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1 Introduction

The AdS/CFT correspondences relates the strongly coupled phase of 3 + 1 dimensional

conformal gauge theories (CFT’s) to theories of gravity compactified to 4+1 dimensions [1–

3]. In the strongly coupled planar limit, the rank of the gauge-group N and its ’t Hooft

coupling λ are related to Newtons constant GN and the string scale α′ via

λ ∝ L4

α′ 2
N2 ∝ L3

GN
(1.1)

where the exact coefficients in the relations (1.1) depend on the details of the theory [4]. In

this work we will be interested in the hydrodynamic phase of non-charged strongly coupled

gauge theories whose dual is given by a neutral, asymptotically AdS black hole. In particu-

lar, we will be interested in corrections to the second order transport coefficients of the dual

gauge theory which are induced by Gauss-Bonnet corrections to the gravitational action.

Adding a Gauss-Bonnet term to the gravitational action may be thought of as an effec-

tive contribution to the action which arises from a variety of possible stringy corrections.

For instance, it could capture some of the effects of closed string loop corrections [5] or it

could be induced by orientifold planes or D branes which in certain instances would corre-

spond to changing the gauge group from the canonical SU(N) to SO(N) or USp(2N) [6–8].

Regardless of its origin, the appearance of a Gauss-Bonnet term in the gravitational induces

a shift in the central charges a and c of the CFT as we now explain.

The trace anomaly of a CFT can be parameterized by central charges a and c such that

Tµ
µ =

c

16π2

(

RµνρσR
µνρσ − 2RµνR

µν +
1

3
R2

)

− a

16π2

(

RµνρσR
µνρσ − 4RµνR

µν + R2
)

(1.2)

with Tµ
µ the trace of the stress tensor and Rµνρσ, Rµν and R the Riemann tensor, Ricci ten-

sor and Ricci scalar respectively. In the absence of higher derivative corrections to the grav-

itational action one has a = c [4, 9]. The introduction of a Gauss-Bonnet term to the action

implies that a− c 6= 0 [10, 11]. In what follows, we will assume that there exists a regime

of parameters of the theory in which one can consistently neglect six and higher derivative

corrections to the gravitational action. (See for instance [11, 12] for explicit examples where
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such conditions may be satisfied.) In this strongly coupled regime, we will study corrections

to second order transport coefficients of the hydrodynamic phase of the dual gauge theory.

Hydrodynamics can be thought of as an effective theory, which, in the absence of con-

served charges, is characterized by a velocity field uµ normalized such that uµuµ = −1 and

a temperature T . Expanding the energy momentum tensor to second order in gradients of

the hydrodynamic variables and imposing Weyl covariance and tracelessness of the energy

momentum tensor, one finds

Tµν = P (4uµuν + ηµν) − ησµν +
3
∑

i=0

λiΣ
(i)
µν (1.3)

where

σµν = 2∂〈µuν〉 , ωµν =
1

2
Pµ

αPν
β (∂αuβ − ∂βuα) (1.4)

and

Σ(0)
µν = 〈u

α∂ασµν〉 +
1

3
σµν∂αu

α

Σ(1)
µν = σ〈µασ

α
ν〉 , Σ(2)

µν = σ〈µαω
α
ν〉 , Σ(3)

µν = ω〈µαω
α
ν〉

(1.5)

and triangular brackets denote a traceless transverse projection

A〈µν〉 =
1

2
Pµ

αPν
β (Aαβ + Aβα) − 1

3
PµνP

αβAαβ (1.6)

with

Pµν = ηµν + uµuν . (1.7)

See [13, 14] for more details regarding the derivative expansion.

In [15], following [16, 17], it was shown that in theories which preserve rotational

invariance, the shear viscosity to entropy density ratio η/s satisfies

η

s
=

1

4π
(1.8)

in the supergravity limit, regardless of the matter content of the theory. (When rotational

symmetry is broken then (1.8) no longer holds as has been shown in [18–20].) Taking the

result (1.8) and applying it unwaveringly to the quark gluon plasma which is presumably

created in the process of a collision of two heavy ions gives results which are in qualitative

agreement with experiment [21].

