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spatial field theoretic direction. This we demonstrate by finding solutions to the Einstein-
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dependence of the resistivity for z = 2, θ = 0 and δ = 1, which resembles that of the Fermi-

like liquid. Whereas for z = 2, θ = −2 and δ = 0 gives us a solution that is conformal
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1 Introduction

There has been a lot of activity in trying to understand the scale invariant gravitational

solution, which asymptotes to AdS at UV and at IR, it can behave either like AdS2 or

Lifshitz type. Recently, a non-scale invariant gravitational solution found in [1] and [2]

has been interpreted in [3] to give the compressible state of the matter which exhibits the

hidden Fermi surfaces, using holography [4–7]. In this context, it is suggested that the field

theory directions and the invariant interval of the bulk scale in the following way

t → λzt, xi → λδxi, r → r

λ
, ds → λγds, (1.1)
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where z is the dynamical exponent, γ is the scaling violation exponent, which is related to

the hyperscaling violation exponent as in [3], and more importantly, the spatial directions

scale linearly, i.e., δ = 1. Note that δ can take only two values,1 namely, δ = 0, 1.

In this paper, we shall construct explicit solutions with vanishing γ, δ and non-

vanishing γ, δ and study its consequences. We construct such bulk solutions with the

help of gravity, U(1) gauge field and a scalar field. In order to do so, we have considered

a space filling brane, whose action is described by the Dirac-Born-Infeld (DBI) action.

Upon considering the back reaction of the DBI action and that of the scalar field on to the

geometry in d+ 1 dimensional bulk spacetime, makes the metric looks as

ds2d+1 = r−2γ

[

− r2zdt2 + r2δdxidxjδij +
dr2

r2

]

≡ r2ds2L. (1.2)

It is easy to notice that the metric can be written as a spacetime which is conformal

to the Lifshitz spacetime [17]. In which case, the geometry, ds2L, scales as [18–20] and [21]

t → λzt, xi → λδxi, r → r

λ
, for δ = 0, 1. (1.3)

For δ = 0, this particular “Lifshitz spacetime” can be re-written as an AdS2 ×R2. In fact,

for this choice of, δ, the geometry ds2L is not in the sense of [17] because of the scaling

behavior of the spatial directions.2 For an earlier study of the Einstein-Maxwell-dilaton

system see e.g., [1, 2, 23, 24] and [25].

Let us recall from [3], a theory which exhibits the scaling violation exponent for δ = 1

should see a reduced entropy. In fact, for d − 1 number of spatial directions with γ =

θ/(d−1) = (d−2)/(d−1), the entropy should go as s ∼ T
d−1−θ

z
H , where TH is the Hawking

temperature. However, for δ = 0 and γ = −1, there do not arises any change in the entropy.

In fact, the entropy behaves like that of a scale invariant solution.3 It is due to the fact

that in d+1 dimensional spacetime the complete solution can be written as a solution that

is conformal to AdS2 ×Rd−1 solution and reads as

ds2 = R2r−2γ/z

[

−r2f(r)dt2 + dxidxjδij +
dr2

r2f(r)

]

, f(r) = 1− (rh/r)
z+(1−γ)(d−1)

z . (1.4)

It is easy to see that the entropy density goes as s ∼ T
−γ(d−1)

z
H . The temperature

dependence of the entropy for these two cases in d + 1 dimensional spacetime can be

summarized as follows:

s ∼







T
d−1−θ

z
H for δ = 1

T
−γ(d−1)

z
H for δ = 0

(1.5)

Upon combining the formulas together in d + 1 dimensional bulk spacetime dimensions,

the formula for the entropy density with the scaling violation exponent, θ ≡ γ(d− 1), and

1See appendix A for further explanation of eq. (1.1) and references [8]–[16] for further studies.
2Moreover, the Lifshitz spacetime as defined in [17] suffers from the null curvature singularity and are

unstable [22].
3For this choice of δ, with the boundary at r = ∞, implies γ < 0.

– 2 –



J
H
E
P
0
4
(
2
0
1
3
)
0
0
7

the spatial scaling dimension, δ, can be written as

s ∼ T
δ(d−1)−θ

z
H . (1.6)

We see there exists a non-zero entropy density for δ = 1 case in the limit of z → ∞ for

finite θ in the zero temperature limit. However, for δ = 0 case, we get the entropy density

as s ∼ T
−θ/z
H . Note that this expression of the entropy density, eq. (1.6), vanishes in the

limit of z → ∞ and θ → ∞ by keeping the ratio (−θ/z) fixed [26] at low temperature.4

The specific heat in this case becomes

cv = TH

(

∂s

∂TH

)

V

∼
[

δ(d− 1)− θ

z

]

T
δ(d−1)−θ

z
H . (1.7)

Note that for δ = 0, in order to have positive specific heat, which is required for stability,

should have negative θ/z.

Let us restrict the dimensionality of the spacetime to 3 + 1. In this case, the solution

is conformal to the AdS2 ×R2 solution, see eq. (3.8), and has γ = −1 and δ = 0. For this

case, the specific heat and the longitudinal conductivity goes as

cv ∼ T
2/z
H , σ ∼ T

−2/z
H . (1.8)

For z = 2, the conductivity resembles with the non-Fermi liquid. Moreover, for such

a choice of γ and δ, we do see the logarithmic violation of the entanglement entropy when

the entangling region is of the strip type [61, 62].

Moving on to the γ = 0 and δ = 1 case, we see the existence of a Fermi-like liquid, which

follows by doing an explicit computation of the transport and the thermodynamic quantity:

the longitudinal conductivity as well as the specific heat. We found that, depending on the

choice of z, the specific heat and the longitudinal conductivity can have the linear and the

inverse quadratic dependence on the temperature, respectively. This we demonstrate by

finding an exact black hole solution to a 3 + 1 dimensional Einstein-DBI-dilaton system.

In which case, the spacetime asymptotes to a Lifshitz spacetime with a non-trivial profile

to the scalar field

ds2 = −r2zf(r)dt2 + r2(dx2 + dy2) +
dr2

r2f(r)
, φ(r) ∼ log r, f(r) = 1− (rh/r)

z+2 (1.9)

and for some non-trivial form of the U(1) gauge field field strength such that it vanishes at

IR in the zero temperature limit. In this case, the specific heat and the conductivity takes

the following form

cV ∼ T 2/z, σ ∼ T−4/z. (1.10)

The Fermi-like liquid behavior follows when the dynamical exponent takes a specific value,

z = 2. More importantly, the entropy in the zero temperature limit vanishes (for finite z),

suggesting the compressible nature of the configuration. In this case, the computation of

the entanglement entropy for a strip does not show up the necessary logarithmic term, as

4More on the expression of the entropy is discussed in section 4.
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expected from the result of [3]. Further studies related to the Fermi liquid or the presence

of Fermi surfaces are reported e.g., in [28]–[40].

In the absence of the scalar field, we find an electrically charged black hole solution

in arbitrary spacetime dimension at UV whose form precisely matches with that of the

solution found for the Born-Infeld black holes in [47, 48] but not the dyonic black hole

solution in 3 + 1 dimensional spacetime. For these type of black hole solutions there exits

a non-zero entropy even at zero temperature. This particular property is similar in nature

to that of the Reissner-Nordstrom (RN) black hole.

The findings of the paper for the Einstein-DBI-dilaton system in d + 1 dimensional

spacetime are summarized in table 1.

The paper is organized as follows. In section 2, we write down the effective action

and its equation of motion. In section 3, we shall present the solution at IR. In particular,

the solution that shows the (non)Fermi-like liquid behavior. In section 4, we generalize the

solutions at IR to arbitrary spacetime dimensions. In section 5, we find both the electrically

charged black hole and a dyonic solution for trivial and non-trivial scalar field. In section

6 and 7, we compute the conductivity as well as the entanglement entropy, respectively.

And finally, we conclude in section 8. Some of the details are relegated to the appendices.

2 The action

The action that we consider contains metric, the abelian gauge field and the scalar field as

the degrees of freedom. In particular, the action involving the gauge field is the non-linear

generalization of the Maxwell action, namely the Dirac-Born-Infeld action. The exact form

of the action is5

S =
1

2κ2

∫

dd+1x

[√
−g

(

R− 2Λ− 1

2
∂Mφ∂Mφ− V (φ)

)

−TbZ1(φ)

√

−det

(

[g]Z2(φ)+ λF

)

ab

]

, (2.1)

where [g]ab = ∂aX
M∂bX

NgMN is the induced metric on to the world volume of the brane.

Tb and Λ are the tension of the brane, and cosmological constant, respectively. F = dA

is the two-form field strength. Since, we are considering the brane to fill the entire space,

means [g]ab = gab. The action as written down in eq. (2.1) is in Einstein frame. The

constant λ is a dimension full object and has the dimension length2 and in string theory

it is identified with λ = 2πl2s , where ls is the string length [60]. It is there to make the

determinant dimensionless. The indices a, b are the world volume ones whereas the M, N

etc denote the spacetime ones. In the present case both kind of indices can take d + 1

values. Note that for small values of field strength, one can Taylor expand the determinant

and obtain the Maxwell action.6

5See [70], where the authors used a related action to study the holographic QCD in the Veneziano limit.
6The term det(gZ2 + λF ) can be expanded as det(gZ2) + det(λF ) +
1

(d+1)!
ǫa1···ad+1ǫb1···bd+1(gZ2)a1b1 · · · (gZ2)ad−1bd−1FadbdFad+1bd+1 + · · · . The ellipses denote higher

even powers of F , which can be ignored in the dilute regime. So, it is the quadratic in F that gives the

Maxwell action with a dilaton dependent Yang-Mills coupling.
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Solutions at IR Solutions at UV

For gMN 6= 0, FMN 6= 0 and φ = 0 For gMN 6= 0, FMN 6= 0 and φ = 0, eq. (5.3)

(a) generates charged AdS black hole solution

in any arbitrary spacetime dimensions;

the entropy density in the vanishing

temperature limit remains non-zero,

s = 2π
κ2 Tb

ρ√
4Λ2

−T2
b

, as TH → 0;

The chemical potential is not a continuous

function of the charge density.

No Log structure in the

entanglement entropy.

it generates AdS2 ×Rd−1, eq. (3.4) (b) Dyonic AdS black hole solution in 3 + 1

dimensional spacetime, eq. (5.30);

the entropy density in the vanishing

Does not show log structure in the temperature limit remains non-zero,

entanglement entropy for d = 2 [59]. s = 2π
κ2 Tb

√
ρ2+λ2B2√
4Λ2

−T2
b

, as TH → 0.

No Log structure in the

entanglement entropy.

For gMN 6= 0, FMN 6= 0 and φ 6= 0, For gMN 6= 0, FMN 6= 0 and φ 6= 0, eq. (5.43)

(a) Lifshitz solution eq. (3.17) with α 6= 0, Generates electrically charged black holes

β 6= 0 in 3 + 1 dimensional spacetime; in generic d+ 1 dimensional spacetime.

the entropy density vanishes as The specific heat can become negative

temperature vanishes, s ∼ T
2/z
H ; for δ1 > 1/2.

