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to obtain a smooth dilaton solution for computing the spectral functions of the vector and

axial-vector mesons. It is demonstrated that the peaks appearing in the spectral func-

tions characterize the thermal mass spectra of vector and axial-vector mesons, where the

location of the peak moves to a lower value and the width of the peak becomes wider

when increasing the temperature. We observe that the peak disappears completely at the

critical temperature around Tc = 200MeV, which implies the deconfinement of quark and

the restoration of chiral symmetry breaking. A numerical study by fitting the spectral

function in terms of the Breit-Wigner form has been made to show how the peak dissolves

quantitatively when the temperature is increased to the critical point.
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1 Introduction

The reproduction of the extremely early moment after the big-bang is one of the biggest

purposes and achievements in the present high energy physics. The experimental explo-

ration is expected to be carried out by the groups at LHC and RHIC, as well as many other

groups including FAIR, J-PARC, JLab and RIBF. It will involve with the following basic

problems: the novel matter phase of quark-gluon plasma, confinement of colors and quarks,

chiral symmetry breaking and restoration, unstable nuclides, inner structure of hadrons and

the force between hadrons, color glass condensation and superconductor. Unlike the per-

turbative QCD which is well understood based on the property of asymptotic freedom of

QCD [1, 2], all the studies will lead us to understand deeply the properties of nonperturba-

tive QCD as they all are relevant to the strongly coupled QCD. So far, the strongly coupled

QCD is mainly described by the chiral dynamical models of QCD with dynamically spon-

taneous symmetry breaking [3–5], lattice QCD and holographic QCD (or AdS/QCD) [6].

The holographic QCD has been developed based on the AdS/CFT duality to character-

ize the strongly coupled QCD. AdS/CFT was initiated as the duality between the weakly

coupled type IIB supergravity on AdS5 × S5 space-time and the strongly coupled D = 4

N = 4 super Yang-Mills theory [7–10]. It is known that D = 4 N = 4 super Yang-Mills

theory has conformal symmetry and no field associated with fundamental representation.

Thus AdS/CFT itself cannot correspond to the realistic QCD. The attempt for making

AdS/CFT approach to the realistic QCD was first pursued in ref. [6], where the study

has been paid to construct phenomenologically the model in searching for the bulk gravity

matching with the realistic QCD. Such kind of bottom-up approach is usually called as

holographic QCD or AdS/QCD models which include hard-wall AdS/QCD model [11–15]

and soft-wall AdS/QCD model [16–20]. It is also interesting to observe the correspondence
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between matrix elements obtained in AdS/CFT with the corresponding formula using the

light-front representation as shown in refs. [21–24].1 It may distinguish from the top-down

model resulted from solutions of string theories like D3/D7 [25–27], D4/D8/D8 [28, 29]

and D4/D6/D6 [30].

In AdS/QCD models, the cutoff is put artificially around the horizon in the radial

coordinate of the bulk gravity. The location of such a cutoff corresponds to the inverse

of QCD scale 1/ΛQCD in the dual field theories. Here the radial coordinate in the bulk

corresponds to the energy scale in the dual field theories, thus the cutoff has a role as the

IR cutoff in the dual field theories. There is a difference in how the cutoff is put between

hard-wall and soft-wall AdS/QCD model. In the hard-wall model, the range of the radial

coordinate is restricted sharply at the cutoff in the integration of Lagrangian. Whereas in

the soft-wall model, the action begin to be suppressed gradually from around 1/ΛQCD to

the horizon by introducing the dilaton which is regarded as a background field.

One of the main topics in the holographic AdS/QCD is to consistently incorporate both

the dynamics of chiral symmetry and the linear dependence of squared mass of mesons on

spin and excitation number, namely the dynamically spontaneous chiral symmetry break-

ing and the linear confinement of QCD. The hard-wall model can succeed in the realization

of the linear dependence on lower excited states and lower spins, while the linear depen-

dence deviates at higher excited states or higher spins [31, 32]. The soft-wall model was

motivated to improve this situation [16], so that the linear dependence was found to be

satisfied for higher excited states and spins, but the resulting chiral condensation is pro-

portional to quark mass, which is inconsistent with the realistic QCD. To further improve

the situation, a higher order quartic term was introduced in the potential of the bulk scalar

field, which modified the proportional between chiral condensation and quark mass, but

the bulk scalar potential field is not bounded [18].

