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Abstract: Having discovered a candidate for the final piece of the Standard Model, the

Higgs boson, the question remains why its vacuum expectation value and its mass are

so much smaller than the Planck scale (or any other high scale of new physics). One

elegant solution was provided by Coleman and Weinberg, where all mass scales are gener-

ated from dimensionless coupling constants via dimensional transmutation. However, the

original Coleman-Weinberg scenario predicts a Higgs mass which is too light ; it is paramet-

rically suppressed compared to the mass of the vectors bosons, and hence is much lighter

than the observed value. In this paper we argue that a mass scale, generated via the

Coleman-Weinberg mechanism in a hidden sector and then transmitted to the Standard

Model through a Higgs portal, can naturally explain the smallness of the electroweak scale

compared to the UV cutoff scale, and at the same time be consistent with the observed

value. We analyse the phenomenology of such a model in the context of present and future

colliders and low energy measurements.
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1 Introduction

The recent discovery of a particle which is likely to be the Higgs boson [1–6] with a mass

of ∼ 125 GeV concludes the quest to complete the particle spectrum of the Standard

Model. However, the Standard Model itself leaves many open questions. Most crucially,

the question of the origin of the electroweak scale remains unanswered. Let us briefly

consider the Higgs potential in the Standard Model,

V (H) = µ2SMH†H +
λH
2

(
H†H

)2
, (1.1)

for the Higgs doublet H which in the unitary gauge takes the form HT (x) = 1√
2
(0, v+h(x)).

The minimum of the potential occurs at v2 = −2µ2SM/λH for negative µ2SM and the mass

of the Higgs boson h is m2
h = λHv

2.

Choosing a value

µ2SM = − 1

2
λH v

2 = − 1

2
m2
h (1.2)

for the Higgs mass parameter µ2SM in (1.1), an expectation value v ' 246 GeV for the

Higgs field and the Higgs mass mh ∼ 125 GeV can be easily accommodated. However,

the Standard Model itself cannot explain the value of this parameter and in particular its

smallness compared to the UV cutoff, MUV (which we take to be the scale of new physics

in the UV where the Standard Model breaks down as an effective theory, e.g. MPl).

In a seminal paper [7] Coleman and Weinberg showed that in the absence of mass scales

in the potential of a scalar field, a mass scale is nevertheless generated via dimensional

transmutation from the running couplings, and indeed spontaneous symmetry breaking

does occur. A minimal self-consistent theory for this mechanism at work is provided by

massless scalar QED. This is a model with a massless complex scalar field,1

Vcl =
λφ
4!
|φ|4 , (1.3)

1We point out that we use the same normalisation as Coleman and Weinberg, treating the complex field

φ = φ1 + iφ2 as two real scalar fields with kinetic term 1
2
(∂µφ1∂

µφ1 + ∂µφ2∂
µφ2).
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charged under a U(1) symmetry with gauge coupling eφ. Starting from a classical potential

and requiring that the renormalised mass term for φ vanishes, the authors of [7] find the

1-loop corrected potential

V (φ) = Vcl + ∆V1−loop =
λφ
4!
|φ|4 +

(
5λ2φ

1152π2
+

3e4φ
64π2

)
|φ|4

[
log

(
|φ|2

M2

)
− 25

6

]
, (1.4)

where M is the renormalisation scale.

The essential feature/requirement employed here is that the renormalised mass at the

origin in the field space is kept at zero,

m2 := V ′′(φ)
∣∣∣
φ=0

= 0 . (1.5)

In dimensional regularisation, which does not introduce any explicit scale aside from the

RG scale, entering the logarithmically running couplings, this equation is satisfied auto-

matically.2 In other regularisation schemes such as e.g. the cutoff scheme, the zero on

the right hand side of (1.5) corresponds to an exact cancellation of all the quadratically

divergent parts between the bare mass squared terms and the counterterms.

The consequence of (1.5) is that no explicit mass scales are allowed in the effective

potential of the theory, except the renormalisation scale appearing in the logarithm. This

is the manifestation of the scale invariance of the classical massless theory; the scale in-

variance is broken only by the radiative corrections which introduce only a logarithmic

scale dependence.

Now returning to the effective potential in (1.4), at small values of the field, the

logarithm in the brackets always wins, giving the potential a downward slope. On the

other hand, at values |φ| > M the slope is always positive. Accordingly we always have a

minimum of the potential at a value |φ| > 0. Using this, one can remove the renormalisation

scale M of the potential by renormalising at the acquired vacuum expectation value (vev)

〈|φ|〉 > 0. Another simplification arises from the fact that if we choose e2φ � 1 the value

of the φ-self-coupling λφ squared at the minimum of the effective potential is negligible

compared to the U(1) gauge coupling e2φ, as shown in eq. (1.8) below, and we can drop the

first term in brackets (1.4). We thus have

V (φ) =
λφ
4!
|φ|4 +

3e4φ
64π2

|φ|4
[
log

(
|φ|2

〈|φ|2〉

)
− 25

6

]
, (1.6)

The minimum of the effective potential is at

V ′ =
1

6

(
λφ −

33

8π2
e4φ

)
〈φ〉3 = 0 (1.7)

and the vev 〈φ〉 is determined by the condition on the couplings renormalised at the scale

of the vev [7],

λφ(〈|φ|〉) =
33

8π2
e4φ(〈|φ|〉) . (1.8)

2No power-like divergencies proportional to the cutoff scale appear in dimensional regularisation, and in

theories like ours, which contain no explicit mass scales at the outset, no finite corrections to dimensionful

quantities can appear either.
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The effective potential in the vacuum reads

V (φ) =
3e4φ

64π2
|φ|4

[
log

(
|φ|2

〈|φ|2〉

)
− 1

2

]
. (1.9)

