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1 Introduction

It is often useful to reduce a physical problem in a higher dimensional theory to a property

of a lower dimensional model that is more easily solved. In this paper, we concentrate on

the calculation of Dirac indices in a class of supersymmetric quantum mechanics models.

These supersymmetric quantum mechanics problems arise when we study the motion of a

string on a target manifold with an isometry. When we wind the string in the isometric

direction, we perform a reduction from 1 + 1 dimensions to 1 dimension, and we obtain a

supersymmetric quantum mechanics with potential [1]. The ground states correspond to

bound states of wound strings.

Another context in which the same model arises is when we study the non-trivial space

with isometry, tensored with a circle. When we now wind the string on the circle, it is

often marginally bound to the non-trivial space, while preserving supersymmetry. When

reducing our attention to its center of mass motion on the geometry, it gives rise to a

supersymmetric quantum mechanics. It is then interesting to find a natural deformation

of the resulting supersymmetric quantum mechanics such that the marginal bound state

spectrum is deformed to a spectrum of bound states. We can then proceed to count the

latter. The natural deformation consists in introducing a small winding along the isometric

direction, as above.

We employ also a second deformation technique in which we deform the background

itself. We imagine embedding our solution in some heterotic or Kaluza-Klein reduced su-

pergravity theory and implement a small duality transformation on the isometric direction

and some gauge direction in the supergravity theory, to introduce a non-trivial gauge field

in the supersymmetric quantum mechanics. We then consider charged excitations, coupled

to the gauge field. Both techniques that we describe enter in the realm of the general

technique of adding potentials to moduli spaces.

We apply our two deformation techniques to a class of string backgrounds which are

non-compact and which have an asymptotically linear dilaton. They were first written down

in [2] and were later studied in the context of gauged linear sigma models [3, 4]. We will

refer to these as asymptotically linear dilaton spaces. The simplest example of such a space

is the well studied supersymmetric cigar conformal field theory in two dimensions. Index

theorems for these non-compact backgrounds need to take into account subtle boundary

contributions. We find it convenient to proceed by an explicit counting of states, and as a

bonus provide a construction of the bound state solutions in these backgrounds.

We also apply the methods we develop to the Euclidean Taub-NUT space in four

dimensions, and make a technical improvement to the existing method [5] of counting

bound states. The latter index has already found applications to the counting of monopole

bound states [6] and to the counting of one quarter BPS dyons in N = 4 four-dimensional

compactifications of string theory [7]. Likewise, we will highlight potential applications

of our results on asymptotically linear dilaton backgrounds in the realm of domain wall

bound states in gauge theories.

Another application of the index formulas is a re-derivation of the mock modular form

that arises in the calculation of the elliptic genus of the cigar conformal field theory. This
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is done by first defining a generating function that keeps track of the Dirac zero modes in a

given momentum and winding sector. This generating function is then lifted to the elliptic

genus by assigning appropriate fugacities that keep track of the momentum and winding

quantum numbers, and by adding oscillator contributions. The index calculation gives a

direct physical understanding of the double sum form of Appell-Lerch sums featuring in

physical counting problems.

Our paper is structured as follows. We start in section 2 by reviewing supersymmetric

quantum mechanics with a potential on target manifolds with an isometry and set up

the wound bound state counting problem. In section 3 we introduce the asymptotically

linear dilaton spaces of our interest and introduce all the technology needed to compute

the Dirac indices that depend on a winding number and a momentum charge. In section 4

we introduce the heterotic backgrounds that we generate by duality transformations, and

the details on how to compute the indices in these backgrounds. In the final section 5

we conclude and indicate possible applications of these counting formulas. Some technical

details are provided in appendices A and B. In appendix C we illustrate how our techniques

simplify the calculation of the index on Euclidean Taub-NUT with self-dual gauge field.

2 Indices, quantum mechanics and field theory

In this section, we review a class of supersymmetric quantum mechanics models which are

one-dimensional non-linear sigma-models. We recall the existence of a potential that is

consistent with supersymmetry when the target manifold of the model has an isometry,

and how that potential arises naturally from a twisted dimensional reduction from 1 + 1

dimensions [1]. The model then corresponds to the center of mass motion of a wound string,

and the potential arises from the energy of the tensionful string. Secondly, we mention

how a marginally bound string, wound transversely to such a target space geometry after

a small deformation also gives rise to the supersymmetric quantum mechanics with Killing

vector potential.

2.1 The supersymmetric quantum mechanics: manifolds with isometry

We consider a 0 + 1 dimensional sigma-model with at least one supersymmetry, namely a

supersymmetric quantum mechanics. The target manifold M with metric G permits one

Killing isometry generated by the vector field K. We have therefore the Killing equation:

LKG = 0. (2.1)

The Lagrangian of the model includes a kinetic term and a potential term associated to

the existence of the Killing isometry [1]:

L =
1

2
(GµνẊ

µẊν + iGµνψ
µDτψν −GµνKµKν − iDµKνψ

µψν). (2.2)

The dot represents a derivative with respect to the world line time τ , while the derivative

Dτ is the covariant derivative of the tangent space valued world line fermion. If we define
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the vielbein eaµ, and the world line fermion ψa = ψµeaµ, then after quantization we find the

canonical commutators:

[Xµ, pν ] = iδµν

{ψa, ψb} = δab. (2.3)

The fermionic modes form a Clifford algebra. After quantization, they give rise to a Hilbert

space corresponding to a space-time fermion. The super-covariant momentum:

πµ = pµ −
i

4
ωµab[ψ

a, ψb] (2.4)

acts like a covariant derivative on space-time spinors: πµ = −iDµ. The supercharge Q is

given by the formula:

Q = ψµ(−iDµ −Kµ), (2.5)

while the central charge Z is:

Z = Kµπµ −
i

2
(DµKν)ψ

µψν . (2.6)

It is proportional to the Lie derivative acting on spinors. The supersymmetric quantum

mechanics allows for a Z2 grading (world line fermion number) given by the operator
∏

a ψ
a

which anti-commutes with the Dirac operator:

/D =
√
2Q = γµ(−iDµ −Kµ). (2.7)

In most of our paper, we concentrate on computing the ground state contributions to

the Witten index, namely the difference between the number of world line bosonic and

fermionic zero modes of the Dirac operator in a given set of models. The index is defined

for each fixed central charge sector.

2.2 Twisted dimensional reduction

In this section, we recall how the above supersymmetric quantum mechanics model can

be obtained from a Scherk-Schwarz reduction [1]. We start with a (1, 0) supersymmetric

theory in 1+1 dimensions. We will consider a compact space-like σ-direction of period 2π.

We take the action to be:

S =
1

4π

∫

d2σ

(

Gµν

(

1

α′ (∂τX
µ∂τX

ν − ∂σXµ∂σX
ν) + iψµDτ−σψν

))

. (2.8)

Note that the choice of sign of derivative with respect to σ in the fermion kinetic term

determines whether we concentrate on the supersymmetric quantum mechanics associated

to the 1 + 1 dimensional right- or left-movers.

Let us consider the target space isometry generated by the vector field K. Scherk-

Schwarz or twisted dimensional reduction can be carried out by requiring that the depen-

dence of the fields on the σ direction is given in terms of the Killing vector that generates

the isometry:

∂σX
µ = Kµ and ∂σψ

µ = −∂νKµψν . (2.9)
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We now integrate over the σ direction and obtain a quantum mechanical system. Our

ansatz ensures that the reduction will be supersymmetric. Plugging this ansatz into the

action, we find the dimensionally reduced action:

S =
1

2

∫

dτ

(

Gµν
1

α′∂τX
µ∂τX

ν + iGµνψ
µDτψν −

Gµν
α′ K

µKν + iψµKµ;νψ
ν

)

, (2.10)

which is the action in equation (2.2) provided we put α′ = 1, which we will do from now on.

The Scherk-Schwarz reduced theory has the interpretation of corresponding to the center of

mass motion of a string wound along the isometric direction. This is a natural way in which

the supersymmetric quantum mechanics problem that we study arises in string theory.

2.3 A marginal bound state problem

As an aside, we want to mention a second way in which the same supersymmetric quantum

mechanics problem pops up in string theory. We consider a string living in the space-time

R ×M × S1 × X and wound on the S1 circle. In many instances, a fundamental or D-

string wound on the circle is marginally bound to the geometry M . If we suppose that

the geometry M admits a U(1) isometry with compact action, we can associate to it a

circle S̃1. It is natural to study the (often truly) bound state counting problem that arises

from mixing the S1 and S̃1 circles. That introduces a potential on the manifold M , arising

from the winding energy of the string along the S̃1 circle. If the size of the S̃1 circle

shrinks towards the center of the geometry, the string will now be bound to the center of

the geometry M .

We can put this idea into practice by starting out with a metric on M × S1:

ds2 = GMNdX
MdXN = GµνdX

µdXν +R2dy2. (2.11)

The coordinate on the S1 circle of radius R is y ≡ y+ 2π. By assumption, the metric Gµν
on the manifold M admits a Killing isometry K. Clearly there is another Killing vector,

namely L = wy∂y where wy represents the winding number of the string around the circle

S1. We now repeat the Scherk-Schwarz reduction on the worldsheet with the σ-dependence

given by

∂σX
M = sinαKM + cosαLM . (2.12)

After neglecting constant terms, and allowing for no excitations in the decoupled y-

direction, we again wind up with the world line supercharge:

Q = Gµνψ
µ(−iDµ − sinαKµ). (2.13)

As before the index counting the number of bosonic minus fermionic ground states is the

index of the equivariant Dirac operator /DK = /D− i sinα /K. We can alternatively interpret

the (dual of the) Killing vector field Aµ = sinαGµνK
ν as an abelian gauge field on the

manifold M .

