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1 Introduction

In this paper we study the algebraic curve of a special class of string solutions in the context

of the AdS/CFT correspondence [1–3] (see [4] for review). String theory on an AdS5 × S5

background is known to be integrable [5] by having an infinite set of conserved charges

which are encoded in the monodromy matrix (see [6] for a review). However, it is still a

very hard problem to find string solutions in the AdS5 × S5 background.

A study of the spectral problem on the string theory side of the AdS/CFT correspon-

dence revealed that closed string solutions are classified and encoded by algebraic curves [7–

10]. The construction of the algebraic curve for a closed string solution is based on the

existence of a monodromy matrix with the integration defined along a non-contractible

loop circling the cylinder defined by the closed string worldsheet. It was shown in [11]

that some string solutions where non-trivial monodromies do not exist (e.g open string

– 1 –



J
H
E
P
0
4
(
2
0
1
3
)
1
1
9

solutions) may also admit a non-trivial algebraic curve (see also [12] for more examples).

The construction of [11] is based on the existence of a Lax operator and its analytical

properties, which may be constructed directly with no reference to a monodromy matrix.

In this paper we consider a special class of string solutions where the construction of the

Lax operator is significantly simplified. We show how one can easily extract the algebraic

curve for this class of solutions and analyze the properties of these curves. This class of

solutions is given by solutions for which the flat-connection is factorized in terms of the

worldsheet coordinates in the sense that the time evolution of the flat-connection is given

by a similarity transformation, A(τ, σ) = S−1(τ)A0(σ)S(τ) with S
−1dS = const. We refer

to such solutions as factorized solutions. Factorized string solutions were also considered

in [13] where similar ideas concerning the construction of the Lax operators were presented,

however not in the context of the algebraic curve. This class of solutions contains many

of the well known string solutions in AdS background such as the null cusp [14], quark-

antiquark potential [15–17], two point function [18], folded spinning string [19] etc. (actually

all the string solutions which were considered in [11] and [12] fall into this class).

The paper is organized as follows. In section 2 we introduce the factorized solutions for

sigma-models on group manifolds and construct the Lax operator and the algebraic curve.

In section 3 we discuss the properties of the curve for strings on an AdS3 background. We

also discuss the reconstruction of the string solutions from the curve. In section 4 we give a

short discussion on the construction of the curve in the AdS5 background. In section 6 we

give several examples of applications for our procedure. Some of these examples are new

while some were already discussed in [11] and [12], but we present them for completeness

as well as comparison with the results that our procedure yields. We also give an example

of a string solution in AdS5. In section 5 we give a short discussion on the generalization

of the method for string solutions on super-coset backgrounds. We end with a discussion

in section 7.

2 Factorized string solutions for Sigma-models on groups manifolds

In this section we consider string sigma-models on a group manifold G, namely

S =

∫

d2σTr(j ∧ ∗j), (2.1)

where j = g−1dg is the Maurer-Cartan one-form taking values in the algebra g of G,

and g ∈ G. We consider solutions with the following factorization with respect to the

worldsheet coordinates

j(σ, τ) = S−1(τ)j0(σ)S(τ), S(τ) ∈ G, j0(σ) ∈ g, (2.2)

where jRS ≡ dSS−1 = const. and jLS ≡ S−1dS = const. (note that j
L/R
S,σ = 0). Note that

this equation does not imply that j0(σ) has a vanishing τ or σ components.1

1Note that the subscript ′0′ implies τ = 0 and not the τ component.
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The factorization of the MC one-form implies that the flat-connection, A = 1
1−z2

(j − iz ∗ j),
inherits the same factorization properties2 (z ∈ C is the spectral parameter). The flatness

equation of a factorized flat-connection takes the form

∂σA0,τ (σ) = [A0,τ (σ)− jRS , A0,σ(σ)]. (2.3)

This equation suggests we should define a new variable

L(τ, σ) ≡ Aτ (τ, σ)− jLS , (2.4)

taking values in the algebra. By (2.3) L satisfies

∂σL = [L,Aσ]. (2.5)

By taking the τ derivative we find

∂τL = [L, jLS ] = [L, jLS + L] = [L,Aτ ]. (2.6)

From now on we denote jLS by jS . Thus, L is a Lax operator satisfying the Lax equations

(note that the Lax equations are linear and that Lm also satisfies them for a non-negative

integer m). The Lax equations imply that the algebraic curve equation is given by [11]

det(L− y1n×n) = 0. (2.7)

The Lax operator depends on the spectral parameter in a simple way by construction. The

characteristic polynomial equation is given by

det(L− y1n×n) ∝
1

(1− z2)n

2n
∑

i=1

ci(y)z
i (2.8)

where ci(y) are polynomials in y up the power n. Note that if A is traceless,

∂α(det(L− y)) ∝ Tr
(

(L− y)−1∂α(L− y)
)

= Tr
(

(L− y)−1[L− y,Aα)]
)

= 0, (2.9)

which is the case for the backgrounds we will be interested in, namely AdS3 and AdS5.