Since the couplings run only logarithmically the vev fixed by the condition (1.8) de-

pends exponentially on the coupling constants. In fact, in weakly coupled perturbation

theory the vev is naturally generated at the scale which is exponentially smaller than the

UV cutoff. This can be illustrated by solving the leading-order RG-running equation for

the coupling eφ,

deφ
dt

=
e3φ

48π2
, where t = log(M/ΛUV ) . (1.10)

Upon integration and setting the RG scale M = 〈|φ|〉 we find

〈|φ|〉 = ΛUV exp

[
−24π2

(
1

e2φ(〈|φ|〉)
− 1

e2φ(ΛUV )

)]
' ΛUV exp

[
−24π2

e2φ(〈|φ|〉)

]
. (1.11)

We see that the vev 〈|φ|〉 is generated at the scale which is exponentially smaller than the

UV cutoff scale ΛUV (in our case the Landau pole of e2φ). Equation (1.11) is the consequence

of the dimensional transmutation: the dimensionality of the vev is carried by the UV-scale

Landau pole, while the exponential smallness of the ratio 〈|φ|〉/ΛUV � 1 is guaranteed by

the perturbativity of the coupling constant e2φ in the vacuum i.e. at the scale 〈|φ|〉. This

addresses the naturalness problem.

We would also like to quantify the exponential sensitivity of the vev 〈|φ|〉 to the input

(or bare) values of the coupling constants at the UV cutoff scale (we continue calling it

ΛUV even though here we don’t think of it as a Landau pole). We proceed by solving the

RG equation for the ratio of coupling constants, which is obtained by combining (1.10)

with the RG equation for λφ,

dλφ
dt

=
1

48π2

(
9e4φ − 3e2φλφ +

5

6
λ2φ

)
. (1.12)

For the ratio x := 8π2λφ/(33e4φ) we find,

dx(t)

dt
=

6

11
+ x(t)O(e2φ) + x(t)2O(e4φ) . (1.13)

Upon integration and setting the RG scale M = 〈|φ|〉 and using the condition x(〈φ〉) = 1

we obtain (we keep only the first term on the r.h.s. of (1.13))

〈|φ|〉 = ΛUV exp

(
11

6

)
exp

(
−4π2

9

λφ(ΛUV)

e4φ(ΛUV)

)
. (1.14)

This expression shows the exponential sensitivity of the vev to the values of the couplings

at the UV cutoff. As a result, the vev can easily be made exponentially smaller than the

UV cutoff (in agreement with what we have already concluded from (1.11)). Qualitatively

the same behaviour holds beyond our simple approximation to the RG equations. This is

– 3 –
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Figure 1. Ratio of λφ/e
4
φ at ΛUV required to generate a hierarchy of ΛUV/〈φ〉 = 1016, 1015, 1014

(from top to bottom) as a function of the gauge coupling eφ.

shown in figure 1, where we show the ratio of λ/e4φ at ΛUV required to generate a hierarchy

of 14, 15 or 16 orders of magnitude between ΛUV and 〈φ〉.
In summary, in a theory with no input mass scales, the Coleman-Weinberg (CW)

mechanism generates a symmetry-breaking vev and the mass for the associated scalar from

radiative corrections. These scales are natural in the sense that they are automatically

exponentially suppressed compared to the UV scale at which we initialise the theory. Phe-

nomenologically, however, this scenario has a fatal flaw: if φ is the Higgs, then the Higgs

mass turns out to be too small. This is because the φ self-coupling is much smaller than

the gauge coupling λφ � e2φ. From eq. (1.9) one can calculate the physical mass of the

Higgs remaining after spontaneous breaking of the gauge symmetry by shifting the field

φ = 〈φ〉+ ϕ,

m2
ϕ =

3e4φ
8π2
〈|φ|2〉 . (1.15)

In terms of the mass m2
X = e2φ〈|φ|2〉 of the vector boson we have

m2
ϕ =

3e2φ
8π2

m2
X � m2

X . (1.16)

This is in conflict with the observation that, in the Standard Model, the Higgs is heavier

than the corresponding vector bosons.

To resolve this problem we thus need to look beyond the minimal Standard Model.

In this paper we consider a very compact extension of the Standard Model where there

is no longer a direct link between the Higgs mass and the SM vector boson masses, and

consequentially, the Higgs can take its observed value ∼ 125 GeV. At the same time, this

formulation maintains the essential feature that all mass scales are generated radiatively

through breaking of classical scale invariance via running couplings.

In the section 2 we outline the minimal model we want to study: a scale-invariant

Standard Model with an additional CW “hidden sector” and the Higgs portal-type coupling

to the SM. In section 4 we analyse the phenomenology of this model in the context of
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LHC and future colliders, and low energy measurements. We point out that with the

Higgs mass now being a known quantity, the minimal model has only two remaining free

parameters, and we show that the model is perfectly viable. The presently available Higgs

data provide valuable constraints on the parameter space, while future experimental data

on Higgs decays (as well as resonance searches) will further constrain model parameters,

and will ultimately provide discovery potential for this model.

In a pre-LHC context this simple model has already been discussed in [8, 9] along with

a variety of other similar scalar field models in [10–18]. First model-building implications

of a ∼ 125 GeV Higgs have also been looked at in [19].

The use of the Coleman-Weinberg mechanism for BSM model building is motivated by

and based on the concept of classical scale invariance. Although the scale invariance symme-

try is anomalous, it has been argued in [20] that it may indeed be used as a model-building

guide and to motivate Coleman-Weinberg type models [10, 11]. In section 3 we provide

another, renormalisation-group-inspired argument in favour of this model-building strategy.

Our conclusions are summarised in section 5.