Our discussion in this section was very general, and can be viewed as one more way

to introduce potentials in supersymmetric quantum mechanics, an ubiquitous tool. The

technique we introduced above is natural in many string theory contexts. For an example
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application of this tool with Euclidean Taub-NUT as the target space manifold, see [7].

In the following, we evaluate the index for new example geometries M with Killing vector

fields K. We will compute the index through the explicit solution of the massless Dirac

equation on the target manifold M .

3 Asymptotically linear dilaton spaces

In this section, we introduce the target spaces M on which we concentrate. As string

backgrounds, these backgrounds come accompanied by an asymptotically linear dilaton.

The manifolds exhibit at least a U(1) isometry group. These supergravity solutions have

been found in [2] and discussed further in [3, 4]. Together with an internal conformal field

theory, these backgrounds admit microscopic string theory interpretations as near horizon

geometries T-dual to configurations of NS5-branes [4]. The two-dimensional example is the

cigar geometry [8–10]. We will later show that at least in this example, the index calculation

that we perform has an interesting two-dimensional conformal field theory application.

The backgrounds. The metric and dilaton of the supergravity solutions have the form

ds2 =
gN (Y )

2
dY 2 +

2

N2gN (Y )
(dψ +NAFS)

2 + 2Y ds2FS

Φ = −NY
k

. (3.1)

The function gN (Y ) is given by:

gN (Y ) =
Y N−1

N

e
2NY
k

∫ Y
0 tN−1e

2Nt
k dt

. (3.2)

The metric ds2FS refers to the Fubini-Study metric on the complex projective space CPN−1

and the connection one-form AFS has differential equal to the Kähler form. The back-

grounds we discuss therefore have a SU(n) × U(1) isometry. The U(1) factor refers to

translations along the ψ direction and this is the Killing isometry K we use to twist the

Dirac operator. The one-form gauge field A dual to the Killing vector takes the form:

A =
2w

NgN (Y )
(dψ +NAFS) , (3.3)

where w is the number of times our string winds the circle parametrized by the coordinate ψ

of period 2πN . In the following, we concentrate on the cases N = 1, 2, 3, which correspond

to target spaces M of dimension two, four and six. The parameter k is a free parameter

in gravity, but is typically quantized in string theory. After T-duality, it can be related to

the number of NS5 branes that generate the background [3, 4].

3.1 The two-dimensional cigar

The first example we concentrate on is the two-dimensional cigar background. This cor-

responds to a two dimensional conformal field theory with non-trivial metric and dilaton.
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It has a description as a gauged Wess-Zumino-Witten model, which is an exact conformal

field theory. The metric and dilaton read:

ds2 = k(dρ2 + tanh2 ρdψ2)

Φ = − log cosh ρ . (3.4)

It is equivalent to the case N = 1 in our general discussion by the coordinate transformation

cosh ρ = e
Y
k . The function g1(Y ) is given by

g1(Y ) =
2

k

e
2Y
k

e
2Y
k − 1

. (3.5)

The gauge field dual to the angular Killing vector is:

A =
2w

g1(Y )
dψ . (3.6)

The massless Dirac equation. Given these prerequisites, we turn to the solution of

the massless Dirac equation for a charged Dirac fermion Ψ on our curved background:

γµ(∂µ +
1

4
ωabµ γab − iAµ)Ψ = 0 . (3.7)

In order to solve the Dirac equation we choose the zweibein:

e1 =

√

g1(Y )

2
dY e2 =

√

2

g1(Y )
dψ . (3.8)

Our conventions for spinors in various dimensions are given in appendix D. We work in the

Weyl basis:

Ψ =

(

Ψ−
Ψ+

)

= einψ

(

G1(Y )

G2(Y )

)

. (3.9)

The solutions to the Dirac equation are then given by

Ψ = einψ

(

e
Y
k
(n−kw) (g1(Y ))

1
4
−n

2

e−
Y
k
(n−kw) (g1(Y ))

1
4
+n

2

)

. (3.10)

To determine the allowed zero modes, we first study the behavior of the wave functions

near the tip and near infinity. Near the tip at Y = 0, the wave functions take the form

Ψ ∼ einψ
(

Y − 1
4
+n

2

Y − 1
4
−n

2

)

, (3.11)

while asymptotically, we have the behavior

Ψ ∼ einψ
(

e
Y
k
(n−kw)

e−
Y
k
(n−kw)

)

. (3.12)
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We need to impose regularity at the tip and require normalizability at infinity. That leads

to the following constraints on the variables n and w:

1

2
≤ n < kw for negative chirality modes

kw < n ≤ −1

2
for positive chirality modes (3.13)

Since we have a positive level k > 0, this implies that the winding w is positive for negative

chirality modes while the winding is negative for positive chirality modes. Note that we

can think of the asymptotic charge n − kw as an imaginary radial momentum. When

kw is half-integer (as is the momentum n), we can have zero radial momentum. It is

clear that if we slightly shift it, we should consider either the positive chirality mode or

the negative chirality mode as normalizable. Let’s choose a regularization such that for

negative momentum n, we allow n = kw.

These results can be encoded in a partition sum Z2 keeping track of the positive and

negative chirality spinorial zero-modes, weighted with their momentum n and winding w:

Z2 =







∑

w<0

− 1
2

∑

n=[[kw]]

−
∑

w>0

[[kw−ǫ]]
∑

n= 1
2
, 3
2
,...






yn1 y

w
2 , (3.14)

where [[x]] is the strict half-integer (i.e. element of Z+1/2) smaller than or equal to x and

ǫ is a small positive regulator. We have introduced fugacities y1 and y2 to keep track of the

supersymmetric quantum mechanics labeled by the winding w, and the conserved charge

n. The formal sum is convergent for particular values of y1 and y2. One can rewrite this

double summation by first summing over the momentum variable n. This leads to the final

expression for the generating function of indices:

Z2 =

[

∑

n<0

∑

n−kw≥0

−
∑

n>0

∑

n−kw<0

]

yn1 y
w
2 . (3.15)

Note that our approach to finding wound bound state solutions in the cigar is comple-

mentary to the one of [18] where these bound states were uncovered by studying momentum

modes in the T-dual geometry. Here we use the Scherk-Schwarz reduction technique to find

bound states. Our technique is more generally applicable since it provides the means to

compute bound states with both winding and momentum. As we have argued in section 2,

it also generalizes to a large class of backgrounds.

3.2 The four-dimensional asymptotically linear dilaton background

The next example we tackle is the asymptotically linear dilaton solution in four dimensions:

ds2 =
g2(Y )

2
dY 2 +

1

2g2(Y )
(dψ + cos θdφ)2 +

Y

2
(dθ2 + sin2 θdφ2) . (3.16)

The radial function g2(Y ) is given by:

g2(Y ) =
8

k2
Y

e−
4Y
k − 1 + 4Y

k

. (3.17)
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Along with a non-trivial dilaton Φ = −2Y
k , the background solves the string equations of

motion. The central charge of the corresponding conformal field theory can be calculated

from the dilaton profile and comes out to be

c = 6

(

1 +
4

k

)

. (3.18)

The wave functions have a simple dependence on the angular variables ψ and φ. Given

the form of the metric in (3.16) the four Dirac components are separable and we choose

the ansatz

Ψ = einψ+imφ







G1(Y )S1(θ)
...

G4(Y )S4(θ)






(3.19)

The explicit form of the γ-matrix basis as well as the form of the Weyl spinors we will

use has been given in appendix D. We will solve the Dirac equation in terms of the Weyl

spinors Ψ = (Ψ−,Ψ+)
T .

3.2.1 Linear equations

Since the fermion is massless we can consider the positive and negative chirality spinors

separately. To evaluate the spin connection we choose the vierbein:

e1 =

√

g2(Y )

2
dY e2 =

1
√

2g2(Y )
(dψ + cos θdφ)

e3 =

√

Y

2
dθ e4 =

√

Y

2
sin θdφ . (3.20)

Substituting our ansatz for the positive chirality wave function Ψ+ = einψ+imφ
(G3(Y )S3(θ)
G4(Y )S4(θ)

)

we find that, apart from constant factors, the Dirac equation takes the schematic form

S3(θ)(L3(x) ·G3(x)) +G4(x)(N3(θ) · S4(θ)) = 0

S4(θ)(L4(x) ·G4(x)) +G3(x)(N4(θ) · S3(θ)) = 0 . (3.21)

There are similar equations for the negative chirality spinors. The differential operators Li
and Ni, in this case are given by

−L3 =

√

Y

g2(Y )

(

d

dY
− ng2(Y ) + w

)

+

(

g2(Y )− Y g′2(Y )

4
√

Y g32(Y )

)

L4 =

√

Y

g2(Y )

(

d

dY
+ ng2(Y )− w

)

+

(

g2(Y )− Y g′2(Y )

4
√

Y g32(Y )

)

N3 =
d

dθ
−m csc θ +

(

1

2
+ n

)

cot θ

N4 =
d

dθ
+m csc θ +

(

1

2
− n

)

cot θ . (3.22)
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These equations are equivalent to second order equations for the radial and angular func-

tions. As argued in appendix A, it is sufficient to focus on the solutions to the linear set

of equations

L3(Y ) ·G3(Y ) = 0 = L4(Y ) ·G4(Y ) and N3(θ) · S4(θ) = 0 = N4(θ) · S3(θ) . (3.23)

These have the following solutions:

Ψ+ = einψ+imφ







C3 e
−wY+ 2Y n

k

(

8Y
kg2(Y )

)− 1
4
+n

2
(sin θ)−

1
2
+n
(

tan θ
2

)−m

C4 e
wY− 2Y n

k

(

8Y
kg2(Y )

)− 1
4
−n

2
(sin θ)−

1
2
−n (tan θ

2

)m






(3.24)

3.2.2 The counting of zero modes

We must now identify the normalizable solutions. The measure factor
√
g is proportional

to Y sin θ. Near the tip at Y = 0, we have that the wave-functions behave like Y − 1
2
±n. The

measure factor cancels the Y − 1
2 prefactor when we square a wave-function component. A

similar phenomenon occurs for the angular factors.