Writing the flatness equation in terms of the currents gives

(∂σjτ − iz∂σjσ) =
1

1− z2
[(jτ − izjσ)− (1− z2)jS , (jσ + izjτ )]. (2.10)

Expanding the above equation in z we find the ”factorized” Maurer-Cartan equations and

equations of motion

∂σjτ = [jτ − jS , jσ],

∂σjσ = [jS , jτ ], (2.11)

2The presence of the i factor is due to the use of a Euclidean worldsheet signature. The worldsheet

signature does not affect our analysis and the final results are the same for a worldsheet with Minkowskian

signature.
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respectively. Using these equations it is easy to check that the energy-momentum tensor

components are constant

∂σTτσ = ∂σTr(jτ jσ) = Tr([jτ − jS , jσ]jσ) + Tr(jτ [jS , jτ ]) = 0,

∂σTττ = ∂σTr(jτ jτ − jσjσ) = 2∂σTr(jτ [jτ − jS , jσ]− jσ[jS , jτ ]) = 0. (2.12)

The vanishing of the τ derivative is obvious.

Note that we could have also started with a factorization of the solution with respect

to σ instead of τ . In this case the Lax operator is given by L = Aσ−jS (where jS = (jS)σ).

For example, this is the case for the algebraic curve for
〈

W (C)Tr(ZJ)
〉

as we shall see in

section 6.5. Furthermore, the factorization could also be with respect to some combination

of τ and σ, and the generalization of the Lax operator in that case should be obvious.

3 The AdS3 case

In this section we consider the case of G = SL(2, R) in the 2 representation which gives a

sigma model on AdS3 (the analysis of the real form G = SU(2) which gives S3 is identical).

First we write the curve in terms of the currents and then we discuss its properties.

3.1 The algebraic curve

We start by noting that det(a) = −1
2Tr(a

2) for a ∈ sl(2), since a is traceless. Thus the

algebraic curve equation reduces to

y2 = − det(L). (3.1)

Explicitly we have

det(L) = −1

2
Tr(L2) = −1

2
Tr

((

1

1− z2
(jτ − izjσ)− jS

)2)

= −1

2

1

(1− z2)2
Tr
(

(jτ − jS)
2

− 2iz(jτ − jS)jσ + z2(2(jτ − jS)jS − j2σ)− 2iz3jσjS + z4j2S

)

≡ −1

2

1

(1− z2)2

4
∑

i=0

ciz
i. (3.2)

We define the polynomial g(z) =
∑4

i=0 ciz
i which characterizes the algebraic curve (where

we used Euclidean worldsheet metric). We may rescale L or y such that we get an algebraic

curve equation y2 = g(z). Such a curve gives at most a genus-1 Riemann surface. We write

the coefficients ci explicitly in terms of traces of the currents

c0 = Tr((jτ − jS)
2),

c1 = −2iTr((jτ − jS)jσ),

c2 = Tr(2(jτ − jS)jS − j2σ),

c3 = −2iTr(jσjS),

c4 = Tr(j2S). (3.3)
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3.2 Properties of the algebraic curve

Next, we collect a number of properties of the AdS3 algebraic curve. Some of the statements

presented in this section will be proved in section 6.

3.2.1 The Virasoro constraints

Given (3.3) we can easily read the energy-momentum tensor components from the curve’s

coefficients

Tτσ = i
c1 + c3

2
,

Tττ = c0 + c2 + c4. (3.4)

These relations imply that the Virasoro constraints are satisfied only if the curve has

the form

g(z) = (1− z2)f(z), (3.5)

where f(z) is a second order polynomial. We will show later that indeed, the algebraic

curves of the null cusp and its SO(2) worldsheet rotations, the circular Wilson loop, the

folded spinning string and the qq̄ potential all take this form (this fact was also observed

and noted in [12] for the considered examples).

3.2.2 Symmetries

The algebraic curve is invariant under the global symmetries of the action, that is SO(d, 2)

conformal transformation for strings on AdSd+1 background. It is also invariant under

translations along the worldsheet.

In our analysis we use the worldsheet conformal gauge, in which the action and equa-

tions of motion are invariant under an SO(2) rotation of the worldsheet coordinates.

Explicitly such transformations are given by ξ = (τ, σ) → ξ′ = (τ ′, σ′) = (τ cos θ +

σ sin θ, τ sin θ − σ cos θ). Under such a transformation the Lax operator transforms as

L(ξ) → cos θL′(ξ′) + sin θAσ′(ξ′), so our algebraic curve with respect to τ is not invariant

under such transformations. Also, the factorization of the solution with respect to τ might

be lost in general, and the solution is then factorized with respect to τ ′. Obviously the

same curve still exists but now with respect to τ ′ factorization.
Under a Wick rotation where τ → iτ the curve transforms as g(z) → −g(z), and under

a rescaling of the worldsheet variables ξ → ξ′ = αξ the curve transforms as g(z) → α2g(z).

