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Abstract: We study the physical mechanism of how an external magnetic field influences

the QCD quark condensate. Two competing mechanisms are identified, both relying on

the interaction between the magnetic field and the low quark modes. While the coupling to

valence quarks enhances the condensate, the interaction with sea quarks suppresses it in the

transition region. The latter “sea effect” acts by ordering the Polyakov loop and, thereby,

reduces the number of small Dirac eigenmodes and the condensate. It is most effective

around the transition temperature, where the Polyakov loop effective potential is flat and

a small correction to it by the magnetic field can have a significant effect. Around the

critical temperature, the sea suppression overwhelms the valence enhancement, resulting

in a net suppression of the condensate, named inverse magnetic catalysis. We support this

physical picture by lattice simulations including continuum extrapolated results on the

Polyakov loop as a function of temperature and magnetic field. We argue that taking into

account the increase in the Polyakov loop and its interaction with the low-lying modes is

essential to obtain the full physical picture, and should be incorporated in effective models

for the description of QCD in magnetic fields in the transition region.

Keywords: Lattice QCD, Phase Diagram of QCD

ArXiv ePrint: 1303.3972

c© SISSA 2013 doi:10.1007/JHEP04(2013)112

mailto:falk.bruckmann@physik.uni-regensburg.de
mailto:gergely.endrodi@physik.uni-regensburg.de
mailto:kgt@atomki.mta.hu
http://arxiv.org/abs/1303.3972
http://dx.doi.org/10.1007/JHEP04(2013)112


J
H
E
P
0
4
(
2
0
1
3
)
1
1
2

Contents

1 Introduction 1

2 Sea and valence quark effects 4

2.1 The valence effect 6

2.2 The sea effect 6

3 Connection to the Polyakov loop 9

4 Conclusions 13

A Renormalization in the valence and sea sectors 14

B Free case calculation 15

C Renormalization of the Polyakov loop 18

1 Introduction

It is by now well established that strongly interacting matter has at least two distinct

forms of existence: the hadronic and the quark-gluon plasma phase. They are separated

by a crossover [1], occurring at a transition temperature Tc of about 150 MeV [2–4]. Un-

derstanding the thermodynamics of strongly interacting matter around this transition is

essential for the description of systems including the early universe, the interior of neutron

stars or heavy-ion experiments. In heavy-ion collisions, for instance, the colliding beams

can create extremely high magnetic fields at the collision center, which can influence the

thermodynamic properties of the system [5–8]. Similarly, the external magnetic field is

expected to play an important role for very dense neutron stars (see, e.g., ref. [9]) and for

the evolution of the early universe (see, e.g., ref. [10]).

A particularly pronounced effect of the external field B is its influence on chiral symme-

try breaking. At zero temperature, both low energy effective theories (see, e.g., refs. [11–15],

and ref. [16] for a review) and early lattice simulations predicted the magnetic field to en-

hance the quark condensate. Although these first lattice simulations used the quenched

approximation [17] and larger-than-physical quark masses [18, 19], the effect was later also

confirmed by lattice simulations at physical quark masses in the continuum limit [20–22].

We can thus safely conclude that at zero temperature, the external magnetic field enhances

the condensate. This phenomenon is called magnetic catalysis. We remark that the zero

temperature magnetic catalysis of the condensate can also be derived from the positivity

of the scalar QED β-function, thereby showing its universal nature [23].
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At finite temperature, and especially around Tc — in the temperature range, which is

most important for heavy ion collisons — the situation is not so clear. Here, most of the

low energy models also predict that magnetic catalysis takes place, and, furthermore, Tc
is shifted to higher temperatures (for exceptions see, e.g., refs. [24, 25], and ref. [26] for a

bosonic system with charged pion condensates). This behavior was also observed for larger-

than-physical quark masses on coarse lattices [18, 27]. In contrast, simulations on finer grids

and with physical light quark masses indicated that around the crossover temperature

exactly the opposite happens: the magnetic field suppresses the quark condensate and

shifts the crossover temperature downwards [20–22]. The discrepancy between the different

lattice results suggests that the use of fine grids and light enough quarks [20] might be

essential for correctly describing the effect. Moreover, the remarkable similarity between

the reaction of gluonic and fermionic observables to the magnetic field [28] implies that

the indirect effect of B on the gauge degrees of freedom — exerted through the electrically

charged quarks — must be a crucial ingredient for the description of the transition region.

In the present paper, we study the physical mechanism behind the suppression of the

condensate by the magnetic field in the transition region — an effect we refer to as in-

verse magnetic catalysis.1 We will show that the magnetic field influences chiral symmetry

breaking through two different mechanisms: one enhances and the other suppresses the

condensate. Let us first describe the mechanism that enhances the condensate and is also

responsible for catalysis at zero temperature. According to the Banks-Casher relation [30],

the quark condensate is proportional to the spectral density of the Dirac operator around

zero. The Dirac operator explicitly contains the magnetic field and, thus, its spectral

density in a fixed gauge background depends on B. As we will show, the magnetic field

enhances the spectral density around zero and, therefore, also enhances the quark conden-

sate. In the free case as well as most of the model calculations this enhancement is linked

to the degeneracy of eigenvalues being proportional to the magnetic flux. This is purely a

“valence” effect that can already be observed in the quenched approximation, where the

back-reaction of the quarks on the gauge field is ignored. We can view this as the basic

mechanism explaining magnetic catalysis.

Besides the explicit dependence of the Dirac operator on B, the magnetic field also

enters the quark action, and influences the probability of different gauge backgrounds in

the path integral. We find that this dependence leads to the suppression of the condensate

in the transition region. This is a “sea” effect, since its origin is the different sampling of

the gauge fields due to the quark determinant. The distinction between valence and sea

effects was initially introduced in ref. [19] with a slightly different terminology (the “sea”

was called “dynamical”).

Although the two mechanisms are of very different nature, we will show that both

of them originate from the reaction of the low-lying Dirac modes to the magnetic field.

