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1 Introduction

Quantum Chromodynamics (QCD) is the established theory of the strong interactions.

QCD predicts that strongly interacting matter exhibits at least two very different forms:

the hadronic phase at low temperatures T and the quark-gluon plasma (QGP) phase at high

T . Whereas the relevant degrees of freedom are color-singlet objects in the hadronic regime,

they are colored particles in the quark-gluon plasma state. The transition between the QGP

and the hadronic phase took place as the early universe expanded and cooled, about 10−5

seconds after the Big Bang. On the other hand, the same transition is also reproduced in

heavy-ion collisions conducted in contemporary experiments at e.g. the Relativistic Heavy

Ion Collider (RHIC) and the Large Hadron Collider (LHC). A particularly interesting

aspect of the transition is how thermodynamic observables change as the system passes

through the region separating the hadronic and QGP phase. The relations between these

observables constitute the equation of state (EoS) of the system in equilibrium.

A striking observation made in heavy-ion collision experiments is that the flow of

strongly interacting matter can be adequately described in terms of nearly-ideal relativistic

hydrodynamic models, see, e.g. refs. [1–4]. The dependence of the EoS on state parameters

like the temperature T and the chemical potential µ are necessary input to these mod-

els. For a non-central heavy-ion collision, however, an external magnetic field B is also

generated by the spectators. Since the strength of this magnetic field reaches up to the

hadronic scales [5–7], it can have a significant impact on the properties of the transition
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and of the EoS. Similarly strong magnetic fields are expected to be present in dense neutron

stars [8] and to be generated during the electroweak transition in the early universe [9].

In each of these cases, the interplay between the strong dynamics and the coupling to the

external field can induce new and exciting phenomena. Examples include the the chiral

magnetic effect [10, 11] or the decrease of the transition temperature with growing magnetic

field [12, 13].

Thus, a clear theoretical understanding of the dependence of the EoS on T , µ and B

is desired. Most of our knowledge about the B = µ = 0 EoS comes from lattice Monte-

Carlo studies, see e.g. refs. [14–16]. The inclusion of a finite chemical potential µ poses

conceptual problems, when it comes to the lattice approach. On the contrary, nonzero

magnetic fields are straightforwardly simulated using standard Monte-Carlo algorithms.

Still, lattice results about the EoS for nonzero external magnetic fields are yet absent from

the literature.

On the other hand, there is another, remarkably simple approach, which can be used

to access the low-temperature region of the EoS: the Hadron Resonance Gas (HRG) model.

Within this model, the hadronic phase of QCD can be studied, even at nonzero chemical

potentials or external magnetic fields. Comparison to lattice QCD results reveals that the

HRG description gives a good approximation of thermodynamic observables even up to

temperatures just below the transition region, both at zero chemical potential (see, e.g., [16–

18]) and at nonzero chemical potential (see, e.g., [19–22]), especially, if an exponential

Hagedorn spectrum is also taken into account [23, 24]. Still, the HRG description has not

yet been employed for the case of nonzero magnetic fields.

In this paper, the hadronic EoS for nonzero magnetic fields is determined within the

HRG model. Section 2 is devoted to the discussion of thermodynamic relations in the

presence of a magnetic field. In section 3, the HRG approximation is detailed, and the

free energy for individual hadrons is calculated. The contributions from each hadron are

summed up in section 4 to obtain the total free energy density, from which the whole

equation of state is reconstructed. TheB- and T -dependence of thermodynamic observables

including the pressure, energy and entropy density, magnetization and speed of sound are

calculated. Finally, in section 5, we conclude.

2 Thermodynamics in an external magnetic field

The quantity on the top of the hierarchy of thermodynamic relations is the thermodynamic

potential — which we refer to as free energy. In terms of the partition function of the

system, this free energy reads F = −T logZ, and in the presence of a constant, external

magnetic field B is written as [25, 26]

F = E − TS −BMB, (2.1)

with E the energy,1 S the entropy and MB the magnetization. These observables satisfy

the differential relations

∂F
∂T

= −S, ∂F
∂B

= −MB,
∂F
∂V

= −p. (2.2)

