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1 Introduction and results

One of the interesting experiments in particle physics is the heavy ion collision done at

RHIC (Relativistic Heavy Ion Collider) and LHC (Large Hadron Collider). In these ex-

perimental set-ups two pancakes of heavy nuclei such as Gold(Au) or Lead(Pb) are col-

lided at a relativistic speed. Very soon after the collision a new phase of matter called

QGP (Quark-Gluon Plasma) is produced. Understanding the properties of the QGP has

attracted a lot of attention. It’s been realized through hydrodynamic simulations and ex-

perimental observations that the plasma is strongly coupled with very low viscosity over

entropy density, (ηs ) [1, 2].

A very challenging observation is the very rapid thermalization of plasma. At almost

1fm/c after the collision the plasma reaches local equilibrium (thermalizes) and its dynamics

is approximately described by ideal fluid hydrodynamics [3, 4]. Since the system is strongly

coupled and perturbative calculations can not be applied, it is difficult to study an out-of-

equilibrium process such as thermalization. Models of QCD such as lattice QCD have not

been able to achieve much to explain this phenomenon.
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Recently AdS/CFT correspondence [5–7], or more broadly, the gauge/gravity duality

has gained some success in making toy models to describe this process. Generally speaking,

the AdS/CFT duality has provided a powerful framework to study strongly coupled gauge

theories. According to the original statement of the correspondence, type IIB string theory

on AdS5×S5 is dual to D = 4, N = 4, SU(N) super Yang-Milles (SYM) theory. This idea

was then generalized to a broader class of gauge/gravity dualities in various dimensions [8].

It was shown that in the large N limit, the strongly coupled SU(N) gauge theory living

on the worldvolume of N coincident Dp-branes is dual to the supergravity on the near

horizon geometry of the Dp-branes. Although for p = 3 the gauge theory enjoys conformal

symmetry, the gauge coupling is dimensionful for the other values of p.

The absence of conformal invariance in the gauge theory leads to the radial variation

of both the string coupling (dilaton) and the spacetime curvature in the dual description.

This is due to the fact that duality relates the radial coordinate transverse to the Dp-brane

to the energy scale in the gauge theory. The supergravity background is only reliable for

weak string coupling and small curvature. This is provided in a regime of energy where [8]

1� geff � N
4

7−p . (1.1)

geff is the dimensionless effective coupling, geff = g2
YMNu

p−3, where u is the radial coordi-

nate. In this intermediate regime of energy the dual gauge theory is always strongly coupled.

AdS/CFT techniques have been applied to study rapid thermalization observed at

RHIC [9–20]. The thermalization in field theory which is an out-of-equilibrium process

happens after an injection of energy into the system. In the gauge/gravity context this

injection can be done in two different ways: by directly adding a time-dependent source to

the boundary field theory which corresponds to turning on a non-normalizable mode [9–11]

or by introducing a time-dependent coupling in the field theory which is represented by

nontrivial time-dependent classical solutions of some kinds of probe branes [18–20]. In the

first method the source is assumed to be nonzero only for a limited time interval. In the

bulk gravity dual this corresponds to the collapse of matter and formation of the horizon;

in other words black hole formation. In [9, 10] the authors have been able to quantitatively

give an approximate value for the isotropization (thermalization) time of the plasma which

is close to the experimental result. In the other method the horizon formation happens on

the probe brane and then the energy can flow from the probe brane to the bulk gravitational

degrees of freedom. This corresponds to the dissipation of energy into the field theory.

Note that in the first method the field theory is pure YM and conformal. While in

the other one the field theory contains fundamental matters and mesons in addition to the

pure YM. Studying the thermalization in the meson sector is the subject of an interesting

work [20] where the authors have modeled the thermalization by baryon injection into the

system. This idea comes from the observed sudden change in the baryon chemical potential

at QGP production.

The addition of fundamental matter to the SYM theory which lives on the boundary

of AdS space is done by adding the flavour branes to the dual gravity system. This has

been proposed for the first time in [21] where Nf D7-branes are added to the AdS5 ×
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S5 background in the probe limit where
Nf
N is small. This will reduce the number of

supersymmetries of the original theory from 16 to 8 and will add a matter hypermultiplet

in the fundamental representation to the SYM theory. The hypermultiplet describes the

dynamical quarks living in four dimensions and the fluctuations of the flavour brane explain

the meson spectrum of the field theory. In another interesting work this system has been

extended to more general settings of Dp-Dq brane configurations [22, 23].

In the D3-D7 brane set-up the authors of [20] have studied thermalization in the

meson sector of the SYM theory. The thermalization is modeled by a sudden change in

the baryon number. In the gravity dual description this change is realized by throwing the

baryonically-charged fundamental strings from the boundary to the bulk. The end points of

the strings stretched between D3 and D7-branes act as the source for the gauge field on the

D7-brane. Therefore this set-up provides a time-dependent gauge field configuration. Using

DBI action this induces a time-dependent metric and eventually emergence of an apparent

horizon on the D7-brane. Hence the baryon injection leads to the horizon formation on the

D7-brane which is the signal of thermalization in the meson sector of the field theory.

