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1 Introduction

After the discovery of a sizeable value of θ13 by the reactor experiments DoubleChooz [1],

DayaBay [2] and RENO [3] the door has been pushed wide open to measure the last

undetermined parameters of the Standard Model, namely the CP phases of the lepton

sector. Of special interest is the Dirac CP-phase δCP as it can be experimentally determined

in neutrino oscillation experiments in the foreseeable future.1

In the lepton sector, there is the proud/infamous tradition to explain the structure of

mixing angles through the introduction of non-abelian discrete symmetries. The relative

lack of success with regard to the reactor angle θ13 has not deterred the field from using

the same set of ideas to try and predict the missing CP phase δCP using discrete symme-

tries. For example, a geometrical origin of the CP phase has been discussed for the group

∆(27) [4–9] and there have been attempts to explain CP violation as a result of complex

Clebsch-Gordon coefficients in models based on the group T ′ [10, 11]. However, sometimes

definitions of CP have been used that are incompatible with the discrete flavour symme-

try, leading to inconsistencies, as will be discussed in detail later. In order to relate CP

violation to the complex Clebsch-Gordan coefficients, a CP symmetry has to be imposed

on the Lagrangian, which is then broken spontaneously [12, 13].2

1To discern Majorana phases from possible future signals of neutrinoless double beta decay experiments

will always be model dependent and thus seem less promising.
2 Recently, a general group-theoretic condition for spontaneous CP violation has been given in ref. [14].
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We here give a consistent general definition of CP transformations in the context of

non-abelian discrete flavour groups. We will show that in many cases it is not possible

to define CP in the naive way, φ → φ∗, but rather a non-trivial transformation in flavour

space is needed. Indeed there is a one-to-one correspondence between generalised CP

transformations [15–17] and the outer automorphism group of the flavour group. It should

not be surprising that outer automorphisms play a role in the definition of CP as complex

conjugation is an outer automorphism of the field of complex numbers and the definition of

CP transformations as automorphisms in the context of gauge theories has been discussed

long ago by Grimus and Rebelo [18]. Generalised CP transformations in the context of

discrete symmetries have been used before in ref. [19–28].

While the outer automorphism group of continuous groups is either trivial or a Z2

(with the sole exception of SO(8), whose outer automorphism group is S3), the outer

automorphism group of discrete groups can be very rich. For example the well-known

flavour group ∆(27) has an automorphism group of order 432.

As a result of our investigation of generalised CP transformations, we present consistent

definitions of CP for all groups of order smaller than 31 that contain three dimensional

representations. Highlights are the case of T ′, where we show that there is one consistent

definition of CP, which we apply to the models discussed in ref. [10, 11]. We show that this

CP is spontaneously broken by the VEVs of the doublets and it is additionally explicitly

broken by the phases of Yukawa couplings and therefore the results obtained have to be

considered as unphysical and basis dependent. For the group ∆(27) we are able to explain

the so-called calculable phases as a result of an accidental generalised CP symmetry that

had so far been overlooked in the literature.3

The outline of the paper is as follows. In section 2, we define a generalised CP transfor-

mation and discuss its connection with the outer automorphism group. The implications

of a generalised CP transformation for the physical phases are discussed in section 3. In

section 4, we apply our general considerations to specific examples. In order to uniquely

specify each group, we denote it by SG(O,N) with O being its order and N , the number in

the GAP [31] SmallGroups catalogue [32]. In particular, we will discuss all groups of order

less than 31 with a three-dimensional representation. Finally, we conclude in section 5.

For the convenience of the reader, we will briefly define all relevant group theoretical

notions in the text or in a footnote. More detailed knowledge can be gained from standard

group theory text books. See [33–35] for an overview of discrete groups, which have been

used in the context of flavour symmetries.

2 Generalised CP and the outer automorphism group

In order to simplify the discussion, we will focus on finite discrete groups only. We do not

consider the transformation under the Lorentz group or any continuous symmetry group

and therefore restrict ourselves to scalar multiplets unless stated otherwise. An extension to

3Accidental CP symmetries have also been observed in scalar potentials in models based on dihedral

groups Dn and its double cover Qn [29, 30].
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higher spin representations of the Lorentz group and continuous groups is straightforward.

Let us consider a scalar multiplet

φ =
(
ϕR, ϕP , ϕ

∗
P , ϕC , ϕ

∗
C

)T
(2.1)

that contains fields in real(R), pseudo-real(P) and complex(C) representations of the dis-

crete group G. Note that φ always contains the field and its complex conjugate. The

discrete group G acts on φ as

φ
G−→ ρ(g)φ, g ∈ G. (2.2)

where ρ is a representation ρ : G → GL(N,C), which is generally reducible. In fact

ρ(G) ⊂ U(N), since we are only considering unitary representations. The representation ρ

decomposes in a block diagonal form

ρ =


ρR

ρP
ρ∗P

ρC
ρ∗C

 . (2.3)

A generalised CP transformation has to leave |∂φ|2 invariant and thus is of the form

φ
CP−→ Uφ∗ (2.4)

with U being a unitary matrix, which is not necessarily block-diagonal, because it generi-

cally interchanges representations. Even different real representations can be connected by

such a CP transformation, as we will discuss later.

If the representation is real, i.e. ρ = ρ∗, there is always the trivial CP transformation

φ → φ∗, which acts trivially on the group. In the following, we will take ρ to be complex

and faithful, i.e. ρ is injective. If ρ were not faithful then the theory would only be invariant

under the smaller symmetry group isomorphic to G/ ker ρ and the restricted representation

would be faithful.

Note that eq. (2.4) in combination with eq. (2.1) implies the existence of a matrix W

with W 2 = 1, which exchanges the complex conjugate components of φ,

φ∗ = Wφ , which implies ρ(g) = Wρ(g)∗W−1 . (2.5)

See section 4.1 and especially eq. (4.3) for a concrete example. Comparing first performing

a group transformation and then performing a CP transformation with the inverse order of

operations and demanding that the resulting transformation is contained in the symmetry

group G of the theory, as shown in figure 1, one finds the requirement that

Uρ(g)∗U−1 ∈ Imρ ≡ ρ(G) , (2.6)

i.e. the CP transformation maps group elements ρ(g) onto group elements ρ(g′). We will

refer to this condition as consistency condition and denote models satisfying this condition

– 3 –
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φ

Uφ∗

Uρ(g)∗φ∗

ρ(g′)φ = Uρ(g)∗U−1φ

CP g

g′ CP−1

Figure 1: CP definition.

consistent. If the condition (2.6) is not fulfilled, the group G is not the full symmetry group

of the Lagrangian and one would have to consider the larger group, which closes under CP

transformations (2.6). We do not consider this case further and will assume that the group

G is the full symmetry group of the Lagrangian. Hence, a generalised CP transformation

preserves the group multiplication, i.e. Uρ(g1g2)
∗U−1 = Uρ(g1)

∗U−1Uρ(g2)
∗U−1 and

U1∗U−1 = 1, and therefore is a homomorphism.4 Furthermore the CP transformation is

bijective, since U is unitary and therefore invertible. Hence, CP is an automorphism5 of

the group, as is depicted in figure 2.

Indeed, the possible matrices U of eq. (2.6) form a representation of the automorphism

group6 Aut(G) of G, which we are showing in the following.

U represents the automorphism u : G→ G given by

u : g ∈ G→ ρ(g)→ Uρ(g)∗U−1 = ρ(g′)→ g′ = ρ−1(Uρ(g)∗U−1) ∈ G (2.7)

or

Uρ(g)∗U−1 = ρ(u(g)) . (2.8)

It is straightforward to show that this mapping u : G→ G is an automorphism, indeed.

Vice versa, if u : G → G is an automorphism, we can explicitly construct a matrix U

in the following way. We first extend G to a group G′ containing G as a normal subgroup

and u(g) = g′gg′−1 ∀g ∈ G with g′ ∈ G′. This can be achieved as follows. Taking the order

of u7 to be ord(u) = n, we define the homomorphism

θ : Zn = ({0, . . . , n− 1},+)→ Aut(G) : 1→ θ1 ≡ u , (2.9)

which has a trivial kernel. This homomorphism thus defines the semi-direct product group

G′ = Goθ Zn with the group multiplication

(g1, z1) ? (g2, z2) = (g1θz1(g2), z1 + z2) . (2.10)

4A (group) homomorphism µ : G → H is a mapping preserving the group structure, i.e. µ(g1g2) =

µ(g1)µ(g2) ∀g1,2 ∈ G, µ(g−1) = µ(g)−1, and µ(EG) = EH , where EG,H denotes the identity elements of G

and H, respectively.
5An automorphism µ of a group G is a bijective homomorphism µ : G→ G.
6The automorphism group Aut(G) is the set of all automorphisms of G with composition as group

multiplication.
7The order of a group element u of G is given by the smallest n ∈ N with un = idG.
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g ∈ G

ρ(g)∗ Uρ(g)∗U−1 = ρ(g′)

u(g) = g′ ∈ G

ρ
ρ−1

u : G→ G

Figure 2: The matrix U that appears in the definition of CP defines an automorphism

u : G→ G of the group G.