1Note that E in eq. (2.1) denotes the total energy of the system, with the work necessary to maintain

the constant external field also taken into account [25].
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We also define here the corresponding densities as ε = E/V , s = S/V , f = F/V and

mB = MB/V . In the thermodynamic limit, V → ∞, differentiation with respect to the

volume simplifies to a multiplication by 1/V , and thus the pressure is given by

p = −F
V

= −f = −(fvac + f therm), (2.3)

where we anticipated that the free energy separates into a vacuum and a thermal contri-

bution, see eq. (3.6) below. From eqs. (2.1) and (2.3) the energy density is calculated as

ε = Ts+BmB − p. (2.4)

Another observable of interest is the speed of sound cs, which is defined in terms of differ-

entials at constant B,

c2
s =

∂p

∂ε

∣∣∣∣
B

=
∂p

∂T

∣∣∣∣
B

/
∂ε

∂T

∣∣∣∣
B

. (2.5)

We remark that the definition (2.3) leads to a pressure that is isotropic in space — solely

due to the assumption that the free energy F is an extensive quantity, and (in the thermo-

dynamic limit) is proportional to V . As a result, the speed of sound will also be isotropic.

Defining p in terms of the diagonal elements of the stress energy tensor leads to anisotropic

pressures (see, e.g., ref. [27]). A possible explanation for this apparent discrepancy was

given in ref. [28], in terms of a surface term to the stress energy tensor originating from

the Lorentz force density. We remark that the isotropy properties of the pressure have

also been discussed in ref. [29], where compressions at fixed magnetic field and at fixed

magnetic flux are distinguished.

3 Free energy density in the HRG model

In the HRG model [30], the thermodynamic potential, eq. (2.1), of the system is approx-

imated in the thermodynamic limit, V → ∞, by the partition function of a gas of non-

interacting free hadrons and resonances [31]. Thus, the free energy density of the model is

written as the sum of independent contributions coming from non-interacting hadrons h,

f =
∑
h

dh · fh ({eB, T}, {mh, qh/e, sh, gh}) , (3.1)

where each contribution fh depends on the external parameters (the magnetic field in

elementary charge units eB and the temperature T ), and internal properties of the hadron

(mass mh, spin sh, charge qh/e and gyromagnetic ratio gh). Each hadron enters the sum

with a certain multiplicity dh. The hadrons taken into account extend from pions up to the

Σ0 baryon, as listed in the latest edition of the Particle Data Book [32], and are tabulated

in table 1. The experimental values for the gyromagnetic ratios in ref. [32] are known

only for a few hadrons, and only with large uncertainties (except for the proton and the

neutron). Therefore we decided to take the gyromagnetic ratios to be gh = 2qh/e, as

dictated by universal tree-level arguments [33]. This corresponds to the assumption that

the considered hadrons are point-like objects; e.g. neutral hadrons have gh = 0. A possible
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hadron m(GeV) |q/e| s d hadron m(GeV) |q/e| s d

π± 0.135 1 0 2 p 0.938 1 1/2 2

π0 0.135 0 0 1 n 0.938 0 1/2 2

K± 0.495 1 0 2 η′ 0.958 0 0 1

K0 0.495 0 0 2 f0 0.980 0 0 1

η 0.548 0 0 1 a0 0.980 0 1 1

ρ± 0.776 1 1 2 φ 1.020 0 1 1

ρ 0.776 0 1 1 Λ 1.116 0 1/2 1

ω 0.782 0 1 1 h1 1.170 0 1 1

K±∗ 0.892 1 1 2 Σ± 1.189 1 1/2 2

K0
∗ 0.892 0 1 2 Σ0 1.189 0 1/2 1

Table 1. List of hadrons and resonances taken into account in the HRG description.

improvement of the method is to take into account the correct gyromagnetic ratios. The

energy levels for s = 1/2 and s = 1 particles with anomalous magnetic moments have been

discussed in refs. [34, 35]. These, however, lead to more complicated expressions for the

free energies, for which the Landau sums cannot be performed in general.

3.1 Energy levels

To reconstruct the free energy in the low-temperature region using eq. (3.1), contributions

from each particle type are summed up, with the assumption that the interaction between

them is negligible. Let us therefore take a free relativistic particle with momentum p =

(px, py, pz) and mass m, in the presence of a magnetic field of magnitude B, pointing in the

positive z direction. We consider the particle to have spin s and charge absolute value q

(thus, in our notations qB is always positive). The component of the spin in the direction of

the magnetic field is a conserved quantity, and can assume the values sz = −s,−s+1, . . . s.