An intriguing observation of [20] is that the thermalization time in the field theory

for the D3-D7 system can be written only in terms of a few parameters which are: the

gauge theory t’Hooft coupling (λ = g2
YMN), maximum baryon number density(nB) and the

inverse of the variation time-scale of the baryon number (ω). Note that nB and ω describe

how the baryon charge density changes in the system. Therefore the thermalization time

is independent of the details of the theory by which we mean the form of the Lagrangian.

The authors generally argue that this possible universal behaviour might be generalized to

other gauge theories. In this paper we would like to examine this idea and generalize their

computation to the Dp-Dq system.

Interestingly for such a general system where the gauge theory is not conformal, the

background metric is not AdS and as mentioned above gauge/gravity duality can be trusted

only in an intermediate range of energy [8], we observe similar universal scaling behaviour.

To be more explicit, by universality we mean the thermalization time of the form

tth ∼
(

λα

n2
B ω2

)β
, (1.2)

where as we will see in the following sections α and β are fixed in terms of p using the

equation of the apparent horizon.

The thermalization time is obtained by studying the dynamics of the scalar mesons in

Dp-Dq system after the time-dependent baryon injection. This can be done by investigating

the fluctuations of the transverse and parallel directions of the Dq-brane to the Dp-brane.

We will show that although the equations of the apparent horizon are different in these

two cases, the thermalization time-scales are yet the same.

We will also observe that even when the background is not supersymmetric, which

means q 6= p, p+ 2, p+ 4, this behaviour still persists. The only change in (1.2) occurs in

α and β. These results confirm, to some extent, the claim of [20] that the thermalization

time-scale shows a universal behaviour.
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2 Review on Dp-Dq system

In the introduction we mentioned that we are interested in studying the thermalization of

mesons in strongly coupled field theories in the context of gauge/gravity duality. Therefore

in this section we will give a brief review on Dp-Dq brane configurations that are used to

explain the meson spectrum in the gauge theory.

The supergravity solution corresponding to near horizon limit of N coincident Dp-

branes is [8]

ds2 = H−
1
2 (−dt2 + dx2

p) +H
1
2 (du2 + u2dΩ2

8−p),

dΩ2
8−p = dθ2 + sin2 θdΩ2

k + cos2 θdΩ2
7−p−k,

(2.1)

where

H(u) =

(
R

u

)7−p
, eφ = H

3−p
4 , C01...p = H−1, (2.2)

written in the string frame. The Dilaton field is represented by φ and C01...p is a (p + 1)-

form field coupled to Dp-branes. The length scale R is defined in terms of the string length

scale ls =
√
α′ and the string coupling gs = eφ∞

R7−p = (4π)
5−p
2 Γ

(
7− p

2

)
gsN l7−ps . (2.3)

It is easy to see that for the special case p = 3, (2.1) reduces to AdS5 × S5. We are

considering p ≤ 4 cases because there is no decoupling limit for p ≥ 5 and hence no dual

gauge theory [8].

According to gauge/gravity duality, a strongly coupled SU(N) SYM theory living on

the (p+1)-dimensional worldvolume of N coincident Dp-branes is dual to the supergravity

on the above background (2.1) in the large N limit [8]. The isometry group of this back-

ground geometry is SO(1, p) × SO(9 − p) which in the dual gauge theory corresponds to

space-time Lorentz symmetry and R-symmetry, respectively. The gauge theory coupling

constant is related to the string coupling and the string length through

g2
YM = 2πgs(2πls)

p−3. (2.4)

One can add a stack of Nf Dq-branes to the above background and study it in the probe

limit where
Nf
N is small. The low energy effective action for a Dq-brane in an arbitrary

background is [24]

S = SDBI + SCS ,

SDBI = −τq
∫
dq+1ξ e−φ

√
−det(gab +Bab + 2πα′Fab) ,

SCS = τq

∫
P [ΣC(n)eB]e2πα′F ,

(2.5)

where induced metric gab and Kalb-Ramond field Bab are given by

gab = GMN∂aX
M∂bX

N ,

Bab = BMN∂aX
M∂bX

N .
(2.6)
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a, b, . . . indices are used to describe worldvolume coordinate running over 0,1,. . . ,q. The

capital indices M,N, . . . are used to denote space-time coordinates. GMN is the background

metric that is introduced in (2.1) and Fab is the field strength of the gauge field living on

the Dq-brane. Note that in the background we consider here the B-field is zero. In the