Keeping track of the multiplication rules, we find

(E, 1) ? (g, z) ? (E, 1)−1 = (u(g), z) , (2.11)

where E is the identity element of G. The outer8 automorphism u of G becomes an inner

automorphism of G′ and we can obtain a matrix representation of u (or equivalently (E, 1))

by the standard techniques for finding matrix representations of groups, for example by

using the computer algebra system GAP [31]. In order to relate the matrix representation

of u in the semidirect product group G′ with the matrix U in the CP transformation of a

representation ρ of G, we have to consider a representation ρ′ of G′ whose restriction to

the subgroup G is the representation ρ,9 i.e. ρ′|G = ρ. In terms of the representation ρ′,

eq. (2.11) translates to

ρ′((E, 1))ρ′((g, z))ρ′((E, 1)−1) = ρ′((u(g), z)) , (2.12)

which can be written in terms of a CP transformation

Uρ′((g, z))∗U−1 = ρ′((u(g), z)) (2.13)

with U = ρ′((E, 1))W using the matrix W introduced in eq. (2.5). Finally, we have to

consider the restriction of ρ′ to the subgroup G, i.e. ρ′|G = ρ and therefore

Uρ(g)∗U−1 = ρ(u(g)) . (2.14)

with ρ(g) = ρ′((g, 0)). Hence there is a one-to-one correspondence between set of matrices

U and the automorphism group of G. If ρ does not contain all representations that are

connected via the outer automorphism u, there is no matrix U that fulfils the consistency

condition (2.14). To implement this CP transformation, the vector φ therefore has to be

enlarged by the missing representations. For example in case of the group Q8 oA4, which

we discuss in section 4.6, different real representations are interchanged by the matrix U

and the CP transformation can only be implemented if all representations connected by the

corresponding automorphism are present in the theory. The same is true for the group A5

8An inner automorphism µh of a group G is an automorphism, which is represented by conjugation

with an element h ∈ G, i.e. µh ≡ conj(h) : g → hgh−1. If an automorphism can not be represented by

conjugation with a group element, it is called an outer automorphism.
9There is always a representation ρ′, whose restriction to G, ρ′|G, contains ρ. If ρ′|G 6= ρ, one has to

extend ρ to ρ′|G, because the CP transformation connects the representation ρ to another representation.
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where the two different real 3-dimensional representations are interchanged by the outer

automorphism of the group.

The automorphisms form a group with composition as group multiplication, i.e. u′ =

ũ ◦ u is again an automorphism represented by

U ′ρ(g)∗U ′
−1

= ρ(u′(g)) (2.15)

with

ρ(u′(g)) = ρ(ũ(u(g))) = ŨWρ(u(g))WŨ−1 = ŨWUρ(g)∗U−1WŨ−1 (2.16)

and thus

U ′ = ŨWU. (2.17)

The trivial automorphism id(g) = g ∀g ∈ G is represented by U = W and the inverse

automorphism u−1 is represented by WU−1W . We thus have a homomorphism from the

automorphism group to the group of matrices U defined in eq. (2.4) with the conjunction

?: (A,B) → A ? B ≡ AWB. With respect to this conjunction the matrices U form a

representation of the automorphism group. �
For any solution U of eq. (2.6) the matrix ρ(g)U is also a solution for any g ∈ G, which

corresponds to performing a CP transformation followed by a group transformation de-

scribed by ρ(g). The group transformation corresponds to an inner homomorphism, which

does not pose any new restrictions.10 It is therefore sufficient to consider automorphisms

with inner automorphisms modded out. Hence the group of generalised CP transformations

is given by the outer automorphism group, which is defined by

Out(G) ≡ Aut(G)/Inn(G) , (2.18)

where Inn(G) denotes the inner automorphism group,11 the set of all inner automorphisms.

Moreover, since the invariance under a CP transformation leads to the invariance under the

subgroup generated by CP, the physically distinct classes of CP are given by the subgroups

of the outer automorphism group.

As we will be using the character table in the discussion of the different groups (see

e.g. table 1), we will briefly comment on how automorphisms act on the character table.

As automorphisms are mappings from the group into itself and there is a unique character

table for each group up to reordering of rows and columns, automorphisms are symmetries

of the character table and can not change the character table besides exchanging rows

and columns. While the action of the automorphisms on conjugacy classes should be self-

explanatory, the action on representations requires further comment: Note that eq. (2.8)

10There are interesting phenomenological consequences for inner automorphisms, if the CP symmetry is

left unbroken in one sector of the theory like the neutrino sector as discussed in [28]. However, we are more

interested in the consistent definition in the unbroken theory and therefore do not further consider inner

automorphisms.
11For every group G there is a natural group homomorphism G → Aut(G) whose image is Inn(G) and

whose kernel is the centre of G, Z(G), i.e. the subset of G which commutes with all elements of G. In short

Inn(G) ∼= G/Z(G) . Thus, if G has trivial centre it can be embedded into its own automorphism group.
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may be read as a similarity transformation between the representations ρ∗ and ρ ◦ u. By

composition an automorphism therefore interchanges representations. This is the reason

why we have chosen to define CP on the reducible representation shown in eq. (2.1).

Inner automorphisms act via conjugation on the group. Hence, they map elements

of the individual conjugacy class onto elements of the same conjugacy class. Neither do

they exchange representations and therefore they do not change the character table. Outer

automorphisms on the other hand map elements from one conjugacy class to another as

well as one representation to another and thus exchange rows and columns.

Finally, note that it is always possible to use the freedom of a multiplication with an

arbitrary phase factor. Hence if φ→ Uφ∗ is a generalised CP transformation, so is

φ→ eiαUφ . (2.19)

This does not lead to any additional constraints but only changes the phase factors of the

different couplings.

We follow [18] and call a basis where U may be represented by the identity matrix

times a phase, φ→ eiαφ∗, a CP basis. Note that under a change of basis φ′ = V φ we have

φ′ → (V UV T )φ′ (2.20)

and it is thus not always possible to perform a basis change to a CP basis where V UV T is

diagonal [36], but it is possible to go to a basis where U takes the form [37]

V UV T =


O1

. . .

Ol
1m

 (2.21)

with 2l +m = dim(U) and Oi being orthogonal 2× 2 matrices.

3 Physical implications of a generalised CP symmetry

The existence of a generalised CP symmetry implies that there is no direct CP violation

and CP violation can only be generated via spontaneous symmetry breaking. This has

been studied in terms of weak basis invariants [38–40]. A necessary and sufficient set of

weak basis invariants, which measure the CP violation in the lepton sector and vanish

in the CP conserving case has been proposed in [40]. In the following, we will explicitly

demonstrate that the weak basis invariant for Dirac CP violation vanishes for our gener-

alised CP symmetry and refer the reader to [40] for the remaining weak basis invariants.

Let us consider a left-handed lepton doublet L = (ν, e)T with the following mass terms

Lmass = −eTMee
c − 1

2
νTMνν + h.c. . (3.1)

It was shown in ref. [38–40] that Dirac-type CP violation (sin δCP 6= 0) is equivalent to

0 6= tr [Hν , He]
3 with Hν = (M †νMν)∗ and He = (MeM

†
e )T . (3.2)

– 7 –
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E T T 2

11 1 1 1

12 1 ω ω2

13 1 ω2 ω

Table 1: Character table of Z3 with ω = e2πi/3. The outer automorphism u : T → T 2 is

indicated in blue.

If L transforms under a generalised CP transformation as

L
CP−→ ULC ≡ U (iσ2L

∗) (3.3)

where LC denotes charge conjugation with respect to the Lorentz group and U is unitary,

the weak basis invariants Hν,e have to fulfil

Hν = UTHT
ν U
∗ He = UTHT

e U
∗ (3.4)

and therefore (note [A,B]T = −[AT , BT ])

tr [Hν , He]
3 = tr UT

[
HT
ν , H

T
e

]3
U∗ = −tr [Hν , He]

3 = 0 (3.5)

and there is thus no Dirac-type CP violation.

4 Application to questions in the literature

In the following, we will apply our general discussion to specific groups. We will concentrate

on the most popular groups, which have been used in the literature.

4.1 Z3
∼= SG(3, 1)

Let us start the discussion of examples by taking the cyclic group with three elements

Z3
∼=
〈
T |T 3 = E

〉
, which is the smallest group with complex representations. There is

one non-trivial automorphism u : T → T 2, which is outer and since all group elements

commute, there is only the trivial inner automorphism, conj(T ) = conj(T 2) = id. The

structure of automorphism group is thus:

Z(Z3) ∼= Z3 Aut(Z3) ∼= Z2 (4.1)

Inn(Z3) ∼= Z1 Out(Z3) ∼= Z2

Looking at the character table in table 1, we see that the outer automorphism u : T →
T 2 indicated in blue acts on the character table by interchanging the conjugacy classes

represented by T and u(T ) = T 2 and the representations 12 ↔ 12 ◦ u = 13, i.e. the

rows and columns of the character table, such that the table stays invariant, as an outer

automorphism should do.