We also find that for positive momentum n, the component C4 needs to be zero in

order to have regular wave-functions. Rewriting the third component of the wave function

in terms of the argument θ
2 , we obtain

Ψ+,3 ∼
(

sin
θ

2

)− 1
2
+n−m (

cos
θ

2

)− 1
2
+n+m

. (3.25)

The exponent of both factors needs to be positive, up to a shift by −1/2. We conclude

that n ≥ |m|.
We moreover have that the parity of 2n and of 2m needs to be opposite. This is

because near the tip of the space (which is locally a Euclidean four-plane) the angles ψ

and φ are related to angles ξ1,2 in two two-planes through the formulas ψ = −ξ1 − ξ2 and

φ = ξ2−ξ1. A 2π rotation in one of these two-planes must give a minus sign to the fermion

wave-function. All these constraints taken together imply that the quantum number m lies

in the window

− n+ 1/2 ≤ m ≤ n− 1/2 , (3.26)

and jumps by integers when we fix n. For a given momentum n, there is therefore a

degeneracy of 2n arising from the two-sphere. This is the spin-degeneracy that arises from

spherical harmonics with spin l = n− 1/2.

In order to understand the further constraints that arise from the radial part of the

problem, let us recall here the radial behavior of the function g2(Y ):

Y 2 Y→0←−−− Y

g2(Y )

Y→∞−−−−→ kY

2
. (3.27)

For negative winding w there are no normalizable solutions. For positive winding, the wave

functions have the following asymptotic behavior:

Y − 1
4
+n

2
Y→0←−−− Ψ+,3

Y→∞−−−−→ e−Y (w−
2n
k )Y − 1

4
+n

2 . (3.28)
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Therefore imposing regularity and normalizability requires the momentum to be positive

and in the range
1

2
≤ n ≤ kw

2
(3.29)

Note that we again regularize n− kw/2 such that the extreme case does contribute.

For negative momentum n < 0, we find the spin degeneracy 2|n| and negative winding.

Only the component Ψ+,4 will be non-vanishing. We need to impose the inequality:

kw

2
< n ≤ −1

2
. (3.30)

For negative chirality the zero mode solutions to the linear differential equations are

given by

Ψ− = einψ+imφ







C1 e
−wY+ 2Y n

k

(

8Y
kg2(Y )

)− 1
4
+n

2
(sin θ)−

1
2
−n (tan θ

2

)m

C2 e
wY− 2Y n

k

(

8Y
kg2(Y )

)− 1
4
−n

2
(sin θ)−

1
2
+n
(

tan θ
2

)−m
.






(3.31)

Noting the flip of signs in the angular wave functions relative to the positive chirality wave

functions, one can check that there are no zero modes of negative chirality.

Finally, the partition sum that counts the zero modes, keeping track of the momentum

and winding quantum numbers, is given by

Z4 =





∑

w>0

[kw]
∑

2n=1,2,...

+
∑

w<0

− 1
2

∑

2n=[kw−ǫ]



 2|n| yn1 yw2

=





∑

w>0

[kw]
∑

2n=1,2,...

−
∑

w<0

− 1
2

∑

2n=[kw−ǫ]



 2n yn1 y
w
2 , (3.32)

where the double square brackets [x] indicate the smallest integer smaller or equal to x.

The final result is very similar to the index counting in Euclidean Taub-NUT. Indeed, they

have in common the transverse geometry responsible for the degeneracy factor, as well as

the tip region. The asymptotics of the spaces is different, yet they lead to the same index.

This aspect is discussed in appendices A and C.

3.3 The six-dimensional asymptotically linear dilaton background

We turn to the explicit construction of Dirac zero modes in the six-dimensional asymptotic

linear dilaton background (i.e. the case N = 3 of background (3.1)).

The background. The metric and dilaton are given by

ds2 =
g3(Y )

2
dY 2 +

2

9g3(Y )
(dψ + 3AFS)

2 + 2Y ds2
CP

2

Φ = −3Y

k
. (3.33)
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The connection one-form AFS on CP
2 has differential equal to the Fubini-Study curvature

two-form. In appendix B we give a detailed description of the geometry of CP2 as well

as a choice of coordinates and one-forms e1,2,3,4. Using these, the vierbein for the six-

dimensional problem are chosen to be

E1 =

√

g3(Y )

2
dY E2 =

√

2

9g3(Y )
(dψ + 3AFS)

E3,4,5,6 =
√
2Y e1,2,3,4 . (3.34)

The function g3(Y ) is explicitly given by

g3(Y ) =
36Y 2 e

6Y
k

k(−k2 + e
6Y
k (k2 − 6kY + 18Y 2)

, (3.35)

We choose six dimensional Weyl spinors as in appendix D. The Dirac equation for the

positive chirality spinor takes the schematic form

Si(θ)Ti(χ)Li(Y ) ·Gi(Y )+Gj(Y )Tj(χ)Ni(θ) · Sj(θ)+Gk(Y )Sk(θ)Mi(χ) · Tk(χ)=0 . (3.36)

where the indices i, j, k range over the four components of a chiral spinor. Here, Li,Mi and

Ni denote differential operators depending on the single variable in parenthesis. As in the

four-dimensional background, we impose the stronger condition that L·G = N ·S =M ·T =

0 . The positive chirality solution is then given, up to the phase factor einψ+ipϕ+imφ, by:

Ψ+ =





















C5√
Y
e

3Y n
k

−wY
(

36Y 2

kg3(Y )

)− 1
4
+n

2
(sinχ)−2+2p(cosχ)−

1
2
−2p−3n(sin θ)−

1
2
−p (tan θ

2

)m

C6√
Y
e

3Y n
k

−wY
(

36Y 2

kg3(Y )

)− 1
4
+n

2
(sinχ)−2−2p(cosχ)−

1
2
+2p+3n(sin θ)−

1
2
+p
(

tan θ
2

)−m

C7
Y e−

3Y n
k

+wY
(

36Y 2

kg3(Y )

)− 1
4
−n

2
(sinχ)−1−2p(cosχ)−

1
2
+2p+3n(sin θ)−

1
2
−p (tan θ

2

)m

C8e
− 3Y n

k
+wY

(

36Y 2

kg3(Y )

)− 1
4
−n

2
(sinχ)−1+2p(cosχ)−

1
2
−2p−3n(sin θ)−

1
2
+p
(

tan θ
2

)−m





















We summarize the asymptotics of the radial function:

Y 3 Y→0←−−− Y 2

g3(Y )

Y→∞−−−−→ kY 2

2
, (3.37)

and note the measure factor:

√

det g =
1

6
Y 2 cosχ sin θ sin3 χ. (3.38)

From the flat space limit and the fermionic nature of the target space wave-functions, we

conclude that 3n needs to be strictly half-integer, while 2m and 2p are integers of opposite

parity. See appendix B for details.

For negative momentum n, by analyzing the radial profile near the tip, we conclude

that C5 = C6 = 0. We therefore focus on the 7 and 8 components. For the 7 component,

we find that

C7 6= 0⇒ −p±m ≥ 1

2
and 3n+ 2p ≥ 0 , (3.39)
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which are contradictory, implying that C7 = 0. For the 8 component, we find

C8 6= 0⇒ p±m ≥ 1

2
and + 3n+ 2p ≤ 0 . (3.40)

We can think of the quantum number m as filling out a spin p− 1/2 multiplet. When we

refine the counting through various quantization conditions, and combine all constraints,

we find that, for the 8 component, the degeneracy of zero modes for a given value of

momentum n is given by

D(n) =

− 3n
2
− 1

4
∑

p=1/2,1,...