Chern-Simons part, C(n) denotes the (n+1)-form Ramond-Ramond potential and P [. . .] is

the pull-back of the bulk space-time tensors to the Dq-brane worldvolume. The Dq-brane

tension is

τq =
1

(2π)q lq+1
s gs

. (2.7)

In order to embed a probe Dq-brane in the background (2.1) one can introduce the

following change of coordinates

ρ = u sin θ ,

σ = u cos θ .
(2.8)

Hence the background metric becomes

ds2 = H−
1
2 (−dt2 + dx2

p) +H
1
2

(
dρ2 + ρ2dΩ2

k + dσ2 + σ2dΩ2
7−p−k

)
. (2.9)

This configuration of the Dp-Dq branes can be schematically shown as

t x1 . . . xd xd+1 . . . xp ρ Ωk σ Ω7−p−k
Dp × × × × × × ×
Dq × × × × × ×

(2.10)

where

q = k + d+ 1. (2.11)

In order to get a stable background one has to consider the brane configurations which

preserve supersymmetry. This condition dictates that q should be p, p + 2, p + 4 and

correspondingly k is 1, 2 and 3. Note that this embedding breaks the initial isometry

group of the Dp-brane to

SO(1, d)× SO(p− d)× SO(k + 1)× SO(8− p− k). (2.12)

Supersymmetrically embedding Nf flavour Dq-branes into the background obtained

from the near horizon limit of N Dp-branes corresponds to coupling Nf flavour dynamical

matter fields in the fundamental representation (dynamical quarks) to the SYM theory

which lives on the Dp-brane. This reduces the number of supersymmetries of the original

theory from 16 to 8. The fundamental matter fields which form a N = 2 hypermultiplet

arise as the lightest modes of the strings stretched between Dp and Dq-branes.

The spectrum of the fluctuations of a Dq-brane (Nf = 1) corresponds to the mesonic

spectrum of a SU(N) SYM theory in p+1 dimensions which is coupled to a hypermultiplet

in the fundamental representation [22, 23]. Note that in the case where q = p + 4, the

fundamental fields live on the full p+1 dimensions of the gauge theory. But for q = p+2 and

q = p they are confined to a (d+1)-dimensional defect where the Dp and Dq-branes coincide.

– 5 –
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3 Thermalization

The thermalization in field theory is the result of the injection of energy into the system.

One way to realize it in the context of gauge/gravity duality is to inject baryon charge to

the strongly coupled field theory. This has been done for the first time in [20] where the

dynamics of mesons or in other words the thermalization of mesons in D3-D7 system has

been studied. In this section we will elaborate more on this process by generalizing it to

Dp-Dq system.

3.1 Baryon injection

The injection of baryons into the strongly coupled field theory is presented in the gauge/gravity

context by throwing byronically charged F-strings on the flavour Dq-brane. The end points

of the strings stretched between Dq and Dp-branes resemble quarks in the gauge theory.

The quarks are assumed to be massless. They act as a source for the background gauge

field on the flavour brane. The injection of quarks into the system results in a sudden

change in the baryon number chemical potential.

In the AdS/CFT correspondence, static baryon chemical potential is identified with

the time component of the gauge field in the following way

µ =

∫ ∞
0

du ∂uAt(u) ,

= At(∞)−At(0) , (3.1)

where u represents the radial direction in the AdS space.1 Therefore in order to explain a

time-dependent chemical potential which results from the injection of quarks to the system

we must add the source term

Scurrent =

∫
dq+1ξ

√
−gAaJa, (3.2)

to the action (2.5). Note that the currents, Jas, are now time-dependent and will produce

time-dependent gauge fields.

Since the end points of the open strings move on the light geodesics, without loss of

generality, the current components can be fixed to be Jρ and J t. We assume that the

massless quarks are moving along the null line x− defined as

x± = t± z = t∓
∫
H

1
2dρ . (3.3)

Hence the currents are only functions of x−.

With the above assumptions the Dq-brane DBI action for the background (2.9) in the

presence of the source terms reduces to2

S =− τqVdVol(Sk)

∫
dtdρ

[
H

p−q+2(k−1)
4 ρk

√
1− (2πα′)2F 2

tρ −Atjt −Aρjρ
]
. (3.4)

1Note that this identification is done in the gauge where Au is zero.
2Note that τqj

a = R8

z5
Ja.
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To solve the equation of motion for the gauge field we can consistently choose

jρ = −H
−1
2 jt = g′(x−), (3.5)

which satisfies the current conservation equation

∇aJa = 0. (3.6)

Therefore the classical time-dependent solution for the gauge field is

(2πα′)Ftρ =
g√

g2 + (2πα′)2ρ2kH
p−q+2(k−1)

2

, (3.7)

where the following identity has been used

∂+

ρkH p−q+2(k−1)
4

(2πα′)2Ftρ√
1− (2πα′)2F 2

tρ

 = 0. (3.8)

