m2 < 3/4, if m̃2 does. We discuss these options.
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Figure 10. The conductivity of ∆ = 1 case when m̃2 = −1/4. The blue real lines correspond to

this negative effective mass case with c = 0.2, while the orange dotted lines are when c = 0. The

real part of the conductivity increases near ω = 0, but there is a delta function at ω = 0.

First, we consider the possibility if the system is in the strong coupling c > 1. Since

1 − c2 < 0, the effective mass squared of At in (2.8) becomes negative. It is therefore

concerned that the effective mass function of At may violate the BF bound at some point

where φ is large, although m̃2 for Bt is above the BF bound. In fact, numerical examinations

suggest there are some instability in this case. Therefore, the assumption of the strong

coupling seems unreasonable.

Second, we discuss the case that m2 < 0 but 0 < c < 1. The scalar condensate is

almost the same as that found in figure 1. Moreover, 〈B〉 goes to zero linearly at T → TC

as well, although the slope can be different from the previous case. The conductivity,

however, behaves strangely in this case. Figure 10 shows the electric conductivity when

m̃2 = −1/4 and c = 0.2. Curiously, the real part grows up as ω decreases. This may look

similar to the presence of the Drude peak. However, as is suggested by the imaginary part,

there is a delta function at ω = 0 of the real part. It is certain that this rise in the small

frequency is due to the coupling to Bx. In this case, the mass gap looks disappearing owing

to the uplift of the conductivity. It will be interesting if the relevance of these behaviors

to real-world condensed matter systems are understood.

3 Without scalar field: RN-AdS black hole background

We have considered the addition of the massive vector field in the superconducting phase.

However, it will be interesting if we can observe some effects in the normal phase. We try

a case that the gravity background is the RN-AdS black hole, where the backreaction of

the U(1) gauge field is included. Since the massive vector field is not charged, we do not

turn on Bt, and hence the gravity background is not affected by Bµ. Here we discuss that

spontaneous induction of Bµ do not occur. This suggests that simply using the RN-AdS

black hole might be too naive. It would be interesting to consider more general black hole

backgrounds where Bµ can back-react on the gravity backgrounds.

Let us consider a model that contains a U(1) gauge field and a massive vector field but

no scalar field. The action is

S =
1

2κ2

∫
d4x

√−g

(
R+ Λ− 1

4
FµνF

µν − 1

4
GµνG

µν − m2

2
BµB

µ − c

2
FµνG

µν

)
. (3.1)
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By defining the effective mass as m̃2 ≡ m2/(1− c2), we obtain the equations of motion of

the matter fields as

∇λF
λµ + c m̃2Bµ = 0, (3.2)

∇λG
λµ − m̃2Bµ = 0. (3.3)

These should be accompanied with the Einstein equation.

We try the the Reissner-Nordström AdS (RN-AdS) black hole as the gravity back-

ground,

ds2 =
1

z2

(
−f(z)dt2 +

dz2

f(z)
+ dx2 + dy2

)
, (3.4)

f(z) = 1 + (µ/γ)2z4 − (1 + (µ/γ)2)z3, (3.5)

At = µ(1− z), (3.6)

where µ is the chemical potential, and µ/γ gives the electric charge density of the black

hole. The location of the outer horizon is at z = 1. The Einstein equation can be solved

with Bµ = 0. Note that Aµ is absent in (3.3). Without the source of Bµ, Bµ = 0 can be

the solution.

Let us consider the optical conductivity of Ax in this background. The ansatz of

electric perturbation is Ax = Ax(z)e
−iωt, Bx = Bx(z)e

−iωt, and gtx = gtx(z)e
−iωt. The

linearized equations of motion for the gauge fields are

A′′
x +

f ′

f
A′

x +
ω2

f2
Ax +

z2A′
t

f

(
g′tx +

2

z
gtx

)
+

c m̃2

z2f
Bx =0, (3.7)

B′′
x +

f ′

f
B′

x +

(
ω2

f2
− m̃2

z2f

)
Bx =0, (3.8)

The linearized Einstein equation gives a first-order equation of gtx,

g′tx +
2

z
gtx +

4A′
t

γ2
(Ax + cBx) = 0. (3.9)

We can eliminate gtx from (3.7) by using (3.9). We obtain

A′′
x +

f ′

f
A′

x +

(
ω2

f2
− 4z2(A′

t)
2

γ2f

)
Ax + c

(
m̃2

z2f
− 4z2(A′

t)
2

γ2f

)
Bx = 0. (3.10)

At the horizon, we impose the ingoing boundary condition such that Ax and Bx are pro-

portional to f−iω/(3−µ2/γ2). Unfortunately, (3.8) is decoupled from Ax, and the solution is

Bx = 0. Thus, there is no contribution of Bx.