2 Coleman-Weinberg with a Higgs portal

As we have seen in the previous section the main problem of the CW scenario is that the

mass of the Higgs boson is too small within the SM. The reason is that the mass of the

Higgs is directly linked to the mass of the gauge bosons and is 1-loop suppressed compared

to those. A simple way to address this issue is to generate the mass scale in a “hidden

sector” and then transmit it to the SM, where it directly acts as the scale µ2SM of the pure

SM. This breaks the direct CW relation between the SM gauge boson masses and the mass

of the SM Higgs boson.

A simple model to realise this is a Higgs-portal model [21–23] with the CW toy model

as a hidden sector [8, 9]. The classical potential for scalar fields is,

Vcl(H,φ) =
λH
2

(H†H)2 − λP(H†H)|φ|2 +
λφ
4!
|φ|4 . (2.1)

The first and the last terms are just the ordinary self-couplings for the Higgs field and φ

field, while the second term is the Higgs-portal, coupling the SM Higgs field to the hidden

sector field φ. For future convenience we chose the sign in front of this Higgs-portal coupling

to be negative.

To check the stability of this potential we complete the square in (2.1)

Vcl(H,φ) =
λH
2

(
H†H − λP

λH
|φ|2

)2

+
1

24λH

(
λφλH − 12λ2P

)
|φ|4 . (2.2)

The potential is then stable as long as

λφλH > 12λ2P . (2.3)

When λP → 0 the two sectors decouple.

– 5 –



J
H
E
P
0
4
(
2
0
1
3
)
0
6
0

For non-vanishing λP the Higgs portal interaction can generate the Higgs mass param-

eter of (1.1) via

µ2SM = −λP〈|φ|2〉 . (2.4)

Importantly, in eq. (2.1) we have not allowed for any mass terms. In other words

we have a completely scale-free potential even in presence of the Higgs portal coupling.

We now proceed with employing the Coleman-Weinberg mechanism in the Higgs-portal

theory (2.1) where the complex scalar φ is coupled as before to a U(1)hidden gauge theory

(this forms the hidden sector), while the Higgs doublet H has standard interactions with

the SU(2)×U(1) gauge fields (as well as matter fields) of the Standard Model. At the origin

in field space, i.e. when all field vevs are zero, there are no scales present in the classical

scale-invariant theory. We want to and can preserve this feature in the quantum-corrected

full effective potential even after renormalisation by using3

∂2V (H,φ)

∂H†∂H

∣∣∣∣
H=φ=0

= 0 ,
∂2V (H,φ)

∂φ†∂φ

∣∣∣∣
H=φ=0

= 0 . (2.5)

This is the same subtraction scheme as in the simple case (1.5), and as there, these condi-

tions are automatic in dimensional regularisation of any theory with classical scale invari-

ance. In other regularisation schemes one cancels quadratic divergencies between the bare

masses and the counterterms. We elaborate on this in more detail in next section.

The easiest way to visualise the emergence of electroweak symmetry breaking in this

theory is to consider a near decoupling limit. If λP � 1 we can essentially view the

process of symmetry breaking independently in the two different sectors and we can view

electroweak symmetry breaking effectively as a two step process.

In the first step the CW mechanism generates a (large4) vev 〈φ〉 in the hidden sector

through dimensional transmutation precisely as was outlined in the previous section. In

the second step the vev 〈φ〉 is transmitted to the Standard Model via the Higgs portal,

generating an effective mass parameter for the Higgs

− µ2SM = λP〈|φ|2〉 (2.6)

Equation (1.2) dictates that µ2SM fixes the electroweak scale, specifically,

− µ2SM =
1

2
m2
h =

1

2
(125 GeV)2 and − µ2SM =

1

2
λH v

2 ≡ λH 〈|H|2〉 (2.7)

This implies that when λP � 1 and also is much smaller than other SM Higgs couplings,

the electroweak scale is suppressed compared to the hidden sector scale, as was anticipated,

〈|φ|2〉 =
1

λP

1

2
(125 GeV)2 =

λH
λP
〈|H|2〉 . (2.8)

The fact that the generated electroweak scale is much smaller than 〈φ〉 guarantees that

any back reaction on the hidden sector vev 〈|φ|2〉 is negligible.

3The term ∂2V (H,φ)/∂H†∂φ|H=φ=0 vanishes by gauge invariance.
4Large compared to the electroweak scale of the standard model.
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Let us now verify that the dimensional transmutation phenomenon continues to work

in our more complicated theory and all the required vevs are natural. To see this we start

from the Higgs-portal effective potential

V (φ,H) =
λφ
4!
|φ|4 +

3e4φ
64π2

|φ|4
[
log

(
|φ|2

〈|φ|2〉

)
− 25

6

]
− λP(H†H)|φ|2 +

λH
2

(H†H)2 . (2.9)

Here we are keeping 1-loop corrections arising from interactions of φ with the U(1)

gauge bosons in the hidden sector, but neglecting radiative corrections from the Stan-

dard Model sector. The latter would produce only subleading corrections to the vevs. The

φ-minimisation condition5 for this effective potential is (cf. (1.7) and (2.8))

∂φV =
1

6

(
λφ −

33

8π2
e4φ

)
〈φ〉3 − 2λP〈|H|2〉〈φ〉 =

1

6

(
λφ −

33

8π2
e4φ − 12

λ2P
λH

)
〈φ〉3 = 0

(2.10)

We thus conclude that the dimensional transmutation continues to work and the and the

vev 〈φ〉 is determined by the condition on the four couplings renormalised at the scale of

the vev

λφ(〈|φ|〉)− 33

8π2
e4φ(〈|φ|〉)− 12

λ2P(〈|φ|〉)
λH(〈|φ|〉)

= 0 . (2.11)

For small λP, this is a small deformation of the original condition (2.11). In the near-

decoupling case of λP � 1 we are interested here, the modifications are negligible. But

even in a more general case, there are no obstructions for the Coleman-Weinberg mecha-

nism to work.