When computing second order transport coefficients of a conformal theory using the

gauge-gravity duality, one obtains a similar relation [22, 23]

− 2λ0 + 4λ1 − λ2 = 0 . (1.9)

The role of second order transport coefficients in simulations of heavy ion collisions has

been discussed in, for example, [21].

Once Gauss-Bonnet corrections to Einstein-gravity are taken into account, rela-

tion (1.8) breaks down and one finds, instead,

η

s
=

1

4π

(

1 − δ + O(δ2)
)

(1.10)
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where δ = c−a
c and c and a correspond to the central charges of the CFT as defined

in (1.2) [11, 12, 24, 25] (see also [26–37] for related work). In what follows, we show that

the relation (1.9) does not receive corrections in the presence of Gauss-Bonnet terms and

remains valid at least to order O(δ2).

As pointed out in [23] the relations (1.8) and (1.9) while similar in spirit do differ in

a consequential way. While (1.8) relates transport properties η to equilibrium properties

s, equation (1.9) is a relation among transport coefficients.

The deviation (1.10) of the ratio of the shear viscosity to entropy density from the value

given in (1.8) is, perhaps, expected since (1.8) does not hold in the non planar weakly cou-

pled theory. Turning our attention to (1.9), the value of the λi’s at weak coupling were com-

puted for various theories in [38] using kinetic theory, with results which deviate from (1.9).

Since a and c do not get corrected by marginal parameters [5], we expect that the differ-

ence c − a which controls the coefficient of the Gauss Bonnet term is not associated with

stringy, α′, corrections. It would be interesting to study the effect of six and higher order

corrections to the gravitational action (which should correspond to subleading corrections

to the t’ Hooft coupling) on equation (1.9) (see [39] for initial progress in this direction).

2 Computation of transport coefficients

The starting point for our computation is the action

S = − 1

16πG5

∫ √
−g

(

R +
12

L2
− θLGB

)

d5x + Sb (2.1)

where

LGB = RmnpqR
mnpq − 4RmnR

mn + R2 (2.2)

and Sb are appropriate counter terms which make the variational principle well defined

and the Brown-York stress tensor finite [40, 41]. The Roman indices m, n = 0, . . . , 4 refer

to bulk quantities while Greek indices µ, ν = 0, . . . , 3 refer to boundary quantities. The

parameter θ which controls the strength of the Gauss-Bonnet term is related to the field

theory quantity δ = (c− a)/a via 8θ = δ [10, 11].

In a coordinate system where the asymptotically AdS geometry is given by

lim
r→∞

ds2 = r2ηµνdx
µdxnu , (2.3)

The prescription for computing the boundary theory stress tensor Tµν to linear order in

θ is given by [27, 42]

Tµν = lim
r→∞

r2

L28πG5

(

Kµν −Kγµν + 2θ (3Jµν − J γµν) − 3

L
γµν +

θ

L3
γµν

)

(2.4)

where

γmn = gmn −NmNn (2.5)

is the boundary metric with Nn = δ4n/
√

g44 a unit outward vector to the boundary and

Kmn = −1

2
(∇mNn + ∇nNm) (2.6)
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is the extrinsic curvature on the boundary. The tensor Jmn is given by

Jmn =
1

3

(

2KKmpKp
n + KpsKpsKmn − 2KmpKpsKsn −K2Kmn

)

(2.7)

and K and J are the trace of Kmn and Jmn respectively.

The resulting equations of motion are given by:

Rmn − 1

2
Rgmn − 6

L2
gmn − θ

2
gmnLGB+

+ 2θ
(

RmpqlR
pql

n − 2RpqRmpnq − 2R q
m Rqn + RRmn

)

= 0 .
(2.8)

If we use an ansatz of the form

ds2 = −r2fdt2 + r2(dxi)2 + 2Sdtdr (2.9)

and set L = 1, then we find that

f = 1 − 1

b4r4
+

2θ

b8r8
S = 1 − θ (2.10)

solves the equations of motion to linear order in θ. Here b is a conveniently chosen

integration constant. The resulting energy momentum tensor which follows from the

prescription (2.4) is given by

Tµν =
T 4π4

16πG5
(1 + 3θ) diagonal(3, 1, 1, 1) (2.11)

where T is the Hawking temperature, related to b through

T =
2 − 3θ

2bπ
, (2.12)

and G5 is related to the rank of the gauge group through a relation of the form (1.1).