The specific heat, cV ∼ T
2/z
H ;

The longitudinal conductivity, σ ∼ T
−4/z
H ;

No Log structure in the

entanglement entropy.

(b) Hyper scaling violating solution eq. (3.8)

but without decreasing the entropy with

α 6= 0, β = 0 in 3 + 1 dimensional

spacetime; the entropy density vanishes as

temperature vanishes, s ∼ T
2/z
H ;

The specific heat, cv ∼ T
2/z
H ;

The longitudinal conductivity, σ ∼ T
−2/z
H ;

Shows Log structure in the

entanglement entropy.

Table 1. The summary of the solution of the Einstein-DBI-Dilaton system with two parameters α

and β and the potential, V (φ), as defined in eq. (2.6) and eq. (2.7). The entanglement entropy is

obtained for a strip.

The equation of motion of the metric component that follows from it takes the follow-

ing form

RMN − 2Λ

(d− 1)
gMN − gMN

(d− 1)
V (φ)

1

2
∂Mφ∂Nφ−

−Tb Z1(φ)Z2(φ)

4(d− 1)

√

−det
(

g Z2(φ) + λF
)

ab√−g
× (2.2)

×
[(

g Z2(φ) + λF
)−1

+
(

g Z2(φ)− λF
)−1]KL[

gMNgKL − (d− 1)gMKgNL

]

= 0.
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The gauge field equation of motion is

∂M

[

Z1(φ)
√

−det
(

g Z2(φ) + λF
)

ab

(

(

g Z2(φ)+λF
)−1−

(

g Z2(φ)− λF
)−1
)MN]

= 0 (2.3)

It follows trivially that the gauge field can be fully determined in terms of the metric

components and the dilaton. Finally, the equation of motion of the scalar field

∂M
(√

−g∂Mφ
)

−
√
−g

dV (φ)

dφ
− Tb

dZ1(φ)

dφ

√

−det
(

g Z2(φ) + λF
)

ab

−Tb

2
Z1(φ)

√

−det
(

g Z2(φ) + λF
)

ab

dZ2(φ)

dφ

(

g Z2(φ) + λF
)−1MN

gMN = 0. (2.4)

Let us consider an ansatz where the metric, the abelian field strength and the dilaton

to be of the following form

ds2d+1 = −gtt(r)dt
2 + grr(r)dr

2 + gxx(r)dx
2
i , A = At(r)dt, F = A′

tdr ∧ dt, φ = φ(r).

(2.5)

In this, r, coordinate system, the UV is at r → ∞. The IR is at r = rh for black holes or

at r = 0 otherwise. At IR, we define the following form of the functions

Z1(φ) = exp(−αφ), Z2(φ) = exp(βφ), (2.6)

and we choose the potential as

V (φ) = m1 exp(m2 φ), (2.7)

where α, β, m1 and m2 are constants. In which case, we shall see the dilaton goes

logarithmically. Hence, diverges at IR. With this structure of the ansatz, there exists

several exact solutions.

Given such a choice of the metric as written in eq. (2.5), the various non-vanishing

components of the Ricci tensor are

Rtt =
g′′tt
2grr

+ (d− 1)
g′ttg

′
xx

4grrgxx
− g′2tt

4grrgtt
− g′ttg

′
rr

4g2rr
,

Rij = δij

[

− g′′xx
2grr

− (d− 3)
g′2xx

4grrgxx
+

g′xxg
′
rr

4g2rr
− g′ttg

′
xx

4grrgtt

]

,

Rrr = −(d− 1)
g′′xx
2gxx

− g′′tt
2gtt

+ (d− 1)
g′2xx
4g2xx

+ (d− 1)
g′rrg

′
xx

4grrgxx
+

g′2tt
4g2tt

+
g′ttg

′
rr

4grrgtt
(2.8)

Solving the equation of motion of the gauge field gives

λA′
t =

ρZ2
√
gttgrr

√

ρ2 + Z2
1Z

d−1
2 gd−1

xx

, =⇒ gttgrrZ
2
2 − λ2A′2

t =
gttgrrg

(d−1)
xx Z2

1Z
d+1
2

ρ2 + Z2
1Z

d−1
2 gd−1

xx

(2.9)

where ρ is the constant of integration and interpreted as the charge density. The equation

of motion of the scalar field can be simplified as

∂r

(√

gtt
grr

g(d−1)/2
xx φ′

)

− dV

dφ

√
gttgrr g(d−1)/2

xx −
[

dZ1

dφ
+

Z1

Z2

(

d− 1

2

)

dZ2

dφ

]

×

TbZ
(d−1)/2
2 g(d−1)/2

xx

√

gttgrrZ2
2 − λ2A′2

t − TbZ1
Z

(d+1)/2
2 gttgrrg

(d−1)/2
xx

√

gttgrrZ2
2 − λ2A′2

t

dZ2

dφ
= 0. (2.10)

– 6 –
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Now using the solution of the gauge field, the equation of motion of the scalar

field becomes

∂r

(

√

gtt
grr

g(d−1)/2
xx φ′

)

− dV

dφ

√
gttgrr g(d−1)/2

xx − Tb
dZ2

dφ

√
gttgrr

√

ρ2 + Z2
1Z

d−1
2 gd−1

xx (2.11)

−
[

dZ1

dφ
+

Z1

Z2

(

d− 1

2

)

dZ2

dφ

]





Tb
√
gttgrrg

d−1
xx Z1Z

d
2

√

ρ2 + Z2
1Z

d−1
2 gd−1

xx



 = 0.

Finally, the equation of motion of the metric component can be expressed, explicitly,

as follows

Rtt +
V + 2Λ

d− 1
gtt − Tb

(d− 3)

2(d− 1)

Z2gtt

g
(d−1)/2
xx

√

ρ2 + Z2
1Z

d−1
2 gd−1

xx

+
Tb

2

Z2
1Z

d
2gttg

(d−1)/2
xx

√

ρ2 + Z2
1Z

d−1
2 gd−1

xx

= 0, (2.12)

Rij −
V + 2Λ

d− 1
gxxδij − Tb

δij
d− 1

Z2

√

ρ2 + Z2
1Z

d−1
2 gd−1

xx

g
(d−3)/2
xx

= 0, (2.13)

Rrr −
V + 2Λ

d− 1
grr −

1

2
φ′2 + Tb

(d− 3)grr
2(d− 1)

Z2

√

ρ2 + Z2
1Z

d−1
2 gd−1

xx

g
(d−1)/2
xx

−Tb

2
Z2
1Z

d
2

grrg
(d−1)/2
xx

√

ρ2 + Z2
1Z

d−1
2 gd−1

xx

= 0 (2.14)

The equations of motion of At(r) is integrable and gives rise to one independent pa-

rameter, ρ. There exists 4 unknown functions: gtt(r), grr(r), gxx(r) and φ(r), and as

many equations. Hence, there exists a solution. In the action, we have defined 3 func-

tions, Z1(φ), Z2(φ) and V (φ), which has got 4 parameters, those are α, β, m1, m2 and

there are extra 2 parameters, Tb and Λ. So all total, we have 7 parameters and only 3

are independent.

3 Exact solution at IR: AdS2 × Rd−1

Considering a special case for which the potential energy is trivial, V (φ) = 0, along with

constant Z1 and Z2, i.e., Z1 = 1 = Z2, the dilaton can be taken as trivial. In which case, it

is expected that the solution near the IR end should take the following form AdS2 ×Rd−1

and the explicit form of it looks as

ds2d+1 = − r2

R2
2

dt2 +
R2

2

r2
dr2 + c20δijdx

idxj , A =
ed
R2

2

r dt, (3.1)

where R2 is the size of the AdS2 spacetime and we have set λ = 1, for convenience. The

tension of the brane and the cosmological constant is determined as

Tb =
2

e2d

√

R4
2 − e2d, Λ = − TbR

2
2

2
√

R4
2 − e2d

= −R2
2

e2d
. (3.2)

– 7 –
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It is easy to notice that for real valued tension, Tb, the brane requires the constraint

R4
2 ≥ e2d and such a condition is easily met by looking at the equation of motion of the

gauge field. The constant ed is determined in terms of the charge density, ρ, as

ed =
ρ R2

2
√

ρ2 + c
2(d−1)
0

. (3.3)

The finite temperature solution at IR with only non-zero electric field in any arbitrary d+1

spacetime dimensions

ds2d+1 = − r2

R2
2

(

1− rh
r

)

dt2 +
R2

2

r2
(

1− rh
r

)dr2 + c20δijdx
idxj , A =

ρ (r − rh)
√

c
2(d−1)
0 + ρ2

dt, (3.4)

with the tension of the brane and the cosmological constant as written in eq. (3.2).

If we want to turn on a constant magnetic field along with an electric field for which

the 1-form gauge potential takes the following form A = ed
R2

2
rdt+ B

2 (x1dx2 − x2dx1), then

the finite temperature solution at IR, let us say in 3 + 1 spacetime dimensions, takes the

following form

ds2 = − r2

R2
2

(

1− rh
r

)

dt2 +
R2

2

r2
(

1− rh
r

)dr2 + c20(dx
2 + dy2), At =

ρ(r − rh)
√

c40 +B2 + ρ2
. (3.5)

The tension of the brane and the cosmological constant takes the following form

Tb =
2c20
√

c40 +B2 + ρ2

R2
2(B

2 + ρ2)
, Λ = −c40 +B2 + ρ2

R2
2(B

2 + ρ2)
. (3.6)

3.1 A black hole solution for β = 0, γ = −1, δ = 0

In 3 + 1 dimensional bulk spacetime dimension, there exists a black hole solution at IR,

which is conformal to AdS2 × R2. In order to construct such a black hole solution, we

choose the potential as

V (φ) = m1 exp(m2 φ), (3.7)

where m1 and m2 are constants. The solution reads as

ds2 = r2
[

− r2zf(r)dt2 + dx2 + dy2 +
dr2

r2f(r)

]

, F =
ρ rz+1

λ
√

1 + ρ2
dr ∧ dt

φ = 2
√
z + 1 Log r, m1 = −2(2 + z)

ρ2
[z + (z + 1)ρ2],

Tb = 2z
(z + 2)

ρ2

√

1 + ρ2, α =
1√
z + 1

,

β = 0, Λ = 0

m2 = 2β − α = − 1√
z + 1

, f(r) = 1−
(

rh
r

)2+z

,

Z1 =
1

r2
, Z2 = 1, (3.8)

– 8 –
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where z is the dynamical exponent. The constant ρ is the charge density. In this case, the

number of independent and non-vanishing parameters are two, α and ρ.