2p =

−3n− 1
2

∑

r=1

r =

(

−3n− 1
2

) (

−3n+ 1
2

)

2
. (3.41)

When we analyze the positive momentum n states, we find no solutions. For the negative

chirality spinor the wave function is (up to the phase factor einψ+ipλ+imφ) of the form:

Ψ− =





















C1 e
3Y n
k

−wY
(

36Y 2

kg3(Y )

)− 1
4
+n

2
(sinχ)−1−2p(cosχ)−

1
2
+2p+3n(sin θ)−

1
2
−p (tan θ

2

)m

C2
Y e

3Y n
k

−wY
(

36Y 2

kg3(Y )

)− 1
4
+n

2
(sinχ)−1+2p(cosχ)−

1
2
−2p−3n(sin θ)−

1
2
+p
(

tan θ
2

)−m

C3√
Y
e−

3Y n
k

+wY
(

36Y 2

kg3(Y )

)− 1
4
−n

2
(sinχ)−2+2p(cosχ)−

1
2
−2p−3n(sin θ)−

1
2
−p (tan θ

2

)m

C4√
Y
e−

3Y n
k

+wY
(

36Y 2

kg3(Y )

)− 1
4
−n

2
(sin 2χ)−2−2p(cosχ)−

1
2
+2p+3n(sin θ)−

1
2
+p
(

tan θ
2

)−m





















(3.42)

One notices that the angular constraints from the third and fourth components lead to

contradictory requirements on the quantum number p, enforcing C3 = C4 = 0. We are

then led to the constraint that the momentum n be positive for negative chirality spinors

and find that only the first component can be non-zero. From the angular variables we

first of all find the constraints

p+
1

2
≤ m ≤ −p− 1

2
(3.43)

with p < −1
2 . Once again, the variable m takes values in a spin |p|− 1

2 representation, lead-

ing to a 2|p| degeneracy factor. The positivity of the cosχ exponent leads to the constraint

p >
1

4
− 3n

2
, (3.44)

which gives rise to an angular degeneracy of

D(n) =

− 1
2

∑

p= 1
4
− 3n

2

2|p| =
−1
∑

r= 1
2
−3n

|r| =
(

3n− 1
2

) (

3n+ 1
2

)

2
. (3.45)

From the behavior at infinity, we find some further constraints on the quantum number

n. We get (with the same regularization as in two and four dimensions):

kw < 3n ≤ −3

2
or kw ≥ 3n ≥ 3

2
. (3.46)
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These lead to the following expression for the final index sum:

Z6 =





∑

w<0

3n=−3/2
∑

[[kw−ǫ]]
−
∑

w>0

[[kw]]
∑

3n=3/2,5/2,...





(

3n− 1
2

) (

3n+ 1
2

)

2
yn1 y

w
2

=





∑

w<0

m=−2
∑

[[kw−ǫ]]−1/2

−
∑

w>0

[[kw]]−1/2
∑

m=1,2,...





m(m+ 1)

2
ym1 y

w
2 . (3.47)

where we identified m = 3n− 1/2.

3.4 The physics underlying the index formulas

We would like to summarize and highlight some of the common features of the results we

have obtained so far. Elementary physical reasoning will give some extra insight into the

results of the explicit counting. The general form of the answer for the index of the Dirac

operator, for a fixed winding sector, can be written in the form,

Z2N (w) =







∑−1
m=M(w) D(m,N)yn for w < 0

(−1)N∑M(w)
m=1 D(m,N)yn for w > 0 ,

(3.48)

where M(w) is a winding dependent bound on the summation range for the quantum

number m. The full index is obtained by summing over all possible values of the winding

w. The degeneracy factor D(m,N) was obtained by studying the angular part of the

solutions of the Dirac equation in detail. We found that

D(m,N) =















1, for N = 1

m, for N = 2
1
2m(m+ 1) for N = 3 .

(3.49)

In fact, there is another route to these degeneracy factors that simultaneously provides

its generalization. When we study the background (3.1), and concentrate on the compact

directions along the CP
N−1, we can imagine performing a Kaluza-Klein reduction on the

circle parametrized by ψ, near the tip (where there is no winding contribution to the

energy). That gives rise to a gauge field NAFS on the complex projective space, and given

that our fermion has momentum n, which turns into an electric charge, we obtain a charged

massless fermion on CP
N−1 with charge-magnetic field product equal to nN . The Dirac

zero modes on the whole space correspond to Dirac zero modes in this compact slice as well,

such that we must determine the degeneracy of the lowest Landau level of this generalized

quantum Hall system [19]. This degeneracy is fixed by an index theorem on CP
N−1 with

magnetic field [20]. The index is given by the integral over the manifold of a power of the

generating (Fubini-Study) line bundle L and the A-roof genus:

D

(

nN−N
2
+1, N

)

=

∫

CP
N−1

ch(LnN )Â(CPN−1) (3.50)

=
1

(N − 1)!

(

nN − N

2
+ 1

)(

nN − N

2
+ 2

)

. . .

(

nN − N

2
+N − 1

)

.
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Wemust identifym = nN−N/2+1 and indeed find a perfect match between the degeneracy

of states in the lowest Landau level and the number of Dirac zero modes. A corollary of the

matching between the degeneracy and the index theorem is that we have only solutions of

one chirality (at fixed winding number w). An alternative route to finding this degeneracy

is through a careful analysis of representations of U(1)×SU(N−1) ⊂ SU(N) [19]. Near the

tip of the geometry, we effectively analyze the zero modes of a fermionic particle carrying a

charge nN and charged under the N−1 Cartan generators of the SU(N) isometry subgroup

of CPN−1. Labeling the U(1) eigenvalues by non-negative li, (where i ∈ {1, 2, . . . , N −1} )
we recall that the wave function at a given energy eigenvalue is characterized by the U(1)

gauge field charge nN and the total angular momentum l =
∑N−1

i=1 li [21]. For a given

total angular momentum l there are
(

l+N−2
N−2

)

wave functions. The angular momentum of

ground states is bounded above in terms of the U(1) gauge charge. The upper bound is

m − 1 = nN − N/2. We have thus acquired a better understanding of the origin of the

degeneracy of the Dirac zero modes, and the physics of a radial cross section near the origin.

On the other hand, the limits on the variable m, denoted M(w), are determined by

the radial problem, and in particular the coefficient of the radial exponential in the wave

function. This can be obtained for the general case by studying the Dirac equation near

radial infinity. In this limit, one can define a radial coordinate ρ ≈ Y
k and write the metric

in the form
ds2

k
≈ dρ2 + R2

N2
(dψ +NAFS)

2 + 2ρ ds2FS . (3.51)

We have kept a general radius R for later purposes. For now we have R = 1. The gauge

field is of the form

A =
w

f(Y )
(dψ +NAFS) , (3.52)

where the function f is given by

f(Y ) =
N

2
gN (Y ) . (3.53)

Writing out the Dirac equation for a charged fermion in these coordinates we find that it

takes the following form for the individual components of the fermion
[

∂

∂ρ
± 1

R

(

i
∂

∂ψ
+Aψ

)]

Ψa = 0 . (3.54)

With ψ-momentum equal to n, we obtain the asymptotic solution

Ψa = einψ e
± ρ

R
( w
f(∞)

−n)
. (3.55)

Therefore, we find normalizable modes whenever

|n| <
∣

∣

∣

∣

w

f(∞)

∣

∣

∣

∣

. (3.56)

In this section, we have f(∞) = N/k. The bounds on m = nN −N/2 + 1 therefore read:
∣

∣

∣

∣

m+
N

2
− 1

∣

∣

∣

∣

< |kw| . (3.57)
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This matches with what we obtained in previous sections. Besides an explicit description of

the Dirac zero modes, we now also have an intuitive understanding of the counting formulas.

Using this improved understanding, we can generalize our result for any value of N .

First of all, we observe that we have that nN is a strict half-integer for N odd, while it is

an integer for N even. As a consequence, the number m is always integer. Using this fact,

and the previous results, we find the partition sum for N even:

Z2N =







∑

w<0

−N
2
+1

∑

m=[kw−ǫ]+1−N
2

−
∑

w>0

[kw]+1−N
2

∑

m=1,2,...






D

(

nN − N

2
+ 1, N

)

, (3.58)

while for N odd:

Z2N =







∑

w<0

−N
2
+ 1

2
∑

m=[[kw−ǫ]]+1−N
2

−
∑

w>0

[[kw]]+1−N
2

∑

m=1,2,...






D

(

nN − N

2
+ 1, N

)

. (3.59)

For N odd, we obtain contributions of different chiralities, depending on the sign of the

momentum, while for N even, we obtain contributions only of a given chirality, but we

need to take care of the fact that the degeneracy factor flips sign when going from positive

to negative values of the momentum.

We note that the degeneracy factor is a polynomial in the quantum numberm of degree

N − 1. If we introduce a fugacity corresponding to the quantum number m, and suppose

for instance that its norm is smaller than one, then the double sum over the winding and

momentum will give rise to a pole in the fugacity of order N . We will explicitly perform

such a resummation for N = 1 in section 5.

4 Duality rotated asymptotically linear dilaton spaces

In this section, we revisit the Dirac index calculation in a supergravity background which

is either a background with asymptotic linear dilaton or a Euclidean Taub-NUT geometry.

We will use a different technique to add a potential to the moduli space. Our logic is

to start with a background which is a solution to the low-energy effective supergravity

arising from (for instance) a heterotic string theory. The backgrounds only have a non-

trivial metric and possibly a linear dilaton. We then perform a duality rotation on the

isometric direction and an internal direction associated to a gauge field. We thus generate

new backgrounds of supergravity that are of independent interest. The main point though

is that the rotation introduces a gauge field in the background, which renders the counting

problem for charged bound states well-defined.

4.1 Duality rotated backgrounds

In the first part of this section, we recall how to generate the new supergravity back-

grounds through duality rotations. We consider the asymptotically linear dilaton back-

ground in (3.1) as being part of a heterotic string background. As explained in [11], based

upon the results of [12, 13], one can supplement such a 2N -dimensional space-time with an
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extra chiral coordinate X, which allows one to introduce a background abelian gauge field.

We will generate a new solution by doing an O(2) transformation, although more general

duality transformations are possible.