To compute the transport coefficients η, and λi we follow the prescription of [14]. We

boost the solution (2.9) so that it takes the form

ds2 = −r2fuµuνdx
µdxν + r2Pµνdx

µdxν − 2Suµdx
µdr (2.13)

where

uµ =
1

√

1 − β2

(

1, ~β
)

Pµν = ηµν + uµuν . (2.14)

We now promote the integration constants βi and b to become space-time dependent fields

βi(x
α) and b(xα) and correct the metric order by order in derivatives of uµ and b. It

is most efficient to decompose the metric into scalar, vector and tensor modes of the

SO(3) ⊂ SO(3, 1) symmetry under which uµ is (locally) invariant, i.e., we write

ds2 = r2kuµuνdx
µdxν + r2Pµνdx

µdxν − 2Suµdx
µdr

+ r2 (uµVν + uνVµ) dxµdxν + r2Πµνdx
µdxν (2.15)
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and expand k, V , S and Π in gradients of uµ and b. It is convenient to denote the n’th

order correction to k, V , S and Π with a superscript (n). Thus, for example

Π(0)
µν = V (0)

µ = 0 S(0) = 1 − θ k(0) = −f . (2.16)

In what follows we will present our computation using the dimensionless parameter

ρ = rb in favor of r. For n ≥ 1, and to first order in θ, we find that the equations of

motion for S(n)(ρ), k(n)(ρ), V
(n)
µ (ρ) and Π

(n)
µν (ρ) take the form

(

S(n)
)′

= S(n)

(

(

ρ4 + 4θ
)

k(n)
)′

+ 2

((

ρ4 − 1 + θ

(

3 − 2 − ρ8

ρ4

))

S(n)

)′

= k(n)

(

ρ
(

ρ4 + 4θ
)

V (n) ′
µ

)′
= V(n)

µ

((

ρ(ρ4 − 1) + 2θ

(

3 − 2ρ4

ρ3

))

Π(n) ′
µν

)′

= P(n)
µν

(2.17)

where ′ denotes a derivative with respect to ρ and S(n)(ρ), P
(n)
µν (ρ), k(n)(ρ) and V

(n)
µ (ρ)

are source terms which have to be determined perturbatively. We emphasize that (2.17)

are correct up to O
(

θ2
)

.

The solution to (2.17) is dual to a hydrodynamic state in the boundary theory.

Consequentially, the boundary conditions we impose when solving (2.17) are that the

fields are finite at the horizon (ρ = 1), that the boundary theory metric is the Minkowski

metric (implying that the fields S(n), k(n), V
(n)
µ and Π

(n)
µν fall off fast enough near the

boundary) and, in addition, we require that the boundary theory stress tensor defined

in (2.4) is in the Landau frame (implying that the O(r−4) component of k(n) and V
(n)
µ

vanish at the asymptotic AdS boundary). We refer the reader to [14, 43] for a more

detailed description of these boundary conditions.

After solving the equations of motion we can compute the hydrodynamic stress tensor

by inserting (2.15) into (2.4) and expanding to O(θ2) and O(∂3). After some algebra, we

find that

Tµν =
T 4π4

16πG5
(1 + 3θ)(4uµuν + ηµν) +

(1 − 3θ)

4πG5
πµν , (2.18)

where πµν is the coefficient of the O(r−4) term of Πµν at large r. (An explicit computation

of the θ = 0 limit of (2.18) can be found in [43].)