It has been shown in ref. [19, 20] that by simply modifying the bulk gravity at the

infrared (IR) region in the soft-wall AdS/QCD and keeping the conformal invariance to be

unchanged at the UV region as required from the property of QCD, it enables us to build a

predictive AdS/QCD model which can provide a consistent prediction for the mass spectra

of all light mesons. As a consequence, the mass spectra for both the groundstate mesons

and resonance mesons can match well with the experimental data.

Another interesting topics in the holographic AdS/QCD are to investigate the finite

temperature effects. In ref. [33], in both of the hard- and soft-wall models, confine-

ment/deconfinement transition temperatures were computed based on the evaluation of

the free energies. Ref. [34] is a study of meson in the hard-wall model at finite tempera-

ture. The finite temperature effect on the spectrum of glueballs or mesons in the soft-wall

model was studied in ref. [35–38]. In ref. [39], a holographic model for charmonium was

built in the soft-wall model. In refs. [17, 40], both mesons and gluons were investigated

in the soft-wall model. In ref. [41–43], the spectral function was computed by taking the

D3/D7 setup which is dual to N = 4 Super Yang-Mills theory with fundamental matters

at finite baryon density. In ref. [44], the spectral function was computed holographically

1
See also references therein.
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by modifying the D3/D7 setup with finite baryon density [41–43] such that the dual field

theory can have electric background. The setup with D4 and D4-branes on AdS6 was con-

sidered in ref. [45]. This is a non-critical string setup, which is considered not to have the

problems originated from in critical string setups like D4/D4/D8. In such a circumstance,

the spectral function was computed (hydrodynamics was also performed).

In this paper, we are going to extend the predictive soft-wall AdS/QCD model [19, 20]

to a thermodynamic model at finite temperature. In particular, we will examine finite

temperature effect on mass spectra of vector and axial-vector mesons from the computation

of the spectral function. The paper is organized as follows: In section 2, we include the

finite temperature effect into the predictive soft-wall AdS/QCD model in the usual way by

simply considering a black hole metric. In section 3, we present a numerical computation

for the spectral functions of the vector and axial-vector mesons at finite temperature. It is

seen that the peaks of the spectral functions at low temperature will appear like a spike,

the locations of the peak correspond to the groundstate mesons and resonances, which

are found to match with the ones at zero temperature. We will show how the peaks

dissolve as temperature increasing, which then indicates the chiral symmetry restoration.

In section 4, we will qualitatively investigate the dissolution of the spectral functions by

fitting to numerical results in terms of the Breit-Wigner form. The finite momentum effect

in the spectral function is discussed in section 5. At the end of the section, we make remarks

on the options in parameters and profiles for the high order scalar interactions as well as the

boundary behavior of the scalar VEV. Our conclusions and remarks are given in section 6.

Some formula used in our computation of spectral function are derived and presented in A.

2 Predictive AdS/QCD model at finite temperature

In this section, we will describe the extension of the predictive AdS/QCD model [19, 20] to

a thermodynamic model by simply considering the black hole metric [35–37]. It then turns

out that if taking the previous bulk vacuum expectation value (bVEV) given in [19, 20], the

resulting dilaton background will diverge on the horizon at finite temperature due to the

modified bulk geometry in the IR-region and the quartic term in the scalar potential, thus

a modified bVEV has to be introduced to avoid such a divergence in order to obtain a well-

defined spectral function at finite temperature in the predictive soft-wall AdS/QCD model.