However, the magnetic field “in the sea” has exactly the opposite effect in the transition

region as the “valence” mechanism. Thus, the relative strength of the two effects will

1We note that the expression ‘inverse catalysis’ is also used for the reduction of the transition temperature

with growing B at nonzero chemical potential [29], but presumably has a completely different physical origin.
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determine whether the QCD condensate undergoes magnetic catalysis or, rather, inverse

magnetic catalysis.2 As it turns out, the most important control parameter that influences

the competition of the valence and sea effects, is the quark mass m. In particular, the two

effects are expected to have a drastically different m-dependence. On the one hand, the

valence effect is already seen in the quenched approximation, and is expected to depend

on m only mildly. On the other hand, the sea effect is completely absent in the quenched

approximation — which technically corresponds to infinite quark masses — and is expected

to increase as the quarks become lighter. This shows that the quark masses have to be

tuned to their physical values in order to have a proper description of magnetic (inverse)

catalysis.

Besides identifying the sea mechanism as the one responsible for inverse magnetic

catalysis, it is instructive to look at how the magnetic field in the determinant changes

the typical gauge configurations contributing to the path integral. Understanding this

is clearly essential for the incorporation of the sea effect into effective models describing

QCD. As we will show, one of the most striking influences of the magnetic field on the

gauge configurations is to drive up the expectation value of the Polyakov loop.3 This can

be understood by noting that the Polyakov loop has a strong influence on the lowest part

of the Dirac spectrum. Namely, the ordering of the Polyakov loop shifts up the small

Dirac eigenvalues and thus suppresses the quark condensate. However, the Polyakov loop

is also influenced by the effective action originating from the gauge action and the fermion

action at zero magnetic field. The change in this effective action caused by the magnetic

field is usually relatively small, and cannot be decisive. The only exception to this is

around the transition temperature, where the Polyakov loop effective action is flat, and

a small contribution coming from the magnetic field can have a large ordering effect on

the Polyakov loop. This, in turn, suppresses low Dirac eigenmodes and the condensate.

We conjecture that this is the physical mechanism behind inverse magnetic catalysis seen

around the transition temperature.

The rest of the paper is devoted to a demonstration of the physical picture we just

described using numerical lattice simulations. The results we present are partly based on

large scale simulations already reported in refs. [20, 22], and partly on new simulations

involving small lattices, where a full diagonalization of the Dirac operator was feasible. In

each case, we use 1 + 1 + 1 flavors of stout smeared staggered quarks with physical quark

masses and the tree-level improved Symanzik gauge action. Details of the simulation setup

and the configurations can be found in refs. [20, 35, 36].

The paper is organized as follows. In the next section, we define the valence and

sea contribution to the quark condensate, and measure them for several magnetic fields

2We note that possible explanations of the lattice results [20–22] regarding inverse magnetic catalysis

were given recently in refs. [31, 32] relying on the dimensional reduction of the lowest Landau level dynamics

for large magnetic fields, eB > Λ2
QCD, plus screening and neutral meson effects. We remark, that the lattice

data indicate that inverse magnetic catalysis is related to the transition taking place, since for even higher

temperatures T � Tc the conventional magnetic catalysis again prevails [22].
3That the Polyakov loop plays a role for the catalysis mechanism in the transition region has been

advocated in refs. [33, 34].
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at temperatures below and close to the transition. In section 3, we discuss the effects of

the magnetic field on the Polyakov loop, and section 4 contains our conclusions. In the

appendices we calculate the interplay of magnetic field, Polyakov loop and mass in the free

case, and discuss the renormalization properties of the sea and valence condensates and

the Polyakov loop.

2 Sea and valence quark effects

As we already noted, the most important notion, that connects all different aspects of the

problem, is the spectrum of the quark Dirac operator. The Dirac spectrum is affected

by the magnetic field for two different reasons. On the one hand, the magnetic field

explicitly appears in the Dirac operator, and directly influences its spectrum in any fixed

gauge background. On the other hand, through the quark determinant, B also affects the

probability measure of how the gauge field configurations are sampled in the path integral.

Throughout this paper, we will call the first one the “valence” effect, and the second one

the “sea” effect. In this section, we introduce our notation, and discuss these effects in

detail.

In physical terms, the most important measurable property of the Dirac spectrum is

the spectral density ρ(λ) around zero, which is proportional to the chiral condensate due

to the Banks-Casher relation [30],

lim
λ→0

lim
V→∞

ρ(λ) · π = lim
m→0

lim
V→∞

ψ̄ψ, ψ̄ψ =
T

V

∂ logZ
∂m

. (2.1)

Here the condensate is defined in terms of the partition function, which is given by the

path integral over gauge configurations U as

Z(B) =

∫
DU e−Sg det( /D(B) +m), (2.2)

where Sg denotes the gauge action. For the sake of clarity, here we consider only one

fermion flavor with charge q and mass m, and suppress factors of 1/4, which appear due

to the rooting procedure for staggered quarks. The temperature and the three-volume are

given as T = (aNt)
−1 and V = (aNs)

3 with Ns (Nt) the number of lattice sites in the

spatial (temporal) direction, and a the lattice spacing. We remark that since the magnetic

field couples only to the electric charges of quarks, it enters exclusively in the combination

qB.

Expanding the derivative in eq. (2.1), the condensate is obtained as

ψ̄ψ(B) =
1

Z(B)

∫
DU e−Sg det( /D(B) +m) Tr( /D(B) +m)−1, (2.3)

showing that the magnetic field indeed appears both in the determinant and in the operator

itself. To separate these dependences, we define the valence and sea condensates as

ψ̄ψval(B) =
1

Z(0)

∫
DU e−Sg det( /D(0) +m) Tr( /D(B) +m)−1,

ψ̄ψsea(B) =
1

Z(B)

∫
DU e−Sg det( /D(B) +m) Tr( /D(0) +m)−1.

(2.4)
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We note that valence condensates can be used to define dressed Wilson loops [37], which

are directly related to the QCD string tension in the large mass limit.

Any physically consistent theory has to have the same valence and sea fermion content.