The two vevs, 〈φ〉 and v are generated naturally through dimensional transmutation

in our framework similarly to (1.11),√
λH
λP
〈H〉 = 〈φ〉 ' ΛUV exp

[
−24π2

e2φ(〈|φ|〉)

]
� ΛUV . (2.12)

Since massive vector bosons of the Standard Model play no role in stabilising the minimum

of the Coleman-Weinberg potential in our Higgs portal model, there is no condition linking

the SM gauge and the Higgs couplings. As a result the vector boson masses and the Higgs

boson mass are independent and can take their observed SM values.

3 Arguments in favour of vanishing mass terms at the origin of the po-

tential

The exponential sensitivity of the Higgs vacuum expectation value to the boundary values

of the couplings, and the natural generation of the hierarchy between the EWSB scale and

cut-off scale in (2.12), crucially depend on the choice of massless renormalisation conditions

eq. (2.5) at the origin of the field space. In this section we want to give arguments in favour

of this choice.

5Minimisation with respect to H does not give anything new beyond the known SM condition (1.2).
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A suitable symmetry to forbid mass terms for scalars is scale invariance. Indeed, in

absence of scale invariance the classical potential eq. (2.1) would allow for two additional

mass terms,

∆Vno scale invariance = m2
HH
†H +m2|φ|2 . (3.1)

In the class of theories we consider, scale invariance is a classical symmetry which is

broken by quantum corrections, specifically by the logarithmic running of the couplings.

One might therefore query if it is allowed to set these mass terms to zero in full quantum

theory, as we have done in eq. (2.5). In [10, 11, 20] this question has been answered

favourably based on the special role played by dimensional regularisation and considering

the anomaly in the trace of the energy-momentum tensor. Here, we provide additional

perspective and support based on the renormalisation group, and also address the question

of scheme dependence.

First we want to check if our requirement that the mass terms vanish (2.5), is affected

by a change in the renormalisation scale. To do this we can look at the appropriate

renormalisation group equations for the mass terms. In dimensional regularisation they

have the form,

∂t

(
m2
i

M2

)
≡ ∂tεi = (−2 + ηi)εi , (3.2)

with i = H,φ and ηi the anomalous dimension of the Higgs and φ field respectively, and

t = logM as before.

We can clearly see that εi = 0 is a fixed point of the RG evolution and, once enforced

at one scale, it holds at all scales. In this sense — within dimensional regularisation — our

renormalisation conditions eq. (2.5) are self-consistent and contain no fine-tuning. They

correspond to an enhanced unbroken symmetry for these couplings.

In the argument above we made use of a specific regularisation scheme: dimensional

regularisation. In other regularisation schemes6 the (one-loop) RG equations have a differ-

ent form,

∂tεi = (−2 + ηi)εi + ci,ee
2
φ + ci,λPλp + ci,λφλφ not dimensional regularisation (3.3)

with constants ci that depend on the regularisation scheme.

The terms ∼ ci destroy the fixed point at εi = 0. Instead we now have a partial7 fixed

point at,

εi,partial =
ci,ee

2
φ + ci,λPλP + ci,λφλφ

(2− ηi)
. (3.4)

Neglecting the evolution of eφ, λP and λφ we can now write the RG equation for ε as

∂t(εi − εi,partial) = (−2 + ηi)(εi − εi,partial). (3.5)

This equation has the simple solution,

(εi − εi,partial)(t) = (εi − εi,partial)(t0) exp[(−2 + ηi)(t− t0)]

= (εi − εi,partial)(t0)
(

Λ

M

)2−ηi
(3.6)

6Most other schemes introduce a new mass scale which explicitly breaks scale-invariance.
7I.e. it is a fixed point when we neglect the running of eφ, λP and λφ.
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where the staring point for the trajectory is t0 = log(Λ), so that the combination t − t0
appearing above, is log(M/Λ). We now let the trajectory run from the high scale t0 to a

low value of M . At weak coupling we can neglect the anomalous dimensions. Using an

initial value εi(t0) = 0 corresponding to a vanishing mass at the scale Λ we recover the

usual quadratic divergencies,

m2
i (Λ)−m2

i (M ∼ 0) ≈ 1

2
(cee

2
φ + cλPλP + cλφλφ)Λ2 . (3.7)

In all regularisation schemes with non-vanishing ci, scale invariance is broken more

strongly than in dimensional regularisation. We can therefore turn the argument around

and argue that dimensional regularisation, having no quadratic divergencies, is the scheme

which exhibits the smallest breaking of scale invariance. If we now insist that scale in-

variance is broken minimally by quantum corrections we are automatically led to dimen-

sional regularisation and therefore eq. (3.2) and consequently to our renormalisation con-

ditions eq. (2.5).

In absence of additional mass scales in the theory we are free to make this choice. In-

deed one can argue that this is a preferred choice since in this case the only scale invariance

breaking effect is the logarithmic running of the dimensionless couplings, which is indepen-

dent of the regularisation scheme. All scheme-dependent (and therefore unphysical) effects

are set to zero.

Let us take a step back from our concrete model and take a look at the more gen-

eral situation. From a renormalisation group point of view, consistent theories are those

that have a UV fixed point in the space of dimensionless coupling constants (all coupling

constants of higher dimensional operators can be made dimensionless by scaling with an

appropriate power of the RG scale, therefore this space is very infinite dimensional). In

order for a theory to be predictive we need to be able to describe it by a finite number of

parameters. For the UV fixed point this means the following: the space of all RG trajec-

tories ending in the fixed point as the RG scale is taken to infinity is finite dimensional.

