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Abstract: In this paper we apply the thermodynamics method to investigate the holo-

graphic pictures for the BTZ black hole, the spacelike and the null warped black holes in

three-dimensional topologically massive gravity (TMG) and new massive gravity (NMG).

Even though there are higher derivative terms in these theories, the thermodynamics

method is still effective. It gives consistent results with the ones obtained by using asymp-

totical symmetry group (ASG) analysis. In doing the ASG analysis we develop a brute-force

realization of the Barnich-Brandt-Compere formalism with Mathematica code, which also

allows us to calculate the masses and the angular momenta of the black holes. In par-

ticular, we propose the warped AdS3/CFT2 correspondence in the new massive gravity,

which states that quantum gravity in the warped spacetime could holographically dual to

a two-dimensional CFT with cR = cL = 24

Gmβ2
√

2(21−4β2)
.
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1 Introduction

The three-dimensional (3D) gravity is an important arena for the study of quantum be-

haviors of gravity. One remarkable feature in 3D Einstein’s gravity with a cosmological

constant is that even though there is no local dynamical degree of freedom, there are global

degrees of freedom. In the seminal work by Brown and Henneaux [1, 2], it was shown

that under appropriate boundary conditions the asymptotic symmetry group (ASG) of the

AdS3 spacetime is generated by two copies of Virasoro algebra with the same central charge

cR = cL = 3ℓ
2G , where ℓ is the AdS3 radius and G is 3D Newton constant. In retrospect,

this actually present the first example of AdS/CFT correspondence [3]. Two important

lessons can be drawn from the study in [1, 2]. One is that there exists boundary degrees
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of freedom in AdS3. This has been confirmed by the discovery of three-dimensional BTZ

(Banados-Teitelboim-Zanelli) black hole [4, 5], and moreover by the successful entropy

counting from dual conformal field theory in [6]. The other lesson is that the asymptotic

boundary conditions play an essential role in the whole story. One has to find appropriate

boundary conditions to obtain a meaningful ASG.

In the past few years, the techniques of ASG analysis has been applied to the study of

other 3D gravity theories with higher derivative terms, including 3D topologically massive

gravity (TMG) [7, 8] and 3D new massive gravity (NMG) [9, 10]. The AdS3 spacetime

could still be a vacuum, however it turned out that besides the famous Brown-Henneaux

boundary conditions there is at least another set of consistent asymptotic boundary condi-

tions leading to dual logarithmic CFT. Another important feature of these gravities is that

there exist other vacua. In the case of 3D TMG, there are spacelike and null warped AdS3
vacua, in which the quantum gravity may have holographical description. This so-called

warped AdS3/CFT2 correspondence was first proposed in [11] by studying the holographic

description of warped AdS3 black holes in 3D TMG. The ASG analysis was later carried

out in [12–14]. Further evidence comes from the computations of quasi-normal modes and

real-time correlators in [15–21]. Though there is a relatively good understanding of the

warped AdS/CFT correspondence in 3D TMG, it is not clear if the same correspondence

could be set up in other 3D gravity theory with more general higher derivatives terms, such

as NMG.1 This is one of motivations of this work.

Another important application of ASG analysis is in the Kerr/CFT correspondence [24]

and its extensions. In these cases, the asymptotically flat black hole with angular momen-

tum or U(1) charges could be holographically described by a 2D CFT. To read the central

charges of dual CFT, one has to do ASG analysis on the near-horizon geometry of extremal

black hole. This near horizon geometry is similar to a warped spacetime, but the asymp-

totic boundary conditions are very different. Strictly speaking, the ASG analysis can only

be applied to the extremal black holes, though the correspondences have been extended

to non-extremal cases with the help of hidden conformal symmetry in the low frequency

scattering off the black hole [25]. It is still an open issue how to read the central charges

of dual CFT for generic non-extremal black holes.

Very recently, the black hole/CFT (BH/CFT) correspondence was investigated from

the point of view of thermodynamics of both the outer and inner horizons [26]. The key

point is that the inner horizon thermodynamics may play an essential role in setting up the

BH/CFT correspondence.2 From the thermodynamics laws of both horizons, it is straight-

forward to read the thermodynamics of left- and right-mover and the corresponding dual

temperatures. This method has been tested and applied to many cases [26–30]. Especially

in [30], the relation between the thermodynamics method and other conventional meth-

ods has been clarified. It turns out that they are consistent with each other for general

1After this work was finished, we were informed that the central charge of the warped black holes in

NMG has been conjectured in [22] using the entropy function method [23].
2The first law of the inner horizon thermodynamics takes the form as dM = −T−dS− + · · · . In fact it is

not precise to call it as the first law of thermodynamics in the usual sense. A better way to understand it is

that such a relation reflects how the inner horizon response to a perturbation carrying mass, angular momen-

tum or charges. Here we still use “thermodynamics law” for this relation, as widely used in the community.
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black holes in Einstein(-Maxwell) theory and in some cases the thermodynamics method

is even more powerful. Up till now this method has only been used for the black holes in

the Einstein(-Maxwell) gravity. This class of gravity theory is diffeomorphism invariant,

and the dual two-dimensional CFT is required to have cR = cL. In the thermodynamics

method, cR = cL is equivalent to the condition T+S+ = T−S− with T±, S± being the outer

and inner horizon temperatures and entropies respectively, or equivalently the condition

that the entropy product S+S− being mass-independent. Therefore for the black holes

in the Einstein gravity and other diffeomorphism invariant gravity theories, the condition

T+S+ = T−S− may be taken as the criterion whether there is a 2D CFT dual. But for a

black hole in a gravity theory which has diffeomorphism anomaly, like 3D TMG, cR 6= cL
is expected, so T+S+ = T−S− cannot be the criterion for the existence of the CFT dual. It

is interesting to see if the thermodynamics method can be applied to this case. Moreover

it is also important to know if the thermodynamics method could be applied for the black

holes in a gravity theory with higher curvature terms. In the present work we would like

to investigate how to apply thermodynamics method in 3D TMG and other gravity theory

with high curvature terms, taking 3D NMG as prototype. More precisely, we shall focus

on the holographic pictures for the warped black holes in these theories.