Let us begin with considering the following black hole space-time as a bulk gravity:

ds2 = a2(z)

(
f(z)dt2 −

3∑

i=1

dx2i −
dz2

f(z)

)
, (2.1)

with the IR improved metric and the black hole metric

a2(z) = 1/z2 + µ2g and f(z) = 1− (z/z0)
4. (2.2)

Here z has the relation with a black hole radial coordinate r via z ≡ 1/r, it takes from

z0 ≡ 1/r0 (inverse horizon) to 0 (boundary). (In section 3, we will see that it is more

convenient to use the variable u ≡ z/z0.) As the boundary theories are independent of
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the AdS radius, we will set it as unity through this paper. The Hawking temperature of

the black hole is given as T = 1/(z0π), which corresponds to the temperature in boundary

theories. The mass scalae µg characterizes QCD confinement and is fixed by the low energy

physics of hadrons [19, 20].

We take the black hole space-time as the bulk geometry, despite what the boundary

theory is in confinement phase, as in the field theory the mesons are considered as the

bound states of strong interaction. In our treatment, the bulk geometry of the black hole

space-time given in eq. (2.1) is taken as the background. The dilaton is also taken as the

background field, but it is obtained in the bulk geometry of the black hole space-time from

solving the equation of motion for the scalar field with the required boundary conditions,

the details can be seen below. Thus, our system can be a solution of equation of motion

in the end. (While it is not known whether it is stable or metastable. One way for the

confirmation of that is via the evaluation of the specific heat like ref. [38]. ) This is the

different point from other studies [35–38], where both of the dilaton and the black hole

space-time are taken as the backgrounds for confinement phase.

On the background geometry eq. (2.1), the considered field ingredients include the dila-

ton background Φ, the bulk scalar field X and gauge fields AL and AR of SUL(2)×SUR(2)

gauge symmetry. Here X = Xata and AL,R = Aa
L,Rt

a with ta (a = 1, 2, 3) the SU(2) Lie

algebra are as the dual operators in the boundary theories. The model is given as follows

on the background eq. (2.1),

S = SΦ + Sgauge, (2.3)

where

SΦ =

∫
d5x

√
ge−Φ(z)Tr

(
|DMX|2 − V (X)

)
, (2.4)

Sgauge = − 1

4g25

∫
d5x

√
ge−Φ(z)Tr

(
FL,MNFL

MN + FR,MNFR
MN
)
, (2.5)

with

DMX = ∂MX + i (AL,MX −XAR,M ) , (2.6)

V (X) = m2
X |X|2 + λ

4
|X|4. (2.7)

with m2
X = −3. g25 ≡ 12π2L/Nc with Nc = 3 is a gauge coupling given in [16]. We use

capital Latin and Greek character for the five dimensional and the four dimensional co-

ordinates, respectively, M = x0, x1, x2, x3, z and µ = x0, x1, x2, x3. V (X) is the potential

of the bulk scalar field. λ is a coefficient for the quartic term. Here we will consider the

case with or without the quartic term, i.e., λ = 0 and λ 6= 0. For λ 6= 0, its value at zero

temperature was fitted from the meson mass spectra and found to be λ = 9 [19, 20].

Let us now discuss the bulk vacuum expectation value (bVEV) of the scalar field and

the dilaton background at finite temperature. Taking the bVEV to be a function of the

fifth dimension v(z)

X(z) =
1

2
v(z) 12, (2.8)
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Model v0(z) Parameters

Ia z(A+Bz2)(1+Cz2)−1 A=mqζ, B=σ/ζ+mqζC, C=B/(µdγ)

Ib z(A+Bz2)(1+Cz2)−5/4 A=mqζ, B=σ/ζ+ 5
4mqζC, C=(B2/(µdγ

2))2/5

IIa z(A+Bz2)(1+Cz4)−1/2 A=mqζ, B=σ/ζ, C=(B/(µdγ))
2

IIb z(A+Bz2)(1+Cz4)−5/8 A=mqζ, B=σ/ζ, C=(B2/(µdγ
2))4/5

Table 1. These are taken from [19]. Numerical values are given in table 2 and 3.