The number of these dimensions is the number of free parameters. In the usual language

these are the relevant parameters. Exciting a combination of coupling constants that is not

in this subspace leads to an RG trajectory that (per definition) does not end in the fixed

point as we go into the UV and the theory has incurable divergencies. The fixed point

of a theory defined in this manner can be in the perturbative region where all coupling

constants are small, but it can also be in a non-perturbative regime. In the latter case

we have a non-perturbatively renormalisable theory in the sense of Weinberg’s scenario of

“asymptotic safety” [24].

To give a concrete example, consider QCD with one flavour of massive fermions. This

theory has two relevant parameters that can be chosen to be non-vanishing, the gauge

coupling constant g and the mass m divided by the RG scale M , ε = m/M . The RG

equations are

∂tg = 0× g − 31

3

g3

16π2
, ∂tε = (−1 +O(g2))ε . (3.8)

One can easily check that starting from any (sufficiently small) value of g and ε, we end

up in the UV fixed point g = ε = 0. However, for any “non-renormalisable” operator such
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as, e.g., a(GµνGµν)2 with dimensionless coupling constant, ξ = a ·M4 we have,

∂tξ = (+4 +O(g2))ξ , (3.9)

which for any starting point with non-vanishing ξ (but still close enough to the fixed point)

has a trajectory that rapidly moves away from the fixed point. The same argument holds

for any other higher dimensional operator.

The terms on the right hand sides of eqs. (3.8), (3.9) that are linear in the couplings

whose change is described on the left hand sides, describe the approach to, or running away

from the fixed point in the UV,8

∂tX = dX ×X ⇒ X(M) = X(M0)

(
M

M0

)dX
. (3.10)

Clearly, those directions with negative dX , approach the fixed point X → 0 as the RG-scale

M goes to infinity; while those with positive dX , diverge. The case with dX = 0 leads to the

usual marginal behaviour with logarithmic running towards (or away from) the fixed point.

Going in the opposite direction towards smaller M , the operators with dX < 0 are

exactly those that quickly obtain very large values. This is where the hierarchy problem

lies. Choosing “natural” O(1) initial values for those operators at some UV scale, we get

enormous values at a smaller scale. Vice versa, to get a value O(1) at some small scale

requires us to finely tune the initial value at the high scale to be extremely small.

Importantly the dX are the critical exponents of the theory which are thought to be

scheme-independent .

Our proposal is now as follows. Let us restrict our theory to live on a subspace of all

trajectories which end in the fixed point. This subspace is defined by only exciting the

marginal dX = 0 trajectories. Then all scales are generated via dimensional transmutation

from the logarithmic running of the coupling constants. This is not a fine-tuning because

we require the dX 6= 0 operators to be exactly zero, i.e. we are living exactly on this

well-defined subspace.9

Our concrete example now shows that we can choose the initial value of the Higgs mass

operator at the high scale to be vanishing while still getting a phenomenologically viable

non-vanishing vacuum expectation value (and physical Higgs mass) by dimensional trans-

mutation from the marginal operators which exhibit only logarithmic running.10 The tra-

jectories in the subspace requiring all dX = 0, are exactly those that correspond to classical

scale invariance, broken only by the logarithmic running induced by quantum corrections.

Alternatively one can consider theoretical setups like Supersymmetry (SUSY) where

the quadratic divergences are absent.11 Such a theory has an additional scale (SUSY-

breaking scale) above which the quadratic divergencies are canceled. This scale is physical

8More precisely the dX are the eigenvalues of the stability matrix of the system of RG equations. Close

to the perturbative fixed points, they are given by minus the naive dimension of the coupling plus its

anomalous dimension.
9While the precise shape of this subspace is scheme dependent, its existence and dimensionality is not.

10There is a beauty defect in our theory in that the marginal couplings are actually marginally irrelevant,

but one can hope to cure this by a suitable embedding in a more complete theory.
11One could be even more ambitious and ask that the theory is finite but this does not change our

argument.
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in the sense that the dynamics of the theory above this scale is qualitatively different

from the behaviour in the IR. This is for example due to the appearance of new degrees

of freedom at higher energies. In such a situation we get finite threshold corrections

from these additional degrees of freedom in any regularisation scheme. Simulating the

quadratic divergencies of ordinary theories, these threshold corrections typically also scale

quadratically with the scale of new physics. In the case of SUSY, above the SUSY-breaking

scale quadratic divergences are canceled between bosons and fermions, leaving threshold

corrections to the Higgs mass. These corrections are proportional to the mass squares of

the SUSY partners of the SM particles and therefore quadratically sensitive to the scale at

which SUSY is broken.

Even in this type of setup, our Coleman-Weinberg scenario is a helpful step to bridge

the (possibly large) gap to this scale of new physics without generating a big fine-tuning.

In the more complete theory we then only need to ensure that the sum total of all the finite

threshold corrections vanishes. To us this seems a more achievable goal then getting a small

(compared to the scale of new physics) but non-vanishing sum of threshold corrections.

4 Phenomenology

Let us investigate in this section the phenomenological viability as well as possible signa-

tures of the proposed model.

In the hidden sector we have two additional fields φ and the extra U(1)hidden gauge

field Xµ. After φ acquires a non-vanishing vev the gauge field becomes massive with a mass

mX = eφ〈φ〉 . (4.1)

In principle this extra U(1)hidden gauge boson can kinetically mix [25, 26] with the hyper-

charge U(1), allowing for a rich phenomenology which can also be tested at the LHC [27–29].

Here we will not consider such a mixing and instead focus only on those interactions that

must be present in order to ensure a working electroweak symmetry breaking, which will

also modify the Higgs phenomenology.