The remaining parts are arranged as follows. In section 2 we give an introduction to 3D

gravities, including the Einstein gravity with a negative cosmological constant, TMG and

NMG. We also show how to define various thermodynamical quantities in these theories.

In section 3 we give a brief review of thermodynamics methods in setting up holographic

pictures for the black holes. In section 4 we consider the BTZ black hole in GR, TMG

and NMG, as tests of the validity of the thermodynamics method and the Barnich-Brandt-

Compere (BBC) formalism. In section 5 and 6, we discuss the CFT duals of the spacelike

and null warped black holes in both TMG and NMG, from the points of view of thermo-

dynamics and ASG analysis. We end with conclusion and discussion in section 7. In the

appendix A, we review the BBC formalism and present a brute-force realization for it using

Mathematica code.

2 Thermodynamics of black holes in GR, TMG and NMG

In this section we briefly introduce 3D general relativity with a negative cosmological

constant (GR), topologically massive gravity (TMG) and new massive gravity (NMG).

Especially we give the formulas of calculating the thermodynamics quantities for general

black holes in GR, TMG and NMG.

2.1 GR

For GR, the action and the equation of motion are respectively

IGR =
1

16πG

∫

d3x
√−g(R− 2Λ),

Rµν −
1

2
Rgµν + Λgµν = 0. (2.1)

with G being the Newton constant and Λ being the cosmological constant.
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Given a three-dimensional black hole with the outer and inner horizons r±, we could

write the metric of the black hole in a ADM form

ds2 = −N2dt2 + grrdr
2 + gφφ

(

dφ+Nφdt
)2

, (2.2)

with φ ∼ φ + 2π. We require that the black hole has isometries ∂t and ∂φ, and then we

could always let Nφ|r→∞ = 0 by possible redefinition of φ → φ−Nφ|r→∞t. The Hawking

temperatures and the angular velocities of the outer and inner horizons are

T± =

∣

∣

∣

∣

∣

∂rN
2

4π
√

N2grr

∣

∣

∣

∣

∣

r=r±

, Ω± = −Nφ|r=r± . (2.3)

Note that these thermodynamical quantities depend only on the geometry of the black hole

and are independent of the theory the black hole belong to. In other words the formulas

in (2.3) apply not only to the black holes in GR, but also to the black holes in TMG and

NMG. For a black hole in GR the entropy is just Bekenstein-Hawking entropy, one quarter

of the horizon area in Planck unit. Then the outer and inner horizon entropies of the

three-dimensional black hole (2.2) are

S± =
π
√
gφφ

2G

∣

∣

∣

∣

r=r±

. (2.4)

Generically, the black hole (2.2) is characterized by two parameters, the mass M and

the angular momentum J , or equivalently the parameters r± characterizing the outer and

inner horizons, or some other independent two parameters. There are more than one ways of

calculating the mass and the angular momentum of the black hole, and in the present work

we will use the brute-force realization of the BBC formalism presented in the appendix.

In the BBC formalism, the mass and the angular momentum are both called charges. The

charge difference between the black hole gµν (2.2) and its variation gµν + δgµν with

δgµν =
∂gµν
∂r+

dr+ +
∂gµν
∂r−

dr−, (2.5)

is defined as (A.7) Qξ[g + δg; g]. With ξ = ∂t, we have

dM =
∂M

∂r+
dr+ +

∂M

∂r−
dr− = Q∂t . (2.6)

The mass M could be obtained from Q∂t by integrating from (0, 0) to (r+, r−). Similarly

one could get the angular momentum of the black hole using dJ = −Q∂φ . Having got the

thermodynamic quantities at both the outer and inner horizons, we usually have the first

laws at the outer and inner horizons

dM = T+dS+ +Ω+dJ

= −T−dS− +Ω−dJ. (2.7)

There are the same first laws for black holes in TMG and NMG, and we will not bother

to repeat them in the following two subsections.
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2.2 TMG

The TMG was proposed in [7, 8] and its action and equation of motion are respectively

ITMG =
1

16πG

∫

d3x
√−g

[

R− 2Λ +
1

2µ
ǫλµνΓρ

λσ

(

∂µΓ
σ
ρν +

2

3
Γσ
µτΓ

τ
νρ

)]

,

Rµν −
1

2
Rgµν + Λgµν +

1

µ
Cµν = 0, (2.8)

with µ being the coupling constant, ǫλµν being the Levi-Civita tensor and Cµν being the

Cotton tensor

Cµν = ǫ ρσ
µ ∇ρ

(

Rσν −
1

4
gσνR

)

. (2.9)

Note that there are at most third derivatives in the Cotton tensor. We choose the conven-

tion ǫtrφ = −1√−g
when we use the coordinates (t, r, φ).

If the black hole (2.2) is a solution of TMG, its Hawking temperatures T± and angular

velocities Ω± are the same as (2.3). The mass M and the angular momentum J of the black

hole could also be calculated using the BBC formalism similar to the procedure for the

black hole in GR, but as the action of the theory has changed, so the superpotential and the

charges have to be modified accordingly. One should be careful to calculate the entropies of

the black holes in TMG, because the higher order derivative terms in the action (2.8) have

contribution to the entropy. To get the entropies of black holes in a higher derivative gravity,

one can use Wald formula [31–33] or equivalently the conical singularity method [34, 35].