It’s been already explained that the sudden change in the baryon number density can

locally model the collision of the heavy nuclei at RHIC. The baryon number density is

defined as nB = n
N where n is the quark density number. In our set-up the quarks live

on the (d + 1)-dimensional defect field theory. Therefore the quark density number is

n = ñ
V old

where ñ is the quark number (number of open string end points). The time-

dependent quark number can be calculated by taking the integral of the time component

of the external source over volume space of the Dq-brane

ñ =

∫
dqξ
√
−gJ t . (3.9)

Therefore replacing (3.5) in the above equation leads to

g(x−) =
γ

Vol(Sk)
(2π)

q−p
2 (2πα′)

q−p+4
2 λ nB(x−), (3.10)

where λ = g2
YMN and γ is a parameter that should be fixed according to the convention.

For instance in the case of D3-D7 system [20], γ is 1
4π .

So far all the calculations have been done for general values of p and q. In order to

have a stable background in the limit of zero temperature, we consider supersymmetric

systems where q = p + 4, p + 2, p and k = 3, 2, 1, respectively. For such configurations

we have

p− q + 2(k − 1) = 0 . (3.11)

Therefore one can see that the p and q dependence in Ftρ and g(x−) disappears and they

reduce to

(2πα′)Ftρ =
g√

g2 + (2πα′)2ρ2k
, (3.12)

– 7 –
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and

g(x−) =



γ

Vol(S3)
(2π)2(2πα′)4 λ nB(x−), q = p+ 4,

γ

Vol(S2)
(2π) (2πα′)3 λ nB(x−), q = p+ 2,

γ

Vol(S1)
(2πα′)2 λ nB(x−), q = p.

(3.13)

Time-dependent gauge field on the Dq-brane modifies the metric observed by the open

strings. This can be explicitly seen by using the DBI action. We will show in the following

section that this field configuration can create an apparent horizon on the Dq-brane which

signals the thermalization in the dual strongly coupled field theory.

3.2 Apparent horizon formation

Thermalization usually refers to an increase in the temperature of a thermodynamic system

from zero to a nonzero value. We know that in the context of gauge/gravity duality the

vacuum state in field theory corresponds to pure AdS space in the bulk and the thermal

mixed state is dual to the AdS-black hole. So the horizon formation in the bulk can be

considered as a signal of thermalization in the dual gauge theory. In order to study the

process of thermalization in a strongly coupled field theory the gauge/gravity techniques

can be applied [9–11]. In this framework the horizon formation usually refers to the ap-

parent horizon formation since in contrast to the event horizon it can be obtained locally

and the global knowledge of the bulk solution is not needed [9, 10].

In the Dp-Dq set-up the meson dynamics can be used to study thermalization in the

field theory. The mesons are the open strings (scalar or gauge fields) living on the Dq-

brane [25]. The Dq-brane can fluctuate in the directions which are transverse or parallel

to the background Dp-branes. In the following subsections we will study the dynamics of

these two kinds of scalar fluctuations in the presence of a time-dependent gauge field on

the Dq-brane. It leads to calculating the modified metric on the Dq-brane which is called

the open string metric [26]. Thus we can obtain the equation of the apparent horizon and

compute the thermalization time-scale.

3.2.1 Transverse fluctuation

Consider Dq-brane embedding (2.9). The transverse fluctuations are along σ and Ω7−p−k
directions. Due to the isometry SO(8−p−k) we assume only δσ to be nonzero. This plays

the role of the scalar meson whose dynamics we would like to study. We expand the DBI

action (2.5) to quadratic order in δσ in the background solution Ftρ (3.7). Note that since

the RR field does not couple to the end point of the string on the brane it will not enter

in the calculations for the open string metric. Therefore from now on in our calculations

we neglect the CS action. Hence the action for the scalar meson is

S = −1

2

∫
dtdρddxidkθα

√
−g̃ g̃ab∂aδσ∂bδσ, (3.14)
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where

−g̃tt = τ
2
q−1
q [1− (2πα′)2F 2

tρ]
2−q
1−qH

p−q
2(q−1) ,

g̃ρρ = τ
2
q−1
q [1− (2πα′)2F 2

tρ]
2−q
1−qH

p+q−2
2(q−1) ,

g̃ij = τ
2
q−1
q [1− (2πα′)2F 2

tρ]
1

1−qH
p−q

2(q−1) δij ,

g̃αβ = τ
2
q−1
q [1− (2πα′)2F 2

tρ]
1

1−q ρ2H
p+q−2
2(q−1) ĝαβ.