The Landau levels are labeled by the index k. With these notations, the energy levels of a

charged particle (q > 0) in the presence of the magnetic field are given as [36],

E(pz, k, sz) =
√
p2
z +m2 + 2qB (k + 1/2− sz), (3.2)

while the energy levels for the neutral particle (q = 0) are

E0(p) =
√

p2 +m2. (3.3)

As mentioned above, a generalization for the description of anomalous magnetic moments

for s = 1/2 and s = 1 has been developed in refs. [34, 35]. In that approach, using a

magnetic field-dependent gyromagnetic ratio, certain inconsistencies in the s = 1 theory

can be resolved. On the other hand, the description of the spin-3/2 theory in terms of

Rarita-Schwinger fields [37] is known to exhibit non-causal behavior [38, 39]. Whether the

simple formula (3.2) adequately describes the dispersion relation of a spin-3/2 particle is

therefore not obvious. In fact, we will show in section 3.5 that — unlike the other spin

channels — the s = 3/2 sector would give a negative contribution to the pressure for any
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nonzero magnetic field, marking an instability in the theory. For this reason we do not

consider resonances with s = 3/2 or higher in the model.

At arbitrary finite temperature, the free energy density (at vanishing chemical poten-

tials) for a charged particle can be written as (see ref. [40] for the B = 0 relation, and e.g.

ref. [41] for the analogous expression at B 6= 0),

fc(s) = ∓
∑
sz

∞∑
k=0

qB

2π

∫
dpz
2π

(
E(pz, k, sz)

2
+ T log(1± e−E(pz ,k,sz)/T )

)
, (3.4)

where the lower sign corresponds to bosons (s integer) and the upper one to fermions (s

half-integer).2 The same for a neutral particle, on the other hand, is given by

fn(s) = ∓
∑
sz

∫
d3p

(2π)3

(
E0(p)

2
+ T log(1± e−E0(p)/T )

)
. (3.5)

We separate the total free energy density into a vacuum (T = 0) and a thermal part as

fvac(s) = f(s)|T=0 , f therm(s) = f(s)− fvac(s). (3.6)

The vacuum terms in eqs. (3.4) and (3.5) are ultraviolet divergent and need to be regu-

larized. We use dimensional regularization with d = 1− ε. After separating the divergent

contribution, the renormalization of the free energy density is carried out by subtracting

the B = 0 term, and by performing the renormalization of the pure magnetic energy B2/2.

As we will see, the latter is equivalent to renormalizing the elementary electric charge

e [42–45]. The vacuum free energy density has been obtained previously in e.g., refs. [41–

52], however, the connection to electric charge renormalization has not been stated in all

cases. In fact, it is a remarkable feature of the background field method, that electric

charge renormalization — and, accordingly, the coefficients of the β-function — can be

determined solely from how the free energy depends on an external magnetic field [44]. In

particular, this approach also gives insight into how the β-function can be related to the

mass-dependence of the free energy — and, thus, to the magnetic catalysis of the quark

condensate (see subsection 3.4). We remark that our renormalization prescription ensures,

that the contribution to the free energy density diminishes as the mass of the particle

increases, and thus the sum of eq. (3.1) in each spin sector will be convergent.

On the other hand, the thermal part is explicitly finite (reflecting the fact that each

divergence is independent of the temperature), and can be determined by numerical inte-

gration and summation.

3.2 Vanishing magnetic field

In order to carry out the renormalization of the B > 0 free energy density, first it is

necessary to determine the B = 0 contribution. The vacuum free energy density at B = 0

in d = 3− ε dimensions is given by

fvac(s,B = 0) = ∓1

2
(2s+ 1) · µε

∫
d3−εp

(2π)3−ε

√
p2 +m2, (3.7)

2Eq. (3.4) corresponds to a single charged particle. The contribution of the antiparticle is identical, and

is taken into account in the total free energy density by considering the multiplicities of table 1.
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where the lower sign is for bosons, and the upper for fermions. Here the scale µ appeared

to fix the dimension of the above expression to four. To relate this integral to the nonzero

B case — following ref. [49] — we rescale the momenta as p→ p
√

2qB, with qB being an

arbitrary dimensional scale. We denote x = m2/2qB and perform the integration using

the formula (A.1) to obtain

fvac(s,B = 0) = ∓1

2
(2s+ 1)(2qB)2 −1

16π2

(
2qB

4πµ2

)−ε/2
Γ(−2 + ε/2)x2−ε/2. (3.8)

We expand in ε using eq. (A.2),

fvac(s,B = 0) = ±(2s+ 1)
(qB)2

8π2
x2

[
1

ε
+

3

4
− γ

2
− 1

2
log

(
2qB

4πµ2

)
− 1

2
log(x)

]
. (3.9)

Expressing this with x = m2/2qB cancels all B-dependence, of course.