It can be shown that using the results in [36, 37] for a black hole in TMG (2.8) with the

metric (2.2) the entropies at the outer and inner horizons are [38]

S± =
π
√
gφφ

2G
+

πgφφ∂rN
φ

4Gµ
√

N2grr

∣

∣

∣

∣

∣

r=r±

. (2.10)

2.3 NMG

The NMG was proposed in [9, 10], and its action is

INMG =
1

16πG

∫

d3x
√−g

(

R− 2λ− 1

m2
K

)

, (2.11)

with m being the coupling constant and

K = RµνR
µν − 3

8
R2. (2.12)

We just suppose m > 0 for simplicity and do not consider the possible analytical continu-

ation. Due to the existence of the K term, λ is not necessarily the cosmological constant.

We define the three-dimensional cosmological constant Λ as R = 6Λ. The equation of

motion for NMG is

Rµν −
1

2
Rgµν + λgµν −

1

2m2
Kµν = 0, (2.13)

with

Kµν=−1

2
∇2Rgµν−

1

2
∇µ∇νR+2∇2Rµν−8R α

µ Rαν+
9

2
RRµν+gµν

(

3RαβR
αβ− 13

8
R2

)

. (2.14)
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The tensor Kµν involves the fourth derivative of the metric. In deriving Kµν , we have used

the fact that the Weyl tensor is always vanishing in three dimensions, or equivalently the

identity

Rρσµν = gρµRσν + gσνRρµ − gρνRσµ − gσµRρν −
R

2
(gρµgσν − gρνgσµ). (2.15)

The mass M and the angular momentum J of a black hole (2.2) in NMG (2.11) can be

calculated using the BBC formalism. The entropies at the outer and inner horizons could

be calculated using conical singularity method [34, 35] as

S± =
π
√
gφφ

2G

[

1− 1

m2
(Rii −

3

4
R)

]∣

∣

∣

∣

r=r±

, (2.16)

with

Rii = −Rµνn
µ
1n

ν
1 +Rµνn

µ
2n

ν
2 ,

nµ
1 =

1

N
(1, 0,−Nφ),

nµ
2 =

(

0,
1√
grr

, 0

)

. (2.17)

3 Thermodynamics method of black hole/CFT correspondence

The thermodynamics method was proposed and developed in [26–30]. In [30] there is a

systematic summary of the method. For a nonextremal black hole, one could get much

universal information of dual CFT, including the right- and left-moving central charges

and temperatures, from the thermodynamics laws of the outer and inner horizons. Here

we only review the main conclusions of the method, and one could find the details in the

papers cited above.

Suppose that the black hole we are interested in has only two physical horizons. If the

black hole is stationary, then one can prove that there are first laws of thermodynamics for

both the outer and inner horizons in the Einstein(-Maxwell) gravity. In the present work,

we focus on the 3D black holes without charge or scalar hair. In this case, the black hole

is characterized by the mass and angular momentum. The first laws turn out to be

dM = T+dS+ +Ω+dJ

= −T−dS− +Ω−dJ. (3.1)

We could recombine these quantities into the ones of separated left- and right-moving

sectors

TR,L =
T−T+

T− ± T+
, SR,L =

1

2
(S+ ∓ S−),

ΩR =
T−Ω+ + T+Ω−
2(T− + T+)

, ΩL =
T−Ω+ − T+Ω−
2(T− − T+)

, (3.2)
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such that

1

2
dM = TRdSR +ΩRdJ

= TLdSL +ΩLdJ. (3.3)

Let us define

RJ =
1

ΩR − ΩL
=

T 2
− − T 2

+

T−T+(Ω− − Ω+)
, (3.4)

which is just the scale of the space that the two dimensional CFT resides. From (3.3) we get

dJ = T J
LdSL − T J

RdSR, (3.5)

with the dimensionless temperatures of CFT dual to the black hole being

T J
R,L = RJTR,L =

T− ∓ T+

Ω− − Ω+
. (3.6)

From the Cardy formula we could derive the central charges

cJR,L =
3

π2

SR,L

T J
R,L

=
3

2π2

(Ω− − Ω+)(S+ ∓ S−)

T− ∓ T+
. (3.7)

In the above discussion, we only used the first laws of thermodynamics no matter what

kind of theory the black hole belong to. For a diffeomorphism invariant theory, like GR

and NMG, there should be cR = cL for the dual CFT. From (3.7) it can be shown easily

that cR = cL is equivalent to T+S+ = T−S−. According to the first laws (3.1) this is also

equivalent to the condition that the entropy product S+S− is mass-independent. However,

in TMG there is diffeomorphism anomaly, and therefore it is expected that cR 6= cL for the

dual CFT. Consequently, the entropy product S+S− is mass-dependent in TMG, as has

been observed in [39]. Nevertheless the above treatment still makes sense without trouble.

Actually one may check if it is consist with the diffeomorphism anomaly.

In fact more information could be read from the thermodynamics [28, 30]. In the

gravity side we throw the perturbation dM = ω, dJ = k into the black hole, and rewrite

the first laws (3.3) as

T J
RdSR = RJ

(

1

2
ω − ΩRk

)

,

T J
LdSL = RJ

(

1

2
ω − ΩLk

)

. (3.8)

In the CFT side, we suppose that there are

T J
RdSR = ωJ

R − qJRµ
J
R,

T J
LdSL = ωJ

L − qJLµ
J
L, (3.9)

with ωJ
R,L, q

J
R,L and µJ

R,L being the frequencies, the charges, and the chemical potentials

of the corresponding operator perturbing the thermal equilibrium. Then we find the iden-

tifications

ωJ
R,L =

RJ

2
ω =

T 2
− − T 2

+

2T−T+(Ω− − Ω+)
ω,

– 7 –
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qJR,L = k,

µJ
R = RJΩR =

(T− − T+)(T−Ω+ + T+Ω−)

2T−T+(Ω− − Ω+)
,

µJ
L = RJΩL =

(T− + T+)(T−Ω+ − T+Ω−)

2T−T+(Ω− − Ω+)
. (3.10)

Notice that these quantities of the dual CFT depend only on the the geometry of the black

hole, and have nothing to do with what theory the black hole belong to. They are always

the same as the ones found in the low frequency scattering amplitude as shown in [30].