4 Comments on adding impurities by bulk source terms

In the previous sections, we considered the models where there is a dynamical massive

vector field. On the other hand, an idea on introducing impurities in holography non-

dynamically was proposed in [17]. Since our model is related to this, we would like to

discuss [17] in this section.
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The proposal is that one can introduce impurities by adding a bulk source term,∫
d4xAµJ

µ, where the bulk U(1) source Jµ would correspond to the impurities. La-

grangians with this bulk source term are treated as starting places for analyzing impure sys-

tems. This coupling is considered in the s-wave holographic superconductor. The action is

S =

∫
d4x

√−g

(
−1

4
FµνF

µν − |∂µΦ− iAµΦ|2 −M2Φ2 +AµJ
µ

)
, (4.1)

whereM2 = −2. The probe limit is assumed, and the background is the AdS-Schwarzschild

black hole (2.2). Here we reexamine this model. In particular, we shall understand how

the effects of Jµ appear more precisely than the results in [17].

Taking (4.1) as the starting place may be regarded as an economical simplification in

analyzing impurity systems. In giving (4.1), it is assumed that the impurities which would

have been introduced in underlying theories are somehow replaced with Jµ. We may

consider many possible Lagrangians which might reduce to the form of (4.1). For instance,

the massive vector model that we focus on in this paper can be found in [17], where the

massive vector field is interpreted as the impurities. However, it might be basically hard to

derive Jµ by integrating out the impurity fields explicitly. Therefore, one would start from

an effective theory where the bulk source term is introduced as in (4.1). However, the form

of Jµ should be arbitrary, and therefore needs to be chosen by hand. Some reasonable Jµ

may be assumed.

An example considered in [17] is to add impurity density by turning on J t, while other

components of Jµ are zero. Using the ansatz A = At(z)dt and Φ = φ(z), we obtain the

equations of motion for holographic superconductivity,

A′′
t −

2φ2At

z2f
=

J t

z4
, (4.2)

φ′′ +

(
f ′

f
− 2

z

)
φ′ +

(
2

z2f
+

A2
t

f2

)
φ = 0. (4.3)

Since J t needs to be chosen by hand, J t = c̃ z6 is adopted. This is devised such that

J t decays fast enough at the boundary. However, how to choose J t is irrelevant to the

dynamics of the system. In particular, in this example J t 6= 0 at T = TC . This is different

from what we observed in section 2, where Bµ is zero at T = TC , and nontrivial when

T < TC .

Since Jx is not present, the equation of motion for the electric perturbation Ax =

Ax(z)e
−iωt is as usual,

A′′
x +

f ′

f
A′

x +

(
ω2

f2
− 2φ2

z2f

)
Ax = 0. (4.4)

It is expected that the impurity density J t will give some effects on φ through At, and the

conductivity will receive the contributions of J t through φ. Results obtained in [17] deduce

that, compared at some given temperature, the real part of the conductivity increases in
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c̃ −1 −0.5 −0.1 0 0.1 0.5 1

TC/T∗|∆=1 1.058 1.028 1.005 1 0.995 0.975 0.951

TC/T∗|∆=2 1.020 1.010 1.002 1 0.998 0.991 0.982

Table 1. Difference of the critical temperatures from the c̃ = 0 case. Here T∗ is the critical

temperature when c̃ = 0.

the presence of J t.8 This would sound similar to our results. Hence, we would like to find

out the grounds that lead us to this observation.

The case of nontrivial Jy is also considered in [17]. The equations of motion for the

superconductor background need the non-zero Ay-component:

A′′
y +

f ′

f
A′

y −
2φ2Ay

z2f
+

Jy

z4f
= 0, (4.5)

together with the equations for At and φ. Here J t = 0. However, the conductivity equation

takes the same form as (4.4). The upshot is that the results of the conductivity are

qualitatively the same as the case of the impurity density J t. For this reason, we discuss

only the case of the impurity density.

We compute the scalar condensate and critical temperatures for superconductivity for

various c̃. We use the same impurity density as in [17]: J t = c̃ z6. Note that the relative

signs between c̃ and µ are important, and µ is positive in our convention. We find that

the critical temperature TC shifts depending on the magnitude of c̃. Results are given

in table 1. For this reason, it is convenient to normalize temperatures by the critical

temperature when c̃ = 0, which we define as T∗. We see that TC decreases if c̃ > 0, while

increases if c̃ < 0. The shifts are larger when ∆ = 1 than when ∆ = 2.