Let us calculate the Hawking temperature associated to the black hole solution as

written in eq. (3.8). It is calculated from the following formula

κ2 = −1

2
∇aεb∇aεb, TH =

κ

2π
, (3.9)

where the null vector εa defines the horizon, (εaεa)rh = 0 and the temperature, TH , is

evaluated on the horizon. For a spacetime of the form: ds2d+1 = −gtt(r)dt
2 + grr(r)dr

2 +

gxx(r)dx
idxi, the Hawking temperature of the system essentially becomes

TH =
1

4π

(

g′tt√
gttgrr

)

rh

, (3.10)

where prime denotes derivative with respect to the radial coordinate, r. Doing the calcu-

lation for the solution eq. (3.8), we find the temperature as

TH =
2 + z

4π
rzh. (3.11)

The entropy density which is the area of the horizon divided by 4G gives

s =
2π

κ2

(

4π

2 + z

) 2
z

T
2
z
H , (3.12)

where the Newton’s constant G is related to the gravitational coupling κ as 4G = κ2

2π . It is

interesting to note that the entropy density vanishes as the temperature vanishes, for finite

positive dynamical exponent. There follows, the specific heat, cv = TH

(

∂s
∂TH

)

ρ
∼ T

2/z
H .

Let us show the vanishing of the entropy density even in the limit of z → ∞. This

essentially follows from the argument of [26] and is shown by considering a double scaling

limit: z → ∞ and θ → ∞ limit with the ratio (−θ/z) kept fixed and positive for finite

spacetime dimension. For δ = 0, let us assume that the spacetime scales according to

eq. (1.1). For simplicity, let us consider the following d+ 1 dimensional spacetime

ds2d+1 = r−2γ

[

−r2zf(r)dt2 + dx2i +
dr2

r2f(r)

]

, f(r) = 1− (rh/r)
ζ , (3.13)

where rh is the horizon and ζ is a constant. In this case the Hawking temperature goes

as TH ∼ rzh, whereas the entropy goes as S ∼ r
−γ(d−1)
h ∼ T

−(d−1)γ/z
H = T

−θ/z
H . From this

expression of the entropy, it follows that the entropy vanishes in the z → ∞ and θ → ∞
limit with the ratio (−θ/z) kept fixed and positive at low temperature.

For finite θ and z → ∞, the vanishing of the entropy density at low temperature is

subtle. In what follows, for finite θ, we shall be taking z finite as well.
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3.1.1 Null energy condition

Given the choice of our action in eq. (2.1), the energy-momentum tensor takes the follow-

ing form

TMN = ∂Mφ∂Nφ− gMN

[

V + 2Λ +
1

2
(∂φ)2

]

− Tb

2
√−g

Z1Z2

√

−det(Z2g + λF )

[

(Z2g + λF ) + (Z2g − λF )

]KL

gKMgNL (3.14)

Demanding that the system we are dealing with should satisfy the null energy con-

dition, TMNuMuN ≥ 0 for some null vectors uM gives us the restriction on the Ricci

tensor as RMNuMuN ≥ 0. By considering the two possible choices for the null vectors as

ut = 1/
√
gtt, ur = 1/

√
grr, u

i = 0 and ut = 1/
√
gtt, ux1x1 = 1/

√
gx1x1 , ur = 0 and setting

the rest of the vectors to zero, gives the following conditions for the metric of the type

ds2d+1 = −r2(z+1)dt2 + r2dxidxi + dr2, ⇒ (z + 1)(d− 1) ≥ 0, z(d+ z − 1) ≥ 0. (3.15)

We obtain such a form of the metric in the zero temperature limit of eq. (3.8). Upon

solving the inequality, we find the most interesting restriction that is

d ≥ 2 z ≥ 0, (3.16)

whereas the other possibilities are not that interesting because either the dimensionality

of the spacetime or the dynamical exponent could become negative.

3.2 Lifshitz solution: (α 6= 0, β 6= 0, γ = 0, δ = 1)

In order to generate a Lifshitz solution, we shall consider the case where all the degrees of

freedom are non-trivial i.e., they do not vanish, as well as the functions Z1 and Z2 are not

set to unity. But we shall take a trivial potential energy, V = 0 with non-zero cosmological

constant, Λ 6= 0. For simplicity, we shall be solving the equations of motion in 3 + 1

dimensional bulk spacetime dimensions. In this case, the solution reads as

ds23+1 = −r2zf(r)dt2+r2(dx21+dx22)+
dr2

r2f(r)
, f(r) = 1− rz+2

h

rz+2
,

φ(r) = 2
√
z − 1 Log r, Z1 =

1

r4
,

Z2 = r2, F =
ρrz+1

√

1 + λ2ρ2
dr ∧ dt

Tb = 2

√

1 + λ2ρ2

λ2ρ2
(z2 + z − 2), Λ = −z2(1 + λ2ρ2) + z(1 + 2λ2ρ2)− 2

λ2ρ2
,

α =
2√
z − 1

, β =
1√
z − 1

,

γ = 0, (3.17)
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where the dynamical exponent z should always be bigger than unity, z > 1. In this case,

the number non-vanishing and independent parameters are two, α and ρ. The Hawking

temperature, in this case, turns out to be

TH =
(z + 2)

4π
rzh. (3.18)

With the Bekenstein-Hawking entropy density given as s = κ2/(2π) ( 4π
(z+2))

2/zT
2/z
H . From

this expression of the entropy density, it follows trivially that for finite and positive

dynamical exponent the entropy vanishes as temperature vanishes. The specific heat,

cv = TH

(

∂s
∂TH

)

ρ
∼ T

2/z
H . It is interesting to note that for a specific choice of the dynamical

exponent, z = 2, the specific heat has a linear temperature dependence.

4 Solutions at IR in arbitrary spacetime dimensions

In this section, we shall generalize the solutions found in the previous section to arbitrary

spacetime dimensions. Instead of giving the details, let us write down the solution in d+1

dimensional spacetime, at IR, to the eq. (2.11) and eq. (2.12)–eq. (2.14) with the scaling

symmetry as written down in eq. (1.1).

Conformal to AdS2 ⊗ Rd−1, i.e., for δ = 0, γ 6= 0: the solution reads as

ds2d+1,δ=0 = r−2γ

[

−r2zf(r)dt2 + dxidxjδij +
dr2

r2f(r)

]

, f(r) = 1− (rh/r)
η ,

φ(r) =
√

2γ(d− 1)(γ − z) Log r, η = z − γ(d− 1), Λ = 0,

α = (d− 1)3/2
√

γ

8(γ − z)
,

β = (d− 3)

√

γ

2(d− 1)(γ − z)
,

Tb =
2z

ρ2
[z − γ(d− 1)]

√

1 + ρ2,

m1 = −(z − γ(d− 1))

ρ2
[2z(1 + ρ2)− γρ2(d− 1)],

V (r) = −(z − γ(d− 1))

ρ2
[2z + (2z + γ(1− d))ρ2]r2γ , m2 =

√

2γ

(d− 1)(γ − z)
,

A′
t =

ρ

λ
√

1 + ρ2
rz−1−γ(d−1) (4.1)

For this solution the Hawking temperature and the Bekenstein-Hawking entropy den-

sity becomes

TH =
η

4π
rzh, s ∼ 2π

κ2
T

−γ(d−1)
z

H . (4.2)

The boundary is at r = ∞, which means γ < 0 and z − γ > 0. These two conditions

suggests that γ < 0 and z ≥ 0. The null energy condition (NEC) gives the constraint as
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γ(γ − z) ≥ 0 and z(z − γ(d − 1)) ≥ 0. It means for d > 1, the NEC suggests to consider

z ≥ 0 also.

To get the solution for AdS2 ⊗ Rd−1, we need to set γ = 0, in which case there exists

a non-zero entropy density and studied in detail e.g., in [30].

Conformal to Lifshitz solution, i.e., for δ = 1, γ 6= 0: the solution reads as

ds2d+1,δ=1 = r−2γ

[

−r2zf(r)dt2 + r2dxidxjδij +
dr2

r2f(r)

]

,

f(r) = 1− (rh/r)
η ,

φ(r) =
√

2(1− γ)(d− 1)(z − γ − 1) Log r, η = z + (1− γ)(d− 1), Λ = 0,

α = [d+ 1 + γ(1− d)]

√

(d− 1)

8(1− γ)(z − γ − 1)
,

β =
(d− 1 + γ(3− d))

√

2(d− 1)(1− γ)(z − γ − 1)
,

Tb =
2(z − 1)

ρ2
[z − γ(d− 1) + d− 1]

√

1 + ρ2,

m2 =

√
2γ

√

(d− 1)(1− γ)(z − γ − 1)
,

m1 = − 1

ρ2
[z + (1− γ)(d− 1)][2z(1 + ρ2)− 2 + ρ2(γ(1− d) + d− 3)],

V (r) = −(z + (1− γ)(d− 1))

ρ2
[2z(1 + ρ2)− 2 + (d− 3 + γ(1− d))ρ2]r2γ ,

A′
t =

ρ

λ
√

1 + ρ2
rz+d−2−γ(d−1) (4.3)

In order to have the boundary at r = ∞, we must impose the following conditions

z − γ > 0 and 1 − γ > 0. For d > 1, the reality of the solution implies z − γ > 1.

The NEC of the zero temperature limit of the solution imposes the following conditions

(d − 1)(1 − γ)(z − 1 − γ) ≥ 0 and (z − 1)(z + (d − 1)(1 − γ)) ≥ 0. Combining all these

constraints we have for d > 1 as 1− γ > 0, z − γ > 1 and z > 1.

Now the Hawking temperature and the Bekenstein-Hawking entropy density becomes

TH =
η

4π
rzh, s ∼ 2π

κ2
T

(1−γ)(d−1)
z

H . (4.4)

Lifshitz solution, i.e., for δ = 1, γ = 0: the solution reads for trivial potential,

V (φ) = 0, as

ds2d+1 = −r2(z+1)f(r)dt2 + r2dx2i +
dr2

r2f(r)
, f(r) = 1−

(rh
r

)z+d
,

φ(r) =
√

2z(d− 1) Log r, Z1 = r−
(d2−1)

2 , Z2 = rd−1,

F =
ρrd+z−1

√

1 + λ2ρ2
dr ∧ dt, Tb = 2z(d+ z)

√

1 + ρ2

ρ2
,

Λ = −
[

(d2 + dz − z − 1)ρ2 + 2z(d+ z)(1 + ρ2)

2ρ2

]

, (4.5)
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where the dynamical exponent z should always be bigger than zero, z ≥ 0 for d > 1, which

follows from the NEC. The entropy density of the solution goes as s ∼ T
(d−1)

z
H , where TH

is the Hawking temperature.

General expression of the entropy: the entropy densities in these cases, eq. (4.2),

eq. (4.4) and eq. (3.17) can be written together for any choice of δ and γ as

s ∼ 2π

κ2
T

(δ−γ)(d−1)
z

H . (4.6)

Let us redefine, γ = θ
(d−1) , in which case the above mentioned entropy density can be

re-written as

s ∼ 2π

κ2
T

δ(d−1)−θ
z

H , (4.7)

which is the expression of the entropy density as suggested in eq. (1.6). In fact this form

of the entropy density generalizes the one as suggested for δ = 1 case in [3].