The duality rotation is most easily performed in the following way: encode the metric

G, the gauge field A and the anti-symmetric tensor B into a 4N + 1 × 4N + 1 dimen-

sional matrix

M =







KT
−G

−1K− KT
−G

−1K+ −K−G
−1A

KT
+G

−1K− KT
+G

−1K+ −K+G
−1A

−ATG−1K− −ATG−1K+ ATG−1A






. (4.1)

Here T denotes transposition and the auxiliary 2N × 2N dimensional matrices K± are

defined by

(K±)µν = −Bµν −Gµν −
1

4
AµAν ± ηµν . (4.2)

Since the backgrounds we work with are Euclidean we will work with the Euclidean sig-

nature matrix η = I2N . New solutions to low-energy heterotic supergravity actions are

generated by performing a duality rotation

M→M′ = ΩMΩT (4.3)

where Ω is a rotation matrix. We choose a duality rotation in an SO(2) subgroup:

Ω =







I2N−1 0 0

0 γ
√

1− γ2
0 −

√

1− γ2 γ






, (4.4)

where γ is a rotation parameter that takes values in [0, 1]. The entries that are non-zero

are chosen to be along one of the isometry directions of the manifold Md and an internal

direction associated to the gauge field A.

The new metric, anti-symmetric tensor and gauge field can be unpackaged from the

entries of the matrixM′. Finally, the dilaton in the original and new solution are related

through the duality invariant combination

e−2Φ′

detG′ = e−2Φ detG . (4.5)

In the following, we apply these duality transformations to the asymptotically linear dilaton

spaces in various dimensions.

4.1.1 Asymptotically linear dilaton dyons

Let us consider the effect of the duality rotation on the asymptotically linear dilaton back-

grounds given in equation (3.1). We perform the O(2) duality rotation involving the ψ-

direction and an internal direction. The resultant metric and dilaton takes the follow-

ing form

ds2 =
gN (Y )

2
dY 2 +

N2 β2gN (Y )

2hN (Y )2

(

dψ

β
+N AFS

)2

+ 2Y ds2FS

e−2Φ = e
2NY
k

(

2hN (Y )

N2gN (Y )

)2

, (4.6)
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where β ∈ [0, 1]. We defined the function

hN (Y ) = 1− β +
N2β

2
gN (Y ) . (4.7)

The other closed string fields that result from the duality transformation are the gauge

field A and the NS-NS two-form B:

A = −2
√

1− β
β

dψ +
2
√

(1− β)β
hN (Y )

(

dψ

β
+NAFS

)

B =
Nβ(1− β)
hN (Y )

dψ

β
∧AFS . (4.8)

From the form of the rotated metric, gauge field and B-field, one can see that, if we rescale

the coordinate ψ by β, the new coordinate allows one to write the fibration over CPN−1 in

a manner identical to the linear dilaton fibrations discussed in appendix B. In other words,

the metric and gauge field of these duality rotated backgrounds differ from the background

in (3.1) only in the detailed form of the radial functions that appear in the fibration. This

will have important consequences below. We will once again denote the new coordinate

by ψ and it has periodicity 2Nπ. This choice of periodicity renders the duality rotated

backgrounds genuinely new. We moreover drop the first, Wilson line term in the gauge

field in equation (4.8) — the background remains a supergravity solution.

4.2 Charged Dirac indices

In the following we analyze the Dirac index of a fermion in the duality rotated metric

that we generated, coupling with strength e to the gauge field A generated by the duality

rotation.1 The Dirac equation we solve includes a coupling of the charged fermion to the

gauge field:

γµ(∂µ +
1

4
ωabµ γab − ieAµ)Ψ = 0 . (4.9)

We discuss the asymptotic linear dilaton models for general N . We follow the intuitive

discussion in subsection 3.4. The physics near the origin Y = 0 is the same as before: we

project onto the lowest Landau level on the projective space CP
N−1. The asymptotics of

the radial problem at Y →∞ is slightly different:2

ds2

k
≈ dY 2

k2
+

N4β2

k2hN (∞)2
(dψ +NAFS)

2 +
2Y

k
ds2FS ,

eA ≈ e

hN (∞)
(dψ +NAFS) . (4.10)

1We will not limit ourselves to embeddings of this model in string theory. In that context, the charge

e would be quantized. The supersymmetric quantum mechanics model corresponding to a manifold with

gauge bundle [14] can in any case be thought off as the dimensional reduction of a heterotic non-linear

sigma-model.
2We rescaled the electric charge e to e

2
√

β(1−β)
.
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If we make the identifications

w = e

f(Y ) = hN (Y )

R =
N2β

k hN (∞)
with hN (∞) = 1− β +

βN2

k
(4.11)

we see that the asymptotic analysis of the restrictions on the momentum of the bound state

runs exactly as in subsection 3.4. One can thus write down the index for these backgrounds

for a given value of the electric charge:

Z2N (e) =















∑

[

e
hN (∞)

−ǫ
]

n= 1
2

D
(

nN − N
2 + 1, N

)

yn for e > 0

(−1)N∑− 1
2

n=
[

e
hN (∞)

] D
(

nN − N
2 + 1, N

)

yn for e < 0 .
(4.12)

Here we have used the degeneracy functionD that counts the index of the Dirac operator on

CP
N−1 with magnetic field. For oddN we have to replace the square brackets appropriately.

There are some subtle differences between this class of models and the ones we studied

earlier. In particular, for the higher dimensional heterotic backgrounds it turns out that

the Dirac equation for the components are not explicitly integrable in terms of known

special functions. In order to illustrate these differences, we show how to proceed with the

explicit calculation of the zero modes in the four-dimensional example. We confirm that

the counting of zero modes leads to equation (4.12) for the case N = 2. A similar analysis

governs the case of dimension 2N .

4.2.1 Four-dimensional asymptotically linear dilaton dyon

For the calculation of the index on the four-dimensional heterotic dyon, we choose the

following vierbein:

E1 =

√

g2(Y )

2
dY E2 =

√

2g2(Y )β

h2(Y )
(dψ + cos θdφ)

E3 =

√

Y

2
dθ E4 =

√

Y

2
sin θdφ . (4.13)

The gauge field is given by

eA =
e

h2(Y )
(dψ + cos θdφ) . (4.14)

The Dirac equation is solved as before and the positive chirality wave functions are

Ψ+ = einψ+imφ

(

G3(Y )(sin θ)−
1
2
+n
(

tan θ
2

)−m

G4(Y )(sin θ)−
1
2
−n (tan θ

2

)m

)

. (4.15)

The radial wave functions satisfy the equations

dGa(Y )

dY
+W (Y )Ga(Y ) = 0 with a = 3, 4 . (4.16)
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where

W3(e, n, Y ) =
e

2β
− n

2β
h2(Y ) +

1

4Y
+

g′2(Y )

4g2(Y )
− kβg′2(Y )

h2(Y )
+

(1− β)
4Y h2(Y )

and W4(e, n, Y ) =W3(−e,−n, Y ) . (4.17)

All but the last term are explicitly integrable in terms of known functions. The solution is

of the form

G3(Y ) = e
∫
dY

(1−β)
4Y h2(Y )

√

h2(Y )

Y
e
− Y

2β (e−n(1−β+
4β
k
))
(

8Y

kg2(Y )

) 1
4
+n

2

G4(Y ) = e
∫
dY

(1−β)
4Y h2(Y )

√

h2(Y )

Y
e

Y
2β (e−n(1−β+

4β
k
))
(

8Y

kg2(Y )

) 1
4
−n

2

. (4.18)

By analyzing the profile of the function h2(Y ), one can check that the non-integrable term

leads to a finite correction to the wave-function, well-behaved near the tip at Y = 0 and

near radial infinity. It is immaterial for the purposes of counting the bound states. There

are no normalizable modes with negative chirality. The index partition sum is calculated

precisely as before with the result:

Zhet4 (e) =









[

2e
h2(∞)

−ǫ
]

∑

2n=1

−
−1
∑

2n=
[

2e
h2(∞)

]









2n yn . (4.19)

where we have identified h2(∞) = 1 − β + 4β
k . This indeed coincides with the formula in

equation (4.12) which was derived based on general considerations.

5 Conclusions and future directions

In this paper, we computed the indices of supersymmetric quantum mechanical models

associated to asymptotically linear dilaton spaces. We used two ways of regularizing a

marginal bound state problem. Firstly, through the introduction of a potential consistent

with supersymmetry and associated to a Killing isometry in target space (either through

winding, or through rotating an orthogonally wound string). Secondly, through a super-

gravity duality transformation that introduces a gauge field, and coupling the space-time

spinor to the gauge field. We calculated the indices by explicitly solving the massless Dirac

equation. We argued that we can compute the indices by solving linear equations, which

leads to a technical improvement on the counting of bound states for instance on Euclidean

Taub-NUT with self-dual gauge field. The physical intuition behind the counting formu-

las is that the zero modes have a degeneracy equal to that of the lowest Landau level on

CP
N−1. It would be interesting to employ generalized index theorems on non-compact

asymptotically linear dilaton spaces to check our results using a topological index calcu-

lation. We believe the supersymmetric quantum mechanical models that we defined and

partially studied in this paper are interesting by themselves, and sufficiently versatile to

find numerous applications in higher dimensional supersymmetric theories such as super-

symmetric field theory or string theory. In the following, we wrap up by pointing out

potential applications of our results in two specific contexts.
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5.1 Mock modular forms

We would like to illustrate that the quantum mechanics index calculation is sufficient

to reproduce the mock modular form that features in the elliptic genus of the N = 2

superconformal cigar conformal field theory in 1 + 1 dimensions [23–26]. It is important

to first understand what aspects of the conformal field theory are captured by the super

quantum mechanics obtained via the Scherk-Schwarz reduction. It is well known that the

N = 2 cigar coset conformal field theory can be written as a product of free fermions and

bosons. It is only the zero modes of the bosonic fields that are captured by the super

quantum mechanics.