This is sensible because the scattering amplitude also depends only on the the geometry

of the black hole.

4 BTZ black hole

In this section we consider the three-dimensional BTZ black hole in GR, TMG and NMG.

We have to say that all the results got in this section are not new. The central charges of

AdS3 spacetime and the statistical derivation of the entropy of BTZ black hole in GR have

been given long ago in [1, 2, 6, 40]. The central charges of AdS3, the mass, the angular

momentum and the entropy of BTZ black hole in TMG, NMG and other high curvature

gravity have been discussed in [36, 37, 41–54]. However, we take this case as a warmup,

firstly to show how the thermodynamics method in setting up BH/CFT correspondence

applies to BTZ black hole in TMG and NMG, and secondly to test our code of calculating

the charges and central charges in GR, TMG and NMG.

4.1 Black hole solution

The metric of BTZ black hole could be written as

ds2 = −(r2 − r2+)(r
2 − r2−)

ℓ2r2
dt2 +

ℓ2r2

(r2 − r2+)(r
2 − r2−)

dr2 + r2
(

dφ− r+r−
ℓr2

dt
)2

, (4.1)

with ℓ > 0 being the parameter of the theory and r− ≤ r+ being the horizons of the black

hole. The Hawking temperatures and the angular velocities at the outer and inner horizons

are respectively

T± =
r2+ − r2−
2πℓ2r±

,

Ω+ =
r−
ℓr+

, Ω− =
r+
ℓr−

. (4.2)

The BTZ black hole (4.1) is the solution of GR (2.1) with Λ = −1/ℓ2. From the BBC

formalism one could get the mass and the angular momentum of the black hole as

M =
r2+ + r2−
8Gℓ2

, J =
r+r−
4Gℓ

. (4.3)

From (2.4) one get the entropies at the outer and inner horizons

S± =
πr±
2G

. (4.4)
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The BTZ black hole (4.1) is also the solution of TMG (2.8) with Λ = −1/ℓ2. The mass

and the angular momentum could be calculated by the BBC formalism as

M =
1

8Gℓ2

(

r2+ + r2− +
1

µℓ
2r+r−

)

, J =
1

4Gℓ

(

r+r− +
1

µℓ

r2+ + r2−
2

)

. (4.5)

From the relation (2.10) the outer and inner horizons entropies are respectively

S+ =
π

2G

(

r+ +
1

µℓ
r−

)

, S− =
π

2G

(

r− +
1

µℓ
r+

)

. (4.6)

As being checked in [39], for the BTZ black hole in TMG the entropy product S+S− is

mass-dependent. For physical reasons we require that

M ≥ 0, 0 ≤ S− ≤ S+ (4.7)

are satisfied for all values of 0 ≤ r− ≤ r+ and this requires that µℓ ≥ 1.

The BTZ black hole is also the solution of NMG (2.11) with λ = Λ − Λ2

4m2 ,Λ = − 1
ℓ2
.

The mass and the angular momentum of BTZ black hole are respectively

M =
r2+ + r2−
8Gℓ2

(

1− 1

2m2ℓ2

)

, J =
r+r−
4Gℓ

(

1− 1

2m2ℓ2

)

. (4.8)

From (2.16), one could also get

S± =
πr±
2G

(

1− 1

2m2ℓ2

)

. (4.9)

Since NMG is a diffeomorphism invariant theory, we must have cR = cL, and so T+S+ =

T−S− which can be verified easily. The requirements M ≥ 0, 0 ≤ S− ≤ S+ imply that

m2ℓ2 ≥ 1
2 .

4.2 CFT from thermodynamics

For the BTZ black hole in GR, TMG or NMG, there are always the first laws (3.1) of the

outer and inner horizons. From the quantities (4.2), we could get the scale of the space

the CFT resides and the temperatures of the CFT as

RJ = ℓ, T J
R,L =

r+ ∓ r−
2πℓ

. (4.10)

In GR, from (3.2) and (3.7) the right- and left-moving entropies of the dual CFT are

SR,L =
π(r+ ∓ r−)

4G
, (4.11)

and then the central charges are

cJR,L =
3ℓ

2G
. (4.12)

In TMG, the right- and left-moving entropies of the dual CFT are

SR =
π(r+ − r−)

4G

(

1− 1

µℓ

)

, SL =
π(r+ + r−)

4G

(

1 +
1

µℓ

)

, (4.13)
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and then the central charges are

cJR,L =
3ℓ

2G

(

1∓ 1

µℓ

)

. (4.14)

Note that the requirement guarantees that 0 ≤ SR ≤ SL and cJR,L ≥ 0. When µℓ = 1, the

theory becomes chiral with vanishing right central charge.