3.2.3 Complete factorization

Solutions which are completely factorized, that is j(σ, τ) = S−1(sτ + rσ)j0S(sτ + rσ) with

j0 a constant matrix give a curve with a complete square factor. If we compute the curve

with respect to the τ factorization (taking the worldsheet signature to be Minkowskian)

we find that

g(z) = (r + sz)2(a+ bz + cz2), a, b, c ∈ C, (3.6)

– 5 –
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where a, b, c depend on r, s. We could have chosen some other combination of τ and σ for

the factorization (a more natural choice could be to rotate the worldsheet coordinates so

that the solution depends only on τ and then compute the curve), but, we would get the

same form for the curve. See section 6.3 for more details.

Curves which correspond to completely factorized solutions which also satisfy the Vi-

rasoro constraints take the form

g(z) = (1− z2)(a+ bz)2, or g(z) = (1− z2)(1± z)(a+ bz), a, b ∈ C. (3.7)

The first form corresponds to the null cusp solution and solutions which are related to it

by a worldsheet SO(2) rotation. The circular Wilson loop algebraic curve takes the second

form, where it might not be obvious at first sight how it is related to completely factorized

solutions (see discussion and footnote below (3.10)).

3.3 Reconstruction of the string solution

Given a curve of the form (3.1) we can reconstruct a factorized string solution (up to

conformal transformations and worldsheet translations). One can probably use the re-

construction procedure presented in [11], but here just sketch a straightforward procedure

independent of the analytical properties which is easy to implement in most cases discussed

in this paper. First we distinguish between two cases:3 c4 6= 0 or c4 = 0. If c4 6= 0 we may

start with the following ansatz

jσ = S−1

(

c3
4i
√
c4

β(σ)

γ(σ) − c3
4i
√
c4

)

S, jτ = S−1

(

δ(σ) ǫ(σ)

ζ(σ) −δ(σ)

)

S, S = eτσ3

√
c4

4 . (3.8)

c0, c1, c2 of (3.3) fix three of the functions, say δ, ǫ and ζ in terms of β and γ. Plugging these

into the equations of motion and MC equations leaves us with two first order non-linear

coupled differentials equation for β(σ) and γ(σ),

γ′ =
i
(

c33 − 4c2c3c4 + 8c1c
2
4 − 16c3c4βγ

)

64c
3/2
4 β

− i

64c
3/2
4 β

(

(

c33 − 4c2c3c4 + 8c1c
2
4

)2
+ 16c4βγ

(

16c2c
2
3c4 − 3c43 − 16

(

c22 + c1c3
)

c24

+ 64c0c
3
4 − 16c4βγ

(

8c2c4 − 3c23 + 16c4βγ
))

)1/2
(3.9)

β′ = − i
(

c33 − 4c2c3c4 + 8c1c
2
4 − 16c3c4βγ

)

64c
3/2
4 γ

− i

64c
3/2
4 γ

(

(

c33 − 4c2c3c4 + 8c1c
2
4

)2
+ 16c4βγ

(

16c2c
2
3c4 − 3c43 − 16

(

c22 + c1c3
)

c24

+ 64c0c
3
4 − 16c4βγ

(

8c2c4 − 3c23 + 16c4βγ
))

)1/2
(3.10)

3It can be shown that these two cases are relates to one general solution to S−1∂τS = const, but the

solution is quite complicated and in order to get the c4 = 0 case one has to take the limit carefully. Thus,

we find it simpler to distinguish these two cases, although it might not be necessary.
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These equations are generally complicated and we do not give their explicit solution. For

specific curves they can be quite easily solved. For example, in the case of the circular

Wilson loop the curve is given by (c0, c1, c2, c3, c4) = (−α, 0, 2α, 0,−α) and we get

γ′ − γ
√

(α+ βγ) = 0, β′ − β
√

(α+ βγ) = 0, (3.11)

with the solution

γ(σ) = γ1β(σ) =
2αe

√
α(σ+γ2)

1− γ1αe2
√
α(σ+γ2)

. (3.12)

Different values of γ1 and γ2 correspond to target space conformal transformations and

worldsheet translations respectively.4

After we find the currents we can continue and find the group element g and read the

explicit solution. If c0 6= 0, the group representative takes the form

g = eτσ3

√
c0

4

(

a(σ) b(σ)

c(σ) d(σ)

)

S(τ). (3.13)

Of course there are only three independent functions because of det g = 1 which eliminates

one variable. Comparing g−1∂τg ≡ jτ gives a set algebraic equations which further elim-

inate two more functions. Finally, g−1∂σg ≡ jσ gives one first order differential equation

which fixes g. Note that the algebraic curve is invariant under conformal transformations

g → lgr with l, r ∈ SL(2) being constant matrices.

If c0 = 0, then instead of the eτσ3

√
c0

4 factor in g we insert
(

1 0
ρ τ 1

)

, ρ ∈ C. Similarly,

given a curve with c4 = 0 but c3 6= 0, we cannot use the same S as before, since in that

case, c4 = 0 implies c3 = 0. In this case we may use

jσ = S−1

(

α(σ) β

γ(σ) −α(σ)

)

S, jτ = S−1

(

δ(σ) ǫ(σ)

ζ(σ) −δ(σ)

)

S, S =

(

1 0

κ τ 1

)

. (3.14)

The rest of the reconstruction follows the same lines as the construction for the c4 6= 0. In

case where c4 = c3 = 0, we should still use the same S (in this case, the previous S is the

special case of κ = 0).