– 8 –
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Let us consider a theory that contains the complex representation ϕ ∼ 12. The vector

φ = (ϕ,ϕ∗)T is acted upon by the group generator T as

ρ(T ) =

(
ω 0

0 ω2

)
(4.2)

and we have ρ(T )∗ = ρ(T 2) = ρ(u(T )) ∈ Imρ and therefore U = 12 is a representation of

the outer automorphism u : T → T 2. The generalised CP transformation (2.4) is therefore

just the usual ϕ→ ϕ∗.

The matrix W relating the representation 12 ⊕ 13 with its complex conjugate is

given by

W =

(
0 1

1 0

)
(4.3)

and U = W represents the trivial automorphism, or ϕ→ ϕ.

While here it is trivial to find a matrix U representing the outer automorphism u, it

is instructive to demonstrate the general method of constructing the semi-direct product

group G′ = Z3 o CP introduced in section 2 explicitly . It is given by Z3 o Z2, where Z3

is generated by T and Z2 by the automorphism u. Hence, its elements are{
(E, id), (T, id), (T 2, id), (E, u), (T, u), (T 2, u)

}
(4.4)

and the multiplication is defined by

(g1, u1) ? (g2, u2) ≡ (g1u1(g2), u1 ◦ u2) , (4.5)

which defines a non-abelian group of order 6 and it is isomorphic to S3 being the only non-

abelian group of order 6. It has two generators: (T, id) and (E, u). The outer automorphism

u : T → T 2 of Z3 corresponds to the inner automorphism conj((E, u)) : Z3 o Z2 3 g →
(E, u) ? g ? (E, u)−1 of Z3 oZ2

∼= S3. The group S3 has three representations: 11,2 and 2;

only the 2-dimensional representation is faithful and the generators are given by

ρ2((T, id)) =

(
ω 0

0 ω2

)
, and ρ2((E, u)) =

(
0 1

1 0

)
. (4.6)

In terms of the subgroup Z3 = 〈T 〉, it decomposes in the direct sum of the representations

12 and 13 of Z3 with the group generator ρ(T ) = ρ2((T, id)). The automorphism u

is represented by the matrix U ′ = ρ2((E, u)) and ρ(g) → ρ(u(g)) = U ′ρ(g)U ′−1 and

therefore the non-trivial CP transformation belonging to the automorphism u is given by

ρ(g) → ρ(u(g)) = Uρ(g)∗U−1 with U = U ′W = 12, as we have found above. Clearly the

trivial automorphism corresponds to (E, id) and is represented by U ′ = 12 or U = W .

4.2 A4
∼= (Z2 × Z2) o Z3

∼= SG(12, 3)

There is a complete classification of automorphism groups for the alternating groups An,

which is shown in table 2a. Most of them have a very similar structure. We will discuss

– 9 –
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Z(Sn) Aut(Sn) Inn(Sn) Out(Sn)

n ≥ 4, n 6= 6 Z1 Sn An Z2

n = 1, 2 Zn Z1 Z1 Z1

n = 3 Z3 Z2 Z1 Z2

n = 6 Z1 S6 o Z2 A6 Z2 × Z2

(a) Structure of the automorphism group of An

E T T 2 S

11 1 1 1 1

12 1 ω ω2 1

13 1 ω2 ω 1

3 3 0 0 -1

(b) Character table of A4.

Table 2: Relevant group structure of the alternating groups An.

the specific case of A4 =
〈
S, T |S2 = T 3 = (ST )3 = E

〉
12 in detail. It is very important for

model building and serves as our first non-trivial example. As it can be seen in table 2a,

only the identity element commutes with all other elements and the natural homomorphism

n : A4 → Aut(A4) defined by n(g) = conj(g) is therefore injective. There is one non-trivial

outer automorphism u : (S, T )→ (S, T 2). Here and in the following, we only give the action

of automorphisms on the generators of the group, which uniquely defines an automorphism.

The character table of A4 is given in table 2b and it is easy to verify that the automorphism

u represents a symmetry of the character table, again interchanging the representations 12
and 13. Let us first discuss the case where we have only one real scalar field in the real

representation φ ∼ 31 using the Ma-Rajasekaran [41] basis:

ρ31
(S) = S3 ≡

 1 0 0

0 −1 0

0 0 −1

 , ρ31
(T ) = T3 ≡

 0 1 0

0 0 1

1 0 0

 . (4.7)

In this basis both group generators are real (ρ(g)∗ = ρ(g) ∈ Imρ) and one might be tempted

to take U = 13 as this fulfils eq. (2.6). However, the map derived from U = 13 via eq. (2.8)

is not equal to u : (S, T )→ (S, T 2), but the trivial automorphism idA4 , which is obviously

not outer and therefore does not lead to additional constraints on the couplings.13 One

also encounters this problem as soon as one considers contractions such as

(φφ)12
=

1√
3

(
φ1φ1 + ω2φ2φ2 + ωφ3φ3

)
(4.8)

which transform under this ”CP” φ→ Uφ∗ = φ as

(φφ)12
→ (φφ)12

∼ 12 (4.9)

which is in conflict with the expectation that CP should involve complex conjugation such

that

(φφ)12
→ [(φφ)12

]∗ ∼ 13. (4.10)

12A4 has been introduced as flavour symmetry in the lepton sector in [41].
13Obviously it still acts non-trivially on the space-time symmetry group as well as possibly the gauge

group.

– 10 –



J
H
E
P
0
4
(
2
0
1
3
)
1
2
2

Just imagine that the theory contains a real scalar triplet χ ∼ 3 and a singlet ξ ∼ 13. If

one defines CP as χ→ χ and ξ → ξ∗ then the invariant (χχ)12
ξ under CP is mapped to

(χχ)12
ξ∗, which is not invariant under the group and it is forbidden by the combination of

A4 and this definition of CP. Looking at this definition of CP, i.e. χ→ χ∗ and ξ → ξ∗, we

can easily check that it does not fulfil the consistency condition in eq. (2.6) and therefore

the true symmetry group of the Lagrangian is not A4, but the group generated by A4 and

this CP transformation. However, it has been (implicitly) used in a number of works [42–

44]14 without properly taking into account the enlarged symmetry group with its additional

restrictions on the Lagrangian.

If we instead use the non-trivial solution of eq. (2.6), which has been discussed in [19–27]

U = U3 ≡

 1 0 0

0 0 1

0 1 0

 (4.11)

that corresponds to the outer automorphism u : (S, T )→ (S, T 2) we immediately see that

(φφ)12
→ [(φφ)12

]∗ ∼ 13. (4.12)

Note that this is the only non-trivial definition of CP (up to inner automorphisms) in any

theory that involves the complex representations, since the outer automorphism group is Z2.

Using eq. (2.6), we can immediately see that the solution U = 13 for ρ ∼ 3 leads to the

trivial automorphism idA4 (up to inner automorphism), when it is extended to the other

representations. Let us consider the vector φ = (ξ, ξ∗, χ)T with ξ ∼ 13 and χ ∼ 31 which

transforms as

ρ(S) = diag(1, 1, S3) ρ(T ) = diag(ω, ω2, T3) (4.13)

and clearly fulfils ρ(S)∗ = ρ(S) ∈ Imρ and ρ(T )∗ /∈ Imρ. We are therefore forced to use

U = diag(1, 1, U3), which gives Uρ(T )∗U−1 = ρ(T 2) ∈ Imρ and Uρ(S)∗U−1 = ρ(S) ∈ Imρ

and represents the outer automorphism u : (S, T )→ (S, T 2). The only consistent (meaning

satisfying condition (2.6)) non-trivial CP transformation in this theory is thus ξ → ξ∗ and

χ→ U3χ
∗ = U3χ. Adding the generator U to A4 results in S4 because A4 can be embedded

in Aut(G).

Summarising our discussion, there is only one non-trivial CP transformation (up to

inner automorphisms) acting on the reducible representation φ ∼ 11⊕12⊕13⊕3, which

takes the form φ→ Uφ∗ with

U =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 U3

 . (4.14)

14The discussion of CP in ref. [42] has been corrected in ref. [45].
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The trivial CP transformation corresponding to the trivial automorphism idA4 is deter-

mined by φ→ Uφ∗ with

U =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 13

 , (4.15)

which is equivalent to the transformation φ → φ as can be easily checked. There are no

other CP transformations (up to inner automorphisms).