Thus, at first sight it does not seem possible to separate the valence and sea effects of

the magnetic field in a well-defined theory. One can, nevertheless, exactly reproduce the

condensates in eq. (2.4) by alluding to techniques from partially quenched QCD [38–40]

(and quenched disorder [41, 42]). Using commuting spin 1/2-fields (so-called ghost quarks),

one can generate inverse Dirac determinants in the functional integral. With adjusted

charges and masses, these inverse determinants can cancel ‘unwanted’ determinants in the

path integral, arriving at the valence and sea condensates of eq. (2.4). From a different

point of view, one can also directly obtain the sea condensate in a theory with an electrically

charged and a neutral fermion flavor, by looking at the condensate of the neutral fermion

in the presence of the magnetic field. Since B appears in the determinant of the charged

flavor, but not in the neutral propagator, this indeed isolates the sea effect. Even though

in QCD all fermion species are electrically charged, on the technical level of the lattice

theory, the valence and sea effects are naturally separated. We will use a similar argument

in appendix A to discuss the renormalization of the sea and valence condensates.

To discuss the effect of the external magnetic field, we are interested in the change of

the condensates due to a nonzero B. This change is given by the difference

∆Σ(B) =
2m

M2
πF

2

[
ψ̄ψ(B)− ψ̄ψ(0)

]
. (2.5)

This combination is particularly useful, because both additive and multiplicative diver-

gences cancel in it. Based on the Gell-Mann-Oakes-Renner relation, the normalization is

chosen such that ∆Σ is measured in units of the condensate at zero magnetic field and

zero temperature [22]. We define ∆Σval and ∆Σsea in a similar manner from eq. (2.4). At

B = 0 the three types of condensate are obviously equal. Furthermore, for small magnetic

fields (assuming analyticity in qB), the two contributions appear additively in the total

condensate [19],

∆Σ(B) ' ∆Σval(B) + ∆Σsea(B), (2.6)

showing that this separation indeed makes sense, at least for small magnetic fields. In

appendix A we show that ∆Σval and ∆Σsea are both properly renormalized.

In figure 1, we show how the valence condensate ∆Σval (left panels) and the sea con-

densate ∆Σsea (right panels) for the up quark depend on the magnetic field, at two different

temperatures. The two temperatures were chosen to be well below and just below the tran-

sition temperature. Clearly, the magnetic field in the valence Dirac operator enhances the

condensate at both temperatures. In contrast, the sea effect enhances the condensate only

well below Tc, whereas around Tc it suppresses it. Eventually — around T = 160 MeV

— the sea contribution becomes the dominant one, resulting in a decrease in the total

condensate and thus inverse magnetic catalysis [22]. Figure 1 contains results for three

different lattice spacings, showing that the effect persists in the continuum limit as well.

This is in sharp contrast to the findings of ref. [18], where an enhancement was found at

– 5 –
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Figure 1. The valence (left panel) and sea (right panel) contributions to the up quark condensate

as a function of the magnetic field, calculated at two different temperatures. The two temperatures

are chosen to be well below and around Tc. The different symbols correspond to three different

lattice spacings (decreasing as Nt grows).

all temperatures, for larger-than-physical quark masses. In sections 2.1 and 2.2, we dis-

cuss how the underlying mechanism responsible for the valence and the sea effects can be

understood, based on eigenvalues of the Dirac operator at nonzero magnetic fields.

2.1 The valence effect

The valence effect can be easily understood by inspecting how the low part of the spectral

density ρ(λ) of the Dirac operator depends on the magnetic field in any gauge field back-

ground. To be specific, we use a set of gauge field backgrounds generated at zero magnetic

field, but the qualitative picture is the same in any reasonable ensemble of gauge fields.

In figure 2, we plot the spectral density of the Dirac operator for three different values

of the (valence) magnetic field, as measured on Nt = 6 lattices, generated at B = 0 and

T = 142 MeV. This gauge field ensemble corresponds to the Nt = 6, T = 142 MeV data

for the valence condensate in figure 1. One can clearly see the increase of the spectral

density and, thus, of the valence condensate with the magnetic field. We remark that the

same behavior is reproduced for any gauge background, independent of the temperature

and magnetic field, which was used for the generation of the configuration. In other words,

this means that the change in the valence condensate ∆Σval is always positive. We note

that a similar proliferation of low Dirac eigenmodes already occurs in the free theory, see

the discussion in appendix B. Moreover, a remarkable feature of the free spectrum on the

lattice is that the eigenvalue pattern as a function of the magnetic field is similar to the

so-called Hofstadter butterfly, the energy levels of Bloch electrons in a magnetic field [43].

2.2 The sea effect

The sea effect arises, because the magnetic field in the quark determinant changes the

relative weight of the gauge configurations, and is therefore equivalent to a reweighting

– 6 –
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Figure 2. The spectral density of the Dirac operator around zero, computed at three different

values of the magnetic field. In all three cases, the gauge configurations were generated without the

magnetic field in the quark determinant.

in B. In general, reweighting is a technique that uses configurations generated at a given

(starting) point of the parameter space, and assigns a new weight to each configuration, in

a fashion that the resulting ensemble describes the system at a new (target) point of the

parameter space. Thus, the expectation value of an arbitrary observable O at the target

point is obtained in terms of measurements on the configurations generated at the starting

point. Here, we will consider the B = 0 system as the starting point, and the B > 0 system

as the target ensemble. For this case, the difference of weights equals the ratio of quark

determinants at B and at B = 0, and the exact rewriting of the expectation value at B

reads

〈O〉B =
Z(0)

Z(B)
· 1

Z(0)

∫
DUe−Sg det

(
/D(0) +m

) det( /D(B) +m)

det( /D(0) +m)
O

=
〈
e−∆Sf (B)O

〉
0

/〈
e−∆Sf (B)

〉
0
,

(2.7)

where the subscript of the expectation value indicates the value of the magnetic field, at

which the ensemble is generated. Here, we defined the change in the fermionic action due

to the magnetic field,

−∆Sf (B) = log det( /D(B) +m)− log det( /D(0) +m). (2.8)

Let us now apply this machinery for the case of the condensates. The valence conden-

sate of eq. (2.4) equals the B = 0 expectation value,

ψ̄ψval(B) =
〈
Tr( /D(B) +m)−1

〉
0
, (2.9)

whereas the full condensate is obtained in the reweighting picture as

ψ̄ψ(B) =
〈
e−∆Sf (B) Tr( /D(B) +m)−1

〉
0

/〈
e−∆Sf (B)

〉
0
. (2.10)
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Figure 3. Scatter plot of the down condensate versus the change in the fermionic action due to the

magnetic field, eq. ( 2.8), at eB ≈ 0.5 GeV2. Each point represents a 103 × 4 gauge configuration.