In absence of kinetic mixing the dominant interaction between the hidden sector and

the SM is via the Higgs portal coupling λP. The lowest order effect arises from the mixing

between the SM Higgs HT (x) = 1√
2
(0, v + h(x)) and the hidden Higgs φ = 〈φ〉 + ϕ. The

two scalars, h and ϕ, mix via the mass matrix,

m2 =

(
m2
h + ∆m2

h,SM −κm2
h

−κm2
h m2

ϕ + κ2m2
h

)
, (4.2)

with the mixing parameter,

κ =

√
2λP
λH

, (4.3)

and the masses

m2
h = λHv

2, m2
ϕ =

3e4φ
8π2
〈φ〉2 =

3e2φ
8π2

m2
X . (4.4)
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These are the same as we had in the decoupled case (λP = 0 = κ) for the Higgs mass and

the CW scalar ϕ mass.

In eq. (4.2) we have also included one-loop corrections to the SM Higgs mass,

∆m2
h,SM =

1

16π2
1

v2
(
6m4

W + 3m4
Z +m2

h − 24m4
t

)
≈ −2200 GeV2 (4.5)

Numerically, these corrections are dominated by the top-quark loop and are therefore

negative. While the resulting contributions are small for the nearly decoupled limit and

at large m2
ϕ, they lead to interesting effects for the case of small m2

ϕ and moderate Higgs

portal coupling.

Depending on the CW mass scale induced in the hidden sector, the model predicts

new resonant structures in di-Higgs analysis or a hidden Higgs decay phenomenology as

main modifications of the electroweak sector compared to the SM.

This matrix can be easily diagonalised with a rotation,(
h1
h2

)
=

(
cosϑ sinϑ

− sinϑ cosϑ

)(
h

ϕ

)
, with ϑ ≈ κ

m2
h

m2
ϕ −m2

h −∆m2
h,SM

� 1 , (4.6)

where the right hand side in the definition of gives ϑ in the case of small mixing.

Up to order ϑ2 (i.e. to leading order in λP) the masses of the two eigenstates are simply

m2
h1 = (m2

h + ∆m2
h,SM)(1 +O(ϑ2)), m2

h2 = m2
ϕ(1 +O(ϑ2)) . (4.7)

Fixing the (dominantly SM like) state h1 to have a mass of ∼ 125 GeV we can now

look at possible constraints on the only two remaining parameters: the mixing angle ϑ,

and the mass of the second eigenstate. Due to the rotation (4.6) the model will show the

character traits of a Higgs portal model [21–23, 30–37], however with restrictions on the

parameters that follow from transmitting EWSB to the visible sector as laid out in the

previous sections.

Let us enumerate the parameters of our model in the small λP regime we are working

in. The SM Higgs self-coupling is fixed by the ratio of known electroweak scales, while the

other self-coupling, λφ, is determined from the CW dimensional transmutation condition:

λH =
(mh

v

)2
≈ 1

4
, λφ =

33

8π2
e4φ . (4.8)

There are two undetermined parameters in our model which one can take to be the hidden

sector gauge coupling, e2φ, and the (small) portal coupling λP. In this case, the two mass

scales associated with the hidden scalar are fixed,

〈|φ|2〉 =
1

2λP
m2
h, m2

ϕ =
3e4φ
8π2
〈|φ|2〉 =

3e4φ
16π2

1

λP
m2
h , (4.9)

and the hidden sector vector mass is given by

m2
X =

8π2

3e2φ
m2
ϕ =

e2φ
2λP

m2
h . (4.10)
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Alternatively, the two free parameters can be chosen to be the mass of the hidden

Higgs, mϕ, and the Higgs portal coupling λP. In this case, gauge coupling (and the mixing

κ) is determined via

e2φ =
4π√

3

√
λP
mϕ

mh
, and κ =

√
2λP
λH

. (4.11)

In analogy to the Standard Model sector one may expect eφ be of order 0.1− 1 but it

could also be much smaller (cf. the hyperweak interactions in [38]). In the latter case one

would, however, also need to explain an incredibly small λφ. More importantly, for small

m2
ϕ it is crucial to take into account higher order corrections to eq. (4.7),

m2
h2 = m2

ϕ(1 +O(ϑ2)) + ϑ2
∆m2

h,SM

m2
h

(m2
h + ∆m2

h,SM). (4.12)

As the SM model correction ∆m2
h,SM is negative (and quite sizeable) this enforces a minimal

value for m2
ϕ from the stability requirement m2

h2
> 0,

m2
ϕ ≥ m2

ϕ,min =
2λP
λH

(
|∆m2

h,SM|
m2
h + ∆m2

h,SM

)
m2
h. (4.13)

The minimal mass for m2
ϕ can also be translated into a minimal value for

e2φ ≥
2λP
λH

√
λH

8π2

3

|∆m2
h,SM|

m2
h + ∆m2

h

. (4.14)

and, more importantly, into the lower bound for the mass of the U(1)hidden gauge boson,

m2
X ≥ m2

h

√
1

λH

8π2

3

|∆m2
h,SM|

m2
h + ∆m2

h

≈ 250 GeV. (4.15)

For the physical mass m2
h2

eqs. (4.12) and (4.13) also entail that values much be-

low m2
ϕ,min require some amount of fine-tuning as it involves a cancellation between m2

ϕ

and the SM correction. Moreover, for very small hidden Higgs masses the mixing is very

strongly constrained from fifth force measurements [39]. In the following we will there-

fore mostly concentrate on the case of moderate eφ ∼ 0.1 . . . 1 and hidden Higgses with

masses mφ & MeV.