Since this case is of some relevance to model building, let us dwell on it a bit more and

repeat the discussion for the basis

S =
1

3

−1 2 2

2 −1 2

2 2 −1

 , T =

 1 0 0

0 ω2 0

0 0 ω

 (4.16)

first used by Altarelli and Feruglio [46]. Here the group elements are complex but the

Clebsch-Gordon coefficients are real. The unique result of eq. (2.6) is U = 13 up to inner

automorphisms. This basis is therefore a CP basis, as defined in eq. (2.20). Note that in

this basis

(φφ)12
= (φ2φ2 + φ1φ3 + φ3φ1), (φφ)13

= (φ3φ3 + φ1φ2 + φ2φ1) (4.17)

and thus

(φφ)12
→ [(φφ)12

]∗ ∼ 13. (4.18)

as it should be.

Let us look at a physical situation where a certain confusion about the definition of

CP can be alleviated by our definition.15 If one considers the potential for one electroweak

Higgs doublet transforming as 31 denoted by χ = (χ1, χ2, χ3)
T in the basis (4.7), there is

one potentially complex coupling in the potential [41, 42, 44]

λ5 (χ†χ)31

(
χ†χ

)
31

+ h.c. = λ5

[(
χ†1χ2

)2
+
(
χ†2χ3

)2
+
(
χ†3χ1

)2]
+ h.c.. (4.19)

It can be easily checked that the generalised CP transformation χ→ U3χ
∗ acts as

I ≡
[(
χ†1χ2

)2
+
(
χ†2χ3

)2
+
(
χ†3χ1

)2]
→
[(
χ†1χ2

)2
+
(
χ†2χ3

)2
+
(
χ†3χ1

)2]
= I (4.20)

and thus does not give a restriction on the phase of λ5. Note that the naive CP transforma-

tion χ→ χ∗ transforms the group invariant I into I∗ and therefore restricts λ5 to be real as

was e.g. done in ref. [43]. However, we have seen that this naive CP transformation cannot

be consistently implemented on the Lagrangian level if there are complex representations,

unless it is either the trivial generalised CP transformation, idA4 , or the symmetry group

A4 is extended such that it is closed under this naive CP transformation. Therefore it is

15For a related discussion, see [47–49].
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inappropriate to call the phase of λ5 a CP phase. This also explains an observation made

in ref. [42], where it was shown that even for arg λ5 6= 0 the VEV configuration

〈χ〉 = V (1, 1, 1), 〈χ〉 = V (1, 0, 0) V ∈ R, (4.21)

which of course respects both, the trivial as well as the non-trivial, generalised CP transfor-

mations, can be obtained without fine-tuning. This would have been somewhat surprising,

as usually symmetry conserving solutions cannot be obtained from explicitly symmetry

breaking potentials. However, the phase of λ5 does not break the consistent definition of

generalised CP, i.e. does not violate condition (2.6), as does the VEV configuration (4.21),

therefore everything is consistent.

4.3 T ′ ∼= SG(24, 3)

The group T ′ =
〈
S, T |S4 = T 3 = (ST )3 = E

〉 ∼= SL(2, 3),16 is also an important group

in the context of CP violation [10, 11]. It has two elements Z(T ′) = {E,S2} ∼= Z2 that

commute with all group elements and therefore Inn(T ′) ∼= T ′/Z(T ′) ∼= A4. There is one non-

trivial outer automorphism (up to inner automorphisms) u : (S, T )→ (S3, T 2). Therefore

the automorphism structure can be summarised as:

Z(T ′) ∼= Z2 Aut(T ′) ∼= S4 (4.22)

Inn(T ′) ∼= A4 Out(T ′) ∼= Z2

A non-trivial CP transformation therefore has to be a representation of u in the sense of

eq. (2.6). Let us now see how it is represented for the various representations of T ′.

There is a faithful pseudo-real representation

21 : S = A1, T = ωA2 (4.23)

with σ†2Sσ2 = S∗ and σ†2Tσ2 = T ∗ and the two faithful complex representations

22 : S = A1 T = ω2A2; 23 : S = A1, T = A2 (4.24)

with σ†2S2′σ2 = S∗2′′ and σ†2T2′σ2 = T ∗2′′ where

A1 =
−1√

3

(
i ω̃

√
2

−ω̃−1
√

2 −i

)
, A2 =

(
ω 0

0 1

)
(4.25)

with ω̃ = e2πi/24. For all two-dimensional representations, we find the matrix

U = U2 ≡ diag(ω̃−5, ω̃5) (4.26)

which represents the automorphism u via Uρ(g)∗U−1 = ρ(u(g)). For the three-dimensional

representation

ρ(S) =
1

3

 −1 2ω 2ω2

2ω2 −1 2ω

2ω 2ω2 −1

 , ρ(T ) =

 1 0 0

0 ω 0

0 0 ω2

 (4.27)

16T ′ has been first discussed in a particle physics context in [50].
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the matrix U of eq. (2.4) is given by U = ρ(T ) with again Uρ(T )∗U−1 = ρ(T 2), Uρ(S)∗U =

ρ(S3), for the one dimensional representations we take U = ρ(T ) as for the three-

dimensional representations.

In summary, we have thus found the one unique non-trivial outer automorphism (up

to inner automorphisms) of T ′ and thus the unique CP transformation

1i → ωi−11∗i 2i → diag(ω̃−5, ω̃5)2∗i 3→ diag(1, ω, ω2)3∗. (4.28)

Let us now use this insight to investigate a claim that there is geometrical CP violation

in grand unified models based on T ′ [10, 11]. We consider the model discussed in [10]

and introduce (T1, T2) ∼ 21 which transforms as 10 of SU(5) and includes the first two

generations of up-type quarks and the flavons φ ∼ 3 and φ′ ∼ 3. Auxiliary Z12 × Z12

symmetries are introduced such that the one-two sector of the mass matrix is described by17

−LTT = ycTTφ
2 + yuTTφ

′3 + h.c. (4.29)

≡ yc
3

2

2− i
2

(TT )3(φ2)3 + yu
1

3
[(TT )3φ

′]13
(φ′

2
)12

+ h.c.

= yc
3

2

2− i
2

{
(1− i)T1T2 (φ21 − φ2φ3) + i T 2

1

(
φ22 − φ1φ3

)
+ T 2

2

(
φ23 − φ1φ2

)}
+

+ yu
1

3

{(
2φ′1φ

′
3 + φ′2

2
) (
iT 2

1 φ
′
1 + (1− i)T1T2φ′2 + T 2

2 φ
′
3

)}
+ h.c. ,

where we have omitted (Higgs-) fields that do not transform under the flavour symmetry

and a suppression by some high-energy scale of a sufficient power to make yi dimensionless

is understood.

It is assumed that the VEVs〈
φ′
〉

= (1, 1, 1)V ′, 〈φ〉 = (0, 0, 1)V V, V ′ ∈ R (4.30)

are real, which may be justified by a CP transformation. There is only one CP trans-

formation18 left invariant, namely the one corresponding to the outer automorphism

u′ = conj(T 2) ◦ u represented on the three dimensional representation by the identity

matrix

1i → 1∗i 2i → diag(ωω̃−5, ω−1ω̃5)2∗i 3→ 3∗. (4.31)

and therefore 〈φ′〉 → 〈φ′〉∗ and 〈φ〉 → 〈φ〉∗.
This results in the following 1-2 block of the up-type quark mass matrix Mu:

yu

(
i 1−i

2
1−i
2 1

)
V ′

3
+ yc

(
0 0

0 1− i
2

)
V 2 . (4.32)

At this point the parameters yu,c and VEVs are chosen real and it is claimed that the phases

emerging from the complex Clebsch-Gordon coefficients explain CP violation. Therefore it

is natural to ask whether this choice of parameters can be justified by a symmetry. The

17We use the Clebsch-Gordan coefficients given in appendix A of [51] for the Kronecker products.
18Note that this also determines the global phase of U .
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only candidate symmetry is a generalised CP symmetry of type (2.6), which we explicitly

state in eq. (4.31). As we have shown how the various fields have to transform under the

generalised CP symmetry we can now easily determine how the invariants of eq. (4.29)

transform:19

CP [TTφ2] = −4 + 3i

5
(TTφ2)∗ CP [TTφ′

3
] = −i(TTφ′

3
)∗. (4.33)

Therefore invariance under CP requires arg(yc) = −1
2 arg(−4 − 3i) = −1

2 arctan 3
4 and

arg yu = π
4 and the generalised CP (4.31) is explicitly broken by real couplings yu, yc, which

was assumed in ref. [10]. Note that also the relative phase between the two couplings does

not agree with ’geometrical’ CP violation. This also shows that the results obtained in

ref. [10] are completely basis dependent and therefore unphysical.