Now we are in the position to discuss the sea effect, i.e. the difference between the full and

valence condensates. The full condensate is written in eq. (2.10) as the product of the trace

of the propagator at nonzero B and the factor exp(−∆Sf (B)), both of which depend on

the configuration. Therefore, we have to study the correlation between the fermion action

difference and the value of the condensate at nonzero B. To this end, in figure 3 we show

a scatter plot of the down quark condensate versus ∆Sf (B) for an ensemble of 150 103× 4

lattices generated at B = 0, and at inverse gauge coupling β = 3.35, corresponding to a

temperature around Tc. On this gauge ensemble, we computed the condensate by inserting

eB ≈ 0.5 GeV2 in the Dirac operator. Both the action and the condensate were calculated

in the spectral representation, by explicitly diagonalizing the quark Dirac operator.

In figure 3, each point represents a gauge configuration. The ordinate is the condensate

and the abscissa is the action difference on that particular gauge configuration. Since the

configurations were generated atB = 0, a simple averaging of the ordinates in figure 3 would

give the “valence” condensate, in accordance with eq. (2.9). To obtain the full physical

condensate, including the valence and sea effects, one needs to weight each ordinate with the

Boltzmann factor exp(−∆Sf ). This means that the contribution of points corresponding

to larger abscissas are exponentially suppressed. A clear tendency can be seen in the figure,

showing that larger values of the condensate generally correspond to larger actions, and

are therefore suppressed by the quark determinant. This is the “sea” effect.

The reweighting in the magnetic field can substantially influence the condensate, be-

cause the reweighting factors ∆Sf (B) fluctuate sufficiently strongly. In figure 3, for exam-

ple, a distance of 7 on the abscissa amounts to a change in the path integral weight by

three orders of magnitude. It is known that the light quark condensate is dominated by

low Dirac modes. We now show that the fluctuations of the change in the quark action also

have their origin in the low spectral region of the Dirac operator. In figure 4, we plot how

the variance σ(x) =
√
〈x2〉 − 〈x〉2 of the change in the fermion action x = ∆Sf (B) builds

up starting from the low-end of the Dirac spectrum. We approximate the determinants

– 8 –
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Figure 4. The variation of the change in the effective action ∆Sf (at eB ≈ 0.5 GeV2), calculated

using the lowest i eigenmodes, as a function of i. The total number of eigenvalues on this lattice is

6000.

by the product of the lowest i eigenvalues, and plot the variance of this “approximated”

∆Sf (B) as a function of i, on the same gauge ensemble that was used above. Looking at

the figure, the dominance of the low Dirac modes in this quantity is obvious.

We emphasize that these reweighting factors encode all information4 about how the

system evolves and how different observables change as the magnetic field grows. The

magnetic field can have an influence on an observable only if two conditions are met: the

reweighting factors have a non-zero variance and they are correlated with the given physical

quantity. Since the variance of the reweighting factors comes mostly from the low Dirac

modes, they are expected to be correlated with any other quantity that is sensitive to the

low Dirac eigenvalues. In this context, the sea effect of the magnetic field on the condensate

is naturally expected.

3 Connection to the Polyakov loop

We have seen that the quark determinant tends to suppress gauge configurations with

larger values of the quark condensate. To understand the reason behind this, it is desirable

to identify those gauge field degrees of freedom that play the most important role in this

mechanism. Such a description also facilitates the incorporation of this effect into low-

energy effective models.

Around the transition temperature, the quantity depending most sensitively on the

control parameters is the order parameter. In the case of QCD, the approximate gauge

4On the technical level, due to finite statistics, the applicability of reweighting is limited to starting and

target systems whose important configurations are not too different. This potential overlap problem is not

relevant here, since we use reweighting to unravel a mechanism and the results can always be checked by

direct simulations of the target system (nonzero B).
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Figure 5. Scatter plot of the Polyakov loop versus the change in the fermionic action due to the

magnetic field at eB ≈ 0.5 GeV2. Each point represents a 103 × 4 gauge configuration.

field order parameter around Tc is the (averaged real part of the traced) Polyakov loop,

P =
1

V

〈∑
x

ReTr

Nt−1∏
t=0

U4(x, t)

〉
. (3.1)

In the valence/sea language the Polyakov loop is a purely “sea” observable, since the

expression to be averaged over does not depend explicitly on B (this applies to every

gluonic observable).

To see how the Polyakov loop reacts to the magnetic field, in figure 5, we show a scatter

plot of P versus the change ∆Sf (B) in the fermionic action due to the magnetic field. This

plot is similar in spirit to figure 3, and is based on the same gauge configurations. The

two plots also have a qualitatively similar appearance, but in the case of the Polyakov

loop, the correlation is opposite. Here a simple average over the ordinates would give the

B = 0 Polyakov loop, whereas a weighted average yields the Polyakov loop at nonzero

B. The fermionic action, and hence the magnetic field, suppresses small values and favors

large values of the Polyakov loop. Below we will argue, that large Polyakov loops point to

smaller condensates.