It can be shown the the most general solution to S−1∂τS = const. is related to the S

matrices given above up to conformal transformations.

4 The AdS5 case

In this section we would like to extend the analysis given above for string solutions in an

AdS3 background to solutions in an AdS5 background. The AdS5 background is a coset

manifold SU(2, 2)/SO(4, 1) and not a group manifold. However, it is still possible to write

4Note that taking γ1 = e−
√
αγ2 and the γ2 → −∞ limit corresponds to γ(σ) = 2αe

√
ασ and β(σ) = 0.

This shows how the circular Wilson loop algebraic curve has the form of a completely factorized solution.

One really has to go back and find ǫ, ζ, δ in order to really see this property. We note that this transformation

is singular in the sense that it is not invertible.
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a sigma model as for the AdS3 background using a special parametrization of the SU(2, 2)

group element. A convenient choice is given in [20, 21]5

g =











0 v3 v1 v2
−v3 0 −v∗2 v∗1
−v1 v∗2 0 v∗3
−v2 −v∗1 −v∗3 0











, (4.1)

with |v1|2 + |v2|2 − |v3|2 = −1. For global AdS coordinates we use

v1 = sinh ρ cosψeiφ, v2 = sinh ρ sinψeiϕ, v3 = cosh ρeit, (4.2)

and for the Poincare patch we use

v1 =
y2 + x2 − 1 + 2ix1

2y
, v2 =

x2 + ix3
y

, v3 =
y2 + x2 + 1 + 2ix0

2y
, (4.3)

where x2 = xµxµ.

The resulting characteristic polynomial equation det(L− y) = 0 gives a polynomial of

order 4 in y. Due to the fact the L is traceless, it is possible to write the equation in the

following form

det(L− y) = y4 − 1

2
y2Tr(L2)− 1

3
yTr(L3) +

1

8

(

Tr(L2)2 − 2Tr(L4)
)

= 0. (4.4)

As for the AdS3 case we can write in principle the explicit dependence of the curve

on the spectral parameter and traces of the currents, but we do not give here the explicit

result. We note that the coefficient of y2 is given by the same function that we had for the

AdS3 algebraic curve (3.1), so for example we can immediately detect whether the Virasoro

constraints are satisfied according to this function (see section 3.2.1). We give an example

for a string solution in AdS5 in section 6.6. The analysis is identical for string solutions on

S5 where instead of SU(2, 2) we use SU(4).

5 Z4 super-coset models

In this section we generalize the analysis given above for sigma-models on group man-

ifolds to sigma-models on Z4 super-coset spaces [22] (see also [23–25]). Given a solu-

tion for a sigma-models on a super-coset space with a factorization of the flat-connection,

A(τ, σ) = S−1(τ)A0(σ)S(τ) with jS = S−1dS = const., the construction of the Lax opera-

tor identical to the one where the background is a groups manifold, namely (2.4). However,

a factorization of the MC one-form, J(τ, σ) = S−1(τ)J0(σ)S(τ), does not immediately im-

ply a factorization of the flat-connection as in the group manifold case.

Starting with such a factorization for J , we define

J = Je + Jo ≡ S−1J0S = S−1(Je)0S + S−1(Jo)0S, (5.1)

5In these references, a similar choice for the real form SU(4) is given which allows one to analyze the S5

manifold in a similar way.
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where Je and Jo are the even and odd components of J respectively. The Z4 decomposition

is given by

J (0/2) =
1

2
(1± Ω)Je, J (1/3) =

1

2
(1∓ iΩ)Jo, (5.2)

with Ω2J = (−)|J |J , where |J | = 0 if J is even and |J | = 1 if J is odd. Requiring that J (i)

will also decompose as J (i)(τ, σ) = S−1(τ)J
(i)
0 (σ)S(τ) implies that

[jS − Ω(jS),Ω(J)] = 0. (5.3)

This means that jS ∈ H0, or equivalently S ∈ H, where H ⊂ G is the invariant locus of

the Z4 automorphism.

The common parameterizations of the super-coset representative g (e.g. g = exp(x ·
P )yD for Poincare coordinates where P and D are the translation and dilatation generators

respectively) are non-linear and the factorization property might be obscured. Thus, it is

more practical to use the parameterizations introduced in section 4.

6 Examples

In this section we give several examples for applications of the procedure described in

previous sections for constructing the algebraic curve and for reconstructing the solution

from a given curve. Some of the examples were studied in previous papers ([11, 12]) using

the method of [11]. Most of the examples are for string solutions in AdS3, some of them

are good solutions satisfying the Virasoro constraints, while other which do not satisfy the

Virasoro constraints require extra excitations on the sphere.