Although the VEVs (4.30) are invariant under the generalised CP transforma-

tion (4.31), in the full model [10] there are additional scalar fields e.g. ψ ∼ 22 with

〈ψ〉 ∼ (1, 0) which are not invariant under the generalised CP transformation (4.31). Hence,

if the phases of the couplings are changed in accordance with the consistent CP transfor-

mation (4.31), CP will be broken spontaneously. Obviously, all predictions depend on the

VEV alignment. In ref. [10], no dynamical mechanism was given to generate the VEV

configuration.

Different invariants were used in the other grand unified T ′ model [11] claiming a

geometric origin of CP violation. In the following, we argue that the CP phases in this

model do not have a geometric origin as well. The argument is done in two steps: 1) We

choose a CP transformation, which is not broken by the VEVs. 2) CP is explicitly broken

by two different couplings in the superpotential.

1) As the CP transformation defined in eq. (4.31) is not broken by real VEVs of the

singlet and triplet flavons, it is enough to consider the four doublets ψ′(′) = (ψ
′(′)
1 , ψ

′(′)
2 )T

and ψ̃′(′) = (ψ̃
′(′)
1 , ψ̃

′(′)
2 )T , which obtain the VEVs

〈
ψ′
〉

=

(
1

0

)
ψ′0,

〈
ψ̃′
〉

=

(
1

0

)
ψ̃′0,

〈
ψ′′
〉

=

(
0

1

)
ψ′′0 ,

〈
ψ̃′′
〉

=

(
0

1

)
ψ̃′′0 . (4.34)

We modify the CP transformation (4.31) by a phase redefinition of the doublet fields

ψ′ → diag(1, ω−2ω̃10)ψ′∗ ψ′′ → diag(ω2ω̃−10, 1)ψ′′∗ (4.35)

ψ̃′ → diag(1, ω−2ω̃10)ψ̃′∗ ψ̃′′ → diag(ω2ω̃−10, 1)ψ̃′′∗

such that the VEVs do not break this CP transformation.

19Note that inner automorphisms correspond to group transformations and therefore only outer automor-

phism can give non-trivial constraints when acting on group invariants. Here there is only one non-trivial

outer automorphism(up to inner automorphisms).
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2) Using this CP transformation, we consider two couplings in the superpotential20

WYu ⊃ y22TT ψ̃′′2ζ̃ ′ + y21TT φ̃ψ̃
′2ζ̃ ′ (4.36)

≡ y22((T ψ̃′′)3(T ψ̃′′)3)13
ζ̃ ′ + y21((T φ̃)22

ζ̃ ′)23
(ψ̃′(T ψ̃′)3)22

=
y22√

3
ζ̃ ′
{
T 2
2 ψ̃
′′2
2 + (1 + i)T1ψ̃

′′
1(T1ψ̃

′′
2 + T2ψ̃

′′
1)
}

+
y21

3
√

2
ζ̃ ′
{
T 2
1

[
(1− i)φ̃1ψ̃

′2
2 − (1 + i)φ̃2ψ̃

′2
2

]
+ T 2

2

[
(1 + i)φ̃3ψ̃

′2
2 − 2φ̃2ψ̃

′
1ψ̃
′
2

]
+2T1T2

[
(1− i)φ̃1ψ̃

′
1ψ̃
′
2 − iφ̃3ψ̃

′2
1

]}
contributing to the 1-2 sector of the up-type quark mass matrix, where T = (T1, T2)

T ∼ 21,

ζ̃ ′ ∼ 12 and φ̃ = (φ̃1, φ̃2, φ̃3)
T ∼ 3. Similarly to the argument for [10], we can now easily

determine how the invariants transform under the generalised CP transformation

CP [TT ψ̃′′2ζ̃ ′] = −i(TT ψ̃′′2ζ̃ ′)∗ CP [TT φ̃ψ̃′2ζ̃ ′] = −(TT φ̃ψ̃′2ζ̃ ′)∗ . (4.37)

Hence, CP is explicitly broken by choosing y22 and y21 real. As there is a relative phase

difference between the two operators, it is not possible to redefine the CP transformation

of T , such that there is no explicit CP violation.

The authors additionally propose a way to obtain the VEV alignment using driving

fields using the method introduced in ref. [52]. Let us analyse the flavon potential in more

detail using the generalised CP transformation (4.31), i.e. without the modification in

eq. (4.35). It seems plausible to get real VEVs for the triplets and singlet fields, as these

are eigenstates of CP. We will therefore concentrate on the doublets ψ′(′) and ψ̃′(′). The

generalised CP transformation (4.31) fixes the phase (modulo π) of all couplings and in

particular21

Wf ⊃ Dψ(λ(ψ′′)2 + κφζ ′) (4.38)

=
1√
3

[
Dψ1(λψ

′′2
2 + κφ3ζ

′) +Dψ2(iλψ
′′2
1 + κφ2ζ

′) +Dψ3((1− i)λψ′′1ψ
′′
2 + κφ1ζ

′)
]

where Dψ ∼ 3 is a driving field, φ ∼ 3 and ζ ′ ∼ 12. CP invariance with respect to

eq. (4.31) requires κ to be real and arg(λ) = π/4. Assuming the VEV alignment (4.34),

the F-term equation

0
!

=
∂Wf

∂Dψ1
=

1√
3

(λψ′′22 + κφ3ζ
′) (4.39)

leads to a complex VEV for ψ′′ with arg(ψ′′0) = 7π/8 + Zπ for λκ < 0, which conserve

CP, and 3π/8 + Zπ for λκ > 0, which preserves ψ′′0 → −CP [ψ′′0 ], a different CP

20A CP transformation relates the (holomorphic) superpotential with the anti-holomorphic superpoten-

tial. Similarly to eq. (4.29), we omit Higgs fields that do not transform under the flavour symmetry and a

suppression by some high-energy scale Λ of a sufficient power to make yi dimensionless is understood. We

use the Clebsch-Gordan coefficients given in table 7 of ref. [11] itself. Note that the second operator is only

defined up to a sign in ref. [11]. However, this does not affect the discussion.
21We dropped the fields εi, which are singlets of T ′ and are required to adjust the charges of the shaping

symmetries.
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transformation, which can also be extended to a symmetry of the full theory by changing

the CP transformation of the doublets to CP ′ : 2i → −CP [2i]. Hence, it is not possible

to break both CP transformations by the VEV of ψ′′ alone. However, the VEV of a

second doublet can break the remaining CP transformation, but the phases of the VEVs

depend on a discrete choice. The other doublet VEVs are related to the VEV of ψ′′ via

arg(ψ̃′′0) = arg(ψ′′0) + Zπ/2 and arg(ψ′0), arg(ψ̃′0) = − arg(ψ′′0) + Zπ/2, where the shift

Zπ/2 depends on the sign of the respective couplings. Hence, there is a discrete set of

phases of the VEVs. In analogy to the VEV of ψ′′, each VEV breaks one of the two CP

transformations. Concluding, as soon as there are two VEVs, which break different CP

transformations, it is possible to have CP violation.

It might be instructive to look at the potential for one doublet field ψ ∼ 22 and study

the VEV configurations that can be obtained in order to see if it is possible to obtain a

phase prediction from a spontaneous breaking of the generalised CP. On renormalizable

level there is only one coupling that depends on phases

λ
ω̃2

√
3

(
ψ1(ψ

3
1 − (2− 2i)ψ3

2)
)

+ h.c., (4.40)

where the phases have been adjusted such, that CP forces λ to be real. We will focus on

VEVs of the form 〈ψ〉 = (V eiα, 0)T with V > 0 that conserve the Z3 subgroup generated

by T . For λ < 0 we find the minima {1, i,−1,−i}(eiπ11/24, 0)T , which conserve ψ →
{1,−1, 1,−1}CP [ψ], and for λ > 0 we find the minima {1, i,−1,−i}(eiπ5/24, 0)T which

conserve ψ → −i{1,−1, 1,−1}CP [ψ]. The additional solutions are due to fact that the

phase dependent part of the potential has an accidental Z4 symmetry ψ → iψ, which will

most likely be broken in a full theory such that one would expect only the CP conserving

solutions to survive. The required real VEVs cannot be obtained in this simple setup. Note

that if the VEV of ψ conserves CP, the phases of the VEVs and of the couplings conspire

that there is no CP violation, as shown in section 3.

Let us briefly summarise our view on geometrical CP violation in T ′. To be able to

talk about CP violation one has to apply the consistent CP symmetry of eq. (4.31) on

the Lagrangian level. This will then fix the phase (modulo π) of most couplings. The

phases of invariants, which are CP self-conjugate are not fixed by CP. In supersymmetric

theories, the phases of all couplings in the superpotential are fixed (modulo π), because

CP relates the superpotential with the anti-holomorphic superpotential. One could thus

imagine a setup along the lines of [10, 11] where this has been implemented and therefore

the only source of CP violation are the VEVs of the doublet scalar fields, which break

CP spontaneously. However, the phases of the VEVs are only determined up to a finite

discrete choice.