It is also not hard to understand why this effect is so pronounced around the transition

temperature. Since there is a crossover at Tc, the effective potential for the Polyakov loop is

flat there. As a result, even a small contribution coming from the magnetic field in the quark

determinant can significantly change its expectation value. In the following, we explicitly

demonstrate this by calculating the dependence of P on the external magnetic field in the

continuum limit. To extrapolate the Polyakov loop to the limit a → 0, we perform its

proper renormalization, considering the scheme suggested in ref. [44], which we generalize

to the case of nonzero magnetic fields. This renormalization is of the multiplicative form

Pr(a, T,B) = Z(a, T ) · P (a, T,B), (3.2)

and is discussed in detail in appendix C.

– 10 –



J
H
E
P
0
4
(
2
0
1
3
)
1
1
2

Figure 6. Left panel: the temperature- and magnetic flux-dependence of the renormalized

Polyakov loop in the continuum limit. The solid lines represent curves of constant magnetic field

(eB ∼ NbT
2 values as in the right panel). Right panel: the dependence of Pr on the tempera-

ture around the crossover region. The different types of curves indicate lattice results obtained

with different lattice spacings (different temporal extents). The shaded areas show the continuum

extrapolations together with their uncertainty.

For the Polyakov loop calculation, we again employ the gauge configurations of ref. [20],

generated with physical quark masses at various values of the temperature and the magnetic

flux Nb ∼ eB/T 2. In any finite volume, this flux is quantized [45]. In order to determine the

Polyakov loop as a function of T , along a line of constant eB, an interpolation between the

different fluxes Nb is necessary. We carry out this interpolation in a systematic manner, by

fitting our data points for all temperatures, magnetic fluxes and lattice spacings altogether

by a lattice spacing-dependent, two-dimensional spline function. A similar spline fit is

described in ref. [46]. Due to the scaling properties of the action we use, the dependence

on the lattice spacing is expected to be quadratic. We incorporated this in the fit by

having two parameters on each node point as p1 + p2 · a2. Taking eB = const. slices of this

two-dimensional surface at a certain a gives the Polyakov loop for that particular lattice

spacing, while the a = 0 surface corresponds to the continuum limit.

In the left panel of figure 6, we plot the continuum extrapolated renormalized Polyakov

loop Pr as a function of the temperature and the magnetic flux. The solid lines upon the

surface correspond to eB = 0, eB = 0.45 GeV2 and eB = 0.75 GeV2 slices. In the right

panel of the figure, we show the temperature dependence of Pr for these magnetic fields on

the three lattice spacings, together with the continuum extrapolation. The shaded bands

represent here the uncertainty of the continuum extrapolated Pr. The results clearly show,

that the Polyakov loop increases sharply with the magnetic field around Tc, and that this

feature persists in the continuum limit as well. As an empirical finding from that figure, in-

flection points of these curves are not very precisely defined, but the transition temperature

from the renormalized Polyakov loops clearly decreases with the magnetic field.
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In the previous sections, we saw that low Dirac modes are the key to understanding

inverse magnetic catalysis. To complete the picture, we would like to discuss one more

point, namely the relationship between the low Dirac modes and the Polyakov loop. It is

well-known that light dynamical fermions break the Z(3) center symmetry of the quenched

theory, by forcing the system into the real Polyakov loop sector. This can be most easily

understood starting from a free field picture. If the gauge field background is trivial —

apart from a spatially constant Polyakov loop — the lowest Dirac eigenmodes are constant

in space, and change smoothly in the time direction to fulfill the boundary condition. The

boundary condition and the phase of the Polyakov loop then combine to give the effective

boundary condition (twist). The lowest fermion eigenvalue λmin — a generalized Matsubara

frequency — is proportional to this temporal twist (see discussion around eq. (B.2)). For

the usual antiperiodic boundary conditions, the twist is maximized when the Polyakov loop

is in the real sector. Therefore, λmin is also maximized for real Polyakov loop. Since the

difference in the quark action between the Polyakov loop sectors is dominated by the small

Dirac eigenvalues [47], the real Polyakov loop sector, the one with the largest λmin, will

result in the largest determinant.

It turns out that a qualitatively similar picture applies also to the interacting theory

above the transition temperature: a larger temporal twist pushes the lowest modes higher

up in the spectrum, away from zero [48–50]. As a result, the fermion determinant prefers

the real Polyakov loop sector in the SU(3) case. This is how the Z(3) symmetry is broken

by dynamical fermions. If the Dirac operator has a tendency of having more small modes,

the ordering of the Polyakov loop can shift more small eigenvalues up, and the dependence

of the determinant on the Polyakov loop is stronger. This results in a stronger symmetry

breaking effect and a stronger ordering of the Polyakov loop. This is exactly what happens

in the presence of the magnetic field.

We stress that an overall shift in the fermion action by the magnetic field would not

produce any physical effect. The important point is that this shift fluctuates, and its

fluctuations correlate with physical quantities (Polyakov loop, condensate). This is what

produces the reweighting effect that we discussed. We have demonstrated this by virtue

of scatter plots in figures 3 and 5. For a qualitative understanding, let us extend the

Matsubara picture by magnetic fields. As the calculation in appendix B shows, the free

energies at nonzero B favor larger, i.e. deconfined Polyakov loops. Here, we focus on the

main effect for large B, where only the lowest Landau level is occupied. Its eigenvalue is

independent5 of B, but its degeneracy still increases proportional to the magnetic flux. The

lowest mode λmin of a given configuration thus acts as a “handle” for the magnetic field

to change the fermionic determinant, to a first approximation proportional to (λmin)|qB|,

suppressing configurations with small eigenvalues even further. At the same time, con-

figurations with many small eigenvalues are correlated to small Polyakov loops and large

condensates, which are therefore suppressed as well. This is what is observed in full QCD

around the transition. We repeat that the validity of this picture depends on low mode

dominance and the sensitivity of eigenmodes and condensates to Polyakov loops. Both are

5For spin 1/2 particles without anomalous magnetic moment.
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expected to hold for temperatures above the transition. It would be interesting to study

in detail how the structure of the low quark modes change due to the magnetic field. An

exciting clue in this direction might be the presence of independent low modes at high

temperatures, localized to Polyakov loop islands [51]. The magnetic field might have a

more coherent effect on these localized modes than on the bulk modes, following random

matrix statistics. However, a detailed study of this mechanism is beyond the scope of the

present paper.