In NMG, the entropies and central charges of the dual CFT are respectively

SR,L =
π(r+ ∓ r−)

4G

(

1− 1

2m2ℓ2

)

,

cJR,L =
3ℓ

2G

(

1− 1

2m2ℓ2

)

. (4.15)

4.3 CFT from ASG

The central charges of AdS3 in GR, TMG and NMG could be obtained by using the brute-

force realization of the BBC formalism presented in appendix A. Setting r+ = r− = 0 in

the metric of the BTZ black hole, one could get the metric of the AdS3 spacetime

ds2 = −r2

ℓ2
dt2 +

ℓ2

r2
dr2 + r2dφ2. (4.16)

Using the Brown-Henneaux boundary conditions [1, 6] in (t, r, φ) coordinates for AdS3

δgµν = O







1 1
r3

1
1
r4

1
r3

1






, (4.17)

one could have the asymptotic Killing vector ξ = ξµ∂µ with leading terms

ξt = ℓ(T+ + T−) +
ℓ3

2r2
(∂2

+T
+ + ∂2

−T
−),

ξr = −r(∂+T
+ + ∂−T

−),

ξφ = T+ − T− − ℓ2

2r2
(∂2

+T
+ − ∂2

−T
−), (4.18)

where x± = t
ℓ ±φ, 2∂± = ℓ∂t±∂φ, and T± = T±(x±). Expanding T± = 1

2e
imx±

, one could

get the ASG which forms the Witt algebras through Lie brackets,

i[ξ±m, ξ±n ] = (m− n)ξ±m+n,

[ξ+m, ξ−n ] = 0. (4.19)

Using the Mathematica code we find that in GR, the central charges are

cR,L =
3ℓ

2G
, (4.20)

in TMG they are

cR,L =
3ℓ

2G

(

1∓ 1

µℓ

)

, (4.21)

and in NMG they are

cR,L =
3ℓ

2G

(

1− 1

2m2ℓ2

)

. (4.22)

These central charges are the same as the ones got from the thermodynamics method before.
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5 Spacelike warped black hole

In this section we consider the spacelike warped black hole constructed in [43, 51, 53, 55].

The black hole is not the solution of GR but could be the solution of TMG and NMG.

5.1 Black hole solution

Let us start from the spacelike warped black hole in NMG. It has the metric

ds2 = −β2 r
2 − r20
R(r)2

dt2 +
dr2

γ2(r2 − r20)
+R(r2)

[

dφ− r + (1− β2)Ω

R(r)2
dt

]2

(5.1)

with

R(r)2 = r2 + 2Ωr + (1− β2)Ω2 +
β2r20
1− β2

. (5.2)

For the metric (5.1) to be the solution of NMG (2.11), we should have

β2 =
63 + 2m2ℓ2

4(3 + 2m2ℓ2)
,

γ2 =
63 + 2m2ℓ2

20ℓ2
,

λ =
189− 468m2ℓ2 + 4m4ℓ4

400m2ℓ4
. (5.3)

Note that besides the Newton constant G there are two parameters (λ,m) for the NMG

theory (2.11), and one could represent them by (m, ℓ) or some other pairs. In this section

we use the pair (β,m) as independent parameters of the theory for simplicity. The other

parameters could be represented by them

γ2 =
8m2β2

21− 4β2
,

λ =
m2(21− 72β2 + 16β4)

(21− 4β2)2
. (5.4)

Here we suppose β, γ > 0 and do not try to make any analytical continuation. The other

two parameters r0 > 0,Ω in the solution characterize the black hole. For the black hole to

be causally regular and geodecically complete there should be conditions [51, 55]

0 < β2 < 1, Ω ≥ − r0
√

1− β2
and Ω 6= r0

1− β2
. (5.5)

For later convenience when − r0√
1−β2

≤ Ω < r0
1−β2 we call the black hole as slow-rotating and

when Ω > r0
1−β2 , we call it fast-rotating black hole. As will be seen below, when r0 is fixed

a fast-rotating black hole can have the angular momentum as large as possible, and for a

slow-rotating one the absolute value of the angular momentum has a upper bound. Note

that the two regions cannot be connected by continuously variations of the parameters.

The spacetime (5.1) has no constant Ricci tensor but has a constant Ricci scalar

R = −(4β2 − 1)γ2

2β2
. (5.6)
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For the black hole being a warped AdS black hole, we need R = − 6
ℓ2

< 0, which implies that

1

4
< β2 < 1, γ2 =

12β2

ℓ2(4β2 − 1)
. (5.7)

The spacelike warped black hole has outer and inner horizons at r = ±r0. For a fast-

rotating black hole, we could calculate the Hawking temperatures, the angular velocity and

the entropies at the outer and inner horizons

T± =
βγ
√

1− β2r0
2π[(1− β2)Ω± r0]

, (5.8)

Ω± =
1− β2

(1− β2)Ω± r0
,

S± =
8π
[

(1− β2)Ω± r0
]

G
√

1− β2(21− 4β2)
. (5.9)

For a slow-rotating black hole, the angular velocity does not change but the Hawking

temperatures and the entropies become

T± =
βγ
√

1− β2r0
2π[r0 ± (1− β2)Ω]

, (5.10)

S± =
8π
[

r0 ± (1− β2)Ω
]

G
√

1− β2(21− 4β2)
. (5.11)

Using the BBC formalism we get the mass and the angular momentum

M =
8
√
2mβ2(1− β2)Ω

G(21− 4β2)3/2
,

J =
4
√
2mβ2

[

(1− β2)2Ω2 − r20
]

G(1− β2)(21− 4β2)3/2
. (5.12)

One could check that the first laws (3.1) hold for both the fast and slow-rotating black

holes. The requirements M > 0 and 0 ≤ S− ≤ S+ are satisfied for the fast-rotating black

hole, but give an upper bound on the angular velocity for the slow-rotating black hole

0 ≤ Ω <
r0

1− β2
. (5.13)

The spacetime (5.1) could also be the solution of TMG (2.8) by the following identifi-

cation of the parameters

β2 =
ν2 + 3

4ν2
, γ2 =

ν2 + 3

ℓ2
, (5.14)

with Λ = − 1
ℓ2
, µ = −3ν

ℓ and ν > 1. As the higher derivative terms in TMG are different

from the ones in NMG, the entropies, the mass and the angular momentum get modi-

fied. For a fast-rotating black hole the entropies of the outer and inner horizons could be

calculated using (2.10)