For usual spontaneous breaking of CP one would expect the phases of the fields to

depend on potential parameters and therefore not be determined by the group symmetry

structure. The only way to get ’calculable phases’, i.e. phases that do not depend on po-

tential parameters, seems to be if this CP breaking vacua is connected to an additional

(accidental) CP symmetry of the potential as is the case for ∆(27) (see section 4.4). For

T ′, however, there cannot be such an additional generalised CP besides the CP transfor-
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E BABA ABA A BAB AB A2 B2 B BA2BAB AB2ABA

11 1 1 1 1 1 1 1 1 1 1 1

12 1 ω ω2 1 ω ω2 1 ω ω2 1 1

13 1 ω2 ω 1 ω2 ω 1 ω2 ω 1 1

14 1 ω ω ω2 ω2 ω2 ω 1 1 1 1

15 1 ω2 1 ω2 1 ω ω ω ω2 1 1

16 1 1 ω2 ω2 ω 1 ω ω2 ω 1 1

17 1 ω2 ω2 ω ω ω ω2 1 1 1 1

18 1 1 ω ω ω2 1 ω2 ω ω2 1 1

19 1 ω 1 ω 1 ω2 ω2 ω2 ω 1 1

3 3 . . . . . . . . 3ω 3ω2

3∗ 3 . . . . . . . . 3ω2 3ω

Table 3: Character table of ∆(27). The first line indicates representatives of the different

conjugacy classes. Zeroes in the character table are denoted by a dot . and ω is the third

root of unity ω = e2πi/3. The arrows illustrate the generators of the outer automorphism

group u1(blue) and u2(red).

mations which are connected to the unique non-trivial CP transformation by some group

transformation, since the outer automorphism group is Z2.

4.4 ∆(27) ∼= (Z3 × Z3) o Z3
∼= SG(27, 3)

The group ∆(27) =
〈
A,B|A3 = B3 = (AB)3 = E

〉
22 is another interesting group from the

standpoint of CP violation. Its automorphism structure is quite involved. The centre of

the group is isomorphic to Z3 and generated by the group element X = A2BAB2 with

conj(X) = id and the inner automorphism group has the structure Z3 × Z3. The outer

automorphism group is generated by

u1 : (A,B)→ (ABA2, B2AB) , u2 : (A,B)→ (ABAB,B2) . (4.41)

It is isomorphic to GL(2, 3), i.e. the general linear group of 2 × 2 matrices over the field

Z3. The multitude of outer automorphisms can be traced back to the various symmetries

of the character table shown in table 3 that are due to the fact that there are so many

one-dimensional representations. Together with the inner automorphisms these generators

generate the full automorphism group, which is of order 432. In summary the automor-

phism structure presents itself as:

Z(∆(27)) ∼= Z3 Aut(∆(27)) ∼= (((Z3 × Z3) oQ8) o Z3) o Z2 (4.42)

Inn(∆(27)) ∼= Z3 × Z3 Out(∆(27)) ∼= GL(2, 3) .

22∆(27) has been first used in the lepton sector in [53].
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The outer automorphism u1 acts on the representations as

12 ↔ 14, 13 ↔ 17, 16 ↔ 18, 3↔ 3∗ (4.43)

where e.g. 12 → 14 is to be read as ρ14
= ρ12

◦ u1 etc., and the outer automorphism u2
acts as

12 → 19 → 18 → 13 → 15 → 16 → 12 (4.44)

From this it is trivial to determine the representations of the automorphisms for the one-

dimensional representations. Let us therefore focus on the three dimensional representation

3 generated by

ρ(A) = T3, ρ(B) = diag(1, ω, ω2). (4.45)

The two generators of the outer automorphism group act on φ ∼ (3,3∗) as

U(u1) =

(
Ũ 0

0 Ũ∗

)
with Ũ =

1√
3

ω2 ω 1

ω ω2 1

1 1 1

 (4.46)

and

U(u2) =

(
0 Ũ

Ũ∗ 0

)
with Ũ =

ω2 0 0

0 0 ω

0 ω2 0

 . (4.47)

All automorphisms can be generated from the generators ui by composition and the repre-

sentation matrices U(aut) may be obtained with the help of eq. (2.17). We have therefore

found a complete classification of possible CP transformations that may be implemented

in a model based on ∆(27). There are 48 outer automorphisms generated by u1 and u2
that may in principle give physically distinct CP transformations with distinct physical

implications, however as a model that is invariant under CP will also be invariant under

CPn it is sufficient to consider which subgroups of the automorphism groups is realised.

It is instructive to look at some of these subgroups in detail. Let us for example

consider the CP transformation φ → φ∗ or U(h1) = 13 that corresponds to the outer

automorphism h1 : (A,B)→ (A,B2), which can be expressed in terms of the generators as

h1 = u1 ◦u22 ◦u
−1
1 ◦u2 ◦u

−1
1 ◦u

−1
2 ◦u

−1
1 ◦ conj(A)−1 ◦u−11 . This outer automorphism squares

to one and therefore generates a Z2 subgroup of the automorphism group. Contrary to the

situation we have encountered before, where the outer automorphism group was a Z2, this

is not the only solution. As a further example we may consider the Z2 subgroup generated

by u1 ◦u22 ◦u
−1
1 ◦u2 ◦u

−1
1 ◦u

−2
2 with h2 : (A,B)→ (ABA,B) which according to eq. (2.17)

is represented by

U(h2) =

ω 0 0

0 0 1

0 1 0

 . (4.48)

We will use this matrix later on. Let us now use this machinery to tackle a physical

question, namely the so-called geometrical CP violation. ’Geometrical’ CP-violation [4–8]
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denotes the following: If one considers a triplet of Higgs doublets H = (H1, H2, H3) ∼ 3

the only phase dependent term in the scalar potential is given by

I ≡
∑
i 6=j 6=k

(H†iHj)(H
†
iHk). (4.49)

Let us now investigate how the term transforms under the two generators u1 and u2 of the

outer automorphism group. We find

CPu1 [I] = −1

3
I∗ +

2

3
I +

∑
i

1

3
(H†iHi)

2 +
∑
i 6=j

(H†iHi)(H
†
jHj), CPu2 [I] = ω2I (4.50)

and we thus find the invariant combinations

CPu1 [I − I∗] = I − I∗ CPu32 [I] = I (4.51)

Clearly invariance under u1 requires further non-trivial relations among the other couplings

in the scalar potential which do not depend on phases and thus do not concern us here.

Let us investigate the case where the theory is invariant under h1 which corresponds

to the ’usual’ CP transformation φ → φ∗ and forces the coupling λ4 multiplying I to be

real. For λ4 < 0 one finds the global minimum

〈H〉 =
v√
3

(1, ω, ω2) (4.52)

and for λ4 > 0 one finds

〈H〉 =
v√
3

(ω2, 1, 1). (4.53)

Both VEV configurations correspond to generalised CP transformations H → UH∗. For

λ4 < 0 it is for example given by U = ρ(B2) which is clearly part of ∆(27) and therefore up

to an inner automorphism corresponds to h1. The phases of the VEVs thus do not imply

spontaneous CP violation. For λ4 > 0 the VEV configuration leaves the CP transformation

corresponding to the outer automorphism h2 given in eq. (4.48) invariant. However, there is

something that is much harder to understand about this VEV configuration: the generalised

CP symmetry corresponding to this configuration is not a symmetry of the Lagrangian.

It would be a symmetry if the phase of λ4 would be the same as ω, as CPh2 [I] = ωI∗.

So here we are confronted with the puzzling situation where a VEV configuration is more

symmetric than the original Lagrangian. This is also denoted as calculable phases.

This conundrum can be solved if there is a generalised CP trafo that is left invariant

by the VEV and is compatible with λ4 being real. Since we have a complete classification

of all generalised CP transformations we can answer this question and indeed we find the

CP transformation(
H

H∗

)
= U

(
H∗

H

)
with U =

(
0 Ũ

Ũ∗ 0

)
, Ũ =

 0 0 ω2

0 1 0

ω 0 0

 (4.54)
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which represents the outer automorphism u : (A,B) → (AB2AB,AB2A2) via eq. (2.8),

where u = u32 ◦ conj(A) and that gives

CPu[〈H〉] = 〈H〉 for 〈H〉 =
v√
3

(ω2, 1, 1), CPu[I] = I (4.55)

Note that this CP transformation acts as H → ŨH, which is not something you would

naively expect, but it is an outer automorphism and therefore it is justified to call it a CP

transformation. Furthermore, this becomes apparent when one looks at how the outer au-

tomorphism u acts on representations. It interchanges the one-dimensional representations

12 ↔ 13, 15 ↔ 19, 16 ↔ 18, (4.56)

making the ”CP-character” of the transformation more apparent. An alternative indepen-

dent explanation of geometric CP violation has been given in ref. [49].