3.3 Nonzero magnetic field

Let us now consider a particle with charge q and spin s in a magnetic field B. The energy

levels are given by eq. (3.2). In terms of these levels, the vacuum free energy density is

written using dimensional regularization as

fvac(s) = ∓1

2

∞∑
k=0

∑
sz

qB

2π
· µε

∫
d1−εpz
(2π)1−ε

√
p2
z +m2 + 2qB(k + 1/2− sz), (3.10)

where again the upper sign corresponds to fermions and the lower to bosons, and µ is the

scale related to dimensional regularization. We abbreviate a = 1/2 − sz and integrate in

pz (using formula (A.1)) to get

fvac(s) = ±(qB)2

8π2

(
2qB

4πµ2

)−ε/2
Γ(−1 + ε/2)

∑
a

ζ(−1 + ε/2, x+ a), (3.11)

where the sum over k was converted into a Hurwitz ζ function, see eq. (A.3). Now expanding

in powers of ε, using eq. (A.2), we obtain

fvac(s) = ±(qB)2

8π2

∑
a

[(
−2

ε
+ γ + log

(
2qB

4πµ2

)
− 1

)(
− 1

12
− (x+ a)2

2
+
x+ a

2

)
(3.12)

−ζ ′(−1, x+ a)

]
.

To calculate the change in the free energy density due to the magnetic field, we subtract

the B = 0 contribution, eq. (3.9),

∆fvac(s) = ±(qB)2

8π2

∑
a

[(
2

ε
− γ − log

(
2qB

4πµ2

)
+ 1

)(
1

12
− a

2
+
a2

2

)
−ζ ′(−1, x+ a)− x2

4
+
x2

2
log(x)

]
, (3.13)

where we used that
∑

a(a− 1/2) = 0.
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This expression is still divergent, as it contains the purely magnetic field-dependent

term ∼ B2/ε. In order to cancel this divergence, we have to redefine the free energy density

by including in it the energy density of the magnetic field, B2/2 [42–45]. The divergence

is then absorbed into the renormalization of the electric charge, and simultaneously, into

that of B,

∆fvac,r = ∆fvac +
B2

2
, B2 = ZqB

2
r , q2 = Z−1

q q2
r , qrBr = qB, (3.14)

with the renormalization constant

Zq = 1∓ q2
r

8π2

∑
a

(
2

ε
− γ − log

(
m2
?

4πµ2

))(
1

6
− a+ a2

)
, (3.15)

which, for a spin-1/2 particle,

Zspinor
q = 1 +

1

2
βspinor

1 q2
r

(
−2

ε
+ γ + log

(
m2
?

4πµ2

))
, βspinor

1 =
1

12π2
, (3.16)

reproduces the well-known expression3 (see, e.g., ref. [53]), with the leading coefficient of

the spinor QED β-function appearing in front of the divergence. Similarly, for a spin-0

particle we get

Zscalar
q = 1 +

1

2
βscalar

1 q2
r

(
−2

ε
+ γ + log

(
m2
?

4πµ2

))
, βscalar

1 =
1

48π2
, (3.17)

where the scalar QED β-function coefficient enters (cf. ref. [44]). Herem? = m is a constant,

which is fixed to the physical mass of the particle (see discussion in subsection 3.4). The

renormalization of eq. (3.14) then leads to

∆fvac,r(s) =
B2
r

2
∓ (qB)2

8π2

∑
a

[
ζ ′(−1, x+ a)− x2

2
log(x)

+
x2

4
−
(

1

12
− a

2
+
a2

2

)
(log(x) + 1)

]
, (3.18)

which can be rewritten in a compact form in the original variables,

∆fvac,r(s) =
B2
r

2
∓ (qB)2

8π2

[∑
sz

ζ ′ (−1, x+ 1/2− sz)

+ (2s+ 1) ·
(
x2

4
− x2

2
log(x) +

log(x) + 1

24
(1− 4s(s+ 1))

)]
.