S± =
π
[

3(ν2 − 1)Ω± (5ν2 + 3)r0
]

6Gν
√

3(ν2 − 1)
, (5.15)
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and for a slow-rotating black hole they become

S± =
π
[

(5ν2 + 3)r0 ± 3(ν2 − 1)Ω
]

6Gν
√

3(ν2 − 1)
. (5.16)

Using the BBC formalism we could get the mass and the angular momentum as

M =
(ν2 − 1)(ν2 + 3)Ω

16Gℓν3
,

J =
(ν2 + 3)

[

9(ν2 − 1)2Ω2 − 4ν2(5ν2 + 3)r20
]

288Gℓν3(ν2 − 1)
. (5.17)

We require that M ≥ 0 and 0 ≤ S− ≤ S+, and this is satisfied for the fast-rotating black

hole, but for the slow-rotating black hole there is additional constraint on the angular

velocity

0 ≤ Ω <
r0

1− β2
=

4ν2r20
3(ν2 − 1)

. (5.18)

The first laws (3.1) are satisfied for both the fast and slow-rotating black holes.

5.2 CFT from thermodynamics

For the warped black hole, we first consider the fast-rotating black hole with Ω > r0
1−β2 .

From the quantities (5.8), we could get the scale of the space the CFT resides and the

temperatures of the CFT as

RJ = 2Ω, T J
R =

2mβ2r0

π
√

2(1− β2)(21− 4β2)
, T J

L =
mβ2Ω

π

√

2(1− β2)

21− 4β2
. (5.19)

For a perturbation dM = ω, dJ = k of the black hole, the dual operator in the CFT has

frequencies, charges and chemical potentials

ωJ
R,L = Ωω, qJR,L = k, µJ

R = 1, µJ
L = 0. (5.20)

Considering the coordinate transformations presented in [11], we find that those quanti-

ties are consistent with the ones in [18]. In TMG, the right- and left-moving entropies,

temperatures and central charges of the dual CFT are respectively

SR =
π(5ν2 + 3)r0

6Gν
√

3(ν2 − 1)
, SL =

πΩ

2Gν

√

ν2 − 1

3
,

T J
R =

(ν2 + 3)r0

2πℓ
√

3(ν2 − 1)
, T J

L =
(ν2 + 3)

√

3(ν2 − 1)Ω

8πν2ℓ
,

cJR =
(5ν2 + 3)ℓ

Gν(ν2 + 3)
, cJL =

4ℓν

G(ν2 + 3)
. (5.21)

The central charges are the same as proposed in [11].

In NMG, these quantities are respectively

SR =
8πr0

G(21− 4β2)
√

1− β2
, SL =

8π
√

1− β2Ω

G(21− 4β2)
,
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T J
R =

2mβ2r0

π
√

2(1− β2)(21− 4β2)
, T J

L =
mβ2Ω

π

√

2(1− β2)

21− 4β2
,

cJR,L =
24

Gmβ2
√

2(21− 4β2)
. (5.22)

The central charges are just the ones in [22].

For the slow-rotating black hole with 0 ≤ Ω < r0
1−β2 , because Ω− − Ω+ < 0 one has to

redefine (3.4)

RJ =
T 2
− − T 2

+

T−T+(Ω+ − Ω−)
, (5.23)

and consequently one has

dJ = T J
RdSR − T J

LdSL. (5.24)

From (5.15), (5.16), (5.9) and (5.11), comparing with the fast-rotating black hole, the outer

horizon entropy of the slow-rotating black hole does not change but the inner horizon en-

tropy gets a minus sign. Thus SR,L for the fast-rotating black hole become SL,R for the

slow-rotating one, and the same things happen to other quantities. Therefore the right-

and left-moving sectors of the CFT dual to the fast-rotating black hole become the left-

and right-moving sectors of the CFT dual to the slow-rotating one.

5.3 CFT from quotient

In this section we follow [11] and show that the CFT temperatures (5.19) of the spacelike

warped AdS3 black hole (5.1) could be obtained by identifying the black hole as the dis-

crete quotient of the spacelike warped AdS3 spacetime. The metric of the spacelike warped

AdS3 spacetime is

ds2 =
1

γ2

[

− cosh2 σdτ2 + dσ2 +
1

β2
(du+ sinhσdτ)2

]

, (5.25)

with the constraints (5.7). The geometry has SL(2,R)×U(1) isometries. The explicit forms

of corresponding Killing vectors {J̃0, J̃1, J̃2} and J2 could be found in [11].

The black hole metric (5.1) and the warped AdS3 (5.25) are related to each other by

local coordinate transformations

τ = − arctan

[

√

r2 − r20
r

sinh

(

βγr0
√

1− β2
φ

)]

,

σ = arcsinh

[

√

r2 − r20
r0

cosh

(

βγr0
√

1− β2
φ

)]

,

u = βγ
√

1− β2(t− Ωφ)− arctanh

[

r

r0
coth

(

βγr0
√

1− β2
φ

)]

. (5.26)

For the fast-rotating black hole one could show that

− ∂φ = π(T J
LJ2 − T J

R J̃2), (5.27)

with T J
R,L being these in (5.19). And for the slow-rotating black hole one just exchange T J

R,L.
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5.4 CFT from ASG

Indeed, the above right-moving central charge for the fast-rotating black hole, or the left-

moving central charge for the slow-rotating black hole, could be derived using the BBC

formalism as shown in [12, 13]. For the fast-rotating black hole in TMG, setting Ω = r0 = 0

in (5.1), one may get the vacuum spacetime

ds2 = −ν2 + 3

4ν2
dt2 +

ℓ2

ν2 + 3

dr2

r2
+ r2

(

dφ− dt

r

)2

. (5.28)

There is a set of boundary conditions [13, 14, 56]

δgµν = O







1
r

1
r2

1
1
r3

1
r

r






(5.29)

which admit nontrivial ASG. The ASG contains the subgroup

ξm = −e−imφ(∂φ +mr∂r). (5.30)

with which we could got

cR =
(5ν2 + 3)ℓ

Gν(ν2 + 3)
. (5.31)

One could get the left-moving central charge using Sugawara construction as in [14]. It is

cL =
4νℓ

G(ν2 + 3)
. (5.32)

The central charges cR,L are exactly the ones obtained from the thermodynamics method.