6.1 Generalization of the qq̄ potential solution

In this section we study a generalization of the qq̄ potential solution in the sense of starting

with a general string solution of the form

x1 = κτ,

x2 = F (σ),

y = G(σ), (6.1)

where we use a Euclidean worldsheet metric as well as a Euclidean AdS3 space.6 Taking

the group element to be of the form

g =

(

ix1+x2

y2
1
y

−x2

1
+x2

2
+y2

y
ix1−x2

y2

)

, (6.2)

the solution admits a factorization with

S(τ) =

(

1 0

iκτ 1

)

, jS =

(

0 0

iκ 0

)

. (6.3)

6Note that this is not the generalized qq̄ potential introduced in [26] and discussed in [11] in the context

of the algebraic curve.
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If we assume that F (σ) and G(σ) solve the equations of motion, we have

Tr(jτ jσ) = 0

Tr(jτ jτ − jσjσ) =
2
(

κ2 − F ′2 −G′2)

G2
≡ v = const. (6.4)

Eliminating F ′ in favor of v and plugging the MC one-form in the algebraic curve equa-

tion (2.7) we find

y2 = − det(Aτ − jS) =
z

2(z2 − 1)2

(

(z2 − 1)
κ
√
4κ2 − 2vG2 − 4G′2

G2
− vz

)

, (6.5)

where κ
√
4κ2−2vG2−4G′2

G2 must be a constant for any solution. So at this point we already

have a pretty general form for the curve without having to solve any differential equation

and find the explicit solution.

For completeness, we solve one differential equation for G which gives

G(σ) =
κ

αβ
cn
(

β(σ + c), 1− α2
)

(6.6)

where α, β, c are constants, and v = 2β2(2α2 − 1), and cn is the Jacobi elliptic function.

Plugging the solution to the algebraic curve equation gives

y2 = −
z
(

(

1− z2
)

α
√
1− α2 + z

(

1− 2α2
)

)

β2

(1− z2)2
. (6.7)

We can further solve the equation for F which gives

F (σ) = a+ bσ − κ
√

(1− α2)

(

α(c+ σ)

1− α2
(6.8)

−
E
(

am
(

β(c+ σ), 1− α2
)

, 1− α2
)

(

α2 +
(

1− α2
)

cn
(

β(c+ σ), 1− α2
)2
)

αβ (1− α2) dn (β(c+ σ), 1− α2)

√

1− (1− α2) sn (β(c+ σ), 1− α2)2

)

where a, b are constants, am is the Jacobi amplitude and sn and dn are also standard Jacobi

elliptic functions.

Let us note several limits of the solution. The first is the one for which the Virasoro

constraints are satisfied, that is α = 1/
√
2 [17] (which was discussed in [11]). If we also

take β = 1 and c = 0 then we recover the known qq̄ solution with

G(σ) =
√
2 κ cn (σ, 1/2) . (6.9)

We get another simple solution when α = 1, β = 1 and c = 0 where

G(σ) = κ cosσ, F (σ) = const., (6.10)

which describes a straight folded string attached to the boundary, moving along a line (that

is, the limit where the quark and anti-quark are at the same point). The limit α→ 0 with

β = 1 and c = 0 gives G→ 1
α coshσ +O(α).
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Other solutions with 0 < α < 1 describe the qq̄ pair moving along a line with differ-

ent distance between them (where the distance goes to infinity when α → 0), but these

solutions should be supplemented by motion on the sphere since they do not satisfy the

Virasoro constraints.

Another rather trivial limit is κ→ 0. This leaves us with the real solution given by

G(σ) = asech(β(σ + c)), F (σ) = b+ a tanh(β(σ + c)), (6.11)

with v = −2β2 and the curve g(z) = −β2z2. This is a static open string with the endpoints

attached to the boundary.

6.2 Two point correlation function

In this example we study the closed string solution given in [18] describing a two point

Correlation function of operator which are dual to classical spinning strings. We use the

the form of the solution before the special conformal transformation, given by

x1 = tanh ρ0 cos(ωτ + σ)eκτ ,

x2 = tanh ρ0 sin(ωτ + σ)eκτ ,

y = cosh−1 ρ0e
κτ , (6.12)

where κ2+ω2 = 1 and ρ0 = const. The worldsheet metric is Lorentzian and the solution is

embedded in a Euclidean AdS3. In this case we note that we can extract an algebraic curve

equation by factorizing the flat connection as A(τ, σ) = S(τ)A0(σ)S
−1(τ) or A(τ, σ) =

R(σ)Ã0(τ)R
−1(σ). The matrices S and R take the form S = e(κ−iω)τ/2 and R = e−iτ/2

respectively. This is what we call a completely factorized solution.