We note that previously in the PNJL model [52] and also in lattice simulations with

larger-than-physical quark masses [18] the Polyakov loop was observed to decrease with the

magnetic field, and the transition temperature was shifted up by B. We conjecture that

this is the reason why in those cases inverse magnetic catalysis was not observed. Inverse

magnetic catalysis depends crucially on the interaction between the quark determinant and

the Polyakov loop, which happens through the lowest part of the Dirac spectrum. This

delicate effect has to be properly accounted for, to get the full physical picture. Since the

Z(3) symmetry breaking of the quark determinant depends strongly on the quark mass,

lighter quarks are expected to enhance inverse magnetic catalysis. Let us finally remark

that the latest results of the authors of ref. [18] also indicate the sea condensate to decrease

with B for higher temperatures T ∼ 220 MeV, where the Polyakov loop is observed to

increase with growing B [53], thus exhibiting the same mechanism as described above.

4 Conclusions

Using lattice simulations, we have analyzed how an external magnetic field affects the QCD

vacuum at finite temperatures. Let us summarize: when the magnetic field is switched on,

the quark determinant suppresses gauge configurations, on which the Dirac operator with

the magnetic field has many small eigenvalues. Around and above Tc, this suppression

can happen by ordering the Polyakov loop. This ordering effect is particularly efficient

around Tc, where the Polyakov loop effective potential is flat, and the magnetic field in the

determinant has a significant ordering effect on the Polyakov loop. An ordered Polyakov

loop implies that the lowest Dirac eigenmodes become similar to Matsubara modes, and are

shifted up in the spectrum. For small quark mass, the quark condensate gets the largest

contribution from the low-end of the Dirac spectrum. Therefore, fewer low eigenmodes

also imply a suppression of the quark condensate. This suppression of the condensate

that we called “sea effect”, competes with the enhancement of the condensate due to the

magnetic field in the operator (“valence effect”). Due to the above described reasons, the

sea suppression is particularly efficient around Tc, and it actually overwhelms the valence

enhancement, resulting in inverse magnetic catalysis. The unifying theme in our discussion

is the lowest part of the Dirac spectrum. The response of low Dirac modes to the magnetic

field can explain the valence and sea effects, as well as the ordering of the Polyakov loop.

The low mode dominance, which we have used in our arguments, and illustrated in

figure 4, strongly relies on the smallness of the quark masses. One might speculate that

the effect of inverse magnetic catalysis becomes even more pronounced closer to the chiral

limit. In any case, we believe to have identified an important mechanism at work in the
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transition region, already for magnetic fields slightly above the QCD scale (in contrast

to asymptotically large ones). It would be useful to incorporate such effects back into

low-energy effective models for QCD. Our results indicate that a proper account of the

interaction between the Polyakov loop and the Dirac determinant and its influence on the

condensate is needed for that.
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A Renormalization in the valence and sea sectors

In this appendix, we show that the valence and sea condensates ∆Σval and ∆Σsea are

properly renormalized, following the argumentation of refs. [54, 55]. Let us write down

again the partition function, as in eq. (2.2), for a single quark flavor with charge q1,

Z ≡ Zq1B =

∫
DU e−Sg det

(
/D(q1B) +m

)
, (A.1)

from which the condensate is derived to be

ψ̄ψ(B) =
T

V

∂ logZq1B
∂m

=
T

V

〈
Tr( /D(q1B) +m)−1

〉
q1B

, (A.2)

where the subscript indicates that the expectation value is evaluated with respect to the

partition function Zq1B. The additive divergences of the condensate cancel in the change

∆ with respect to the magnetic field. To eliminate the multiplicative divergence, a further

multiplication by the quark mass is necessary, as in eq. (2.5). Altogether, the combination

∆Σ ∼ m∆ψ̄ψ is ultraviolet finite. On the other hand, in the ensemble described by Zq1B,

the change in the valence and sea condensates of eq. (2.4) read

∆Σval ∼ m∆ψ̄ψval =
T

V
·m
[〈

Tr( /D(q1B) +m)−1
〉

0
−
〈
Tr( /D(0) +m)−1

〉
0

]
,

∆Σsea ∼ m∆ψ̄ψsea =
T

V
·m
[〈

Tr( /D(0) +m)−1
〉
q1B
−
〈
Tr( /D(0) +m)−1

〉
0

]
,

(A.3)

Our objective is to show that these combinations are also properly renormalized.

To this end, let us consider an additional quark flavor, with mass m2, charge q2, and

multiplicity ε. Even though the multiplicity is in practice restricted to take integer values,
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in principle one can also define a theory with a real multiplicity ε ∈ R, described by the

partition function,

Zq1B+εq2B =

∫
DU e−Sg det

(
/D(q1B) +m

)
det
(
/D(q2B) +m2

)ε
. (A.4)

The condensate of the additional quark flavor is correspondingly given by

ψ̄εψε(B) =
T

V

∂ logZq1B+εq2B

∂m2
=
T

V
· ε ·

〈
Tr( /D(q2B) +m2)−1

〉
q1B+εq2B

, (A.5)

where this time the expectation value is evaluated in the ensemble with both the original

and the additional flavor taken into account. Let us now expand eq. (A.5) around ε = 0.

Since detε = 1 +O(ε), we get the expectation value in the Zq1B ensemble plus higher order

corrections,

ψ̄εψε(B) =
T

V
· ε ·

〈
Tr( /D(q2B) +m2)−1

〉
q1B

+O(ε2). (A.6)

Again, the combination m2∆ψ̄εψε is completely renormalized for any value of ε. Thus,

in its expansion with respect to ε, all terms must also separately be ultraviolet finite. In

particular, the O(ε) term at m2 = m

T

V
·m
[〈

Tr( /D(q2B) +m)−1
〉
q1B
−
〈
Tr( /D(0) +m)−1

〉
0

]
(A.7)

is properly renormalized, for any values of the charges q1 and q2.