We have determined the number of space-time positive and negative chirality zero-

modes of a space-time fermion. The space-time fermion can be thought of as arising from

the quantization of right-moving fermionic zero-modes of the worldsheet conformal field

theory, and bosonic zero modes. To obtain a space-time fermion, we would take the left-

movers in the NS sector. In what follows, we will prefer to think about Ramond-Ramond

sector states in the conformal field theory. These correspond to space-time bosons, and we

will accordingly shift the momentum n from half-integer to integer.

The elliptic genus of the coset conformal field theory is defined as follows (see e.g. [27]):

χcos = Tr(−1)F qL0− c
24 q̄L̄0− c

24 zJ0yP , (5.1)

where L0 denotes left-moving conformal dimension, J0 left-moving R-charge, and P a

global U(1) charge (e.g. momentum). In order to lift the index calculation and complete

it to an elliptic genus what we would like to do is to express the R-charge and conformal

dimensions for both left and right moving states of the Ramond-Ramond sector in terms

of the momentum and winding around the asymptotic circle ψ. The idea then is to assign

appropriate weights (dependent on the modular parameter q and the R-charge chemical

potential z) to the variables y1 and y2 in the index result (3.15) that would allow us to

read off the contribution of the quantum mechanics to the elliptic genus of the conformal

field theory.

The conformal algebra of the cigar conformal field theory has been discussed in de-

tail in for instance [22]. Since the quantum mechanics captures the contribution of the

bosonic zero modes, their contribution to the conformal dimension and R-charge can be

read off to be

LQM0 − 1

4k
=

(n− kw)2
4k

+
p2rad
2

JQM0 =
n− kw
k

. (5.2)

Here prad is the radial momentum along the Y direction. The right moving conformal

dimension is similarly given by

L̄QM0 − 1

4k
=

(n+ kw)2

4k
+
p2rad
2

. (5.3)

We now impose the right-movers to be in the ground state in order to calculate the elliptic

genus; this automatically fixes the total right-moving conformal dimension L̄0 = c
24 . For
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the left movers, we have to calculate the left-moving conformal dimension L0 − c
24 , which

we can rewrite as the difference between left-moving and right-moving conformal dimension

L0 − L̄0. Using the explicit expressions for these charges, we find that

L0 − L̄0 = −nw . (5.4)

Using this and the expression for the R-current in terms of the momentum and winding

quantum numbers, we can now assign appropriate weights in order to calculate that part

of the elliptic genus of the cigar conformal field theory that arises from the super quantum

mechanics.3 We obtain

Z2 =





∑

n≤−1,n+kw≥0

−
∑

n≥0,n+kw≤−1



 z
kw−n

k q−nwyn . (5.5)

We shifted the momentum n downward by 1/2 to take into account the fact that we

spectrally flowed from the NS sector to the R sector for the left-movers.

We shall now show that this results captures the non-trivial factor of the holomorphic

part of the full elliptic genus. To show this, we start with the holomorphic contribution [23]

to the cigar coset elliptic genus from [24–26]:

χcos,hol =
1

k

∑

γ,δ∈Zk

e
2πiγδ

k
iθ11(τ, α)

η3

∑

m∈Z

q
(km+γ)2

k z2
km+γ

k

1− z 1
k qm+ γ

k e
2πiδ
k

y−(γ+km), (5.6)

We then follow [24, 26] and expand the result in a particular regime of parameters (y, z, q)

as a double sum:

χcos,hol =
iθ11(τ, α)

η3





∑

n≤0,n+kw≥0

−
∑

n≥1,n+kw≤−1



 z
kw−n

k q−nwyn. (5.7)

We see several differences between formulas (5.5) and (5.7). As mentioned earlier, in the

quantum mechanics, we have not taken into account the left-moving oscillator contributions

of fermions or bosons, nor the degeneracy of the left-moving worldsheet vacuum. Therefore,

there is a factor iθ11(τ, α)/η
3 that needs to be supplemented to equation (5.5). Secondly,

we see that we have taken a different scheme to divide n = 0 zero modes into two sets. The

scheme is a matter of choice. The expressions (5.5) and (5.7) differ by a theta-function

that transforms well under modular and elliptic transformations.

Note also that if we now want to address the full elliptic genus problem including

the non-holomorphic contributions, we need to study one more aspect of the right-moving

super quantum mechanics. Indeed, the non-holomorphic contribution contains a measure

factor arising from the difference in the density of states of primary right-moving bosons

and fermions. To determine this difference, it is sufficient to know the asymptotic form of

the supercharge of the supersymmetric quantum mechanics. It takes the form:

Q̃ ≈ (iprad + n+ kw)ψ̃ , (5.8)

3The sign of the momentum is conventional. We have flipped it here for easier comparison with [24, 26].

We restrict in this section to integer levels k.
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where prad is the radial momentum. We can then indeed check that the measure factor,

determined in [24] and discussed in detail in [26] is given by the inverse of the asymptotic

expression of the supercharge (stripped off the worldsheet fermion operator ψ̃). The

underlying reason for this is that the asymptotic supercharge relates asymptotic bosonic

and fermionic wave-functions, and therefore also dictates the ratio between bosonic

and fermionic reflection amplitudes. The latter in turn codes the difference in densities

of states [30].

Therefore, we see that in the two-dimensional cigar background, the class of supersym-

metric quantum mechanical models that we considered captures all of the non-trivial data

necessary to reconstitute the full elliptic genus of the two-dimensional superconformal field

theory, namely both the Appell-Lerch sum, and its modular completion.

It will be interesting to apply the same idea to the higher dimensional target spaces at

our disposal and to generate new examples of non-compact elliptic genera containing mock

modular forms. The literature on physical models for mock modular forms is growing (see

e.g. [31–35] for recent applications). One would also like to generate models for more exotic

or new mock modular forms. The higher dimensional examples we have are less easily lifted

to full conformal field theory results, amongst other reasons because asymptotically the ψ

circle remains fibered. Their degeneracy factors do give rise to poles of order N when we

re-sum but a further twist of the model may be needed to render the degeneracies chiral

on the worldsheet. One goal could be to obtain a conformal field theory model for the

interesting double pole Appell-Lerch sums with mock modular behavior that have been

identified in [34] in the context of D-brane bound state counting with application to the

entropy of supersymmetric black holes.

5.2 Counting domain wall bound states

Euclidean Taub-NUT arises as the moduli space of monopoles in supersymmetric Yang-

Mills theory [16, 17] and the low energy dynamics is determined by geodesic motion on the

moduli space. A potential or self-dual gauge field arises when we have at least a rank two

gauge group, and misaligned vacuum expectation values for adjoint scalars [36]. This leads

to the application of index counting on Euclidean Taub-NUT space [5] to the counting of

monopole bound states [6] as well as to the counting of D-brane bound states [7].

Interestingly it was shown in [37] that the cigar background arises as the moduli space

of domain walls in a three dimensional U(1) gauge theory with 8 supercharges. The simplest

setting is when the theory admits three isolated vacua, which happens when we have three

charged hypermultiplets with distinct masses (and judicious choices for the signs of Fayet-

Iliopoulos parameters). The domain walls between the three distinct vacua preserve N =

(2, 2) supersymmetry and their low energy dynamics is described by motion on a moduli

space with cigar shaped target (when we ignore the center of mass mode). In the infrared,

the dynamics is described by the cigar conformal field theory (or its mirror, if we approach

the dynamics through a calculation of the Liouville interaction potential) [37]. This system

can also be realized in string theory in terms of D2-branes inside, and interpolating between,

parallel D6-branes in the presence of a background NSNS two-form.
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It is an interesting question to explore the realization of higher dimensional asymptot-

ically linear dilaton spaces as moduli spaces of (e.g. more numerous) domain walls. Our

index calculations would then count domain wall bound states.
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A First order differential equations

In this section we give an argument for the fact that in the models we consider, it is

sufficient to solve linear differential equations when looking for zero modes of the twisted

Dirac operator. We start out with a four-dimensional metric

ds2 =
g(r)

2
dr2 +

1

2g(r)
(dψ + cos θdφ)2 +

f(r)

2
(dθ2 + sin2 θdφ2) (A.1)

and gauge field

A =
1

2g(r)
(dψ + cos θdφ) . (A.2)

We choose a vierbein of the form

e1 =

√

g(r)

2
dr , e2 =

1
√

2g(r)
(dψ + cos θdφ) , e3 =

√

f(r)

2
dθ , e4 =

√

f(r)

2
sin θdφ .