And they satisfy the diffeomorphism anomaly relation [11, 36, 47]

cL − cR = − ℓ

Gν
. (5.33)

For the spacelike warped black hole in NMG, we set Ω = r0 = 0 in (5.1)

ds2 = −β2dt2 +
dr2

γ2r2
+ r2

(

dφ− dt

r

)2

. (5.34)

We can check that with the same asymptotic boundary conditions (5.29) there is still ASG

with the subgroup (5.30), with which we could got

cR =
24

Gmβ2
√

2(21− 4β2)
. (5.35)

Because of diffeomorphism invariance, there must be cL with the same value. This agrees

exactly with the ones obtained in (5.22).
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6 Null warped black hole

6.1 Black hole solution

The null warped black hole has the metric [11]

ds2 = − r2

r2 + ℓr + ℓ2α2
dt2 +

ℓ2

4r2
dr2 + (r2 + ℓr + ℓ2α2)(dφ− rdt

r2 + ℓr + ℓ2α2
)2, (6.1)

with ℓ > 0 being the parameter of the theory and α > 0 being the parameter of the black

hole. On construction the null warped black hole is an extremal black hole with the horizon

locates at r = 0. The black hole could be got from the slow-rotating spacelike warped black

hole (5.1) by setting

Ω =
ℓ

2
, r20 = (1− β2)α2ℓ2, (6.2)

and taking the limit β → 1 [11]. All the quantities for the null warped black hole could

be got by taking proper limits of those for the spacelike warped black hole. Here it will be

brief without much details.

The null warped black hole is a solution of TMG (2.8) with Λ = − 1
ℓ2

and µ = −3
ℓ . Its

energy, angular momentum and entropy are respectively

M = 0, J = −α2ℓ

3G
, S+ =

2παℓ

3G
. (6.3)

Similarly the null warped black hole is a solution of NMG (2.11) with λ = − 35
34ℓ2

and

m2 = 17
2ℓ2

. Its energy, angular momentum and entropy are respectively

M = 0, J = −4α2ℓ

17G
, S+ =

8παℓ

17G
. (6.4)

The Hawking temperature and angular velocity of the null warped black hole is trivial T+ =

Ω+ = 0, so the first law for the null warped black hole in TMG or NMG is trivially satisfied

dM = T+dS+ +Ω+dJ. (6.5)

6.2 CFT from thermodynamics

No matter in TMG or NMG, we always have

dJ = −T J
LdS+,

S =
π2

3
cJLT

J
L , (6.6)

from which we get for TMG

T J
L =

α

π
, cJL =

2ℓ

G
, (6.7)

and for NMG

T J
L =

α

π
, cJL =

24ℓ

17G
. (6.8)

Note that the CFT temperatures in TMG and NMG are the same in the null black hole case.
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6.3 CFT from ASG

Using the boundary conditions and ASG in [57]

δgµν = O







1
r

1
r2

1
1
r3

1
r

1






, (6.9)

we could get a ASG still permits the subgroup (5.30), with which the central charge of the

null spacetime in TMG can be got as

cL =
2ℓ

G
, (6.10)

and in NMG

cL =
24ℓ

17G
. (6.11)

These are exactly the ones obtained by the thermodynamics method in the previous sub-

seciton.

7 Conclusion and discussion

In this paper we used the thermodynamics method to set up holographic pictures for the

BTZ black hole, the spacelike and null warped AdS3 black holes in 3D TMG and NMG.

Without imposing any condition on the entropy product, we worked on the first laws of

the outer and inner horizons directly, and read the universal properties of the dual CFT.

On the other side, we tried to establish a brute-force realization of the BBC formalism

without calculating the superpotential by hand explicitly. We computed the masses and

the angular momenta of the black holes, as well as the central charges of the global AdS3
and warped AdS3 spacetime in various 3D gravities in the BBC formalism. In all the cases,

we found consistent agreements.

The effectiveness of the thermodynamics method for the BTZ and the warped black

holes in TMG and NMG is remarkable. It could be expected that this method may be

effective for other black holes in 3D higher curvature gravity theories. In fact there are un-

charged and charged black hole solutions for Born-Infeld extended new massive gravity, and

their CFT duals were also proposed [58, 59]. It would be nice to see if the thermodynamics

method and the ASG analysis using our Mathematica code could be applied for these black

holes. It is even more interesting to see if the same is true in higher dimensional gravity.

The 3D gravity theories are special. In the cases we discussed in the present work, the

black holes could be obtained from global spacetime via discrete quotient identification.