Model mq (MeV) σ
1

3 (MeV) µg (MeV) γ

Ia 4.16 275 (2µ2d)/3 0.178

Ib 4.64 265 µ2d/3 0.136

IIa 4.44 265 (2µ2d)/3 0.153

IIb 4.07 272 µ2d/3 0.112

Table 2. The numerical values in the case without the quartic term (λ0 = 0) [19]. ζ =
√
3/(2π)

and µd = 445MeV for all the models.

Model mq (MeV) σ
1

3 (MeV) µd (MeV) µ2g (MeV2) γ

IIa 6.95 228 412 (2µ2d)/3 0.30

IIb 6.79 229 548 µ2d/3 0.20

Table 3. The numerical values in the case with the quartic term (λ0 = 9) [19]. ζ =
√
3/(2π) for

all the models.

where 12 denotes 2× 2 unit matrix. v(z) at zero temperature is given by table 1, 2 and 3.

Here we refer it as zero temperature part and denote it as v0(z) below.

At finite temperature characterized by the black hole metric, the dilaton field Φ(z) has

to be consistently determined from solving the equation of motion for any known bVEV v(z)

Φ′(z) =
3a′(z)

a(z)
+

(
f(z)v′(z)

)′

f(z)v′(z)
− a2(z)

f(z)v′(z)

(
m2

Xv(z) +
λ

2
v3(z)

)
, (2.9)

where the prime (′) means a z-derivative. It is seen that there are terms with f(z) in

the denominator in eq. (2.9), which leads to a divergent solution for the dilaton field Φ(z)

on the horizon (z → 1) at finite temperature if taking the bVEV given in [19] for zero

temperature case. While the divergent solution of Φ(z) will bring the difficulty in taking

the in-falling boundary condition for the spectral functions. Note that the divergence ap-

pears only on the horizon at finite temperature due to the black hole metric f(z). At zero

temperature f(z) = 1.
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To avoid such a divergence in the solution for the dilaton field Φ(z), we may modify

the bVEV v(z) to be

v(z) = v1(z) ln f(z) + v0(z), (2.10)

where v0(z) is taken to be the part at zero temperature and given in [19]. The part

v1(z) ln f(z) vanishes at zero temperature and is introduced to obtain a finite solution for

the dilaton field Φ(z) by a proper v1(z). To fix v1(z), we substitute the above modified

bVEV into eq. (2.9), which gives

Φ′(z) =
ln f(z)

v1(z)f ′(z)

{
−a2(z)v1(z)

(
m2

X +
λ

2
v2(z)

)
+ f ′(z)v′1(z)

}
+ · · · ,

=
ln f(z)

v1(z)f ′(z)

{
F(z)− λ

2
a2(z)v1(z)v

2(z)

}
+ · · · . (2.11)

here we write only the divergent term proportional to ln f(z), and “· · · ” denotes the finite

terms at the horizon limit: z → 1. Where we have defined the function F(z) as

F(z) ≡ −m2
Xa

2(z)v1(z) + f ′(z)v′1(z) (2.12)

It is seen that for the case λ = 0 the solution for Φ(z) becomes finite once F(z) = 0. It is

not difficulty to find from the condition F(z) = 0 that v1(z) should take the following form

v1(z) = cv exp

[
m2

X

8(πT )4z4

(
1

2
+ µ2gz

2

)]
, (2.13)

with cv an integral constant. The above result holds for all the models discussed in [19].

We will make a detailed discussion below for the fixing of the constant cv.

For the case λ 6= 0, there is an additional divergent term in eq. (2.11). When taking

eq. (2.13), the divergent term is given as

Φ′(z) = − ln f(z)

f ′(z)

λ

2
a2(z)v2(z) + · · · . (2.14)

its divergent order is seen to be (ln f(z))3. As a simple prescription, we may take λ as the

following form

λ =
λ0

1 + cλ(ln f(z))p
with p ≥ 3, (2.15)

with cλ a constant. Thus the resulting solution for Φ(z) becomes finite as long as p ≥ 3.