Figure 11 compares the scalar condensate when c̃ = 0, ±0.5. The effects of J t are

recognized only near T∗, and disappear when T/T∗ is small. It would be reasonable to

think that the addition of the impurities changes the critical temperatures for the super-

conductivity. The reason why such shifts of the critical temperature occur seems to be

because J t 6= 0 at T = TC , where it looks that the configuration of At at φ → 0 is affected

by J t. This may be interpreted such that external operations are applied on the system

through J t.

It is expected from figure 11 that the effects of J t on the conductivity are significant

only when T/T∗ is close to 1. Hence, we would like to look into this region. We compute

the conductivity when T/T∗ = 0.95, and the results are shown in figures 12 and 13. We

find that, in low frequencies, the real part of the conductivity increases if c̃ > 0. This

agrees with the results of [17]. However, we also find that the conductivity decreases if

c̃ < 0. The imaginary part decreases if c̃ > 0, and increases if c̃ < 0. These shifts are due

to the difference of φ.

We thus find that it is simply the shift of TC that is relevant for the shifts of the

conductivity in this model. This can be understood as follows: Owing to the shift of TC ,

8A positive c̃ was used in their computation. To be precise, the signs of c̃ and chemical potential µ are

the same. Conventions are such that the chemical potential µ is also positive.
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Figure 11. The scalar condensate for ∆ = 1 (left panel) and ∆ = 2 (right panel). The blue real

lines are when c̃ = 0.5, the orange dotted lines are when c̃ = 0, and the purple dashed lines are when

c̃ = −0.5. The temperature and condensate are measured in units of T∗. The critical temperatures

are different for different values of c̃.

Figure 12. The conductivity when ∆ = 1 and T/T∗ = 0.95. The blue real lines are when c̃ = 0.5,

the orange dotted lines are when c̃ = 0, and the purple dashed lines are when c̃ = −0.5.

Figure 13. The conductivity when ∆ = 2 and T/T∗ = 0.95. The blue real lines are when c̃ = 0.5,

the orange dotted lines are when c̃ = 0, and the purple dashed lines are when c̃ = −0.5.

the magnitude of φ at some T/T∗ changes, and this results in the shift of the conductivity.

The effects of this shift of TC disappear when T/T∗ is lowered, as the differences in the

condensate disappear. The mass gap in the conductivity appears in low temperatures.

This is the same as the case that there is no impurity.

This result suggests that there is no dynamical effects of impurities in low temperature

in this model. Indeed, the impurities in (4.1) is non-dynamical. The effects on the conduc-

tivity are present only near T∗, and this is due to the shift of TC . On the other hand, the

action (2.1) includes the dynamical massive vector field, and there are nontrivial results in

low temperatures. It should be noted that TC does not change in our model.
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5 Conclusion and discussions

In this paper, we considered an s-wave holographic superconductor where a massive vector

field for representing impurities was introduced. The model had an coupling of the gauge

field Aµ and the massive vector field Bµ, and was analyzed in the probe limit. We found

that the massive gauge field was excited in the superconducting phase. A schematic phase

diagram expected from our examination was given in figure 6. We also computed the optical

conductivity for electromagnetic perturbation. When the coupling was sufficiently large,

the mass gap in the conductivity disappeared. A resonance peak was found in the real part

of the conductivity γB. We also considered the case of the normal phase in the RN-AdS

black hole background, and found there was no effect on the conductivity. We discussed

the model of [17], where impurities were proposed to be introduced non-dynamically by

adding a bulk source term. We have shown that, in that model, the critical temperature

for the superconductivity was shifted due to the presence of the bulk source.

There are many things to be considered in the future. Several questions to be asked

can be as follows. Perhaps the most straightforward extension of our work is to include

backreactions of the matter fields to gravity backgrounds, as considered in [15]. We may

also be able to consider non-relativistic deformations like the Lifshitz geometry [25, 26],

which would be interesting as the application to real-world condensed matter physics. We

may also apply a magnetic field to our model, and see the fate of Meissner effect. The

interaction we considered, cFµνG
µν , is added in a bottom up way. Since this interaction is

crucial for the results in this paper, it would be interesting to derive this interaction by the

top-down approach from string theory. This interaction might appear in non-linear actions

of D-branes. (Some related discussions can be found in [27].) Other interesting situations

are to allow spatially inhomogeneous configuration as recently studied. In particular, real-

izing lattice structure [28, 29] is an interesting approach in modeling real-world materials.

Another interesting case is to realize Josephson junctions [30]. We hope to come back to

report on these topics.
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