A first constraint can be imposed from theoretical reasoning. From eq. (2.11) we can

see that λφ grows as eφ and/or λP are increased raising the possibility of a nearby Landau

Pole. Requiring that there is no Landau pole in λφ for at least a few orders of magnitude

puts already fairly strict limits on both λφ and λP. Neglecting the λ2P contribution to

the running of λφ the solutions to the RG equations are given in [7]. In figure 2 we show

the constraints arising from a hierarchy of 4 and 16 orders of magnitude between 〈φ〉 and

the Landau pole yellow and light green, respectively. We can see that this automatically

restricts us to fairly small λP. The used approximation is conservative in the sense that the

λ2P contribution to the running of λφ is positive speeding up the approach to the Landau

pole. On the other hand for small λP the neglected term quickly becomes very small.
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If the mass mh1 > 2mh2 the ordinary Higgs can decay into two hidden Higgses. In

leading order in the mixing angle this decay occurs via the term

L ⊃ −λPvhϕ2 . (4.16)

and the SM-like Higgs trilinear interaction. The rotation to the physical mass eigenstates

h1, h2 complicates the formulea, i.e. the trilinear couplings get more involved (see e.g.

refs. [30, 31, 40] for detailed discussion). We fully include these nonlinear effects in our

later scan but only sketch the line of thought in the following which is valid for small

mixing, i.e h2 ∼ ϕ. Hence, the dominant part of the corresponding partial decay width is

Γh1→h2h2 =
4λ2Pv

2

16π

[m2
h1
− 4m2

h2
]1/2

m2
h1

, (4.17)

and needs to be taken into account for the Higgs modified branching ratios (BRs). A

similar equation holds for mh2 > 2mh1 with v →
√

2 〈|φ|〉 and mh1 ↔ mh2 . In our simple

setup there are no light hidden sector particles into which the hidden Higgs can decay. The

h2 therefore decays back into SM particles via the mixing with the Higgs and its couplings

to light particles. The branching ratios are the same as for the SM Higgs with mass m2
h2

,

but the width, as well as the production cross sections from visible matter, are reduced by

a factor sin2 ϑ,

Γh2→XXc = sin2 ϑΓSM
h→XXc(mh = mh2) , (4.18)

σ(XY → h2) = sin2 ϑσSMXY→h(mh = mh2) . (4.19)

Note, that already the SM Higgs decay width is quite small, ΓSM(mh ' 125 GeV) '
4 MeV [41, 42] and decreases more or less linearly (until the bottom threshold is crossed)

with the mass. Combining this with a small mixing angle, h2 becomes an extremely narrow

resonance. Indeed for very small values of ϑ we may even have displaced vertices or can

use adapted trigger strategies [43–48] to constrain such a scenario at the LHC (signatures

of this type have been described in [31]).

In figure 2 we show the results of a parameter scan projected on the (λP,mh2) plane

(we identify mh1 ' 125 GeV). We include constraints from current LHC searches for the

mass range mh2 & 114 GeV, which can be as low as σ × BR ' 0.1 [49, 50] and the LEP

constraints for mh2 . 114 GeV, precision constraints from the S, T, U parameters [51, 52]

as well as tree-level unitarity constraints are imposed. The currently allowed coupling span

of the Higgs measurements is σ × BR/ [σ × BR]SM & 0.7 at 1 sigma [53–60], which is the

combined result of the discovery channels h → WW,ZZ, γγ. In our model we always

have σ × BR/ [σ × BR]SM < 1 due to mixing; a statistically significant measurement of

the enhancement in the h→ γγ would therefore be at odds with the most straightforward

implementation of EWSB as described in the preceding sections.

A significant decay of the Higgs candidate into fermions is yet to be measured. Current

constraints on h→ bb̄ (with SM branching ratio ' 60%) follow from biasing the coupling fit

with the SM assumption of a total SM-like Higgs decay width. The observed rates, at the
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Figure 2. Scatter plot of the model described in section 4 for 105 randomly generated parameter

choices in the (λP,mh2
) plane. Points below the black dash-dotted line require some fine-tuning

according to eqs. (4.12), (4.13). The region excluded by current LHC measurements is shown in

red. The cyan region can be probed by LHC with high luminosity and the orange region shows a

projection for a combination of a high luminosity LHC with a linear collider. Light blue indicates

constraints from stellar evolution. The constraints on the parameter space for a Landau pole

separation of 4, and 16 orders of magnitude are included in yellow and light green, respectively.

The remaining allowed parameter points are depicted in green.

current precision can be understood as a limit on the total Higgs width itself. Given that

we have a potentially large coupling to a new decay channel at a large available phase space

eq. (4.17) an upper limit on the total Higgs width constrains the model. Recent analyses

suggest Γh/4 MeV . 1.3 [61] and we include this bound to our scan. We also display

the improvement of the ruled-out region due to the combination of a high-luminosity LHC

run in combination with a linear collider on the basis of the most recent coupling fits of

ref. [62]. Note that, other than at a hadron collider, the total Higgs width can be measured

by correlating Higgs production in weak boson fusion e+e− → νν̄h and the decay h→WW

at the Γh/4 MeV . 10% level [32, 33, 63].

From figure 2 we see that there is a large parameter region of the model allowed by

current measurements (note that the allowed region, of course further extends to smaller

λP and also to larger masses). The model can be efficiently constrained by measuring the

Higgs candidates cross section and decay width as precisely as possible, which can be done

extraordinarily well at a precision collider instrument such as a future linear collider. The

small funnel region at around mh2 ≈ mh = 125 GeV follows from relaxed bounds and

kinematic suppersion in the vicinity of the Higgs candiadate. mh2 within this range is then

unconstrained more or less irrespective of the precise value of λP.