Let us recall that in scale invariant model with dynamical exponent z, the entropy

density goes as s ∼ 2π
κ2 T

(d−1)
z

H . Upon comparing with eq. (4.6), it follows that as far as the

entropy density is concerned there won’t be any distinction between the scale symmetry

violating or preserving theories for

δ = 1 + γ. (4.8)

This equation is satisfied for two choices: (1) γ = 0, δ = 1 and (2) γ = −1, δ = 0, as δ can

take only two values. The first type belongs to the Lifshitz solution whereas the second

type belongs to the solution that are conformal to AdS2 ⊗Rd−1.

5 Black hole solution at UV

Let us construct a black hole solution for a specific choice of the functions that appear in

the action eq. (2.1), namely, we set Z1 = 1 = Z2 and the potential energy as V = 0. For

this choice of the functions, it follows that the solution of the scalar field can be taken as

trivial i.e., φ = 0, in which case the gauge field takes the following form

λA′
t =

ρ
√
gttgrr

√

ρ2 + gd−1
xx

. (5.1)

The equation of motion of the metric component reduces to

RMN − 2Λ

(d− 1)
gMN − Tb

4(d− 1)

√

−det
(

g + λF
)

ab√−g

[(

g + λF
)−1

+
(

g − λF
)−1]KL

(5.2)

[

gMNgKL − (d− 1)gMKgNL

]

= 0.

Let us assume that the geometry, asymptotically, approach the AdS spacetime. We

consider the following form of the spacetime for explicit calculations

ds2d+1 =
r2

R2
[−f(r)dt2 + dx2i ] +

R2dr2

r2f(r)
, (5.3)

– 13 –



J
H
E
P
0
4
(
2
0
1
3
)
0
0
7

where R is the size of the AdS spacetime. Let us substitute this ansatz into the equations

of motion of the metric eq. (5.2), then there arises two second order differential equations.

One from the gtt and the other from the grr component. In fact these two differential

equations are not independent, the precise relation is 2R4

r2f
× eq. (2.12) = −2r2× eq. (2.14).

So we left with only one second order differential equation, which reads as

r2f ′′+(d+3)rf ′+2df+
4ΛR2

d− 1
+
TbR

2(r/R)d−1

√

ρ2 + r2(d−1)

R2(d−1)

−d− 3

d− 1
TbR

2 r
d−1

Rd−1

√

ρ2 +
r2(d−1)

R2(d−1)
= 0. (5.4)

Now, this equation can be reduced to a first order differential equation, which essen-

tially follows from eq. (2.13) and the precise relation is −R4

r ∂r(eq. (2.13)) = eq. (5.4).

Finally, the equation of motion that follows from eq. (2.13)

rf ′(r) + df(r) +
2ΛR2

d− 1
+

TbR
2

d− 1

r1−d

R1−d

√

ρ2 +
r2(d−1)

R2(d−1)
= 0. (5.5)

On solving this differential equation for the generic choice of the dimension gives

f(r) =
c1
rd

− 2ΛR2

d(d− 1)
− TbR

2ρ

(d− 1)

r1−d

R1−d 2F1

[

− 1

2
,

1

2(d− 1)
,
2d− 1

2(d− 1)
,− r2(d−1)

R2(d−1)ρ2

]

. (5.6)

To get a feel of the solution, in what follows, we shall try to solve it for few specific

choices of the spacetime dimension. Let us assume that the geometry asymptotes to AdS3,

i.e., we set d = 2, in which case the solution is

ds23 =
r2

R2
[−f(r)dt2 + dx2] +

R2dr2

r2f(r)
, with

f(r) =
c1
r2

− ΛR2 − TbR
2

√

r2 +R2ρ2

2r
− R4Tbρ

2

2r2
Log

(

r +
√

r2 +R2ρ2
)

, (5.7)

where c1 is a constant. The horizon, rh, is determined as the location for which f(rh) = 0.

For AdS4, the solution looks as

ds24 =
r2

R2
[−f(r)dt2 + dx21 + dx22] +

R2dr2

r2f(r)
,

f(r) =
c1
r3

− 1

3
R2Λ− 1

6r2
TbR

2
√

r4 +R4ρ2 − 1

3r2
TbρR

4
2F1

[

1

4
,
1

2
,
5

4
,− r4

R4ρ2

]

. (5.8)

Similarly, solving for an AdS5 spacetime, we find

ds25 =
r2

R2
[−f(r)dt2 + dx21 + dx22 + dx23] +

R2dr2

r2f(r)
,

f(r) =
c1
r4

− 1

6
R2Λ− 1

12r3
TbR

2
√

r6 +R6ρ2 − 1

4r3
TbρR

5
2F1

[

1

6
,
1

2
,
7

6
,− r6

R6ρ2

]

, (5.9)

where 2F1[a, b, c, x] is the hypergeometric function. In order to fix the constant, c1, we need

to do an expansion in the small charge density, ρ, limit and compare it with the RN black
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hole solution. From which we can identify the constant c1 as the mass density of the black

hole, c1 ∝ −M . The explicit identification is presented towards the end of this section.

The gauge field that supports the AdS spacetime, from eq. (5.1), follows as

At(r) =
r

λ
2F1

[

1

2
,

1

2(d− 1)
,
2d− 1

2(d− 1)
,−(r/R)2(d−1)

ρ2

]

+
2κ2

λTb
Φ. (5.10)

The constant quantity, Φ, is determined by requiring that the gauge field should vanish

at the horizon, At(rh) = 0, in order to keep the norm of the gauge potential finite at the

horizon. The chemical potential is determined by

µ =

∫ ∞

rh

A′
t =

1

λ

∫ ∞

rh

ρRd−1

√

r2(d−1) + ρ2R2(d−1)

=
1

λ

(

ρ
1

d−1

t

(d− 2)
√
π
Γ

(

4− 3d

2− 2d

)

Γ

(

1

2d− 2

)

− rh 2F1

[

1

2
,

1

2(d− 1)
,
1− 2d

2− 2d
,−r

2(d−1)
h

ρ2t

])

,

(5.11)

where ρt ≡ ρRd−1. This particular form of the gauge potential, hence the chemical po-

tential, matches precisely with the one computed in the probe approximation in [41] i.e.,

without taking the back reaction of the gauge field onto the geometry. We can determine

whether this particular state corresponds to a compressible phase or not by simple looking

at the continuity of the chemical potential with respect to the charge density.

dµ

dρ
=

R

λ(d− 1)2

(

ρ
2−d
d−1

√
π
Γ

(

4− 3d

2− 2d

)

Γ

(

1

2d− 2

)

+
rhρ(d− 1)

√

ρ2 −R2−2dr2d−2
h

−rh(d− 1) 2F1

[

1

2
,

1

2(d− 1)
,
1− 2d

2− 2d
,
r
2(d−1)
h R2(1−d)

ρ2

])

. (5.12)

At a very specific value of the charge density, namely, ρ = (rh/R)d−1, the above

derivative has a singularity. So, we conclude that the dual field theory of the Einstein-

DBI system does not show up the necessary feature to be part of the compressible phase

of matter.

The temperature of the d+1 dimensional black hole can be computed from the formula

as written in eq. (3.10) as

TH = − rh
(d− 1)4π

[

2Λ + Tb r
1−d
h

√

ρ2R2(d−1) + r
2(d−1)
h

]

, (5.13)

where we have used eq. (5.5) to find the derivative of the function f(r). The Bekenstein-

Hawking entropy density becomes

s =
2π

κ2

(

rh
R

)d−1

. (5.14)

– 15 –



J
H
E
P
0
4
(
2
0
1
3
)
0
0
7

Let us find the entropy in a limit for which the temperature of the black hole vanishes,

TH = 0, for a non-zero size of the horizon, rh 6= 0. This happen when the size of the

horizon takes the following form

rd−1
h =

TbρR
d−1

√

4Λ2 − T 2
b

. (5.15)

In this case the entropy density becomes

sext =
2π

κ2
Tbρ

√

4Λ2 − T 2
b

6= 0. (5.16)

It means even for the non-linearly generalized Einstein-Maxwell action that is the

Einstein-DBI action has a non-zero entropy at zero temperature. Moreover, the existence

of non-zero entropy or the non-zero horizon size at zero temperature suggests an upper

bound on the tension of the brane T 2
b < 4Λ2 and is consistent with the solution found in

eq. (3.2) for AdS2 .

The specific heat Cv = TH

(

∂s
∂TH

)

ρ
that follows

Cv =
2(d− 1)πR3−drdh

√

ρ2R2(d−1) + r
2(d−1)
h [2Λrdh + Tbrh

√

ρ2R2(d−1) + r
2(d−1)
h ]

κ2[R2rdh(Tbr
d
h + 2Λrh

√

ρ2R2(d−1) + r
2(d−1)
h )− (d− 2)Tbρ2R2dr2h]

(5.17)

In our notation Tb is positive and we are dealing with spacetimes of negative cosmo-

logical constant, which means there exists a range of values of the charge density for which

the solution has got positive specific heat. In this range of charge densities, the system

looks to be thermodynamically stable. In fact, for a choice like, d = 3, R = 1 = rh,

the specific heat, Cv =
4π
√

1+ρ2[2Λ+Tb

√
1+ρ2]

κ2[Tb(1−ρ2)+2Λ
√

1+ρ2]
. For small charge density, it becomes

Cv = 4π
κ2 + 8πTb

κ2[Tb+2Λ]
ρ2 +O(ρ)4.

Let us fix the precise relation between the constant c1 and the mass density M , in order

to do so, let us use the thermodynamic relation dM = THds+Φdρ. Since the charge density

is constant means the mass of the black hole can be found from M =
∫

drhTH

(

∂S
∂rh

)

. Doing

the above integral along with the use of the following relations for Hypergeometric functions

(a− b) 2F1[a, b, c, x] = a 2F1[1 + a, b, c, x]− b 2F1[a, 1 + b, c, x],

2F1[a, b, b, x] = (1− x)−a, (5.18)

gives the mass as

− 2κ2Rd−1M =
2Λ

d
rdh + TbρR

d−1rh 2F1

[

− 1

2
,

1

2(d− 1)
,
1− 2d

2− 2d
,− r

2(d−1)
h

ρ2R2(d−1)

]

. (5.19)

Recall that the constant c1 is determined from the condition, f(rh) = 0, which means

c1 =
2ΛR2rdh
d(d− 1)

+
TbρR

d+1

(d− 1)
rh 2F1

[

− 1

2
,

1

2(d− 1)
,
1− 2d

2− 2d
,− r

2(d−1)
h

ρ2R2(d−1)

]

. (5.20)

On comparing these two expressions, we find c1 = − 2κ2

(d−1)R
d+1M .
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5.0.1 Stability

The thermodynamic stability condition as suggested by the Gubser-Mitra conjecture [42]

requires that

det

(

∂2M

∂(s, ρ)2

)

=
∂2M

∂s2
∂2M

∂ρ2
−
(

∂M

∂s

∂M

∂ρ

)2

> 0. (5.21)

Let us define few dimensionless objects with subscript 0 : Tb0 = Tb κ
4/(d−1), s0 = s κ2

and Λ0 = Λκ4/(d−1) and then upon computing eq. (5.21) gives for small s0/ρ ≡ X ≪ 1

2
(2−4d)
(d−1) π

−2
(d+1)
(d−1)

R2T 2
b0

(d− 1)2(2d− 1)
(Xρ)

(4−2d)
(d−1)

[

(d+ 1)π
2

d−1X2 − (8d− 4)π
2d
d−1 + · · ·

]

. (5.22)

It just follows that the coefficient of the leading term is negative, which suggests that

it is unstable. Let us look at the sign of the specific heat as argued in [42]. The positive

specific heat requires: 1
(∂M/∂s)3

∂2M
∂s2

> 0. Upon doing the calculation using the above

mentioned dimensionless variables in 3+1 dimensional spacetime for small X, means high

charge density limit

1

(∂M/∂s)3
∂2M

∂s2
≃ − κ6

R2ρ2T 2
b0

[

16π − 64
Λ0

Tb0
X +O(X)2

]

. (5.23)

In the low charge density limit, ρ/s0 ≡ Y ≪ 1, the quantity

1

(∂M/∂s)3
∂2M

∂s2
≃ 64π3κ6

R2s20(Tb0 + 2Λ0)2
+O(Y )2 (5.24)

For asymptotically AdS spacetime, it means the specific heat is positive for small charge

density, which makes the analysis consistent as done in the previous section. So to conclude

the specific heat is positive and the quantity det
(

∂2M
∂(s,ρ)2

)

is positive for Tb0 + 2Λ0 < 0 in

the small charge density limit. Whereas in the limit of the ratio of large charge density to

entropy density makes 1
(∂M/∂s)3

∂2M
∂s2

negative, which is again consistent with the fact that

in the large charge density limit the specific heat becomes negative, implying instability.