Upon substituting q1 = 0 and renaming q2 = q1, eq. (A.7) exactly equals the valence

condensate of eq. (A.3). On the other hand, substituting q2 = 0 gives the sea condensate.

Altogether, this shows that the combinations ∆Σval and ∆Σsea, as defined after eq. (2.5),

are properly renormalized. The above argumentation relies essentially on the fact that the

magnetic field enters only in the combination qB. Therefore, varying the charges effectively

allows for varying the magnetic field.

B Free case calculation

We consider the free energy of (one flavor of) massive quarks in the continuum at finite

temperature and study the interplay of constant Polyakov loops, mass and magnetic field

(and chemical potential as a cross-check).

Let the gauge background be an abelian field generating a constant magnetic field

(0, 0, B), e.g. ax = 0, ay = Bx, plus a constant SU(3) gauge field A0 generating a diagonal

and real Polyakov loop,

L =

 e2πiϕ

e−2πiϕ

1

 ,
1

3
TrL =

1

3

(
1 + 2 cos(2πϕ)

)
. (B.1)

Obviously, ϕ = 1/3 amounts to a traceless Polyakov loop, which we will take as a signal

for the confined phase, while for ϕ → 0 the Polyakov loop becomes trivial, L → 1, which

stands for the deconfined phase.
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In the computation of the eigenvalues of the Dirac operator /D = γµDµ with covariant

derivative Dµ = ∂µ+iAµ+iqaµ at finite temperature T , the Polyakov loop background can

be incorporated in the quark boundary conditions in each color sector as ψa(x0 +1/T, ~x) =

− exp(2πiχa)ψa(x0, ~x) with the three phases χa ∈ {ϕ,−ϕ, 0}. This modifies the Matsubara

frequencies to (π + 2πχa + 2πk)T with integer k.

The eigenvalues of the squared Dirac operator in each color sector read

− /D
2
a(B)→ λ2

a(B) = (2π(1/2 + χa + k)T )2 + p2
z + |qB|(2n+ 1) + qBs, (B.2)

with momenta pz ∈ R, Landau levels n = 0, 1, . . . and s = ±1 being twice the spin. The

degeneracy of these eigenvalues is proportional to the magnetic flux B ·A with A the area

of the system perpendicular to the magnetic field. Together with the z-extension Lz in the

pz integration, this yields the three-volume V = ALz in

∑
λ2

= 2
V

(2π)2
|qB|

∞∑
k=−∞

∫
dpz

∞∑
n=0

∑
s=±1

. (B.3)

The factor 2 comes from the degeneracy of particles and antiparticles at given spin (both

together provide the four eigenvalues of the four-dimensional gamma matrices).

For the partition function we make use of chiral symmetry to write

logZ(B) =

3∑
a=1

log det( /Da(B) +m) =
1

2

∑
a

∑
λ2

log(λ2
a(B) +m2). (B.4)

The proper time/zeta function regularization formalism can be introduced via the Mellin

transform

log y = − ∂

∂α

∣∣∣∣
α→0

y−α = − ∂

∂α

∣∣∣∣
α→0

1

Γ(α)

∫ ∞
0
ds sα−1 exp(−sy), (B.5)

(valid for Re y, Re α > 0). Through interchanging the order of limits, integrals etc. analytic

continuation is performed and (some of) the singularities are removed. This technique has

been used in the classical papers [56, 57], for a review see e.g. [58].

Using eqs. (B.3)–(B.4), the free energy density f = −T logZ/V for a given background

becomes

f(ϕ;B) =
qB

2π2

∑
a

∫ ∞
0
ds s−2 exp(−m2s) coth(qBs) θ3

(
(χa + 1/2)π, e−

1
4sT2

)
, (B.6)

where we have assumed positive qB for simplicity and performed the Gaussian integration

over pz, the derivative wrt. α and the sums over n, s and k. The latter introduced an

elliptic theta function θ3(u, q) ≡ 1 + 2
∑∞

n=1 q
n2

cos(2nu).

The s-integral is known to be divergent for small s (as coth(qBs) → 1/(qBs) and

θ3

(
. . . , exp(− 1

4sT 2 )
)
→ 1). Since s has dimension length squared, this is a UV-divergence.

After subtracting the B = 0 part it is weakened to be logarithmic and can be absorbed in

the renormalization of the electric charge [57].
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Here we follow a different route and consider the difference of the free energy of a given

background ϕ and the deconfining background ϕ = 0, which means

∆ϕf(B) ≡ f(ϕ;B)− f(0;B) (B.7)

=
qB

π2

∫ ∞
0
ds s−2 exp(−m2s) coth(qBs)

[
θ3

(
(ϕ+ 1/2)π, e−

1
4sT2

)
− θ3

(
π/2, e−

1
4sT2

)]
where we used the ϕ→ −ϕ symmetry. This integral is finite because the nonperturbative

behavior exp(−#/s) of the theta function difference for small s now kills all power-like

singularities.

Note, that the integrand in (B.7) is positive definite and so is ∆ϕf . Hence the quark de-

terminant always favors ϕ = 0, i.e. deconfining Polyakov loops. Furthermore, the integrand

increases monotonically as m is reduced, such that this effect becomes more pronounced for

light quarks. This is consistent with the finding from ‘lattice experiments’ that the onset

of the deconfined phase — the deconfinement transition — occurs at lower temperatures,

when the quarks become lighter.

As another cross-check we consider the effect of an imaginary chemical potential µ = iη.

It can also be incorporated in the boundary condition (for all color sectors in the same

way) and the corresponding change of free energies follows from eq. (B.7) in the B → 0

limit is

∆ϕf(η) ≡ f(ϕ; η)− f(0; η)

=
1

2π2

∫ ∞
0
ds s−3 exp(−m2s)

[
θ3

(
(ϕ+ 1/2− η)π, e−

1
4sT2

)
+ θ3

(
(−ϕ+ 1/2− η)π, e−

1
4sT2

)
− 2 θ3

(
(1/2− η)π, e−

1
4sT2

)] (B.8)

Again, the integrand is positive definite, and the effect of the quark mass is the same.