(3.19)

We remark that instead of using dimensional regularization, the free energy density in

the s = 0 and s = 1/2 sectors can also be calculated using Schwinger’s proper time

3The factor 1/2 in front of βspinor
1 is canceled, if the contribution of the antiparticle is also taken into

account. To convert to cutoff regularization, see eq. (A.7).
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formalism [42], which gives the same results [44, 47]. The renormalized free energies of

eq. (3.19) are given for s = 0, 1/2 and 1 in appendix B.

Note that the renormalization constant Zq is such, that the expansion of the renormal-

ized ∆fvac,r in the magnetic field at O(B2) exactly equals B2
r/2 — in accordance with the

expectation that the free energy, at T = 0 and at small magnetic fields, comes exclusively

from the external field itself. Indeed, using the asymptotic behavior, eq. (A.5), of the Hur-

witz ζ function, it is easy to check that the only contribution to ∆fvac,r at O(B2) is the

pure magnetic term, and the small B (large x) limit of the square parentheses in the second

contribution of eq. (3.19) is zero. Note that this also ensures, that the large mass limit of

the matter contribution vanishes. Different renormalization schemes have also been used

in the literature. For example, the scheme employed in ref. [49] corresponds to dropping

all mass-independent terms in eq. (3.13), whereas in the one used in ref. [51], an additional

∼ (qB)2ζ ′(−1, a) finite term is also subtracted. These schemes are connected to that of

eq. (3.15) by a finite renormalization, which would produce a renormalized vacuum free

energy of the form B2
r/2 + O(B2) — instead of defining the total quadratic term to be

B2
r/2. Accordingly, the different renormalization in refs. [49, 51] leads to a ∆fvac,r (and

thus, also to a magnetization mB) that grows logarithmically with the mass — instead of

approaching zero for m→∞, as expected on physical grounds. The prescription (3.15) is

the only choice, for which the total quadratic term is B2
r/2, and the large mass limit of the

free energy (and the magnetization) vanishes.

If more particles (possibly with different masses, charges and spins) are present in the

system, the renormalization constant Zq is extended to absorb the divergences coming from

the interaction of each particle with B. The pure magnetic energy B2
r/2 will be unchanged,

independently of the number and properties of these particles. Note that the remaining

part of the free energy, ∆fvac,r −B2
r/2, is induced by the interaction of the magnetic field

with virtual hadrons present in the quantum vacuum. This is indeed not a classical effect,

since it cancels in the entropy (which is written as the temperature-derivative of the free

energy, eq. (2.2)), but is of purely quantum mechanical origin. In particular, ∆fvac,r can be

represented as an infinite sum of loop diagrams with even number of external photon lines

(with special momenta, such that these photons correspond to the external magnetic field).

In this representation, the leading O((qB)4) term, for example, is given by the scattering

of two photons through a virtual charged hadron loop.

3.4 Renormalization and magnetic catalysis

Let us consider the mass-dependence of the vacuum free energy density. In this respect, one

has to carefully distinguish between the actual mass m of the hadron, and the fixed mass

m? that appears in the renormalization prescription, eq. (3.15). Writing out the variables

explicitly, the first relation of eq. (3.14) reads

∆fvac,r(m,m?) = ∆fvac(m) +
B2
r

2
Zq(m?). (3.20)
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The renormalization ensures that the total renormalized free energy density up to O(B2)

equals the pure magnetic contribution B2
r/2 for a hadron of mass m = m?,

∆fvac,r(m,m?)|m=m?
=
B2
r

2
+O(B4). (3.21)

The renormalization prescription (i.e., m?) does not change, if the mass of the hadron is

varied — in this sense the employed scheme is mass-independent.

Let us now consider the up quark condensate at T = 0, which is given in terms of the

vacuum free energy density as

ūu ≡ −∂f
vac,r

∂mu
, (3.22)

where mu is the mass of the up quark. We can write the change in the condensate due to

the magnetic field through the hadron sigma terms (∂(m2)/∂mu) as

∆ūu = −∂∆fvac,r(m,m?)