The algebraic curve associated with the S factorization is given by

y2 = − det(Aτ − jS) =
(z − iκ+ ω)2

(

−1 + z2(κ− iω)2 + 2z(iκ+ ω) cosh 2ρ0
)

4 (−1 + z2)2
(6.13)

One can see the complete square factor (z−iκ+ω)2 which implies that the solution is com-

plectly factorized (see section 6.3). The algebraic curve associated with the R factorization

is given by

y2 = − det(Aσ − jR) =
(z + iκ+ ω)2

(

−z2 + (κ+ iω)2 + 2z(−iκ+ ω) cosh 2ρ0
)

4 (−1 + z2)2
. (6.14)

These two curves look different, since the solution is not symmetric with respect to τ

and σ. The curves obviously coincide when κ = 0, ω = 1 since then the solution depends

on τ and σ in the same way. The curve then takes the form

y2 = − det(Aσ − jR) = −1 + z2 − 2z cosh 2ρ0
4(1− z)2

. (6.15)

The energy-momentum tensor components are

Tr(jσjτ ) = 2ω sinh2 ρ0,

Tr(jτ jτ + jσjσ) = 2 cosh 2ρ0 + κ2 − ω2 − 1, (6.16)

so generally the Virasoro constraints are not satisfied.
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6.3 Completely factorized solutions

In the previous example we found that the solution was factorized both with respect to

τ and σ. This is also the case for the null cusp solution [14]. Here we consider the most

general completely factorized solutions and their properties. We use Euclidean worldsheet

for the general analysis.

We start by considering solutions of the form j(τ, σ) = T−1(τ, σ)j0T (τ, σ), where

T (τ, σ) = S(τ)R(σ) = exp(σ3(sτ + rσ)), r, s ∈ C. We plug this current into the equations

of motion and get a set of simple algebraic equations which can be easily solved. The

result is

(j0)σ =

(

α β

γ −α

)

, (j0)τ =

(

r2+s2−rα
s − rβ

s

− rγ
s − r2+s2−rα

s

)

(6.17)

Tr(jτ jτ − jσjσ) =− 2α2 +
2
(

r2 + s2 − rα
)2

s2
− 2βγ +

2r2βγ

s2
,

Tr(jτ jσ) =
2α
(

r2 + s2 − rα
)

− 2rβγ

s
, (6.18)

y2 =
(s+ irz)2

(

(r + isz − α)2 + βγ
)

s2 (−1 + z2)2
, (6.19)

where α, β, γ ∈ C. We see that for such solutions the curve has a complete square factor.

In order for the Virasoro constraints to be satisfied we can take β =
α(r2+s2−rα)

rγ and

either r = ±is or α = r which gives the curves

y2 = −s(1 + z)(s+ sz + 2iα)

(1− z2)
and y2 =

(s+ irz)2

1− z2
, (6.20)

respectively. The second curve corresponds to the null cusp solution with (s, r) = 1√
2
(1, 1),

and its 2d worldsheet rotations [27, 28]. The folded string in the scaling limit yields a curve

with the (s, r) = (iκ, 0) curve.7 All these string solutions live on the surface x21−x22 = 1
2y

2.

The first curve gives a real solution for Minkowskian worldsheet. These strings live on

the surface given by x21 − x22 = − (s−α)2

4sα y2 embedded in a Euclidean AdS3 space. These

solutions depends only on (σ + τ) so they describe infinite ”static” strings on this surface.

Let us comment that algebraic curves which are associated with completely factorized

solutions by having a complete square factor may give non-trivial string solutions which are

not completely factorized, but are related to such solutions by conformal transformation

and a worldsheet translation which are singular (in the sense that they are not invertible).

One example which we described before is the circular Wilson loop. Another example

is an open string solution living on the surface of an S2 embedded in a Euclidean AdS3

7Note that when computing the curve with respect to the τ factrization the null cusp’s curve of [14]

is different then the folded string which is related by an SO(2, 4) target space transformation, a Wick

rotation and 2d worldsheet rotations [27]. The reason is that our procedure is sensitive to the worldsheet

transformations. This result is different then the one presented in [12] where both curves are same. In the

completely factorized solutions there is an ambiguity regarding the choice of the factorization matrix , and

different choices for the factorization matrices could yield similar results for the curves.
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space, where the center of the sphere is on the boundary of the AdS space and the sphere is

contracting. This solution does not satisfy the Virasoro constraints by itself (unless n = 1).

The solution is given by

x1 = Ae−
√
nτ (n cosσ + cos(nσ)),

x2 = Ae−
√
nτ (n sinσ − sin(nσ)),

y = 2A
√
ne−

√
nτ sin

(

(1 + n)σ

2

)

. (6.21)

The energy-momentum tensor components are given by

Tr(jτ jτ − jσjσ) =
1

2
(n− 1)2,

Tr(jτ jσ) = 0, (6.22)

and the algebraic curve is given by

y2 =
(
√
n+ z)

2
(1−√

nz)
2

4 (1− z2)2
. (6.23)

As for the circular Wilson loop, the way to get the completely factorized solution is to make

a conformal transformation by g → geiξn/2 followed by a translation σ → σ+ ξ and taking

the limit ξ → −i∞. Note that σ ranges from 0 to 2π
1+n , otherwise the strings continues to

−y. The projection of the solution on the x1-x2 plane is a spiky contracting string with

n+ 1 spikes (if σ ∈ [0, 2π]). We will introduce a similar solution where the string spins in

section 6.6.