Increasing η we have observed ∆ϕf(η) to decrease, although the integrand does not change

monotonically with η.6 Thus an imaginary chemical potential η favors ϕ > 0, i.e. confining

Polyakov loops, consistent with the finding that the transition temperature grows with it.

After these checks, we analyze the effect of an external magnetic field in the same

fashion. For this the dependence of the integrand in eq. (B.7) on qB is decisive: the

function qB ·coth(qBs) increases with qB for all s. Hence a magnetic field favors deconfined

Polyakov loops and tends to lower the transition temperature. This is certainly a sea effect

as it comes from the quark determinant in the effective action, and it gets washed out by

large masses m. This effect is already present in the lowest Landau level (n = 0, s = −1

in eq. (B.2)). The result of this projection is to replace coth(qBs) → 1 in eq. (B.7). The

integrand still increases proportional to qB, from the degeneracy of the modes.

It is interesting to note that these findings are inverted when modifying either the

statistics, the boundary condition or the spin of the quarks: for commuting c-number

quarks the determinant has to be replaced by its inverse giving a minus sign to the free

6The first derivatives of ∆ϕf(η) with respect to η and ϕ vanish at η = ϕ = 0, i.e. to linear order in the

imaginary chemical potential and around the deconfined phase. The second derivatives with respect to η

and ϕ at η = ϕ = 0 give T 2 with a negative coefficient, i.e. the decrease mentioned.
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energy. For quarks periodic in the time-like direction one has to remove π/2 in both θ3’s and

the integrand becomes negative definite. For spinless quarks qB · coth(qBs) gets replaced

by qB/ sinh(qBs) which decreases with qB.

We conclude this section by a brief discussion on the validity of these considerations.

First of all, the approximation of QCD by free quarks is expected to work at high tem-

peratures thanks to asymptotic freedom. The free energy, for instance, approaches the

Stefan-Boltzmann result and the spectral gap has been found to be described by the lowest

eigenvalue in the free case [51, 59] (with background Polyakov loop as we do here).

The (de)confinement order parameter is the spatially averaged Polyakov loop. It is

this quantity that changes from zero to non-zero (small to large in a crossover) as the

temperature rises. The local Polyakov loops strongly vary, as can be seen from the decaying

Polyakov loop correlator (related to one definition of confinement) and the distribution of

local Polyakov loops (which in the low temperature phase is known to be the Haar measure).

Such a local resolution of the Polyakov loop is lost in our approach as we compare spatially

constant backgrounds. Thus, we cannot speak about transitions between disordered and

ordered Polyakov loops. Nevertheless, the finding that free quarks favor constant trivial

Polyakov loop backgrounds in comparison to constant nontrivial ones can be interpreted

as a signal for the suppression of the confined phase by quarks in realistic QCD. This

effect has the right tendency under a change of the control parameters quark mass and

(imaginary) chemical potential. Moreover, as we have demonstrated, for external magnetic

fields it correctly describes the increase of the Polyakov loops and the decrease of the

transition temperature as seen in full QCD.

C Renormalization of the Polyakov loop

In this appendix we discuss the renormalization of the Polyakov loop P . First of all, we

note that P is related to the free energy of an infinitely separated, static quark-antiquark

pair Fq̄q = −2T logP , which contains additive divergences in the cutoff. These additive

divergences, therefore, appear as multiplicative divergences in P . A possible scheme for

the corresponding renormalization is to set the renormalized free energy to a fixed value

F?, at B = 0 and a fixed but arbitrary temperature T? > Tc. Since the magnetic field

introduces no new divergences in Fq̄q (see below), this subtraction is unchanged at B > 0,

making the combination

Fq̄q,r(T,B) = Fq̄q(T,B)− Fq̄q(T?, B = 0) + F? (C.1)

finite in the continuum limit.

To see that the divergences of Fq̄q are indeed B-independent, let us consider the total

free energy F of the system, in the presence of an external magnetic field. F includes

both the contribution of matter, and that of the field itself, B2/2. It has been known for

long [57] that the only B-dependent divergence, which resides in F (B), is eliminated via

the simultaneous renormalization of the electric charge q, and that of the pure magnetic

term B2/2 (see also refs. [23, 58]), which leaves the combination qB invariant. On the

other hand, the free energy Fq̄q of the static color charges only couples to the magnetic
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field via sea quark loops, in the form qB, and contains no pure magnetic term. Then, it

also cannot contain any B-dependent divergence.

One can also explicitly show the absence of B-dependent divergences in Fq̄q using

perturbation theory. Namely, the leading order perturbative term in Fq̄q is given by the

exchange of a gluon. The latter creates a virtual (sea) quark loop, to which B couples.

This diagram is the same as the quark loop with two photon lines, up to constant group

theoretical factors. Using the exact quark propagator in the magnetic field [57], this photon

self-energy has been explicitly calculated at asymptotically large magnetic fields to be

finite [60]. Diagrams corresponding to higher orders in perturbation theory contain the

same diagram as subdiagram, or sea quark loops with even more gluon lines attached, which

(since they contain a higher number of quark propagators) are also finite. Altogether this

shows again that the renormalization of Fq̄q — and, accordingly, that of P — is independent

of B.

We can now translate the renormalization condition (C.1) for Fq̄q to the renormaliza-

tion of the Polyakov loop. On a lattice with spacing a, the corresponding renormalization

for P = exp(−Fq̄q/2T ) amounts to

Pr(a, T,B) = Z(a, T ) · P (a, T,B), Z(a, T ) =

(
P?

P (a, T?, B = 0)

)T?/T
, (C.2)

where P? = exp(−F?/2T?). We choose T? = 162 MeV, where the bare Polyakov loops

are already significantly nonzero, and we set F? = 0 (P? = 1). Different values for these

parameters correspond to different renormalization schemes, connected by finite renormal-

izations.
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