5.1 Dyonic solution

In this case we turn on both the electric field along with a magnetic field in 3+1 spacetime

dimensions. The magnetic field is considered to be constant, for simplicity. Hence, the

explicit structure of the field strength and the metric is

F = A′
t(r)dr∧dt+Bdx∧dy, ds23+1 = −gtt(r)dt

2+ gxx(r)(dx
2+dy2)+ grr(r)dr

2. (5.25)

Let us solve the equation of motion associated to the gauge field and is given as

λA′
t =

ρZ2
√
gttgrr

√

ρ2 + Z2
1 (Z

2
2g

2
xx + λ2B2)

, =⇒ gttgrrZ
2
2 − λ2A′2

t =
gttgrr(Z

2
2g

2
xx + λ2B2)Z2

1Z
2
2

ρ2 + Z2
1 (Z

2
2g

2
xx + λ2B2)

.

(5.26)
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With a non-trivial magnetic and electric field the equation of motion of the metric

components gets modified and are given as

Rtt +
V + 2Λ

2
gtt +

Tb

2

Z2
1Z

2
2gttgxx

√

ρ2 + Z2
1 (Z

2
2g

2
xx + λ2B2)

= 0, (5.27)

Rij −
V + 2Λ

2
gxxδij − Tb

δij
2
Z2

√

ρ2 + Z2
1 (Z

2
2g

2
xx + λ2B2) = 0, (5.28)

Rrr −
V + 2Λ

2
grr −

1

2
φ′2 − Tb

2
Z2
1Z

3
2

grrgxx
√

ρ2 + Z2
1 (Z

2
2g

2
xx + λ2B2)

= 0. (5.29)

Now, we shall consider a specific configuration for which the potential energy is taken

as trivial, V = 0 and Z1 = 1 = Z2. In this case, again, the trivial dilaton profile is a

solution, φ = 0, to the equation of motion. In order to find the black hole solution, let us

demand that the solution asymptotically looks as an AdS spacetime. In which case, the

following ansatz to the metric solves the equations of motion

ds23+1 =
r2

R2

[

− f(r)dt2 + dx2 + dy2
]

+
R2

r2
dr2

f(r)
, (5.30)

with some form for the function f(r). From the gtt and the grr part of the metric compo-

nents we find the following second order differential equation for the function f(r)

r2f ′′(r) + 6rf(r) + 6f(r) + 2R2Λ +
Tbr

2R2

√

r4 +R4(ρ2 + λ2B2)
= 0, (5.31)

whereas from the gxx component of the metric, we find the following first order differential

equation for f(r)

rf ′(r) + 3f(r) + ΛR2 +
TbR

2

2r2

√

r4 +R4(ρ2 + λ2B2) = 0. (5.32)

One can easily check that these two differential equations are not independent of each

other. On solving the first order differential equation, we find the function, f(r), has the

following form

f(r) =
c1
r3

− ΛR2

3
− TbR

2

√

r4 +R4(ρ2 + λ2B2)

6r2

−TbR
4
√

ρ2 + λ2B2

3r2
2F1

[

1

4
,
1

2
,
5

4
,− r4

R4(ρ2 + λ2B2)

]

. (5.33)

It is easy to see that this solution in the zero magnetic field limit reproduces eq. (5.8).

As was done for the solution eq. (5.8), we can identify the constant c1 ∝ −M , as the

mass density of the black hole. The horizon is determined from the zero’s of the function,

f(rh) = 0 and the entropy density is given as s = (2π/κ2)(rh/R)2 .

The temperature of such a dyonic solution is

TH = − rh
8π

[

2Λ +
Tb

r2h

√

(ρ2 + λ2B2)R4 + r4h

]

, (5.34)
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and the entropy in the extremal limit takes the following form

sext =
2π

κ2
Tb

√

ρ2 + λ2B2

√

4Λ2 − T 2
b

6= 0. (5.35)

There arises an interesting question: Is it possible that 4Λ2 = T 2
b ? In which case the

entropy in the extremal limit diverges. In order to answer such a question, let us look at

the relation between the cosmological constant and the tension of the brane. From the

condition of the vanishing temperature, there follows

4Λ2

T 2
b

= 1 +
R4(ρ2 + λ2B2)

r4h
=⇒ 4Λ2

T 2
b

> 1. (5.36)

So, in the vanishing temperature limit the magnitude of the cosmological constant

should be bigger than half the tension of the brane.

The chemical potential for such a dyonic solution is determined as

µ =

∫ ∞

rh

dr A′
t =

1

λ

∫ ∞

rh

dr
ρR2

√

r4 + (ρ2 + λ2B2)R4

=
ρR2

λ

(

4

R(ρ2 + λ2B2)1/4
√
π
Γ2

(

5

4

)

− rh 2F1

[

1

2
,
1

4
,
5

4
,− r4h

R4(ρ2 + λ2B2)

])

,

(5.37)

5.2 Connection with the BI black hole

Recently, an electrically charged black hole solution is found in arbitrary spacetime dimen-

sion with the Born-Infeld (BI) matter [47, 48], see also [49]–[56]. It is certainly interesting

to find the connection between the Einstein-DBI black hole solutions for trivial dilaton

with that of the Einstein-BI black holes in the presence of a cosmological constant. The

BI matter and the DBI matter is described

SBI =

∫ √
−g
√

1 + αFMNFMN , SDBI =

∫

√

−det(g + λF )MN (5.38)

where α is a parameter. For small α we see the Maxwellian structure.

Generically, the DBI action is completely different from the BI action,7 but in a specific

situation they can coincide. This happen only when the U(1) field strength has got one

non-vanishing component. Let us illustrate this point by considering two non-vanishing

component of the field strength, F = A′
t(r)dr ∧ dt + Bdx ∧ dy, in d + 1 dimensional

spacetime, ds2d+1 = −gtt(r)dt
2 + gxx(r)(dx

2 + dy2) + gxx(r)dz
2
i + grr(r)dr

2.

On computing the BI and the DBI matter

SBI =

∫ √
gttgrrg

d−1
2

xx

√

1− 2α
A′2

t

gttgrr
+ 2α

B2

g2xx
,

SDBI =

∫ √
gttgrrg

d−1
2

xx

√

1− λ2A′2
t

gttgrr
+

λ2B2

g2xx
− λ4B2A′2

t

gttgrrg2xx
. (5.39)

7Upon expanding the determinant in the DBI matter for arbitrary spacetime dimension det(g+λF )MN =

det(g)MN + det(λF )MN + · · · , where the ellipses stands for various even powers of F . Upon restricting to

3+1 dimensional spacetime, the det(F )MN ∝ F ∧F and this term is absent in the action of the BI matter.
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So, there follows that either for zero magnetic field or for zero charge density, A′
t = 0, both

BI and DBI gives the same action for 2α = λ2. Hence, its only the electrically charged

black hole solution is same as found in [47, 48], but not the dyonic solution. This we

illustrate by finding the exact solution to the Einstein-cosmological constant-BI action in

appendix B.

5.3 Solution with non-trivial scalar field

In this section, we shall find the solution at UV with a non-trivial dilaton profile. In order

to do so, we shall write down the equation of motion of the metric in the following form

RMN − 1

2
gMNR− 1

2
∂Mφ∂Nφ

+
1

2
gMN

(

2Λ + V (φ) +
1

2
gKL∂Kφ∂Lφ

)

+
Tb

4
Z1(φ)Z2(φ) (5.40)

×
√

−det(Z2g + λF )ab√−g

[

(

g Z2(φ) + λF
)−1KL

+
(

g Z2(φ) + λF
)−1LK

]

gKMgNL = 0

and the rest of the equations of motion are as written down in eq. (2.3) and eq. (2.4).

We shall consider the ansatz as well as the functions as written down in eq. (2.5), eq. (2.6)

and eq. (2.7), respectively. Using this ansatz for the metric, the dilaton and the solution

for the gauge field is as written down in eq. (2.9), we find the equations of motion of the

metric component reduces to

Rtt +
1

2
gttR− 1

2
gtt

(

2Λ + V (φ) +
1

2
gKL∂Kφ∂Lφ

)

− Tb

2

Z2gtt

g
(d−1)/2
xx

√

ρ2 + Z2
1Z

d−1
2 gd−1

xx = 0,

Rxx −
1

2
gxxR+

1

2
gxx

(

2Λ + V (φ) +
1

2
gKL∂Kφ∂Lφ

)

+
Tb

2

Z2
1Z

d
2g

(d+1)/2
xx

√

ρ2 + Z2
1Z

d−1
2 gd−1

xx

= 0,

Rrr −
1

2
grrR− φ′2

2
+

1

2
grr

(

2Λ + V (φ) +
1

2
gKL∂Kφ∂Lφ

)

+
Tb

2

Z2grr

g
(d−1)/2
xx

√

ρ2 + Z2
1Z

d−1
2 gd−1

xx = 0,

(5.41)

Now using the first and the last equations of eq. (5.41), we find

Rrr +
grr
gtt

Rtt =
φ′2

2
. (5.42)

In what follows, we shall use eq. (5.42), the second and the last equation of eq. (5.41)

to solve the equations of motion of the metric. Let us take the following explicit (asymp-

totically non-AdS spacetime) ansatz to the metric and dilaton

ds2d+1 = −r2f(r)dt2 +
e2Θ(r)dr2

r2f(r)
+ r2dxidxi, φ = δ Log r, (5.43)
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where δ is a constant.8 Upon substituting such a form of the metric into eq. (5.42) gives9

φ′2 =
2(d− 1)

r
Θ′. (5.44)

For a logarithmic dilaton, it means the function Θ should better be logarithmic, Θ(r) =

δ1 Log r. Moreover, one can show that the only relevant equation that we need to solve is

a first order differential equation, which follows from the last equation of eq. (5.41) for the

following choice of the constants.