(3.15)

i = 1, . . . , d is the spatial directions of the (d+ 1)-dimensional defect. θα (α = 1, . . . , k) is

the angular variable on Sk and ĝαβ is the metric on the unit k-sphere. The surface of the

presumably apparent horizon, which is defined locally as a surface whose area variation

vanishes along the null ray which is normal to the surface, is given by3

Vsurface =

∫
ddxidkθα

(
d∏
i=1

g̃ii

k∏
α=1

g̃αα

) 1
2

= VdVol(Sk)
τq

2πα′
H

1
2

√
g2 + (2πα′)2ρ2kH

p−q+2(k−1)
2 ,

(3.16)

where this should satisfy

dV |dt=−dz = 0. (3.17)

Therefore the equation for the apparent horizon reduces to

4gg′H
1
2 ρ+ (p− 7)g2 + ν(2πα′)2H

p−q+2(k−1)
2 ρ2k = 0, (3.18)

where ν = 1
2 [(p− 7)(p− q + 2k) + 4k]. We call this the master equation. For supersym-

metric cases, the master equation can be simplified further

4gg′H
1
2 ρ+ (p− 7)g2 + (p− 7 + 2k)(2πα′)2ρ2k = 0. (3.19)

Since working with z coordinate is more appropriate we replace ρ with z in (3.19) and get

2(5− p)gg′z + (p− 7)g2 + (2πα′)2(p− 7 + 2k)

(
5− p

2

) 4k
p−5

z
4k
p−5R

2k(p−7)
p−5 = 0, (3.20)

where the length scale R can be written in terms of the t’Hooft coupling constant λ as

R
p−7
p−5 =

√
2(2πα′)(2π)

p+1
2(p−5) Γ

(
7− p

2

) 1
5−p

λ
1

5−p . (3.21)

The formula (3.20) is the main equation that will be used to calculate the thermalization

time for the transverse fluctuations.

3One can see that for the supersymmetric cases the apparent horizon surface area simplifies to

Vsurface = VdVol(Sk)
τq

2πα′
H

1
2

√
g2 + (2πα′)2ρ2k.
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3.2.2 Parallel fluctuation

As it was mentioned earlier in addition to the transverse fluctuations of the Dq-brane one

can also study the ones which are parallel to the background Dp-branes. These parallel

fluctuations exist only for q = p + 2 and p. This can be easily seen from the configura-

tion (2.10). Note that for q = p+ 2 we have d = p− 1 and the only parallel fluctuation is

along p direction. For q = p there are two directions for parallel fluctuations, p− 1 and p,

and the fundamental matter lives on the spatial (d = p− 2)-dimensional defect.

Similar to the transverse fluctuations the DBI action reduces to

S = −1

2

∫
dtdρddxidkθα

√
−g̃ g̃ab∂aδxn∂bδxn , (3.22)

where δxn represents small fluctuation parallel to Dp-branes. The components of the

metric are

−g̃tt = τ
2
q−1
q [1− (2πα′)2F 2

tρ]
2−q
1−qH

p−q−4
2(q−1) ,

g̃ρρ = τ
2
q−1
q [1− (2πα′)2F 2

tρ]
2−q
1−qH

p+q−6
2(q−1) ,

g̃ij = τ
2
q−1
q [1− (2πα′)2F 2

tρ]
1

1−qH
p−q−4
2(q−1) δij ,

g̃αβ = τ
2
q−1
q [1− (2πα′)2F 2

tρ]
1

1−q ρ2H
p+q−6
2(q−1) ĝαβ.

(3.23)

Therefore we can now calculate the equation for the apparent horizon area4

Vsurface = VdVol(Sk)
τq

2πα′
H−

1
2

√
g2 + (2πα′)2ρ2kH

p−q+2(k−1)
2 . (3.24)

Similar to the previous subsection we apply the condition (3.17) and the master equation

for the parallel fluctuations reduces to

2(5− p)gg′z − (p− 7)g2 − (2πα′)2(p− 7− 2k)

(
5− p

2

) 4k
p−5

z
4k
p−5R

2k(p−7)
p−5 = 0, (3.25)

where the length scale R was introduced in (3.21). The master equation (3.25) is very

similar to the one obtained for transverse fluctuations (3.20) except for a couple of sign

differences. Note that we have calculated the master equation for the supersymmetric cases.

Before closing this section we would like to emphasize on the observation that for the

general values of q, not necessarily supersymmetric ones, the only change in the equa-

tions (3.20) and (3.25) appears in the power of z, in their last term. Since p−q+2(k−1) is

not zero any more in the non-supersymmetric brane configurations the power of z, 4k
p−5 , is

replaced by p−q+2(3k−1)
p−5 . Note that this is a rough argument and we have ignored discussing

the stability of the backgrounds. We will see from our results in the following section that

this indicates that the thermalization time scale behaviour does not rely on supersymmetry.