For simplicity, we take p = 3 in the present consideration.

With the modified bVEV given in eq. (2.10) and the modified coefficient of the quartic

term given in eq. (2.15), we then arrive at a nonsingular solution for Φ′(z) as shown in

figure 1.

Now let us further discuss the parameters cv and cλ. As they cannot be determined

theoretically in the present considerations, we are going to fix them from the phenomeno-

logical studies. Their numerical values will be given in the next section, here we shall first

discuss the general considerations for how to fix them.

– 6 –



J
H
E
P
0
4
(
2
0
1
2
)
1
4
4

IIa vector HT=0.05L

0.0 0.2 0.4 0.6 0.8 1.0
-4

-2

0

2

4

6

8

0.999999 1. 1.000001
-100

-50

0

50

IIb vector HT=0.05L

0.0 0.2 0.4 0.6 0.8 1.0
-5

0

5

10

15

0.999999 1. 1.000001
-10

0

10

20

IIa vector HT=0.15L

0.0 0.2 0.4 0.6 0.8 1.0
-3

-2

-1

0

1

0.999999 1. 1.000001
-40

-20

0

10

IIb vector HT=0.15L

0.0 0.2 0.4 0.6 0.8 1.0
-4

-3

-2

-1

0

1

2

0.999999 1. 1.000001
-40

-20

0

10

Figure 1. The x- and y-axis mean u = z/z0 and Φ′(u). Φ′(u) is shown to be well-defined in the

bulk entirely with the bVEV in eq. (2.10) and the quartic coupling in eq. (2.15). T = 0.05 and

0.15GeV correspond to low and high temperatures in this paper. The correspondence between

lines and parameters is given in table 4. Where the small windows give the magnified vicinity of

the horizon, the red line (or thin solid line) and the blue line (or dashed line) show the divergence

with behaviors as 1/u2 and cubic logarithmic as expected from eqs. (2.9) and (2.14) for cv = 0 and

cλ = 0. When cv (green or dotted line) and cλ (magenta or thick solid line) are turned on, the

divergences disappear. In the small windows, green line (dotted line) and magenta line (thick solid

line) are overlapping each other.

line cv cλ λ0

red (thin solid) 0 0 0

green (dotted) -0.1 0 0

blue (dashed) -0.1 0 100

magenta (thick solid) -0.1 -0.1 100

Table 4. The correspondence between the lines and the parameters used in figure 1. Other

parameters are given in table 3. The red line (thin solid line) and the blue line (dashed line) diverge

as expected from eqs. (2.9) and (2.14). Where the green line (dotted line) and the magenta line

(thick solid line) correspond to the modified bVEV given in eq. (2.10) and the modified coefficient

given in eq. (2.15).

It is seen that the parameter cv is introduced as the coefficient of the term v1(z) given

in eq. (2.13) which is associated with the part of the VEV v1(z) ln f(z) in eq. (2.10). This

part of the VEV plays the role of a regulator, otherwise the solution of dilaton will be diver-
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gent. Similarly, the parameter cλ is introduced in eq. (2.15) to modify the zero-temperature

coupling of the quartic term of the bulk scalar in order to yield a convergent solution for

the dilaton. It is noticed that as long as the parameters cv and cλ are non-zero, even if no

matter how small they are, the divergence at the horizon can be removed. On the other

hand, as two parameters cv and cλ become smaller and smaller, the differences from the

zero-temperature part given as v0(z) in eq. (2.10) also become smaller and smaller. Thus

we will assign values to cv and cλ as small as possible.

For simplicity, we will treat cv and cλ equally as cv = cλ. In general, they can be a

function of temperature, but we are going to treat them as a constant also for simplicity.