α = −
√

(d− 1)δ1
2

, β = m2 = −
√

2δ1
(d− 1)

, δ =
√

2(d− 1)δ1, Λ = 0, V = m1 r−2δ1 .

(5.45)

In which case the function, f(r), satisfies the following differential equation

rf ′(r) + (d− δ1)f(r) +
m1

(d− 1)
+

Tb

(d− 1)
r1−d

√

ρ2 + r2(d−1) = 0. (5.46)

On solving this differntial equation, we find the solution as

f(r) =
c1

rd−δ1
− m1

(d− δ1)(d− 1)

− Tb

(d− 1)(δ1 − 1)
ρr1−d

2F1

[

−1

2
,

1− δ1
2(d− 1)

,
2d− 1− δ1
2(d− 1)

,−r2(d−1)

ρ2

]

, (5.47)

where c1 is the constant of integration and can identified with the mass density of the

solution. The gauge field is

λA′
t(r) =

ρ
√

ρ2 + r2(d−1)
r−δ1 . (5.48)

In the δ1 → 0 limit, this solution reduces to the solution as written in eq. (5.6) provided

we set m1 = 2Λ.

The Hawking temperature and the Bekenstein-Hawking entropy density of such black

hole becomes

TH = − r1−2δ1
h

4π(d− 1)

[

m1 + Tbr
1−d
h

√

ρ2 + r
2(d−1)
h

]

,

s =
2π

κ2
rd−1
h , (5.49)

where rh is the horizon and determined from the zero of the function f(rh) = 0. The

specific heat becomes

Cv =
2(d− 1)πrdh

√

ρ2 + r
2(d−1)
h [m1r

d
h + Tbrh

√

ρ2 + r
2(d−1)
h ]

κ2
[

Tbr
2d
h (1− 2δ1) + Tbr

2
hρ

2(2− d− 2δ1) +m1r
d+1
h (1− 2δ1)

√

ρ2 + r
2(d−1)
h

] . (5.50)

8Such a form of the solution is adopted for a 2 + 1 dimensional Einstein-BI-dilaton system in [43]

following [44].
9Had we taken an asymptotically AdS spacetime anstz to the geometry then eq. (5.44) would have given

a constant dilatonic solution, which we derived in the previous subsection.

– 21 –



J
H
E
P
0
4
(
2
0
1
3
)
0
0
7

The positivity of the specific heat forces some choice of the constant, δ1. In order to see

it, let us set rh = 1, for simplicity. On expanding the specific heat for small charge density

Cv =
2(d− 1)π

(1− 2δ1)κ2
+

2(d− 1)2Tbπ

(Tb +m1)(1− 2δ1)2κ2
ρ2 +O(ρ4). (5.51)

It is highly plausible to set a restriction on the parameter as δ1 < 1/2, whereas in

the high charge density limit, the specific heat, Cv =
2π(d−1)rd−1

h
κ2(2−d−2δ1)

+ O
(

ρ−2
)

. Once again

demanding the positivity of the specific heat requires us to set the constraint as δ1 < 1−d/2.

So, it follows that for high d, the constant δ1 can become negative.

5.4 Dyonic dilaton solution

In this case with a constant magnetic field and the gauge field strength as written in

eq. (5.25) gives the solution for the field strength as written down in eq. (5.26). The ansatz

for the geometry is assumed to be of the form as written in eq. (5.43). Without giving the

details for the metric and the dilaton equations of motion, we simply give the solution

ds23+1 = −r2f(r)dt2 + r2(dx2 + dy2) +
dr2

f(r)
, φ = 2 Log r, Θ = Log r,

V =
m1

r2
, α = − 1

1 + λ2B2
, β = m2 = −1, Λ = 0,

f(r) =
c1
r2

− m1

4
+

Tb

4r2α

√

ρ2 +
(1 + λ2B2)

r4α
− Tbρ

4r2α
Tanh−1

(
√

1 +
(1 + λ2B2)

ρ2r4α

)

,

λA′
t(r) =

ρ

r
√

ρ2 + (1 + λ2B2)r−4α
. (5.52)

In the limit of vanishing magnetic field, B → 0, we reproduce the solution for the

charged black hole as written in the previous section in 3 + 1 dimensional spaetime in the

limit of δ1 = 1.

6 Application: DC conductivity

As an application of the solutions found in the previous sections, we shall study various

properties of the action as written in eq. (2.1). To begin with, we shall calculate the dc

conductivity. To do the computations, we shall use the flow equation technique of [45],

which is done in [57] and [58] for the DBI system. In order to do the computations, let

us first fluctuate both the metric and the gauge field components. For simplicity, we shall

restrict the fluctuation to gtx and Ax component. Also gtx and Ax and are assumed to

be functions of time, t and r. The time dependence of the fluctuating fields comes e.g.

in the metric fluctuation as gtx(r)e
−iωt. In what follows, we shall not be computing the

conductivity for those solutions which has a non-zero magnetic field. Doing the above

mentioned fluctuations,10 we find that the x − r component of the equation of motion as

10We shall work in the radial gauge: Ar = 0, gMr = 0. It follows that even after fixing the gauge choice

there exists some residual symmetry that of the U(1) gauge invariance and the diffeomorphism invariance.

– 22 –



J
H
E
P
0
4
(
2
0
1
3
)
0
0
7

written in eq. (2.2) gives the following relation between the metric fluctuation and the

gauge field fluctuation

√

gttgrrZ2
2 − λ2A′2

t (g
′
xxgtx − gxxg

′
tx) + λ2TbZ1Z

d−1
2

2 gxxAxA
′
t

√
gttgrr = 0, (6.1)

where prime denotes derivative with respect to r and we have done the Fourier trans-

formation with respect to e−iωt, means we have set the momentum to zero. Also, in

doing the computation, we have used the following result to the Ricci tensor Rxr =
iω

2gttgxx
(g′xxgtx − gxxg

′
tx).

Let us expand the gauge field part of the action as written in eq. (2.1) to quadratic

order in the gauge field, Ax, using eq. (6.1) results in

S
(2)
A = −λ2Tb

4κ2

∫

√

ρ2 + Z2
1Z

d−1
2 gd−1

xx

Z2gxx
√
gttgrr

× (6.2)

×



gttA
′2
x −A2

x



ω2grr +
2λ2TbA

′2
t

√

ρ2 + Z2
1Z

d−1
2 gd−1

xx

Z2g
d−1
2

xx







 .

The equation of motion that follows from it takes the following form

∂r





√

ρ2 + Z2
1Z

d−1
2 gd−1

xx

Z2gxx
√
gttgrr

gttA
′
x





+

√

ρ2 + Z2
1Z

d−1
2 gd−1

xx

Z2gxx
√
gttgrr



ω2grr +
2λ2TbA

′2
t

√

ρ2 + Z2
1Z

d−1
2 gd−1

xx

Z2g
d−1
2

xx



Ax = 0. (6.3)

Let us compute the current at some choice of the radial coordinate, r = rc, from

eq. (6.2)

Jx(rc) = −λ2Tb

2κ2

[

√

ρ2 + Z2
1Z

d−1
2 gd−1

xx

Z2gxx
√
gttgrr

gttA
′
x

]

r=rc

. (6.4)

Now assuming that the Ohm’s law holds at any choice of the the radial slice, rc, gives

Jx(rc) = σxx(rc, ω)Ex(rc) = σxx(rc, ω)iωAx(rc), (6.5)

where in the second equality we have expressed all the quantities in the Fourier space. In

order to see such a form of the Ohm’s law, we assume that the retarded correlator at any

In cases where there exists metric, U(1) gauge field and a scalar field, the precise form of the residual

symmetry is written down in eq. (79)–(81) of [40]. In our case, we can still take that diffeomorphism

invariance because for small value of the field strength, i.e., in the dilute limit, the DBI action reduces

to the Maxwell action. Moreover, when the momentum is along the x-direction, there exists two different

kind of modes depending on the y → −y. Here we are considering the fluctuations that are part of the

longitudinal mode [40]. In doing the analysis, we have set some of the fluctuating fields to zero a la [46].

In fact, it is very interesting to do the detailed analysis by keeping all the fluctuating degrees of freedom

which we defer for future.
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radial slice is given, by generalizing eq. (29) of [45]

GR(rc, kµ) = − Π(rc, kµ)

Ax(rc, kµ)
, (6.6)

where Π(rc, kµ) is the momentum associated to the field Ax, evaluated at rc. In this case,

the transport quantity, which is the conductivity, at rc is related to the retarded correlator

as σ(rc, kµ) = iGR(rc, kµ)/ω = −iΠ(rc, kµ)/Ax(rc, kµ). Note that the current in eq. (6.4)

is nothing but the momentum associated to Ax, hence there follows the Ohm’s law at slice

rc, eq. (6.5).

Let us evaluate the flow equation of the conductivity as we change the slice from rc to

rc + δrc in the limit δrc → 0. In which case, the resulting flow equation becomes

∂rcσ
xx(rc, ω) = −iω

√

grr(rc)

gtt(rc)



ΣA(rc)−
(σxx(rc, ω))

2

ΣA(rc)
+

4λ2T 2
b ρ

2

4κ2
Z2(rc)gtt(rc)

g
d+1
2

xx (rc)



 , (6.7)

where ΣA = 2λ2Tb
4κ2

√

ρ2+Z2
1z

d−1
2 gd−1

xx

Z2gxx
. At the horizon, the time component of the metric

vanishes, gtt(rh) = 0, which means as we take the limit rc → rh, we need to impose a

regularity condition on the conductivity at the horizon and the condition reads

σxx(rh) = ΣA(rh) = 2
λ2Tb

4κ2





√

ρ2 + Z2
1Z

d−1
2 gd−1

xx

Z2gxx





rh

. (6.8)

It is interesting to note that at the horizon the in-falling boundary condition for the

gauge field, Ax, follows naturally combining the form of the conductivity at the horizon

eq. (6.8) and the Ohm’s law at the horizon, i.e., Jx(rh) = σxx(rh)iωAx(rh). In order to see

it, let us use eq. (6.4) and eq. (6.8) in the Ohm’s law. Then it follows that the derivative

of the gauge field is related to the gauge field at the horizon as

A′
x(rh) = −iω

[√

grr
gtt

Ax

]

rh

. (6.9)

Integrating this gives us the desired in-falling form of the gauge field at the hori-

zon, namely

Ax(rh) = e
−iω

∫ rh dr
√

grr
gtt . (6.10)

It is very easy to convince that in the zero frequency limit, i.e., the DC conductivity

remains same over the entire range of the radial coordinate, which suggests that it does not

run. Now given the form of the DC conductivity as in eq. (6.8), there follows the following

temperature dependence for different solutions

σxx =
λ2Tb

2κ2

√

1 + ρ2 ×



















(

z + 2

4π

)(2/z)

T
− 2

z
H for eq. (3.8)

(

z + 2

4π

)4/z

T
−4/z
H for eq. (3.17).