In case where c4 = 0 we use T (τ, σ) = exp(σ1−iσ2

2 (sτ+rσ)) and generally get the curve

y2 =
(s+ irz)2

(

α2 + β(γ − r − isz)
)

s2 (1− z2)2
(6.24)

again with the complete square factor. The Virasoro constraints are given by

Tr(jτ jτ − jσjσ) =− 2
(

r3β + rs2β − r2
(

α2 + βγ
)

+ s2
(

α2 + βγ
))

s2
,

Tr(jτ jσ) =
r2β + s2β − 2r

(

α2 + βγ
)

s
. (6.25)

In order to solve the Virasoro constraints we take 2rα2

r2+s2−2rγ
and either α = 0 which gives

us the trivial curve y2 = 0 or r = ±is which gives

y2 =
is(1− z)2(1 + z)α2

γ(1− z)2
(6.26)
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6.4 Folded spinning string in AdS3

The folded spinning string solution in a Minkowskian AdS3 space in global coordinates is

given by [19]

t = κτ,

φ = ωτ,

ρ = ρ(σ),

(6.27)

The solution to the equations of motion gives

ρ(σ) = ±i am
(

(σ + γ2)(ω
2 − κ2 − γ1)

1/2

∣

∣

∣

∣

κ2 − ω2

κ2 − ω2 + γ1

)

. (6.28)

This solution does not satisfy the Virasoro constraint and is not periodic for the general

integration constants γ1, γ2. It is easy to check that this solution is factorized with S =

exp(iτ(κ− ω)/2) if we use

g =

(

eit cosh ρ eiφ sinh ρ

e−iφ sinh ρ e−it cosh ρ

)

. (6.29)

Thus, we easily compute the algebraic curve equation

y2 = −
(

κ− z2κ+ ω + z2ω
)2 − 4z2γ1

4 (1− z2)2
. (6.30)

The Virasoro constraints are satisfied for γ1 = ω2 where we have

y2 = −
(

1− z2
)

((κ+ ω)2 − (κ− ω)2z2)

4 (1− z2)2
. (6.31)

We note that if κ = ω (as in the long string scaling limit) we retrieve the complete factorized

solution

y2 = −4κ2
(

1− z2
)

4 (1− z2)2
, (6.32)

which is related to the null cusp solution by 2d worldsheet transformations followed by a

conformal transformation and a Wick rotation [27], as discussed above (the algebraic curve

in this limit was also discussed in [12]). We also note that when κ = 0 or ω = 0 we get the

circular Wilson loop algebraic curve

y2 = −κ
2
(

1− z2
)2

4 (1− z2)2
. (6.33)

This must be the case since in this limit the solutions coincide.
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6.5
〈

W (C)TrzJ
〉

correlation function

The algebraic curve for the
〈

W (C)TrzJ
〉

correlation function was worked out in [11]. For

this solution the factorization is given with respect to σ coordinate on the worldsheet. The

solution is given by [29]

x1 =

√

1 + j2ejτ

cosh(
√

1 + j2τ + ξ)
cosσ,

x2 =

√

1 + j2ejτ

cosh(
√

1 + j2τ + ξ)
sinσ,

y = (
√

1 + j2 tanh(
√

1 + j2τ + ξ)− j)ejτ ,

ξ = log(j +
√

1 + j2), (6.34)

where the worldsheet is Euclidean and the target space is a Euclidean AdS3 space and

j = J/
√
λ. The factorization matrix is given by S = exp(iσ3σ/2). Plugging this into the

Lax operator L = Aσ − jS yields the curve

y2 = −
(

1− 2jz − z2
)2

4 (1− z2)2
. (6.35)

This solution does not satisfy the Virasoro constraints which are given by

Tr(jτ jτ − jσjσ) = 2j,

Tr(jτ jσ) = 0. (6.36)

6.6 Open strings solution in AdS5

Up to now we have considered examples of string solutions in AdS3 space. In the following

example we show how the procedure can be applied for string solutions in AdS5 (or more

precisely Euclidean AdS4). We give a non-trivial factorized solution to the equations of

motions in AdS5. The solution describes an open string attached the AdS boundary that

moves constantly along one direction. The string has a fixed profile and spins with time

around the y axis in the x1-x2 plane. This solution is a bit similar to the qq̄ potential, but

where the pair of quarks also rotate. We use a Euclidean worldsheet and a Minowskian

AdS5 space as the target space.

The solution is given by

x0 = 0,

x1 = A
(

ncos
(

σ −
√
nτ
)

+ cos
(

nσ +
√
nτ
))

,

x2 = A
(

−nsin
(

σ −
√
nτ
)

+ sin
(

nσ +
√
nτ
))

,

x3 = κτ,

y =
2
(

A2n(1 + n)2 + κ2
)1/2

(1 + n)
sin

(

1

2
(1 + n)σ

)

, (6.37)
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so the x1, x2, y components describe the ellipsoid x21+x
2
2+

A2n(1+n)2

A2n(1+n)2+κ2 y
2 = A2(1+n)2. For

κ = 0, the string profile coincides with the contracting open string described in section 6.3.