∂(m2)
· ∂(m2)

∂mu
= −∂∆fvac(m)

∂(m2)
· ∂(m2)

∂mu
(3.23)

where we inserted eq. (3.20). One can easily check using eq. (3.13) for ∆fvac, that the result

is a positive condensate ∆ūu > 0 of O(B2), in agreement with the well-known magnetic

catalysis mechanism (see, e.g., refs. [54, 55]).4

There is a further consequence of the separation, eq. (3.20). Let us consider the case of

charged pions, with m = mπ, for which the sigma term is calculated using the Gell-Mann-

Oakes-Renner relation,

m2f2
π = (mu +md) ūuB=0 → ∂(m2)

mu
=
ūuB=0

f2
π

, (3.24)

where ūuB=0 is the zero-field up quark condensate and fπ the chiral limit of the pion decay

constant. Inserting eq. (3.21) into eq. (3.20), we get,

B2
r

2
+O(B4) = ∆fvac(m) +

B2
r

2
Zscalar
q (m). (3.25)

Now we differentiate this equation with respect to mu. Since the left hand side is indepen-

dent of the mass up to O(B2), we can express the condensate, using the right hand side of

eq. (3.23), as

∆ūu =
B2
r

2

∂Zscalar
q (m)

∂(m2)
· ∂(m2)

∂mu
+O(B4) =

1

2
βscalar

1 (qB)2 ūuB=0

m2f2
π

+O(B4), (3.26)

4A very similar argument applies to a different observable as well. Recently it was shown that the QCD

magnetization separates into spin- and orbital angular momentum-related contributions, and the spin term

ūσµνu has been determined on the lattice [56]. In fact, ūσµνu can be written as the derivative of ∆fvac,r

for a spin-1/2 quark, with respect to the gyromagnetic ratio g (replace a = 1/2− sz with a = 1/2− g/2 · sz
in the calculation of subsection 3.3). The renormalization prescription of eq. (3.15), on the other hand,

contains the fixed g? = 2 and, thus, does not contribute to the derivative with respect to g. Again, the

result is of O(B2), in agreement with ref. [56] — in contrast to the total vacuum free energy density that

we calculate here, which is always of the form B2
r/2 +O(B4).
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Figure 1. Magnetic field dependence of the vacuum pressure in various spin channels for charge

q/e = 1. The dots represent the corresponding values for a π± (red), a proton (blue), a ρ± (green)

and a ∆± particle (gray) at a magnetic field eB = 0.1 GeV2. The dashed lines represent lower

bounds on m2/2eB for each spin sector. The contribution from the ∆± has been multiplied by −1.

where we inserted the expression (3.17) of the scalar QED renormalization constant for a

pair of positively and negatively charged pions, and employed eq. (3.24). Using the value of

βscalar
1 = 1/(48π2), the result reproduces the chiral perturbation theory formula [57, 58] for

the charged pion contribution to the condensate, up to O(B2). Altogether, this shows that

the magnetic catalysis of the condensate is a direct consequence of the actual form of the

electric charge renormalization constant in scalar QED. In particular, the fact that scalar

QED is not asymptotically free (βscalar
1 > 0), implies that the quark condensate undergoes

magnetic catalysis at T = 0, and increases (to leading order) quadratically with growing B.

In the following, we will not consider the condensate, but only the free energy itself,

for which it is not necessary to distinguish between m and m?. Moreover, we will exclude

the pure magnetic term B2
r/2 from consideration, since it gives no information about the

response of hadrons to the external field. Therefore, the vacuum pressure will be of O(B4).

The superscript r denoting the renormalized free energy will also be dropped.

3.5 Stability and spin channels

We notice that the formula (3.19) is only well-defined for values of x = m2/2qB for which

x+
1

2
− s > 0 → (2s− 1) qB < m2. (3.27)

For any spin s ≥ 1, this constraint gives a critical magnetic field Bc, where the theory

breaks down. Clearly, as Bc is approached, the assumptions of the model — in particular,

that hadrons are point-like particles — become incorrect. This implies that one is restricted

to x > 1/2 for the s = 1 and x > 1 for the s = 3/2 channel. The critical magnetic fields

corresponding to the ρ± hadron is eBc(ρ
±) = m2

ρ ≈ 0.6 GeV2. This observation forms the

basis of the idea of a superconducting vacuum at high magnetic fields B > Bc [59].
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Figure 2. Individual contributions to the HRG pressure as a function of the temperature for

eB = 0 (left panel) and eB = 0.2 GeV2 (right panel). Note the change in the contribution of

charged particles, especially π± and ρ±, between the two panels.