As a result, the central charges of the dual CFTs can be obtained from the ASG analysis

of the global spacetime. It is not necessary to take near-horizon limit. Consequently, the

central charges depend on the parameters in the theories, the cosmological constant and

the coupling constant, not on the hairs of the black holes. On the contrary for the black

holes in the higher dimensions, no matter rotating one or charged one, the central charges

of their CFT duals are the functions of quantized charges. Moreover, we show that even if
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the entropy product is mass-dependent in 3D TMG gravity, the first laws of the thermo-

dynamics could still be applied. It seems that the first laws are more fundamental and the

mass-independence condition of the entropy product could be neglected. Naively we may

try to apply this philosophy to the study the AdS black holes in dimensions d ≥ 4, which

have only two physical horizons as well. It is true that the first laws allow us to read the

temperatures and central charges of dual CFT. However, the central charges in the left-

and right-moving sectors are different [26, 28]. This seems strange to us, and it would be

nice to have better understanding for this issue.
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A A brute-force realization of BBC formalism

The ASG analysis in [1, 2] is in the Hamiltonian formalism. While in the so-called Barnich-

Brandt-Compere (BBC) formalism [60–64] one has covariant systematic techniques of treat-

ing ASG based on the Lagrangian of the theory. However, for a general gravity theory other

than the Einstein gravity the use of the BBC formalism is quite tedious. One has to cal-

culate the so-called superpotential with much labor. In the present work, we adopt a new

strategy of using the BBC formalism. In fact we write a Mathematica code to implement

the BBC formalism in a brute-force way. The brute-force realization of the BBC formalism

is powerful especially for the higher derivative gravity when the calculation of the super-

potential becomes formidable. The superpotential for the TMG has been given in [12] to

calculate the central charge cR of the spacelike warped black hole proposed in [11], al-

though there are some ambiguities in some terms.3 There was superpotential given in [65]

of Killing vector under general background for NMG, with which one could calculate the

mass and angular momentum of a black hole. However, no general superpotential formula

for an asymptotic Killing vector for NMG has been given, and so the ASG analysis cannot

be done. Using our code, one could use the BBC formalism to NMG without knowing

the explicit form the superpotential. Potentially, given a computer as powerful as needed,

one could calculate the mass and the angular momentum of any black hole in any gravity

theory in any dimensions, and read the central charges of the vacuum from ASG analysis

provided appropriate asymptotic boundary conditions.

The BBC formalism is a powerful tool of calculating the charges of the asymptotic

symmetry generators. For a gravity theory in d-dimensional spacetime, the formalism goes

as follows. Given the action I of the theory, one may define

Eµν [g] =
δI

δgµν
, (A.1)

3We thank Stéphane Detournay for discussing us this subtlety.
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with gµν as the spacetime metric. For a classical background ḡµν , which is of course the

solution of the equation of motion, we have Eµν [ḡ] = 0. Expanding the metric around the

background gµν = ḡµν +hµν , one can get the linear contribution E
(1)
µν [g; ḡ]. The asymptotic

conservative current corresponding to the asymptotic Killing vector ξµ is defined as

Sµ
ξ [h; ḡ] = E(1)µν [g; ḡ]ξν . (A.2)

Note that we always use the background metric ḡµν or its inverse ḡµν to lower or upper an

index. The superpotential kµνξ [h; g] can be calculated as

kνµξ [h; g] =
1

2
φi

∂Sµ
ξ

∂φi
ν

+

(

2

3
φi
α − 1

3
φi∂α

)

∂Sµ
ξ

∂φi
αν

+

(

3

4
φi
αβ − 1

2
φi
α∂β +

1

4
φi∂αβ

)

∂Sµ
ξ

∂φi
αβν

+

(

4

5
φi
αβγ−

3

5
φi
α∂βγ+

2

5
φi
α∂βγ−

1

5
φi∂αβγ

)

∂Sµ
ξ

∂φi
αβγν

+· · · − (ν↔µ), (A.3)

where the field φi = hρσ, φ
i
ν = hρσ,ν = ∂νhρσ, φ

i
αβ = hρσ,αβ = ∂αβhρσ = ∂α∂βhρσ, and so

forth. The only nonvanishing derivatives are defined generally as

∂hαβ,ν1···νk
∂hγδ,µ1···µk

≡ δγδαβδ
µ1···µk
ν1···νk , (A.4)

with

δµ1···µk
ν1···νk ≡ δµ1

(ν1
· · · δµk

νk)
. (A.5)

The derivatives should be calculated with care, because one has to take into account the

symmetries of both the indexes of the metric and the indexes of derivatives, for example,

∂h11,12
∂h11,12

=
1

2
,

∂h12,12
∂h12,12

=
1

4
,

∂h11,123
∂h11,123

=
1

6
,

∂h12,123
∂h12,123

=
1

12
. (A.6)

Note that for GR only the first two terms of the right hand side of (A.3) are used, for TMG

the first three terms contribute, and for NMG one have to use all the four terms written

out explicitly. The charge difference between gµν = ḡµν + hµν and the background ḡµν can

be calculated as

Qξ[g; ḡ] = 2

∫

∂Σ
dd−2xktrξ [h; ḡ], (A.7)

where Σ is the spatial slice of constant time t, ∂Σ is the subspace of Σ of constant radial

coordinate r with r → ∞. The Poisson bracket of the charges could be calculated as

{Qξ, Qη} = Q[ξ,η] +Kξ,η, (A.8)

where [ξ, η] denotes the Lie derivative of the two asymptotic Killing vectors. The central

charge term is

Kξ,η ≡ Qη[ḡ + Lξ ḡ; ḡ] = 2

∫

∂Σ
dd−2xktrη [Lξ ḡ; ḡ]. (A.9)

Usually, to use the BBC formalism one needs to do three steps. Firstly, one expands the

equations of motion around some background, secondly one has to calculate the supercharge
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kνµξ using (A.3) or performing integrations by parts, and lastly one calculates the charges or

the central charge using (A.7) or (A.9). The popular way in using the BBC formalism is do-

ing the first two steps by hand and then doing the last integration with Mathematica code.

However this limits the application of the BBC formalism, because it is usually hard to do

first two steps, especially the second one for the higher derivative gravity. We find that it is

not necessary to compute the superpotential (A.3) by hand. In fact all the three steps could

be done by the computer using the Mathmatica code. In this procedure, there is no ambigu-

ity. The code can be downloaded at http://s.yunio.com/public/download/token/Mtus0z.
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