4.5 Z9 o Z3
∼= SG(27, 4)

Similarly to ∆(27), the group Z9 o Z3 = SG(27, 4) =
〈
A,B|A9 = B3 = BAB2A2 = E

〉
23

has a more complicated automorphism group structure. The group is the semi-direct

product of Z9 generated by A (with A9 = E) with Z3 generated by B (with B3 = E)

defined by BAB−1 = A7. The centre of the group is isomorphic to Z3 and generated

by A3. Hence, the inner automorphism group has the structure Z3 × Z3. The outer

automorphism group is generated by

u1 :(A,B)→ (AB,B2A6B2A3) (4.57)

u2 :(A,B)→ (AB4AB4A6, B2A6B2A6) .

and the structure of the automorphism group may be summarised as

Z(G) ∼= Z3 Aut(G) ∼= ((Z3 × Z3) o Z3) o Z2 (4.58)

Inn(G) ∼= Z3 × Z3 Out(G) ∼= S3 .

There is a faithful three dimensional representation given by

ρ(A) =

 0 1 0

0 0 ω2

ω2 0 0

 , ρ(B) =

ω2 0 0

0 1 0

0 0 ω

 . (4.59)

The generators of the outer automorphisms can be obtained in the same way as before and

act on (3,3∗) as

U(u1) =

(
0 Ũ

Ũ∗ 0

)
with Ũ = diag(1, 1, ω2) (4.60)

and

U(u2) =

(
Ũ 0

0 Ũ∗

)
with Ũ =

 0 1 0

1 0 0

0 0 ω2

 . (4.61)

23The possibility of having Z9 o Z3 as a flavour group in the lepton sector has been first mentioned in

ref. [54].
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4.6 Q8 o A4
∼= SG(96, 204)

Let us also consider our favourite group, Q8 oA4 [55, 56] generated by S, T,X with

S2 = T 3 = X4 = (ST )3 = SXSX3 = T 2X(T 2X3)2 = (STX3T 2)2 = E (4.62)

the smallest group that may realise the VEV alignment. Its centre is given by Z(Q8oA4) =

{E,X2} ∼= Z2 and its outer automorphism group is generated by

h4 :(S, T,X)→ (S, T 2, SX), h5 :(S, T,X)→ (S, T 2, X3),

h6 :(S, T,X)→ (ST 2STX3, T, T 2XT ). (4.63)

These generators act on the character table and representations in the way indicated in

table 5. Together with the inner automorphisms, the automorphism group is of order 576

and its structure may be summarised as:

Z(Q8 oA4) ∼= Z2 Aut(Q8 oA4) ∼= ((A4 ×A4) o Z2) o Z2 (4.64)

Inn(Q8 oA4) ∼= Z4
2 o Z3 Out(Q8 oA4) ∼= D12 .

Let us discuss how the generators of the automorphism group may be represented upon

the vector

φ =

(
ϕC
ϕ∗C

)
(4.65)

with ϕC ∼ 42 upon which the group generators act as

ρ(S) =

(
S4 0

0 S4

)
, ρ(T ) =

(
ω2T4 0

0 ωT4

)
, and ρ(X) =

(
X4 0

0 X4

)
(4.66)

with

S4 ≡σ3 ⊗ σ1, T4 ≡ diag(T3, 1), X4 ≡− iσ2 ⊗ σ3 (4.67)

and ρ(S,X)∗ = ρ(S,X) but ρ(T )∗ /∈ Imρ. One solution to eq. (2.6) is the analogue of the

A4 case, U = diag(U4, U4) with U4 = diag(Ũ3 ≡ T3U3T
−1
3 , 1). The matrix U3 has been

defined in eq. (4.11). This generator acts on the generators of the group as

Uρ(S)∗U−1 = ρ(S), Uρ(T )∗U−1 = ρ(T 2), Uρ(X)∗U−1 = ρ(SX) (4.68)

and therefore represents the automorphism h4. Before discussing other solutions to

eq. (2.6), let us demonstrate how this outer automorphism can be represented for the

other representations. For the representation 41 we find U = U4. For the one-dimensional

representations we have U = 1.

Clearly the relation (4.68) cannot be fulfilled by 31 as ρ(X) = 13

1 = Uρ(X)U−1 = ρ(SX) = S3 (4.69)
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S T X FS Z(G)

11 1 1 1 1 1

12 1 ω 1 0 1

13 1 ω2 1 0 1

41 S4 T4 X4 1 −1

42 S4 ω2T4 X4 0 −1

43 S4 ωT4 X4 0 −1

S T X FS Z(G)

31 S3 T3 13 1 1

32 T3S3T
2
3 T3 S3 1 1

33 T3S3T
2
3 T3 T 2

3 S3T3 1 1

34 13 T3 T3S3T
2
3 1 1

35 T 2
3 S3T3 T3 T 2

3 S3T3 1 1

Table 4: Representations of Q8 o A4 in the chosen basis. The one-dimensional represen-

tations and the first three-dimensional one are the unfaithful A4 representations (therefore

X = 1), which the leptons are assigned to in refs. [55, 56]. The representation 41 is used

to break A4 in the neutrino sector. Note that this representation is double valued, i.e.

Z(G) = X2 = −1. FS is the Frobenius-Schur indicator 1
|G|
∑

g∈G χ(g2) that takes the

values 1 for real, 0 for complex or −1 for pseudo-real representations, respectively. The

matrices S3 and T3 have been defined in eq. (4.7).

for any U. The representation 31 is rather part of a larger representation that also includes

35:24

S = diag(S3, T
2
3 S3T3), T = diag(T3, T

2
3 ), X = diag(13, T

2
3 S3T3), U =

(
0 T3
T 2
3 0

)
.

(4.70)

The real representations 32,3,4 can be extended to representations of the CP-extended

group by U = Ũ3. We have therefore seen that a CP transformation as defined in (2.6)

can only be realised if both 31 and 35 are present in the Lagrangian, i.e. the condition

of CP conservation requires non-trivial relations among real representations of the group,

something one would not immediately suspect. To summarise a consistent definition of CP

acts as

4i → U44
∗
i 3i → Ũ33

∗
f(i) 1i → 1∗i (4.71)

with f : {1, 2, 3, 4, 5} → {5, 2, 3, 4, 1}.
The natural question is now if it is possible to have outer automorphisms of the group

that act as CP in the sense that they interchange the complex representations 12,3 and

42,3 but transform the real representations only within themselves. This question can be

answered using the explicit form of the generators of eq. (4.63).

An outer automorphism swaps conjugacy classes and representations in such a way as

to leave the character table 5 invariant. For illustration look at the automorphism h4 (4.68).

It acts on the conjugacy classes as

G · T ↔ G · T 2, G ·XT ↔ G · SXT 2, G ·X ↔ G · SX (4.72)

24For 35 we have ρ(S) = ρ(X) and therefore eq. (4.68) would imply ρ(S) = ρ(X) = 13.
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E T SY X SY X2 T 2 XT S SX X SXT 2

11 1 1 1 1 1 1 1 1 1 1 1

12 1 ω 1 1 1 ω2 ω 1 1 1 ω2

13 1 ω2 1 1 1 ω ω2 1 1 1 ω

31 3 . -1 -1 3 . . -1 -1 3 .

32 3 . 3 -1 3 . . -1 -1 -1 .

33 3 . -1 3 3 . . -1 -1 -1 .

34 3 . -1 -1 3 . . 3 -1 -1 .

35 3 . -1 -1 3 . . -1 3 -1 .

41 4 1 . . -4 1 -1 . . . -1

42 4 ω2 . . -4 ω -ω2 . . . -ω

43 4 ω . . -4 ω2 -ω . . . -ω2

Table 5: Character table of Q8oA4. The first line indicates representatives of the different

conjugacy classes. Zeroes in the character table are denoted by a dot . and ω is the third

root of unity ω = e2πi/3 and Y = T 2XT . The arrows illustrate the generators of the outer

automorphism group h4(blue), h5(red), h6(green).

where G · T ≡ {gTg−1 : g ∈ G}, leaving all other conjugacy classes invariant. To obtain a

symmetry of the character table one therefore needs to interchange the representations

12 ↔ 13, 42 ↔ 43, 31 ↔ 35. (4.73)

If we want to have a symmetry of the character table without interchanging any real

representations that still acts as CP, we therefore have to have an automorphism that

realises

G · T ↔ G · T 2, G ·XT ↔ G · SXT 2 (4.74)

while keeping all other conjugacy classes invariant. No such automorphism exists, as can

be inferred from eq. (4.63).25

However, if we relax the condition to the point where we only demand that the repre-

sentation 31 transforms into itself we have to search for outer automorphisms that realise

G · T ↔ G · T 2, G ·XT ↔ G · SXT 2 G ·X ↔ G ·X. (4.75)

Indeed there is a automorphism that realises this: h5 : (S, T,X)→ (S, T 2, X3) . An explicit

matrix representation for representation 41 is given by

U4(h5) =
1

2


1 −1 1 −1

−1 1 1 −1

1 1 −1 −1

−1 −1 −1 −1

 (4.76)

25It is convenient to use the computer algebra system GAP [31].
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and for the representation 31 we find U = U3.