(6.11)
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Let us recall that the longitudinal conductivity for the non-Fermi liquid (NFL) state

of the matter has the inverse temperature dependence. Now at IR, we do generate such a

behavior of the conductivity, if we choose the dynamical exponent z = 2 for the solution

eq. (3.8) whereas z = 4 for the solution written in eq. (3.17). Such a behavior of the lon-

gitudinal conductivity has been found in [69] for z = 2, in the probe brane approximation.

However, for z = 2, we find that the solution as written in eq. (3.17) has the longitudinal

conductivity, σxx ∼ T−2
H and that of eq. (3.8) has the longitudinal conductivity, σxx ∼ T−1

H .

This implies that as far as the conductivity is concerned, by tuning the parameters like α

and β, we can describe either the FL or the NFL state in a 2 + 1 dimensional field theory.

Such a crossover was found in a 3+1 dimensional field theory using a magnetic field in [58].

7 Entanglement entropy

The entanglement entropy of a d dimensional field theory or a d + 1 dimensional gravita-

tional system is determined by finding a d−1 dimensional minimal spacelike hypersurface,

γA, that extremizes the area of the hypersurface [61, 62]. The explicit formula for the

entanglement entropy as suggested in [61, 62] takes the following form: SA = Area of γa
4GN

,

where GN is the Newton’s constant in d + 1 dimensional gravitational system. Various

aspects of the entanglement entropy is further studied e.g., in [63]–[68].

In order to do the computation, let us move to a coordinate system u for which the

boundary is at u = 0 and assume that the bulk spacetime takes the following form

ds2d+1 = −gtt(u)dt
2 + gxx(u)dx

2
i + guu(u)du

2. (7.1)

In which case the geometry of the d− 1 dimensional hypersurface takes the following form

ds2d−1 =

[

guu(u)

(

du

dx1

)2

+ gxx(u)

]

dx21 + gxx(u)(dx
2
2 + · · ·+ dx2d−1), (7.2)

where the precise nature of the hypersurface is determined by the function u(x1). On

computing the area of the hypersurface, γA, we find

A(γA) =

∫

dx2 · · ·
∫

dxd−1

∫

du g
d−2
2

xx

√

guu + gxx(dx1/du)2. (7.3)

In order to carry out the integral of x2 to xd−1, let us assume, for simplicity, the

hypersurface has the shape of a strip. In which case, we assume that −ℓ ≤ x1 ≤ ℓ and

0 ≤ (x2, · · · , xd−1) ≤ L. Finally, performing the above mentioned integrals result in

A(γA) = Ld−2

∫ ℓ

−ℓ
dx1 g

d−2
2

xx

√

gxx + guu(du/dx1)2. (7.4)

Extremizing the surface area gives the following solution to the function u(x1)

du

dx1
=

√

gdxx(u)− gxx(u)g
d−1
xx (u⋆)

g
d−1
2

xx (u⋆)
√

guu(u)
, (7.5)
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where the turning point, u⋆, is determined as the point where (dx1
du )u⋆ diverges. The length

along x1 is

ℓ =

∫ u⋆

0
du

g
d−1
2

xx (u⋆)
√

guu(u)
√

gdxx(u)− gxx(u)g
d−1
xx (u⋆)

= g
d−1
2

xx (u⋆)

∫ u⋆

0
du

√

guu(u)

gdxx(u)

1
√

1− gd−1
xx (u⋆)

gd−1
xx (u)

(7.6)

Finally, substituting this form of the function, u(x1), from eq. (7.5) into the area gives

A(γA) = Ld−2

∫ u⋆

ǫ
du

gd−1
xx (u)

√

guu(u)
√

gdxx(u)− gxx(u)g
d−1
xx (u⋆)

= Ld−2

∫ u⋆

ǫ
du

√

gd−2
xx (u)guu(u)

√

1− gd−1
xx (u⋆)

gd−1
xx (u)

, (7.7)

where ǫ is the UV-cutoff which will regulate the presence of the divergence while approach-

ing the boundary, i.e., taking the u → 0 limit. Generically, to perform the u integration is

not easy. So, to evaluate the area, let us use eq. (7.3), instead. After doing the integrals of

x2 to xd−1, we obtain

A(γA) = Ld−2

∫ u⋆

ǫ
du g

d−2
2

xx

√

gxx(dx1/du)2 + guu (7.8)

and assume that close to the boundary, the velocity, dx1/du → 0, is small. It means

we can do a Taylor series expansion there. The leading order term gives

AUV (γA) ≃ Ld−2

∫

ǫ
du

[

g
d−2
2

xx
√
guu +O(dx1/du)

2

]

, (7.9)

whereas away from the boundary, u → u⋆, the velocity, dx1/du → ∞. This diverging

nature essentially follows from eq. (7.5). In which case, we can approximate the area as

AIR(γA) ≃ Ld−2

∫ u⋆

du

[

g
d−1
2

xx
dx1
du

+O(du/dx1)
2

]

= Ld−2

∫ u⋆

uF

du
g

d−1
2

xx (u⋆)
√

guu(u)
√

gxx(u)
+ · · · (7.10)

In going to the second line we have made another assumption: gxx(u⋆)/gxx(u) ≪ 1 in

the range uF ≤ u < u⋆. In which case, the velocity can be approximated as

dx1
du

≈ g
d−1
2

xx (u⋆)
√

guu(u)

g
d/2
xx (u)

. (7.11)

Now let us ask the question: Under what condition, we get the desired area law

and the log violation of it? In order to answer both the questions, we must impose the

following conditions

gd−2
xx guu ∼ u2(1−d), and

guu
gxx

∼ 1/u2. (7.12)

On solving these conditions, there follows

gxx(u) ∼ R2 u−
2(d−2)
d−1 , guu(u) ∼ R2 u−

2(2d−3)
d−1 . (7.13)
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Note that the overall constant factor is not determined. It is easy to see that our

assumption, gxx(u⋆)/gxx(uF ) ≪ 1, holds for uF < u⋆. The parameter uF in the boundary

field theory is interpreted as the scale of the Fermi surface. Finally, the area at the UV

and IR takes the following form

AUV ≃ Rd−1

d− 2

(

L

ǫ

)d−2

, AIR ≃ Rd−1

(

L

u⋆

)d−2

Log

(

u⋆
uF

)

. (7.14)

Since the gtt(u) component of the metric is not fixed by the entanglement entropy, it

means the bulk geometry that gives the log violation of the area law, within the assumptions

as mentioned above, should have the following form

ds2d+1 = R2

[

−gtt(u)dt
2 +Σx(u⋆)u

−
2(d−2)
d−1 dx2i +Σu(u⋆)u

−
2(2d−3)

d−1 du2
]

, (7.15)

where Σx and Σu are constants.11 Using a different coordinate system u = 1/r2 the

geometry becomes

ds2 = R2

[

−gtt(r)dt
2 +Σx(u⋆)r

4(d−2)
d−1 dx2i + 4Σu(u⋆)r

2(d−3)
d−1 dr2

]

, (7.17)

which for d = 3 with a re-definition of the time t, spatial coordinate xi and R gives

the geometry as

ds23+1 = R2
[

−gtt(r)dt
2 + r2(dx2 + dy2) + dr2

]

. (7.18)

For a specific choice of the gtt(r) component of the metric and setting R = 1 gives the

zero temperature limit of the geometry as written in eq. (3.8).

A comment: the result presented in [3], namely, θ = d− 2, which gives the logarithmic

violation of the entanglement entropy can easily be derived from eq. (7.7) using the geome-

try as written down in eq. (1.2), for δ = 1. Upon working in a coordinate system for which

the boundary is at r = ∞, the entanglement entropy for a strip takes the following form

A(γA) = Ld−2

∫ Λ

r⋆

dr
gd−1
xx (r)

√

grr(r)
√

gdxx(r)− gxx(r)g
d−1
xx (r⋆)

= Ld−2

∫ Λ

r⋆

dr

√

gd−2
xx (r)grr(r)

√

1− gd−1
xx (r⋆)

gd−1
xx (r)

, (7.19)

where Λ is the UV-cutoff which will regulate the presence of the divergence, while taking

the r → ∞ limit. Essentially, the form of the expression of the entanglement entropy for

both the r and u coordinate system remains the same except the limits of the integral.

11For Σx(u⋆) ∼ u
2

1−d

⋆ , Σu(u⋆) ∼ u
2(d−2)
d−1

⋆ , it just simply follows that ℓ ∼ u⋆. Note that the Σ’s can be

absorbed into t, x and R, in which case there exists a caveat. Even though the geometry as written in

eq. (7.13) gives us the necessary area law at the UV and the logarithmic violation of it at IR, but the length

of the strip along x1 direction is independent of the location of u⋆ or uF . In order to see it, let us use the

form of gxx and guu in eq. (7.6) and after a change of variable, the integral can be re-written as

ℓ =

∫ 1

0

dt
td−3

√
1− t2(d−2)

. (7.16)
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If we impose the condition that there should be a logarithmic term in the entanglement

entropy means we need to set

gd−2
xx grr ∼ 1/r2. (7.20)

Upon using eq. (1.2), there follows the condition

δ(d− 2) = γ(d− 1) ≡ θ, (7.21)

which for δ = 1, reproduces the result of [3]. Note that this method does not work

for δ = 0 case. Because for δ = 0, we need to set γ = 0, which implies that the geometry

should be AdS2 ⊗Rd−1, and it is known from the previous studies, this geometry does not

give any logarithmic violation of the entanglement entropy [59]. Let us illustrate this case

in detail.

The failure of the applicability of the formula eq. (7.20) for δ = 0 and γ = 0 can

be seen as follows. Recall that for AdS2 ⊗ Rd−1 spacetime the metric component gxx is

constant, which means the turning point u⋆ has to be determined, carefully. In which case,

the velocity and the length of the strip along x1 direction becomes

dx1
du

=
c0
√

guu(u)
√

gdxx − gxxc20
, ℓ =

c0
√

gdxx − gxxc20

∫ u⋆

0
du
√

guu(u), (7.22)

where the constant c0 is fixed by requiring the condition that as u → u⋆, the velocity

diverges, i.e., (dx1
du )u⋆ → ∞. Finally, the area of the hypersurface becomes

A = Ld−2 gd−1
xx

√

gdxx − gxxc20

∫ u⋆

0
du
√

guu(u) =
Ld−2 gd−1

xx ℓ

c0
. (7.23)

The velocity diverges only when c20 = gd−1
xx , which means the area of the hypersur-

fce12 becomes

A = Ld−2 ℓ g
d−1
2

xx . (7.24)

8 Conclusion

In this paper, we have obtained the geometry both at IR and UV, by considering the back

reaction of a space filling D-brane in the presence of a scalar field, i.e., new solutions to

Einstein-DBI-dilaton system.

At IR, we suggest a form of the entropy density, which has the following tempera-

ture dependence

s ∼ T
δ(d−1)−θ

z
H . (8.1)

This particular form of the entropy density differs from that given13 in [3] essentially

because of the way the spatial field theoretic directions scale under scaling transformation.