The resulting radial and angular differential operators entering the massless Weyl

fermion equation

S3(θ)(L3(r) ·G3(r)) +G4(r)(N3(θ) · S4(θ)) = 0

S4(θ)(L4(r) ·G4(r)) +G3(r)(N4(θ) · S3(θ)) = 0 , (A.3)

are:

−L3 =

√

f

g

(

d

dr
− ng + e

2

)

+

(

g(2f ′ − 1)− fg′
4
√

fg3

)

L4 =

√

f

g

(

d

dr
+ ng − e

2

)

+

(

g(2f ′ − 1)− fg′
4
√

fg3

)

N3 =
d

dθ
−m csc θ +

(

1

2
+ n

)

cot θ

N4 =
d

dθ
+m csc θ +

(

1

2
− n

)

cot θ . (A.4)

These equations are equivalent to second order equations for the radial and angular func-

tions which read as follows:

N4N3S4 = λS4

L3L4G4 = λG4 , (A.5)

– 24 –



J
H
E
P
0
4
(
2
0
1
3
)
0
9
6

where λ is a generic eigenvalue. The operators N3,4 are anti-hermitian conjugate with

respect to the measure sin θ. The operators L3,4 are hermitian conjugate with respect

to the measure drf1/2 exp
(

−1
2

∫ r
f−1

)

. For example, the measure in the Euclidean Taub-

NUT example is dx(x+1) and in the four-dimensional asymptotically linear dilaton solution

it is simply dY . Assuming these measures on our space of wave-functions, we find that the

angular problem implies that λ ≤ 0 while the radial problem requires λ ≥ 0, thus proving

that necessarily λ = 0. In turn, this implies that N3S4 = 0 and L4G4 = 0. Thus, we can

restrict to solving the linear differential equations.

Whether the measure we chose is appropriate is a more subtle matter. Near radial

infinity, the wave functions behave exponentially, and any polynomial measure will lead

to the same conclusion about normalizability. Near the origin though, the polynomial

measure matters, but only for the smallest quantum numbers. For those, we assume that

the pattern we find for the indices at large quantum numbers persists. In cases where one

can solve explicitly the second order differential equation, one can check the validity of

our approach even for small quantum numbers. For example for Euclidean Taub-NUT, we

can prove explicitly the validity of our approach by comparing our results with those of

Pope [5]. This is reviewed in appendix C.

More intuitively, the reduction to λ = 0 is equivalent to a projection onto the lowest

Landau level of a charged fermion on CP
N−1 with magnetic field.

Remark on asymptotics. For future purposes, we note an interesting aspect of the first

order differential operators (A.4). The angular operators N3,4 turn out to be independent

of the CP
1 warp factor f(r), while the only dependence of the radial operators L3,4 on

the metric factor f(r) is encoded in the term 2f ′−1
4f . To analyze the asymptotic behavior

of the fermionic wave function and ascertain the constraints on the quantum numbers in

the counting formula from the asymptotics (as in subsection 3.4), we can solve the first

order system after taking the limit on the functions g(r) and f(r) in the differential op-

erators. Consequently, two backgrounds with the same asymptotic behavior of g(r) and

with the asymptotic value of 2f ′−1
4f differing by a subleading power of the radial coordinate,

will support the same fermionic zero modes. The index will be identical though the back-

grounds differ. This happens in the case for the counting in Euclidean Taub-NUT done in

appendix C and the four-dimensional asymptotically linear dilaton background analyzed

in the main text.

B Fibrations over CP
N−1

B.1 The sphere as a circle fibration

Let us consider the metric on an odd dimensional sphere S2N−1. We use a simple embedding

of the sphere in C
N , parametrized by the N complex coordinates za where

za = µa e
iξa . (B.1)

The µa satisfy the constraint
∑

a µ
2
a = 1. The metric on S2N−1 is given by

ds2S2N−1 =

N
∑

a=1

dµ2a +

N
∑

a=1

µ2a dξ
2
a . (B.2)
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In the patch where µ1 6= 0, inhomogeneous coordinates on CP
N−1 are given by

Zi =
µi
µ1
eiξi1 for i ∈ {2, . . . , N} , (B.3)

where ξi1 = ξi − ξ1. The Fubini-Study metric and the associated connection one-form is

given by

ds2FS =
(

1 + |Z2|2 + . . .+ |ZN |2
)−1

N
∑

i,j=2

(

δij −
ZiZ̄j

1 + |Z2|2 + . . .+ |ZN |2
)

dZ̄idZj (B.4)

Substituting the expression for the coordinates Zi into the Fubini-Study metric, we find

that the metric on the projective space is given by

ds2FS =
N
∑

a=1

dµ2a +
N
∑

i=2

µ2i (dξi1)
2 −

( N
∑

i=2

µ2i dξi1

)2

(B.5)

Subtracting the two expressions, and using the following identity:

∑

a

µ2adξ
2
a − (

∑

a

µ2adξa)
2 −





N
∑

i=2

µ2i (dξi1)
2 −

(

N
∑

i=2

µ2i dξi1

)2


 = 0 , (B.6)

we find the simple relation between the sphere metric and the metric on projective space:

ds2S2N−1 = ds2FS +

(

∑

a

µ2adξa

)2

. (B.7)

We can interpret the second term on the right as a Hopf fibration over CPN−1 as follows.

The connection one-form on projective space, whose differential is the Kähler form, is

given by

AFS = − i
2

(

1 + |Z2|2 + . . .+ |ZN |2
)−1

N
∑

i=2

(ZidZ̄i − Z̄idZi) . (B.8)

In terms of the (µi, ξi1) coordinates, we find that

AFS = −
N
∑

i=2

µ2i dξi1 = dξ1 −
N
∑

a=1

µ2a dξa , (B.9)

In other words, the one-form, whose square equals the difference between the sphere metric

and the projective space metric is given by

N
∑

a=1

µ2a dξa = dξ1 −AFS (B.10)

One can also write this in a more symmetric form as follows:

N
∑

a=1

µ2a dξa =
dξ1 + dξ2 + . . . dξN

N
+

N
∑

i=2

(

µ2i −
1

N

)

dξi1

= −dψ̃ −
N
∑

a=1

(

µ2a −
1

N

)

(dξa − dψ̃)

= −dψ̃ − ÃFS , (B.11)
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where we have defined ψ̃ = − 1
N

∑N
a=1 ξa and used ξa − ψ̃ to parametrize the angles on

CP
N−1. We can define the fibre coordinate to be ψ̃ as defined above or use ξ1 as in (B.10).

In either case what we have shown is the useful link between the sphere and the projective

space metrics:

ds2S2N−1 =
(

dψ̃ +AFS

)2
+ ds2FS . (B.12)

B.2 Asymptotically linear dilaton fibrations

The metric of the general asymptotically linear dilaton theory is given by

ds2 =
gN (Y )

2
dY 2 +

2

gN (Y )

(

dψ

N
+AFS

)2

+ 2Y ds2FS , (B.13)

The important observation that links our discussion of the circle fibration to these metrics

is the behavior of the metric near the origin Y → 0. In this limit we have

ds2 ≈ dY 2

2Y
+ 2Y

[

(

dψ

N
+AFS

)2

+ ds2FS

]

(B.14)

Comparing, we find that we see that the metric near the tip smoothly reduces to the flat

space metric if we identify the angles ξ1 = − 1
Nψ. This fixes the periodicity of the angle ψ

to be 2πN since the angle ξ1 in a complex two-plane has periodicity 2π.

B.2.1 Asymptotic linear dilaton fibration over CP
1

In the four-dimensional setting, we make the following choice of coordinates on the three-

sphere

z1 = µ1 e
iξ1 z2 = µ2 e

iξ2 , (B.15)

where

µ1 = cos
θ

2
µ2 = sin

θ

2
. (B.16)

The corresponding inhomogeneous coordinate on CP
1 is given by the ratio:

Z = tan
θ

2
eiξ21 . (B.17)

The Fubini-Study metric is

ds2FS =
dZdZ̄

(1 + |Z|2)2 =
1

4

(

dθ2 + sin2 θdξ221
)

. (B.18)

It coincides with the round metric on the two sphere. The connection one-form associated

to the projective space is given by

AFS = − i
2

ZdZ̄ − Z̄dZ
(1 + |Z|2) = − sin2

θ

2
dξ21 . (B.19)

Up to a Wilson line, we can also write

AFS =
1

2
cos θ dφ . (B.20)
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The four dimensional asymptotically linear dilaton metric we use is [4]

ds2 =
g2(Y )

2
dY 2 +

1

2g2(Y )
(dψ + cos θdφ)2 +

Y

2
(dθ2 + sin2 θdφ2) . (B.21)

The change in Wilson line above, is equivalent to a redefinition of the angle ψ.

B.2.2 Asymptotic linear dilaton fibration over CP
2

In the six-dimensional asymptotic linear dilaton background, we make the choice of coor-

dinates:

zi = µi e
iξi i = 1, 2, 3 with

µ1 = cosχ µ2 = sinχ cos
θ

2
and µ3 = sinχ sin

θ

2
. (B.22)

We choose the following inhomogeneous coordinates on CP
2 [15]:

Z1 = tanχ cos
θ

2
ei

ϕ+φ
2 and Z2 = tanχ sin

θ

2
ei

ϕ−φ
2 . (B.23)

The connection one-form takes the form

AFS = −1

2
sin2 χ (dϕ+ cos θdφ) . (B.24)

The Fubini-Study metric is:

ds2FS = dχ2 +
1

4
sin2 χ cos2 χ(dϕ+ cos θdφ)2 +

1

4
sin2 χ(dθ2 + sin2 θdφ2) . (B.25)

A vierbein for CP2 is therefore given by

e1 = dχ e2 =
1

2
sinχ cosχ(dϕ+ cos θdφ)

e3 =
sinχ

2
dθ e4 =

1

2
sinχ sin θdφ . (B.26)

The six-dimensional asymptotically linear dilaton spaces are fibrations of the form (B.13)

with N = 3:

ds2 =
g3(Y )

2
dY 2 +

2

g3(Y )

(

dψ

3
+AFS

)2

+ 2Y ds2FS , (B.27)