Having found a consistent CP transformation for a theory that contains only the

representations 31, 41 and 1i we can now ask ourselves the question that lead us to this

study of generalised CP transformations. Namely if we take the flavon content of ref. [55]

and promote all the fields to electroweak (EW) doublets χ ∼ 31 and φ ∼ 41, there is a

purely imaginary coupling26

λ
(
χ†χ

)
31,S

·
(
φ†φ
)
31

+ h.c.. (4.77)

which breaks the accidental symmetry needed for vacuum alignment [55]. To forbid this

imaginary coupling one might think that a CP symmetry can be invoked. However, the

consistent CP transformation corresponding to h5 (which is unique up to inner automor-

phisms) under which the EW doublets φ and χ transform as

φi → U4φ
∗, χ→ U3χ

∗ (4.78)

leaves the operator in eq. (4.77) invariant, even though it is purely imaginary.

For completeness we also give a representation of h6

U4(h6) =
1

2


1 −1 −1 −1

−1 1 −1 −1

−1 −1 1 −1

1 1 1 −1

 (4.79)

from which all the other representation matrices can be derived using the Clebsch-Gordon

coefficients.

4.7 S4
∼= (Z2 × Z2) o S3

∼= SG(24, 12)

There is a complete classification of automorphism groups for the symmetric group Sn,

which we summarise in table 6. Since Out(Sn) = Z1 for n 6= 2, 6, there is no non-trivial

generalised CP transformation, especially S3 and S4, which have been introduced in [57, 58]

and used in models explaining the leptonic mixing structure, do not allow for a non-trivial

generalised CP transformation. The recently discussed generalised CP transformation in

ref. [28] is an inner automorphism of S4, similarly the generalised CP in the framework of

S3 discussed in [59]. Obviously, it is always possible to apply a group transformation at the

same time as a CP transformation. We therefore do not discuss S3 or S4 in more detail.

4.8 T7
∼= Z7 o Z3

∼= SG(21, 1)

The group T7 ∼= Z7 o Z3
∼= SG(21, 1) =

〈
A,B|A7 = B3 = BAB−1A5 = E

〉
has been first

used in particle physics in ref. [60]. In the basis used in [61], the generators A and B are

given by

ρ(A) = diag(η, η2, η4) ρ(B) = T3 (4.80)

26
(
χ†χ

)
31,S

is real and
(
φ†φ

)
31

is purely imaginary, therefore the coupling has to be purely imaginary.
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Z(Sn) Aut(Sn) Inn(Sn) Out(Sn)

n 6= 2, 6 Z1 Sn Sn Z1

n = 2 Z2 Z1 Z1 Z1

n = 6 Z1 S6 o Z2 S6 Z2

Table 6: Group structure of the symmetric group Sn

for 31 with η = e2πi/7. T7 has a trivial centre and therefore the inner automorphism group

Inn(T7) is isomorphic to T7 itself. However, since ρ(A)∗ = ρ(A6) ∈ Imρ and ρ(B)∗ = ρ(B) ∈
Imρ, the outer automorphism group is non-trivial. Its generator u : (A,B) → (A6, B) is

thus represented by the identity matrix on the three dimensional representation and this ba-

sis is thus a CP basis. Concluding the structure of the automorphism group is described by

Z(T7) ∼= Z1 Aut(T7) ∼= SG(42, 2) (4.81)

Inn(T7) ∼= T7 Out(T7) ∼= Z2 .

The outer automorphism exchanges the three-dimensional representations, while leaving

the one-dimensional ones fixed, i.e.

12 → 12, 13 → 13 and 3↔ 3∗ . (4.82)

4.9 ∆(108) ∼= SG(108, 22) (or ∆(216) ∼= SG(216, 95))

Recently [9], CP violation has been discussed in the context of ∆(108) = ∆(3×62),27 which

may be represented by a faithful three-dimensional representation as

ρ(S) = S3, ρ(T ) = T3 ρ(T ′) = diag(1, ω, ω2) . (4.83)

The model possesses an accidental µ− τ exchange symmetry, which is generated by U3.
28

Including this generator U = U3, the group becomes ∆(6 × 62). A generalised CP trans-

formation was defined on the faithful representation `R as

`R → iU3`
∗
R, (4.84)

where we have suppressed the Lorentz structure. This is equivalent to the automorphism

u : (S, T , T ′)→ (S, T 2, T ′), which is outer in ∆(3× 62) and inner in ∆(6× 62). In ref. [9]

this has been consistently applied to all non-faithful representations which they consider.

Let us comment on the origin of maximal CP violation in their model, which seems to

be in conflict with our general statement that there can be no CP violation. It is related

to the breaking of the flavour symmetry in their model. One of the scalar fields breaking

the flavour symmetry is the scalar φ transforming as

ρ(S) = S3, ρ(T ) = T3 ρ(T ′) = 13 , (4.85)

27∆(108) has been first used in the lepton sector in ref. [62]. There is a comprehensive study of ∆(3n2) [63]

and ∆(6n2) [64] groups in the context of flavour symmetries.
28The matrices S3, T3 and U3 have been defined in eq. (4.7) and eq. (4.11).
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and thus transforms only under the subgroup 〈S, T 〉 ∼= A4 with the CP transformation

φ → U3φ
∗. CP conservation would therefore require v2 = v∗3. However, they have to

assume a large hierarchy in the VEVs of φ in order to accommodate the hierarchy in

the charged lepton sector, which is given by me : mµ : mτ = v1 : v2 : v3. Hence, the

requirement |v2| / |v3| = mµ/mτ � 1 is the necessary ingredient for maximal CP violation

in the model.

5 Conclusions and outlook

We have given consistency conditions for the definition of CP in theories with discrete

flavour symmetries that have sometimes been overlooked in the literature. We have shown

that every generalised CP transformation furnishes a representation of an outer automor-

phism and that generalised CP invariance implies vanishing CP phases. We have applied

these ideas to popular flavour groups with three-dimensional representations and group

order smaller than 31.29 In particular, we have shown that there is one unique non-trivial

CP transformation (up to group transformations) for the group T ′, which we applied to

the models discussed in ref. [10, 11]. We show that this CP is spontaneously broken by the

VEVs of the doublets. The claimed geometric CP-violation in ref. [10] can only be viewed

as an arbitrary basis-dependent explicit breaking of CP. In the case of ∆(27) we have shown

that the so-called geometric phases may be viewed as the result of an accidental generalised

CP transformation of the scalar potential. Finally, we showed in the case of A4 that the

phase of (χ†χ)31
(χ†χ)31

in the potential of a single triplet does not break CP, which has

also been independently shown in ref. [47–49]. This clarifies the recent observation that

CP conserving solutions result from seemingly explicitly CP-breaking potentials [42].

The (outer) automorphism structure of small groups is very rich and it stands to wonder

if not more physics might be hidden in there. We may speculate about this possibility in

the following. S4 is the smallest group that can really generate TBM (with all the caveats

involved) and it is isomorphic to the automorphism group of A4. Maybe the accidental

symmetry that makes A4 to S4 on the level of mass matrices is connected to this fact. This

would open an interesting avenue for model building: interesting mixing patterns can be

obtained from ∆(6n2) but it is quite unappealing to start from such large groups, it might

be nicer to start from smaller groups and obtain the accidental symmetry from the larger

automorphism group in the same way as in A4 models. As an example how complicated

structures can arise from simpler ones, look at the automorphism group of ∆(27), which is

of order 432. The smallest group whose automorphism group contains ∆(96) is given by

(Z4 × Z4) o Z2
∼= SG(32, 34). Further investigation of these ideas is left for future work.

Note added. While this work was being finalised, a related work [28] addressing CP in

the context of discrete flavour symmetries appeared on the arxiv. We both give a general

definition and discussion of generalised CP symmetries. Our work differs from [28] as

29For completeness, we mention the group A4 × Z2
∼= SG(24, 13), which we did not discuss in detail. It

has been mentioned in the survey of ref. [54]. Its automorphism group structure is directly inherited from

A4 with the addition that it has a non-trivial centre Z(Z2).
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follows. They consider the physical implications for the lepton mixing parameters of a

remnant CP symmetry in the neutrino sector. In particular, they discuss the groups S4 as

well as A4 in more detail. We, on the other hand, emphasise the relation of generalised

CP transformations to the automorphism group and especially the outer automorphism

group. We perform a systematic study of all generalised CP transformations for all groups

with a three-dimensional irreducible representation of order less than 31. In particular, we

discuss the ”calculable phases” in models based on ∆(27) and interpret them in terms of

an accidental generalised CP transformation as well as comment on the recent claims of

geometric CP violation in the context of T ′ models.
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