3 Spectral function for vector and axial-vector mesons

To begin with, we combine the gauge fields into vector field V a
M and axial-vector fieldW a

M as

V a
M ≡ 1

2
(Aa

L,M +Aa
R,M ) and W a

M ≡ 1

2
(Aa

L,M −Aa
R,M ), (3.1)

where M = x0, x1, x2, x3, z as mentioned below eq. (2.3). The dual current operators for

V a
M and W a

M are flavor vector current q̄γµtaq and flavor axial-vector current q̄γ5γµtaq,

respectively. For convenience, we will change the radial coordinate z(≡ 1/r) to u as

u ≡ z/z0 = (πT )z. (3.2)

The equations of motion for the vector field V a
x and the axial-vector field W a

x in the

spatial component x = x1, x2, x3 are given as

V : 0 = ∂u

[
e−Φ(u)√g gxxguu ∂uV a

x (x, u)
]
+
[
e−Φ(u)√g gxx∂µ∂µV a

x (x, u)
]
, (3.3)

AV : 0 = ∂u

[
e−Φ(u)√g gxxguu ∂uW a

x (x, u)
]
+
[
e−Φ(u)√g gxx∂∂µW a

x (x, u)
]

+ 4g25guu(X
0(u))2W a

x (x, u), (3.4)

where “V” and “AV” denote the vector and axial-vector, respectively. As in ref. [35, 36],

we adopt the axial gauge condition for the radial direction as AL,z = AR,z = 0 and the

Landau gauge for the 4d space-time as ∂µAL,µ = ∂µAR,µ = 0 to get rid of unphysical

polarization. Performing Fourier transformation for the four-dimensional coordinates as

V a
x (x, u) =

∫
d4p eip·xṼ a

x (p, u) and W
a
x (x, u) =

∫
d4p eip·xW̃ a

x (p, u) with pµ = (ω, q1, q2, q3)

and the momentum ~q taken as one direction, we have

Ṽ a
x
′′(p, u) + F1(u)Ṽ

a
x
′(p, u) +

1

(πT )2
F0(u)Ṽ

a
x (p, u) = 0, (3.5)

W̃ a
x
′′(p, u) + F1(u)W̃

a
x
′(p, u) +

1

(πT )2
F0(u)W̃

a
x (p, u) + g25

v2(u)

u2f(u)
W̃ a

x (p, u) = 0. (3.6)

with

F1(u) =
a′(u)

a(u)
+
f ′(u)

f(u)
− Φ′(u), F0(u) =

ω2

f2(u)
− q2

f(u)
(3.7)
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where the prime (′) means a derivative with regard to u. It is seen that there is no differ-

ence in the solutions Ṽ a
x (p, u) and W̃

a
x (p, u) coming from the index for SU(2) algebra a, so

we will not attach the index a to the spectral function below.

With the above analysis, we are now in the position to make numerical computation

for the retarded two-point Green function Ga(ω, q) for the operators of flavor vector current

or flavor axial-vector current. Then we can get the spectral function as

ρ(ω, q) = − 1

π
ImGa(ω, q) θ(ω2 − q2). (3.8)

Here the index a will not be attached to ρ(ω, q) for the reason mentioned above. where

θ(ω2 − q2) is a step function introduced to keep the squared energy being positive in the

boundary theory as a general requirement likewise ref. [46]. As the key point in spectral

functions is the location and the width of the peak, where the width and the location of

the peak are defined in our present study by the Breit-Wigner form given in eq. (4.1), we

ignore the overall factor −1/π in our actual analysis for simplicity.

The solutions Ṽ a
x (q, u) and W̃ a

x (q, u) described by the equations of motion (3.5)

and (3.6) can be generally given by two linear independent solutions as

Ṽ a
x (p, u) = Aa(ω, q)Φa

0(ω, q, u) +Ba(ω, q)Φa
1(ω, q, u). (3.9)

As the axial-vector sector is the same as the vector sector, we will skip its description

below. As described in appendix, the ratio B(ω, q)/A(ω, q) corresponds to the retarded

two-point Green function, which can be written as

Ga(ω, q) = C
Ba(ω, q)

Aa(ω, q)
+ · · · = C

Φa
1(ω, q, u)

Ṽ a
x (ω, q, u)

Ṽ a
x (ω, q, 0)

+ · · · . (3.10)

Here we have assumed that Φa
0 becomes some constant and Φa

1 vanishes on the boundary

(u → 0). The part “· · · ” represents irrelevant part in our present consideration. C

represents an overall constant fixed from QCD.