Since, λP is small by consistency and RG arguments, we face small mixing with the

hidden sector which effectively yields a phenomenologically decoupled Higgs partner in the

single Higgs channels of [5, 6] when background uncertainties are taken into account. When

the mixing is rather larger sensitivity in SM-like Higgs searches can provide powerful means

to constrain the model for heavy mh2 . Given the small width, standard analyses can be

straightforwardly extended beyond the current upper limit of mh1 ≤ 1 TeV.

The small mixing make electroweak precision constraints (which can be straightfor-

wardly generalised to observables beyond S, T, U and flavour constraints in the present
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model) redundant: The region excluded by the current S, T ellipse corresponds to large

mixing λP & 102, a region which is well excluded by RG arguments. In this sense, elec-

troweak precision does not yield an additional constraint, but is implied by the consistency

of the model itself.

The suppression of single-h2 phenomenology can in principle be counteracted in the

di-Higgs channels pp→ h2 → h1h1 → SM (see e.g. ref. [64, 65] for an example in a different

context). The resonance is extremely narrow, and for the parameter space mh2 > 2mh1 it

naturally appears in the TeV regime. Such signatures have been investigated in [40, 66].

While the small mixing angle naively means a suppressed s-channel contribution of h2
to the di-Higgs phenomenology, it exclusively decays to a SM-like di-Higgs system in our

setting with a potentially large coupling ∼ λPv ∼ 1 GeV. The small coupling of h2 to the

top quarks running in the gluon fusion loops however can typically not be beaten by the

h2h1h1 vertex. This contribution has to be put in contrast to the off-shell h1h1h1 vertex

∼ v � λP 〈|φ|〉 which is SM-like and, more importantly for high energetic Higgses, to

the box-induced continuum gg → h1h1 production. We have performed a full one-loop

computation of pp → h1h1 → {visible} via gluon fusion (which by far the most dominant

production mode in the SM) in the proposed model and have scanned the cross section for a

couple of parameter points and always find a di-Higgs cross section of O(16) fb. This agrees

with the tree-level SM result [67, 68] within uncertainties and we expect that adapting SM

Higgs-like searches for the heavy h2 is going to result in more solid constraints earlier.

In total, precision analyses of the Higgs-like candidate at 125 GeV and extending Higgs

boson-like searches beyond 1 TeV therefore provide the best handles to constrain this

model in its simplest implementation. The portal parameter, which is required to be small

in the limit of light h2 can be efficiently constrained by measuring the h1 couplings at a

future linear collider. Excluding heavy h2 fields in high luminosity LHC searches limit the

parameter space for λP & 0.001.

Low energy measurements on the other hand are highly sensitive to very light masses,

e.g. fifth force measurements can probe mixing angles sinϑ < 10−10 for mh2 . 10−2 eV [39],

which limits the model for such very small (λP,mh2) combinations. For moderate masses

mh2 . 100 keV stellar evolution sets strong constraints on scalar couplings to two pho-

tons [69–72]. The coupling of h2 to two photons is given by,

gh2γγ = sin(ϑ)gSMhγγ , (4.20)

we can translate these bounds into a limit on sin(ϑ) . 10−3.86 for masses mh2 . 100 keV.

5 Conclusions

The Coleman-Weinberg mechanism is an intriguing possibility to naturally generate a very

small scale. However, if done within the Standard Model its main prediction of a very light

Higgs (far below the Z-mass) is in clear conflict with the experimental observation of a

Higgs(-like) particle at ∼125 GeV. In this paper we have shown that a simple Higgs-portal

model allows to generate the electroweak scale via the Coleman-Weinberg mechanism while
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at the same time giving a phenomenologically viable Higgs mass. The simple model we

have discussed has a rich phenomenology and can be tested at the LHC.

While the explicit model considered in this paper is interesting on its own right thanks

to its simplicity, it can also be viewed as a representative of a whole class of models in

which the Coleman-Weinberg mechanism generates a low scale in the hidden sector which

then is transmitted to the SM via the Higgs portal.

An essential requirement for the Coleman-Weinberg mechanism to work is that the

renormalised mass at the origin of the potential vanishes. All scales are then generated

from dimensional transmutation and are exponentially suppressed compared to the UV

scale at which the theory is initialised. We have collected and discussed various arguments

why the vanishing of the renormalised mass terms is a sensible condition. We find two

main possibilities.

1. Let us take the full classical theory to be massless and scale invariant. Scale invariance

is broken in the quantum theory. Dimensional regularisation is the scheme which (to

our knowledge) breaks scale invariance minimally. In dimensional regularisation the

condition of vanishing masses at the origin is independent of the renormalisation scale

and can therefore be imposed consistently without fine-tuning (in a more general

scheme a similar condition can be defined consistently). The radiative generation of

the EWSB scale in the full theory then proceeds via the CW mechanism as described

in the body of the paper.

2. Alternatively, assume that only the low energy theory we observe, has approximate

scale invariance up to quantum corrections. The scale invariance breaking effects of

additional high scale physics cancels exactly (not approximately as one would require

to generate a small renormalised mass scale at the origin of field space).

The model’s phenomenology is that of a Higgs portal model, however with constraints

imposed that arise from generating the electroweak scale via a small visible-hidden sector

coupling. The modifications compared to the SM are generically small, and exclusion

bounds are driven by precision investigations of the Higgs boson candidate. In essence,

electroweak symmetry breaking proceeds along the lines of the SM, with modifications

only due to small mixing effects and total Higgs width modifications. All these quantities

can be determined most precisely at a future linear collider.

Although our simple setup cannot be considered a full solution to the hierarchy problem

it provides a simple and experimentally testable scenario that may act as a first step to

gain additional insight on the mechanism that generates the electroweak scale.
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