In figure 1 we plot the dependence (3.19) of the vacuum pressure ∆pvac = −∆fvac on

m2/2qB in the four spin channels s = 0 . . . 3/2, with q/e = 1. We find that the vacuum

pressure for the s = 3/2 channel is negative (and has been multiplied by −1 in the figure),

whereas the other three are positive. In fact, above s = 1, the sign of ∆pvac starts to

alternate, with spin-integer hadrons contributing positively and spin-half-integer hadrons

negatively to the pressure. The s = 1/2 channel seems to be the only exception to this

rule. The colored dots in figure 1 represent the corresponding lowest-lying particles at

eB = 0.1 GeV2. Although for this magnetic field, the charged pion is seen to dominate, as

the magnetic field grows, at some point the ∆± would clearly take over, turning the total

vacuum free energy density fvac positive, and, accordingly, the T = 0 pressure negative.

This indicates an instability, which suggests that the HRG model in terms of the dispersion

relation (3.2) is not applicable for s = 3/2.

4 Results

We will make use of the thermodynamic relations (2.2)–(2.5) to determine the equation of

state for nonzero magnetic fields. At B = 0, it is customary to normalize the free energy

density, or, the pressure, by T 4. As the magnetic field is switched on, the T = 0 pressure is

in general nonzero, and thus p/T 4 diverges as T decreases. We remark that the pressure at

T = 0 is nonzero even after dropping the pure magnetic energy B2
r/2 in eq. (3.19), as (qB)4

contributions are still present. Therefore, in the following we will plot the pressure and

other EoS-related observables in physical units, without a normalization by T 4. In figure 2,

the individual contributions of various hadrons to the pressure are shown as functions of

the temperature, for B = 0 (left panel) and for eB = 0.2 GeV2 (right panel). In the

low temperature region (T < 100 MeV), the pressure is dominated by pions for vanishing

magnetic field. As B increases, this dominance is lost, as vacuum contributions in the other

spin channels — most importantly, for the ρ± hadron — arise.

Since, roughly speaking, the effective mass of charged particles ism2
eff = m2+qB(1−2s)

(see eq. (3.2)), it increases with B for s = 0 hadrons, but decreases for s = 1 particles.
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Figure 3. The equation of state in the HRG model. Shown are (from left to right and downwards)

the pressure, the magnetization, the energy density, the entropy density and the speed of sound

squared as functions of the temperature, for eB = 0 (solid red lines), eB = 0.2 GeV2 (dashed blue)

and eB = 0.3 GeV2 (dot-dashed green).

Accordingly, the thermal part of the pressure — which contains the Boltzmann weights

exp(−meff/T ) — is larger for ρ±, whereas it smaller for π±, as compared to the B = 0 case.

This effect is also visible in the temperature dependence of the π± and ρ± contributions in

the right panel of figure 2. We note moreover, that in our approach neutral particles are

not affected by the magnetic field, since their gyromagnetic ratios are set to zero.

We proceed by performing the sum over hadrons to determine the dependence of

thermodynamic observables on B and T . These observables are the pressure p, the energy
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density ε, the entropy density s, the magnetization mB and the speed of sound cs (for

their definition, see section 2). In figure 3, these quantities are plotted as functions of

the temperature for eB = 0, 0.2 GeV2 and 0.3 GeV2. The pressure is increased by the

magnetic field in the hadronic sector, and, correspondingly, the magnetization is positive,

indicating a paramagnetic hadronic phase — with interesting implications regarding the

deconfinement transition temperature, based on large Nc arguments [60].

Since the entropy is written as the derivative of p with respect to T , it is insensitive

to the vacuum contribution, and vanishes at zero temperature. Moreover, even at nonzero

temperatures, s barely changes with B, in the range of magnetic fields under consideration.

A much more pronounced signal can be seen in the speed of sound, which exhibits a dip,

moving towards lower temperatures as B is increased. The minimum position of c2
s is one

possible definition of the deconfinement transition temperature Tc (see, e.g. ref. [16]). The

behavior of the speed of sound thus indicates that Tc decreases as the external magnetic

field grows, in agreement with the recent lattice results [12, 13].

5 Conclusions

In this paper, we have developed a Hadron Resonance Gas model to study the QCD equa-

tion of state for nonzero magnetic fields. Using the renormalization properties of the free

energy density, we have derived the relation eq. (3.26), which connects the scalar QED β-

function and the mass-dependence of the quark condensate. This correspondence explains

the well-known magnetic catalysis phenomenon, in terms of the renormalization group run-

ning of the scalar QED coupling, thereby relating two, seemingly very different concepts.