As in that case, we need to limit the range of the string to be σ ∈ [0, 2π
1+n ], or else we would

get a negative value for y. Plugging the solution into the coset representative given in (4.1)

and computing the MC one-form, we find the factorization j(τ, σ) = S−1(τ)j0(σ)S(τ) with

S = exp











τ











0 1
2 i (

√
n− κ) − iκ

2 0
1
2 i (

√
n− κ) 0 0 iκ

2
iκ
2 0 0 −1

2 i (
√
n+ κ)

0 − iκ
2 −1

2 i (
√
n+ κ) 0





















, (6.38)

so the form of jS is just the matrix in the exponent’s argument.

We do not give the explicit forms of j and A since they are lengthy and not illuminating.

the resulting algebraic curve equation is given by

y4 + y2
A2n(1 + n)2

(

(n− 1)z + i
√
n
(

1 + z2
))2 −

(

(1 + n(4 + n))z2 − n
(

1 + z4
))

κ2

2 (1− z2)2 (A2n(1 + n)2 + κ2)

+
A4n2(1 + n)4

(

z − nz − i
√
n
(

1 + z2
))4

+ κ4
(

n+ z2
)2 (

1 + nz2
)2

16 (1− z2)4 (A2n(1 + n)2 + κ2)2

− 2A2κ2n(1 + n)2
(

n− (1 + n(4 + n))z2 + nz4
) (

z − nz − i
√
n
(

1 + z2
))2

16 (1− z2)4 (A2n(1 + n)2 + κ2)2
= 0.

(6.39)

In the limit where κ = 0 the solution is embedded in Euclidean AdS3 where the string lives

on S2 and the algebraic curve becomes

y2 =
(
√
n+ iz)

2
(i+

√
nz)

2

4 (1− z2)2
. (6.40)

The energy-momentum tensor components are given by

Tr(jσjτ ) = −2A2(n− 1)n3/2(1 + n)2

A2n(1 + n)2 + κ2
,

Tr(jτ jτ − jσjσ) =
(1 + n)2

(

A2n(1 + (n− 6)n) + κ2
)

A2n(1 + n)2 + κ2
. (6.41)

The Virasoro constraints are satisfied only for n = 1 with A = κ/2. The second

constraint can be solved by A = κ√
−n+6n2−n3

where there are real solutions up to n =

3 + 2
√
2 (or n = 5 for integers). In the n = 1 and A = κ/2 case the algebraic curve

equations reduced to

y4 +
y2

2
+

(

1 + z2
)2

16 (1− z2)2
= 0, (6.42)

so that

y2 =
(i± z)2

4 (1− z2)
, (6.43)

which looks like two copies of null cusp curves.
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7 Discussion

In this paper we showed how an algebraic curve can be easily constructed for factorized

string solutions, by introducing a simple Lax operator. The Lax operator is not unique

(and so also the curve), but nonetheless we give a prescription for constructing it in an

unambiguous way for any factorized string solution, without having to introduce arbitrary

functions. We study the properties of the curve, especially for string solutions on AdS3
background, and give examples for applications of our procedure for various string solutions.

Our procedure yields similar results to those found in [11] and [12] up to a rescaling of the

curve’s equation and 2d worldsheet rotations.

The algebraic curve that we study here is different from the algebraic curve originally

introduced in [7], where the quasi-momenta properties depend also on global properties of

the solution, such as the energy and other charges. The curves that we study are local

in this sense and do not depend on this data (integration is not required in the process).

This is expected since we are also able to find curves for open string solutions which should

break some of the global symmetries. Also, in order to extract the algebraic curve from

the derivative of the quasi-momenta as in the original construction one has to perform

a birational transformation [30], while in [11] and in this paper one does not make such

transformations. It is interesting to understand better the relation between the resulting

curves from these two procedures.

Since the curve is not associated with the global charges it is not clear if there exists

a generating function for an infinite set of conserved charges like the monodromy matrix.

Such a function exists for a class of integrable open string solutions [31], but this function

is also defined globally, and moreover is not compatible with the open string ending on the

boundary of AdS. For the factorized solutions one can naively construct many functions

of the flat-connection which are time independent, since the trace of any power of the flat-

connection is conserved by definition. Thus, for example one can take Tr(eAα) (note that

integration is not necessary as it is for a general solution) and then expand the function

in terms of the spectral parameter. However, it is not guaranteed that the infinitely many

”charges” (the coefficients in the expansion) are independent. It is interesting find out if

it is possible to come out with such a function for these string solutions.

All the worked out examples for constructing an algebraic curve for string solutions

with no non-contactable loops fall into the class of factorized solutions. It is interesting to

find out if there are algebraic curves associated with non-factorized solutions (that do not

have a monodromy) and study their structure. We also note that any curve of the form

introduced here (that is, any genus-1 curves) correspond to factorized solutions.

Our analysis of factorized string solutions on AdS5 background is less detailed then

the one for solutions on AdS3 background. It is interesting to further study the curve’s

structure on this background and more generally the AdS5 × S5 and AdS4 × CP3 super-

coset backgrounds.
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