12Since the metric component gxx is constant means it can absorbed into the coordinate xi, in which case

the area simply becomes A = Ld−2 ℓ.
13Which is a special case of this formula. Note that the above form of the entropy density is backed up

by finding the explicit solutions in generic spacetime dimensions.
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It is described by a parameter, δ, which can take only two values 0 or 1. In [3] only the

linearly scaling behavior of the spatial field theoretic directions were considered. Here, we

have considered the other case, namely, when it does not scale.14 The null energy condition

suggests that the scaling violating exponent, θ, should be negative15 and the dynamical

exponent, z, should be positive.

The most notable solution for θ = 0 and δ = 1 shows the Fermi-like liquid behavior

in 3 + 1 dimensional gravitational description. In this case we generate the black hole

solution for Lifshitz spacetime. For a specific choice of the dynamical exponent, z = 2,

the longitudinal conductivity and the specific heat goes as inverse quadratic and linear in

temperature, respectively. Even though the geometry and the U(1) gauge field is scaling

invariant but the presence of a non-trivial dilaton profile breaks it. The field strength

vanishes whereas the dilaton diverges, which goes logarithmically.16 For generic θ = γ(d−1)

and δ = 1, the finite temperature metric looks as

ds2d+1 = r−2γ

[

−r2zf(r)dt2 + r2dxidxjδij +
dr2

r2f(r)

]

, f(r) = 1− (rh/r)
z+(1−γ)(d−1)

(8.2)

For δ = 0, z = 2 and θ 6= 0, the solution is very promising in 3 + 1 dimensional

spacetime, in the sense, that it gives not only the linear temperature dependence of the

resistivity but it gives the logarithmic violation of the entanglement entropy. In which case,

the geometry is conformal to AdS2 ⊗Rd−1 and the finite temperature geometry reads as

ds2d+1 = R2u−2γ/z

[

−u2f(u)dt2 + dxidxjδij +
du2

u2f(u)

]

, f(u) = 1− (uh/u)
z+(1−γ)(d−1)

z

(8.3)

where we have reinstated the size, R, of the AdS2.

Moving onto the solution at UV, in the presence of the dilaton there exists an electri-

cally charged black hole solution in any arbitrary spacetime dimensions, whose geometry

reads as

ds2d+1 = −r2f(r)dt2 + r2dxidxjδij +
dr2

r2(1−δ1)f(r)
(8.4)

and the form f(r) is written in eq. (5.47). The positivity of the specific heat at low charge

density suggests to have a restriction on the parameter, δ1 < 1/2. In 3 + 1 dimensional

spacetime, we found a dyonic black hole solution. In the limit of δ1 → 0, we do reproduce an

asymptotically charged AdSd+1 spacetime. Interestingly, it is only the electrically charged

black hole solution are same as that obtained for the BI black holes. These black holes, both

with and without the dilaton field, have some non-zero entropy even in the zero temperature

limit. We leave the detailed study of the thermodynamics for future investigations. Instead

of considering the space filling Dd-brane action, it would be interesting to study the lower

14 This case is also discussed in [26] and [40].
15Which essentially mean this formula for the entropy density does not work when both δ and θ vanishes,

which is the case for AdS2 ⊗Rd−1 because this particular case is subtle.
16We leave the study of the dispersion relation obeyed by these solutions, along the lines of [41] and [73],

for future research.
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dimensional brane action along the lines of [71] with the massive embeddings [72], whose

solution as well as the rich thermodynamics, we leave for future research.

There exist one more avenue for future research that is to find solution that interpolates

between the UV solution eq. (5.43) and IR solution eq. (1.2) found in this work.

Acknowledgments

It is a pleasure to thank Bum-Hoon Lee, Shibaji Roy and Tadashi Takayanagi for their use-

ful comments, especially to Sean A. Hartnoll, Elias Kiritsis and the anonymous referee for

several useful comments and suggestions. Thanks are to Saha institute of Nuclear Physics,

Kolkata and CQUeST, Sogang university, Seoul for their generous help and support at

different stages of this work.

A Scaling behavior

In this section, we shall generalize the scaling behavior of AdS2 ⊗ Rd−1 geometry and

the hyperscaling violating geometry as studied e.g., in [3]. Essentially, we are combining

these two different kind of spacetimes and obtain the most general scaling behavior of the

spacetime that respects the rotational and translational symmetry.

Let us write down the most general geometry based on these symmetries but in a

restricted sense. Essentially, the metric components follows a power law type behavior and

for simplicity, we take the metric components to be functions of the radial coordinate only

ds2D = R2r2a
[

−r2bdt2 + r2cdx2i +
dr2

r2d

]

, i = 1, 2, · · · , D − 2. (A.1)

For non-zero, c, we can re-write the geometry by defining a new coordinate via u = rc

ds2D = R2u2a/c
[

−u2b/cdt2 + u2dx2i +
du2

u2(c+d)/c

]

, (A.2)

where we have re-defined t, xi and R as well. Now, demand that under u → λαu, time,

spatial coordinates, xi and the metric scales as

t → λzt, xi → λδxi, ds → λβds. (A.3)

In which case, the exponents a/c, b/c and d/c are related to β, δ and z as

a/c = − 1

α
(δ + α− β), b/c =

1

α
(δ + α− z),

(c+ d)

c
= −δ/α (A.4)

and the geometry becomes

ds2D = R2u−2
(δ+α−β)

α

[

−u
2(δ+α−z)

α dt2 + u2dx2i + du2u2δ/α
]

. (A.5)

Note that α can not be set to zero, in fact, for any other value of it, we can redefine

δ, β and z and bring the geometry to the following form

ds2D = R2u−2(1+δ̃−β̃)
[

−u2(1+δ̃−z̃)dt2 + u2dx2i + du2u2δ̃
]

= R2u2β̃
[

−u−2z̃dt2 + u−2δ̃dx2i +
du2

u2

]

, (A.6)
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where δ̃ = δ/α, β̃ = β/α and z̃ = z/α. Since, we are interested to understand the scaling

behavior of the geometry, it is better not to set α to zero. Now, it just follows that under

u → λu, t → λz̃t, xi → λδ̃xi, ds → λβ̃ds. (A.7)

Even though, we started out with a geometry which has non-linear scaling behavior of

the radial coordinate, u, but after redefinition of the exponents, the radial coordinate has

been set to scale linearly. Moreover, for δ̃ 6= 0, we can redefine the coordinate uδ̃ = 1/ρ also

t, xi and R to make the xi’s scale linearly in λ, i.e., xi → λxi. In fact, the hyperscaling

violating geometry as written down in [3] has been re-written in [8] for which the radial

coordinate scales linearly. So, we finally end up with two different choices of δ̃. Those are

zero and unity.

Let us record the curvature invariants of eq. (1.2) in d = 3

Ricci scalar = 2r2γ [z(3γ − 2δ)− 3(γ − δ)2 − z2],

RMNRMN = r4γ
[

(z2 − zγ + 2δ(δ − γ))2 + 2(γ − δ)2(z − 2γ + 2δ)2 (A.8)

+(z − γ)2(z − 2γ + 2δ)2
]

,

RMNKLRMNKL = 4r4γ
[

z4 − 2z3γ − 4zγ(γ − δ)2 + z2(3γ2 − 4γδ + 2δ2)

+(γ − δ)2(3γ2 − 2γδ + 3δ2)
]

These invariants suggests that for γ < 0 the geometry is singular at IR, which is the

case for the scale symmetry violating solutions.

B Dyonic-BI

In this section, we shall find the exact solution to the Einstein-Hilbert- cosmological con-

stant action along with the BI action. In particular, with an electric and constant magnetic

field. On finding the solution we shall see the difference of this solution with that found in

section 5.1, namely, the Einstein-Hilbert- cosmological constant action with the DBI term.

The BI action is described as

SBI = −T

∫ √
−g
√

1 + αFMNFMN . (B.1)

For small value of α this action reduces to the Maxwellian action. From the study of

the Einstein-Maxwell-cosmological constant system in 3 + 1 dimensional spacetime, it is

known that given an electrically charged solution with charge density ρ, we can obtain a

dyonic solution by doing the following substitution: ρ2 → ρ2+B2, where B is the constant

magnetic field. However, this simple substitution does not work for the Einstein-Hilbert-

cosmological constant-BI system, which we demonstrate below.

The full action is

S =
1

2κ2

∫

d3+1x
√
−g

(

R− 2Λ− T
√

1 + αFMNFMN

)

. (B.2)
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The equation of motion for the metric and the gauge field are

RMN − ΛgMN − TgMN

2
√
1 + αF 2

− TαgKLFMKFNL√
1 + αF 2

= 0, ∂M

(√−gFMN

√
1 + αF 2

)

= 0, (B.3)

where we use a short hand notation F 2 = FMNFMN . Let us consider the following ansatz

for the gauge field and the metric

ds2 = −gtt(r)dt
2 + gxx(r)(dx

2 + dy2) + grr(r)dr
2 F = A′

t(r)dr ∧ dt+Bdx ∧ dy. (B.4)

Substituting such a choice of the gauge field strength into the equation of motion gives

A′
t(r) = ρ

√

gttgrr(g2xx + 2αB2)

gxx(g2xx + 2αρ2)
, (B.5)

where ρ is the constant of the integration and we interpret it as the charge density. The

equations of motion of the metric components are

Rtt + Λgtt +
T

2

gtt(g
4
xx − 4α2ρ2B2)

g2xx
√

(g2xx + 2αB2)(g2xx + 2αρ2)
= 0,

Rxx − Λgxx −
T

2gxx

√

(g2xx + 2αB2)(g2xx + 2αρ2) = 0,

Rrr − Λgrr −
T

2

grr(g
4
xx − 4α2ρ2B2)

g2xx
√

(g2xx + 2αB2)(g2xx + 2αρ2)
= 0. (B.6)

Let us demand that the asymptotic solution to the above equations of motion is AdS,

which means we can set the metric as

ds2 =

(

r

R

)2
[

−f(r)dt2 + dx2 + dy2
]

+
R2dr2

r2f(r)
. (B.7)

Upon substituting it into the above equations of motion, one can easily convince that

the gtt and the grr component of the equations of motion are not independent of each other

and it reads as

r2f ′′ + 6rf ′ + 6f + 2ΛR2 + TR2 (r8 − 4B2R8α2ρ2)

r4
√

(r4 + 2αR4B2)(r4 + 2αR4ρ2)
= 0 (B.8)

In fact the equation of motion associated to gxx gives

rf ′ + 3f + ΛR2 + TR2

√

(r4 + 2αR4B2)(r4 + 2αR4ρ2)

2r4
= 0. (B.9)

It is easy to convince that these two differential equations are not independent of each

other. Moreover, by comparing this differential equation for f(r) with that of the DBI case

as in eq. (5.32), we can easily convince that they are not same as far as the dyonic solution

is concerned. As a result, it simply follows that given an electrically charged solution of

the Einstein-Hilbert-cosmological constant-BI system with charge density ρ can not give a

dyonic solution by the simple substitution formula: ρ2 → ρ2 +B2.
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