4In supersymmetric cases we have

Vsurface = VdVol(Sk)
τq

2πα′
H−

1
2

√
g2 + (2πα′)2ρ2k.
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4 Baryon injection model

To be able to determine the time-scale of thermalization, the source function g(x−) should

be specified. Similar to the function considered in [20], we assume

g(x−) =


0 x− < 0

gmax ωx
− 0 < x− < 1

ω

gmax
1
ω < x−

(4.1)

Using the equation (3.10) it shows that the baryon density nB is zero in the beginning which

resembles the situation before the collision of heavy ions. At x− = 0 it starts changing

to reach a maximum value at x− = 1
ω and remains constant since then. The maximum

value of source function gmax is given by (3.13) where nB(x−) is replaced by its constant

maximum value, nB

gmax =
γ

Vol(Sk)
(2π)

q−p
2 (2πα′)

q−p+4
2 λ nB. (4.2)

This is similar to the situation where the baryonically-charged heavy ions approach each

other and the baryon number chemical potential changes locally.

The time-dependence of the baryon number can be chosen to have a general form,

(ωx−)n, where n ≥ 0.5 This is a dimensionless combination and guarantees that g(x−)

gets its maximal value at x− = 1
ω .

We consider the supersymmetric configurations which fall into these categories:

4.1 (p, p + 4) system

In this set-up of brane configuration we consider q to be p + 4 where 0 ≤ p < 5. As it’s

been shown in (2.10) there is no parallel fluctuations in this case and one needs to consider

only the transverse fluctuations.

4.1.1 Transverse fluctuation

If we define g(x−) = gmax y(x−) where gmax is given by (4.2) and set k to be 3, the master

equation (3.20) becomes

(p− 7)y2 + 2(5− p)yy′z

+
1

8γ2
(p− 1)

(
5− p

2

) 12
p−5

(2π)
3(p+1)
p−5 Γ

(
7− p

2

) 6
5−p λ

2(p−2)
5−p

n2
B

z
12
p−5 = 0.

(4.3)

To warm up, we start with the D4-D8 brane configuration.

5If we assume g(x−) to scale as gmax(ωx−)n the change in the thermalization time appears in the overall

power β and the power of ω as

tth ∼
( λα

n2
Bω

2n

)β
.

Note that, in contrast to transverse fluctuations, n = 0 does not give a real solution for parallel ones. We

will see this in subsection 4.2.2.
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Figure 1. The location of the apparent horizon for t < z + 1
ω in the t − z plane. The green

curve represents (4.5a) and the blue line shows the tangent null ray. The parameters are chosen as

ω = 0.5 and λ4

γ2n2
B

= 1
ω12 for D4-D8 system.

D4-D8

The master equation is then

3λ4

4096π12γ2n2
Bz

12
− 3y2 + 2zyy′ = 0. (4.4)

The location of the apparent horizon on the D8-brane is obtained by solving the above

equation and determine t in terms of z. We get

t =
4z

3
+

1

192

√
4096z2 +

9λ4

z12π12γ2n2
Bω

2
, t < z +

1

ω
, (4.5a)

z = 0.16

(
λ2

γnB

) 1
6

, t > z +
1

ω
. (4.5b)

The curve (4.5a) and the line (4.5b) are plotted in figures 1 and 2 in green and black

colours, respectively. The goal of these calculations is to compute the thermalization time

in the boundary field theory. This in fact is the time that a boundary observer starts to

see the apparent horizon formation on the D8-brane. For t < z + 1
ω the null ray which is

tangent to (4.5a) is the earliest one that conveys the information to the boundary. It has

been shown by the blue line in figure 1. The other null rays which cross (4.5a) reach the

boundary at later times. The tangent point A coordinates are

zA = 0.46

(
λ2

γnBω

) 1
7

, tA = 0.81

(
λ2

γnBω

) 1
7

. (4.6)

So the thermalization time is

tth = tA + zA ∼
(
λ2

nBω

) 1
7

. (4.7)

An interesting observation is that the thermalization time depends only on λ and the

baryon injection parameters nB and ω.
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A

B

0.5 1.0 1.5 2.0 2.5
z

0.5

1.0

1.5

2.0

2.5

3.0

t

Figure 2. The location of the apparent horizon for t > z + 1
ω in the t − z plane. The black, red

and blue lines represent (4.5b), t = z+ 1
ω and the earliest null ray which reaches the boundary. The

parameters are chosen as ω = 3 and ( λ2

γnB
)

1
6 = 10

ω for D4-D8 system.