We proceeded by investigating the individual contributions from hadrons to the pres-

sure, and observed, that pions no longer dominate the low-temperature region if the mag-

netic field exceeds B & 0.2 GeV2, thus, it is essential to take into account higher-lying

resonances — especially the ρ± hadron. By summing up the total pressure and considering

its B-dependence, the magnetization is determined to be positive, showing that the QCD

vacuum at low temperatures is paramagnetic. Using the magnetization and the pressure,

the whole equation of state is reconstructed. The behavior of the speed of sound suggests,

that the deconfinement transition temperature is lowered as the magnetic field is increased.

We stress that the results obtained in the HRG model are reliable only at low tempera-

tures and low magnetic fields. The limitation in the temperature is obviously given by the

transition to the quark-gluon plasma phase, and as lattice results show, the HRG approx-

imation at B = 0 is reliable up to T ≈ 130 − 150 MeV. Concerning the magnetic field,

eB < m2
ρ ≈ 0.6 GeV2 must be fulfilled for the description to be consistent. The magnetic

field also has to be small enough such that the assumption of neglecting s = 3/2 hadrons

(see subsection 3.5) is valid. The lattice determination of the EoS at nonzero magnetic

fields is necessary to test the limitations of the HRG approach, and to confirm our findings.
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A Formulae

In this appendix we summarize the formulae that were used in the derivation of the vacuum

free energy density in subsection 3.3.

• For integration in d dimensions we use (see, e.g., ref. [61])∫ ∞
−∞

ddp

(2π)d

√
p2 +M2 =

1

(4π)d/2
Γ(−1/2− d/2)

Γ(−1/2)
(M2)1/2+d/2, (A.1)

and Γ(−1/2) = −2
√
π.

• The expansion of the Γ function around some negative integers is given by

Γ(−1 + ε/2) = −2

ε
+ γ − 1 +O(ε), Γ(−2 + ε/2) =

1

ε
− γ

2
+

3

4
+O(ε), (A.2)

where γ is the Euler constant.

• The Hurwitz ζ function is defined as

∞∑
k=0

1

(x+ k)z
= ζ(z, x), (A.3)

with the expansion [62]

ζ(−1 + ε/2, x) ≈ − 1

12
− x2

2
+
x

2
+
ε

2
ζ ′(−1, x) +O(ε2), (A.4)

and asymptotic behavior [62],

ζ ′(−1, x) =
1

12
− x2

4
+

(
1

12
− x

2
+
x2

2

)
log(x) +O(x−2). (A.5)

• Writing the same integral in dimensional regularization with parameter ε and scale

µ, and in cutoff regularization with cutoff Λ,

−(µ2)ε/2
∫ ∞

0

ds1+ε/2

s
e−m

2s = −2

ε
+ γ + log

(
m2

µ2

)
+O(ε),

−
∫ ∞

1/Λ2

ds

s
e−m

2s = γ + log

(
m2

Λ2

)
+O(1/Λ2),

(A.6)

we note that the two schemes are related as

− 2

ε
+ log

(
m2

µ2

)
↔ log

(
m2

Λ2

)
. (A.7)

– 14 –



J
H
E
P
0
4
(
2
0
1
3
)
0
2
3

• The Hurwitz ζ function at shifted second argument fulfills

ζ ′(−1, x+ 1) = ζ(−1, x) + x log(x), (A.8)

which holds since the derivatives of the two sides are equal, and ζ ′(−1, 0) = ζ ′(−1, 1).

B Renormalized free energies

Here we give the renormalized free energy, eq. (3.19), for spins s = 0, 1/2 and 1, without

the pure magnetic energy B2
r/2,

∆fvac,r(0) =
1

8π2
(qB)2

[
ζ ′ (−1, x+ 1/2) +

x2

4
− x2

2
log(x) +

log(x) + 1

24

]
,

∆fvac,r(1/2) =
−1

4π2
(qB)2

[
ζ ′ (−1, x) +

x

2
log(x) +

x2

4
− x2

2
log(x)− log(x) + 1

12

]
,

∆fvac,r(1) =
3

8π2
(qB)2

[
ζ ′ (−1, x− 1/2) +

1

3
(x+ 1/2) log(x+ 1/2)

+
2

3
(x− 1/2) log(x− 1/2) +

x2

4
− x2

2
log(x)− 7

log(x) + 1

24

]
.

(B.1)

where we made use of the identity of eq. (A.8).
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