C Euclidean Taub-NUT backgrounds

In this appendix we perform the fermionic zero mode counting in the Euclidean Taub-NUT

background with self-dual gauge field. The calculation of zero modes for this background

has been carried out in [5]. We will revisit the calculation and arrive at the same result

in a mildly more efficient manner. We moreover extend the calculation to the case of the

heterotic Taub-NUT dyon.
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C.1 Euclidean Taub-NUT with self-dual gauge field

The metric of the Euclidean Taub-NUT space is given by

ds2 =
r +M

r −Mdr2 + 4M2 r −M
r +M

(dψ + cos θdφ)2 + (r2 −M2)(dθ2 + sin2 θdφ2), (C.1)

where M is a parameter with the dimension of mass. This can be put in the form (A.1)

by using the radial variable x = r−M
2M :

ds2

4M2
=

(x+ 1)

x
dx2 +

x

x+ 1
(dψ + cos θdφ)2 + x(x+ 1)(dθ2 + sin2 θdφ2) . (C.2)

We can set f(x) = x(x + 1), g(x) = x+1
x and M2 = 1

8 . For easier comparison with the

results of [5], we will keep M arbitrary in what follows. We have a self-dual gauge field

given by

A = −P x

x+ 1
(dψ + cos θdφ) . (C.3)

We note that this gauge field is proportional to the dual of the Killing vector ∂ψ and

thus fits the analysis of section 2. The massless Dirac equation can be solved as in the

examples discussed in the main text. The relevant linear differential operators that act on

the positive chirality spinor components are given by

−L3 = x
d

dx
+ ePx− (1 + x)n+

(1 + 2x)

1 + x
, L4 = x

d

dx
− ePx+ (1 + x)n+

(1 + 2x)

1 + x

N3 =
d

dθ
−m csc θ +

(

1

2
+ n

)

cot θ , N4 =
d

dθ
+m csc θ +

(

1

2
− n

)

cot θ . (C.4)

We solve the equations L3(x) ·G3(x) = 0 and N4(θ) ·S3(θ) = 0 (and similarly for the other

components) in order to find the normalizable zero modes. This is more efficient than

turning to the second order differential equation as in [5]. The solutions take the form

Ψ+ = einψ+imφ

(

ex(−eP+n)x−
1
2
+n(1 + x)−

1
2 (sin θ)−

1
2
+n(tan θ

2)
−m

ex(eP−n)x−
1
2
−n(1 + x)−

1
2 (sin θ)−

1
2
−n(tan θ

2)
m

)

(C.5)

The wave functions agree with [5]. For positive eP , we therefore find normalizable solutions

for all integers l which satisfy the conditions

2|n| = 2l + 1 ≤ 2[eP ] . (C.6)

There are no normalizable solutions with the opposite chirality. The counting function for

positive eP can be summarized as:

ZETN =

2[eP ]
∑

2n=1,2,...

2n yn . (C.7)

From subsection 3.4 (and the remark on radial asymptotics in appendix A), it should be

clear that the physics underlying the counting function can be summarized by saying that

we restrict to the lowest Landau level on a CP
1 slice near the tip, that the degeneracy of

the level is determined by its spin and that the bound state momentum is restricted by

radial asymptotic normalizability.
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C.2 The heterotic Euclidean Taub-NUT dyon

In this subsection, we review the construction of the heterotic Euclidean Taub-NUT dyon,

and calculate the Dirac index in this background.

C.2.1 The background

The starting point for the construction of the heterotic Taub-NUT dyon [11] is the Taub-

NUT metric and a constant dilaton which gives rise to a solution of low-energy heterotic

string theory:

ds2 =
dr2

f1(r)
+ 4M2f1(r)(dψ + cos θdφ)2 + (r2 −M2)(dθ2 + sin2 θdφ2) (C.8)

where

f1(r) =
r −M
r +M

. (C.9)

As in the bulk of the paper, we use the SO(2) duality symmetry of the space of supergravity

solutions to construct a dyonic generalization of the Taub-NUT metric [11]. The dyonic

Taub-NUT metric is given by

ds2 =
dr2

f1(r)
+ 4M2β2

f1(r)

f2(r)2
(dψ + cos θdφ)2 + (r2 −M2)(dθ2 + sin2 θdφ2) , (C.10)

where the function f2 is

f2 =
r + (2β − 1)M

r +M
. (C.11)

We prefer to work in with the coordinate x = r−M
2M , in terms of which the metric takes

the form

ds2

4M2
=

1 + x

x
dx2 +

x(1 + x)

(x+ β)2
β2(dψ + cos θdφ)2 + x(x+ 1)(dθ2 + sin2 θdφ2) . (C.12)

The duality rotation also induces other background fields. These are given by

Bψφ = 4M2 (1− β)x
x+ β

cos θ e−2Φ = f2(x) =
x+ β

x+ 1

Aψ = 8M2

√

β(1− β)
x+ β

Aφ = −8M2

√

β(1− β)x
x+ β

cos θ . (C.13)

The gauge field components can be combined to write

A = 8M2

√

1− β
β

(

dψ − x

x+ β
(dψ + β cos θdφ)

)

. (C.14)

We will neglect the first (pure gauge) term in the analysis of the Dirac equation. In order

for the metric to be non-singular near the tip of the space, we impose the periodicity

condition ψ ≡ ψ + 4π. This turns the duality rotated background into a genuinely new

solution. Indeed, a continuous duality transformation, supplemented with new discrete

identifications in the rotated solution, leads to a physically distinct background.
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C.2.2 Dirac index for a charged spinor on the Taub-NUT dyon

In this subsection, we calculate the Dirac index for a charged spinor in the Euclidean

Taub-NUT dyon background. By choosing the orthonormal real vierbeins

e1 =
2Mdx
√

f1(x)
e2 = 2Mβ

√

f1(x)

f2(x)
(dψ + cos θdφ)

e3 = 2M
√

x(x+ 1)dθ e4 = 2M
√

x(x+ 1) sin θdφ , (C.15)

one can check that the field strength can be written as

F =
2
√

β(1− β)
(x+ 1)(x+ β)

(e3 ∧ e4 − e1 ∧ e2) . (C.16)

The electromagnetic field F carries electric and magnetic charge and behaves like Fxψ ≈
Q/x2 and Fθφ ≈ Q sin θ at x→∞, where

Q = 8M2
√

β(1− β) . (C.17)

A gauge transformation brings the gauge field in equation (C.13) into the form

A = − Qx

x+ β
(dψ + cos θdφ) . (C.18)

The component Dirac equations can be solved as before by separating variables. The

positive chirality wave functions are given by

Ψ+ = einψ+imφ
(x+ β)

1
4

(1 + x)
3
4

(

e
x
β
(eQ+n)

(sin θ)−
1
2
+n
(

tan θ
2

)−m

e
− x

β
(eQ+n)

(sin θ)−
1
2
−n (tan θ

2

)m

)

. (C.19)

The index generating function now equals:

Zhet
ETN =

[−2eQ]
∑

2n=1,2,...

2n yn . (C.20)

for eQ < 0.

D Conventions for spinors

In two dimensions, we use the basis of gamma-matrices

γ1 = σ1 =

(

0 1

1 0

)

γ2 = σ2 =

(

0 −i
i 0

)

γ3 = iγ1γ2 = −σ3 =
(

−1 0

0 1

)

. (D.1)

In four dimensions, we choose a Weyl basis for the gamma matrices:

γk =

(

0 σk

−σk 0

)

γ4 =

(

0 I2

I2 0

)

γ5 = γ1γ2γ3γ4 =

(

−I2 0

0 I2

)

. (D.2)
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Our ansatz for the positive chirality and negative chirality spinors in four dimensions is

given by:

Ψ =

(

Ψ−
Ψ+

)

(D.3)

where the two component Weyl spinors are given by

Ψ− = einψ+imφ

(

G1(Y )S1(θ)

G2(Y )S2(θ)

)

and Ψ+ = einψ+imφ

(

G3(Y )S4(θ)

G3(Y )S4(θ)

)

. (D.4)

Finally, in six dimensions we construct the gamma matrices by tensoring the four dimen-

sional gamma matrices with two-dimensional Pauli matrices as follows:

Γ1 = γ1 ⊗ σ3 Γ2 = γ2 ⊗ σ3 Γ3 = γ3 ⊗ σ3
Γ4 = γ4 ⊗ σ3 Γ5 = I4 ⊗ σ1 Γ6 = I4 ⊗ σ2 . (D.5)

The matrix Γ7 is determined by
√
−1 times the product of all the gamma matrices. After

permuting the third and seventh and first and fifth rows and columns, the matrix Γ7 takes

the canonical form:

Γ7 =

(

−I7 0

0 I7

)

(D.6)

In this Weyl basis, the Dirac spinor is of the form

Ψ =

(

Ψ−
Ψ+

)

(D.7)

where the four component Weyl spinors in six dimensions are

Ψ− = einψ+ipϕ+imφ











G1(Y )T1(χ)S1(θ)

G2(Y )T2(χ)S2(θ)

G3(Y )T3(χ)S3(θ)

G4(Y )T4(χ)S4(θ)











and Ψ+ = einψ+ipϕ+imφ











G5(Y )T5(χ)S5(θ)

G6(Y )T6(χ)S6(θ)

G7(Y )T7(χ)S7(θ)

G8(Y )T8(χ)S8(θ)











.
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Attribution License which permits any use, distribution and reproduction in any medium,

provided the original author(s) and source are credited.
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