Similar argument can be made for (4.5b). In that case the thermalization time is

determined by the point A coordinates in figure 2. Point A is where the line (4.5b) crosses

the ingoing null ray t = z+ 1
ω , red line in that figure. So the null ray which passes through

this point and reaches the boundary gives the earliest time that a boundary observer sees

the horizon formation. This happens especially if

(
λ2

nBω

) 1
7

� 1

ω
, (4.8)

and thermalization time becomes

tth = 2zA +
1

ω
, (4.9)

where

tA = zA +
1

ω
, (4.10a)

zA = 0.16

(
λ2

γnB

) 1
6

. (4.10b)

Inequality (4.8) then indicates

tth ∼
(
λ2

nB

) 1
6

. (4.11)

Dp-D(p+4)

The above calculation can be generalized to other values of p. We conclude that

– 13 –
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• 0 ≤ p(6= 1) < 5

tth ∼

λ 2(p−2)
5−p

n2
Bω

2


5−p

2(11−p)

, (4.12)

and if

(
λ

2(p−2)
5−p

n2
Bω

2

) 5−p
2(11−p)

� 1
ω we have

tth ∼

λ 2(p−2)
5−p

n2
B


5−p
12

. (4.13)

• p = 1

Setting p = 1 the system behaves differently from the other values of p. This is due

to the fact that at p = 1 one of the terms in the master equation vanishes and this

trivializes the calculations.

4.2 (p, p + 2) system

Consider a D(p+2)-brane supersymmetrically embedded in the background obtained from

the near horizon geometry of N coincident Dp-branes where 1 ≤ p < 5. k equals 2 and

the dual gauge theory is (p+1)-dimensional, but the fundamental hypermultiplet has been

introduced on a (d+1 = p)-dimensional defect. There are three and one set of fluctuations

along transverse and parallel directions, respectively. In the following subsections we will

discuss them individually.

4.2.1 Transverse fluctuations

For this configuration the master equation (3.20) reduces to

2(5− p)yy′z + (p− 7)y2

+
16

9
(p− 3)(2π)

2(p+1)
p−5

(
5− p

2

) 8
p−5

Γ

(
7− p

2

) 4
5−p λ

2(p−3)
5−p z

8
p−5

γ2n2
B

= 0.
(4.14)

If we repeat the same calculations done in the previous section, the thermalization time

for arbitrary values of p is

• 1 ≤ p(6= 3) < 5

tth ∼

λ 2(p−3)
5−p

n2
Bω

2


5−p

2(9−p)

, (4.15)

and if the time scale lies in the limit where

(
λ

2(p−3)
5−p

n2
Bω

2

) 5−p
2(9−p)

� 1
ω , we obtain

tth ∼

λ 2(p−3)
5−p

n2
B


p−5
8

. (4.16)
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• p = 3

Note that similar to p = 1 case in the Dp-D(p + 4) system, choosing p = 3 sets

one of the terms in the master equation to zero and the thermalization time can not

be obtained. Interestingly we will see in the following that the parallel fluctuation

produces the result we expect for p = 3.

4.2.2 Parallel fluctuations

As it was mentioned earlier there is only one parallel fluctuation for Dp-D(p + 2) system

which is along the xp direction. The master equation (3.25) for k = 2 reduces to

2(5− p)gg′z − (p− 7)g2 − (2πα′)2(p− 11)

(
5− p

2

) 8
p−5

z
8
p−5R

4(p−7)
p−5 = 0 . (4.17)

Let us start with an explicit example.

D4-D6

Setting p = 4 the apparent horizon equation becomes

3y2 + 2zyy′ +
7λ2

36π8γ2n2
Bz

8
= 0. (4.18)

This looks similar to the master equation for D4-D8 brane system (4.4). We follow the

same analogy here. The solution to the above equation which specifies the location of the

apparent horizon reads

t =
2z

3
+

1

3

√
z2 − 7λ2

12z8π8γ2n2
Bω

2
, t < z +

1

ω
. (4.19)

Note that there is no real solution for z when t > z + 1
ω . Thus the thermalization time is

only fixed by the solution (4.19). For t < z+ 1
ω the expression under the square root must be

positive. Fortunately we can always find a solution for z that respects this condition. The

coordinates of the tangent point A to the curve (4.19) will determine the thermalization

time. This has been fully discussed in D4-D8 case so we state the result. The coordinates

of the tangent point A are

zA =
0.39

γ1/5

(
λ

nBω

)1/5

,

tA =
0.45

γ1/5

(
λ

nBω

)1/5

.

(4.20)

Hence the thermalization time on the boundary reads

tth = tA + zA ∼
(

λ

nBω

)1/5

. (4.21)

If we set p = 4 in the result for the transverse fluctuation (4.15) we get the same thermal-

ization time scale, up to a numeric constant. It is interesting that although the apparent

horizon equations are different for transverse and parallel fluctuations their thermalization

times observed on the boundary exactly resemble each other.
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Dp-D(p+2)

The above result can be generalized to other values of p and we get

tth ∼

λ 2(p−3)
5−p

n2
Bω

2


5−p

2(9−p)

. (4.22)

One can conclude that the thermalization time for parallel fluctuations and transverse

ones (4.15) look completely alike for various values of p. An interesting observation is that

the time scale (4.22) works fine for p = 3 case in contrast to the transverse one. We can

see that for p = 3 there is no dependence on the t’Hooft coupling λ in the thermalization

time scale.