The solution to the equations of motion to first order in gradients was computed

in [27]. For completeness we reproduce it here. The sources for the equations of motion

take the form

S(1) = 0

k(1) = b

(

2ρ2 − θ
6ρ4 + 8

3ρ2

)

∂αu
α

V(1)
µ = b

(

3ρ2 − θ
3ρ4 + 4

ρ2

)

uα∂αuµ

P(1)
µν = b

(

−3ρ2 + θ
3ρ4 − 4

ρ2

)

σµν

(2.19)
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and the solution is given by

S(1)(r) = 0

k(1)(r) =
2

3r
(1 − θ) ∂αu

α

V (1)
µ (r) = −1

r
(1 − θ)uα∂αuµ

Π(1)
µν (r) =

[

1

2
(2 + 3θ) bF1(br) + θ bF2(br)

]

σµν

(2.20)

where

F1(ρ) = − ln(ρ) +
1

2
ln(ρ + 1) +

1

4
ln(ρ2 + 1) − 1

2
arctan(ρ) +

π

4

F2(ρ) =
1

4

(

6

ρ4
− 8

ρ
− 1

1 + ρ
− 1 + ρ

1 + ρ2

)

Using (2.18), the resulting hydrodynamical energy momentum tensor is given by

Tµν =
T 4π4

16πG5
(1 + 3θ) (4uµuν + ηµν) − T 3π3

16πG5
(1 − 5θ)σµν (2.21)

from which we can read the shear viscosity

η =
T 3π3

16πG5
(1 − 5θ) . (2.22)

We can evaluate the entropy density of the system using s = dP/dT to obtain

η

s
=

1

4π
(1 − 8θ) =

1

4π
(1 − δ) (2.23)

which reproduces the results in [24, 27].

Since we are working in the Landau frame then, according to (2.18), in order to

compute the second order transport coefficients we need only solve the tensor equations

for Π
(2)
µν in (2.17). An explicit computation gives us

P(2)
µν = P

(2)
0 Σ(0)

µν + P
(2)
1 Σ(1)

µν + P
(2)
2 Σ(2)

µν + P
(2)
3 Σ(3)

µν (2.24)

where

b−2P
(2)
0 (ρ)=ρ− 2ρ3/2

(

ρ3/2F1

)′
+ θ

[

−2ρ +
12

ρ3
− 2ρ3/2

(

ρ3/2 (2F1 + F2)
)′

+

(

8 + 3ρ4

ρ

)1/2
(

(

8 + 3ρ4

ρ

)1/2

F1

)′]

b−2P
(2)
1 (ρ)=ρ−3ρ2F1+ρ

(

ρ4−1
)

F ′
1
2+θ

[

−6ρ+
12

ρ3
−
(

8+3ρ4

2ρ2

)

F1+2ρ
(

ρ4−1
)

F ′
1

(

F ′
1+F ′

2

)

− 3ρ2F2(ρ) − 4
((

ρ4 + 1
)

F ′
1

)′
+

2
(

1 − ρ8
)3/4

ρ3 (1 − ρ4)
5/8

(

ρ

(

1 − ρ8
)7/8

(1 + ρ4)
5/8

F ′
1
2

)′]
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b−2P
(2)
2 (ρ)=2ρ + 4ρ3/2

(

ρ3/2F1

)′
+ θ

[

−4ρ− 8

ρ3
+ 4ρ3/2

(

ρ3/2 (2F1 + F2)
)′

− 2

(

8 + 3ρ4

ρ

)1/2
(

(

8 + 3ρ4

ρ

)1/2

F1

)′]

b−2P
(2)
3 (ρ)=4ρ +

4

ρ3
+ θ

[

8
33 + ρ4 − ρ8

ρ7

]

.

The solution to the equation of motion (2.17) takes the form

Π(2)
µν =

3
∑

j=0

ΛjΣ
(j)
µν (2.25)

where

Λj = −
∫ ∞

ρ

{
∫ x
1 P

(2)
j (x′) dx′

x (x4 − 1)

[

1 + 2θ
2x4 − 3

x4 (x4 − 1)

]

}

dx . (2.26)

To complete the calculation we need to insert the coefficient of the fourth order term

in the series expansion of Π
(2)
µν around r = ∞ into (2.18). Recalling that 8θ = δ = (c−a)/c

we arrive at

λ0 =
π2T 2

32πG5

[

2 − log 2 +
1

8
δ (−21 + log 32)

]

λ1 =
π2T 2

32πG5

[

1 − 7

8
δ

]

λ2 =
π2T 2

32πG5

[

2 log 2 +
1

8
δ(14 − 2 log 32)

]

λ3 = − π2T 2

32πG5
14δ

(2.27)

from which relation (1.9) follows.
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