4.3 (p, p) system

Consider the brane configuration where q = p. In order to supersymmetrically embed

one Dp-brane in the background geometry of N Dp-branes we choose 2 ≤ p < 5. As it

was mentioned earlier the fundamental hypermultiplet is confined to a (d + 1 = p − 1)-

dimensional surface. k = 1 for this set-up. Therefore there are two sets of both, parallel

and transverse fluctuations which we will elaborate more on them in the following.

4.3.1 Transverse fluctuations

The master equation (3.20) in this case reduces to

(p− 7)y2 + 2(5− p)yy′z

+
1

2γ2
(p− 5)

(
5− p

2

) 4
p−5

(2π)
3(p−3)
p−5 Γ

(
7− p

2

) 2
5−p λ

2(p−4)
5−p

n2
B

z
4
p−5 = 0.

(4.23)

The thermalization time-scale for general values of p becomes

• 2 ≤ p < 5

tth ∼

λ 2(p−4)
5−p

n2
Bω

2


5−p

2(7−p)

, (4.24)

and in the limit where

(
λ

2(p−4)
5−p

n2
Bω

2

) 5−p
2(7−p)

� 1
ω , we have

tth ∼

λ 2(p−4)
5−p

n2
B


p−5
4

. (4.25)
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4.3.2 Parallel fluctuation

For Dp-Dp system there are two directions for parallel fluctuations. The master equa-

tion (3.25) reads

−(p− 7)y2 + 2(5− p)yy′z

− 1

2γ2
(p− 9)

(
5− p

2

) 4
p−5

(2π)
3(p−3)
p−5 Γ

(
7− p

2

) 2
5−p λ

2(p−4)
5−p

n2
B

z
4
p−5 = 0.

(4.26)

Interestingly we observe that similar to Dp-D(p + 2) system, the thermalization time for

parallel fluctuations has the same scaling behaviour as the transverse fluctuations. There-

fore for general p we obtain

• 2 ≤ p < 5

tth ∼

λ 2(p−4)
5−p

n2
Bω

2


5−p

2(7−p)

. (4.27)

4.4 Concluding remarks

We conclude this section mentioning some interesting observations. It’s been already men-

tioned that the thermalization time for parallel and transverse fluctuations are the same,

up to a numeric coefficient, even though the apparent horizon equations are different. The

theories we discussed here are not necessarily conformal and their dual background ge-

ometries are not AdS. But the time-scale behaviour still gets the same form as an AdS

background with a conformal field theory dual such as D3-D7 system. Even for general

values of q for which the solution is not supersymmetric the general form of the thermaliza-

tion time (1.2) persists. This seems to approve the claim that the thermalization time-scale

behaves universally. But one may ask to what extent this discussion works. We leave it as

an open question.

Let us consider the case where p = 3. As it is well known the dual gauge theory

is N = 4 SYM theory which lives on the 4-dimensional boundary of AdS space. If we

require to preserve supersymmetry we can add three types of probe flavour branes to this

background. They are D3, D5, and D7-branes. Adding these branes will modify the dual

gauge theory to N = 4 coupled to N = 2 fundamental hypermultiplet. The dynamical

quarks live on (1+1), (2+1) and (3+1)-dimensional defects for q = 3, 5 and 7, respectively.

Interestingly we see that although the 4-dimensional gauge theory is the same for all of

these brane set-ups these theories produce different time scales for thermalization which are

tth ∼



(
λ

n2
Bω

2

) 1
8

, D3−D7,

(
1

n2
Bω

2

) 1
6

, D3−D5,

(
1

n2
Bω

2λ

) 1
4

, D3−D3.

(4.28)
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Therefore we can conclude that the thermalization time scales differently with the t’Hooft

coupling, λ. The main difference between these theories come from the fact that the

dynamical quarks are confined to defects with different dimensions.

Another intriguing observation is when we consider the dimension of the defect to be

(2 + 1). The brane configurations to get it are D2-D6, D3-D5 and D4-D4. One can see

that in all of these cases the dependence on λ in the thermalization time disappears. It

is very interesting that for this specific choice all the brane configurations give the same

value for the thermalization time which is
(

1
n2
Bω

2

) 1
6 . Note that this doesn’t happen in the

other dimensions for the defect such as (1 + 1) and (0 + 1) dimensions.

In this paper we have studied thermalization for the scalar mesons. One can generalize

this calculation and study the dynamics of the vector mesons. Moreover the universal

behaviour of the thermalization time-scale can be investigated in other gravity backgrounds

such as anisotropic Lifshitz ones. It is also interesting to study the time-scale of the change

in the temperature if one starts from thermal field theory, dual to black hole background,

instead of zero-temperature one and then injects energy into it. We postpone these to the

future works.
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