Our approach to get the Green function (3.10) is the shooting method. For that,

we need the asymptotic behaviors for the boundary conditions. It turns out that the

asymptotic behaviors are the same for all the models though the dilaton takes different

form for the different models when solving the equations of motion (3.5) and (3.6). Thus,

the following description is common for all models. From eqs. (3.5) and (3.6), we can obtain

the solutions for Φa
0 and Φa

1 at the vicinity of the boundary in the limit: z → ǫ, with ǫ an

infinitesimal number. The solutions are composed of two liner-independent functions by the

first-kind Bessel function J1 and second-kind Bessel function Y1, we assign them as follows

V : Φa
0(ω, q, u = ǫ) = ǫ Y1(xV) and Φa

1(ω, q, u = ǫ) = ǫ J1(xV), (3.11)

AV : Φa
0(ω, q, u = ǫ) = ǫ Y1(xAV) and Φa

1(ω, q, u = ǫ) = ǫ J1(xAV), (3.12)

with xV ≡
√
ω2 − q2

πT
ǫ and xAV ≡

√
ω2−q2−g2

5
A2

πT ǫ. On the other hand, solving eqs. (3.5)

and (3.6) around the horizon in the limit: u → 1 − ǫ, we find that the solutions for the
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n ρV (MeV) Ia Ib IIa IIb ρAV (MeV) Ia Ib IIa IIb

0 775.5± 1 739 603 777 727 1230 ± 40 934 714 940 807

1 1465± 25 1223 1175 1292 1468 1647 ± 22 1468 1247 1496 1507

2 1720± 20 1534 1509 1596 1744 1930+30
−70 1822 1573 1831 1778

3 1909± 30 1784 1769 1842 1971 2096 ± 122 2109 1829 2102 2003

4 2149± 17 2000 1990 2054 2170 2270+55
−40 2358 2049 2338 2202

5 - 2193 2187 2249 2351 - 2582 2049 2338 2202

Table 5. The experimental and the predicted mass spectra for vector (left side) and axial-vector

(right side) mesons without the quartic term (λ0 = 0) given in [19].

vector and axial-vector mesons are the same with the so called in-going and out-going

solution. As usual, we take the in-going solution as the boundary condition:

Ṽ a
x (ω, q, u = 1− ǫ) = W̃ a

x (ω, q, u = 1− ǫ) = ǫ−i ω

4πT . (3.13)

We now make numerical computation with fixing the values for cv and cλ and consid-

ering the temperature effect. In principle, one can assign their values as small as possible,

while in the practical numerical computations, it is difficult to take extremely small values

for both cv = cλ and temperature T . It will be seen that the mass spectrum appears sharply

like a spike at low temperature, while as the temperature turns on, the spike becomes wider

and wider as well as lower and lower when the temperature gets higher and higher. In order

to check such a behavior, we will start with the temperature as low as possible, and turn

on temperature gradually. In the practical computations, the possible lowest temperature

is assigned in the following figures for the different cases. In figuring out the values of cλ
and cv, it is seen that the positive value is excluded, which can be seen from eq. (2.9) or

eq. (2.15), for a positive value, a divergence appears in Φ′(u) at somewhere in umoving from

0 to 1. Thus, we will consider only the negative values for cλ and cv. As a consequence, the

possible small values for cλ, cv are assigned in the practical computations to be as follows:

The case without the quartic term (λ0 = 0) : cv = −10−3 (constant).

The case with the quartic term (λ0 = 9) : cv = cλ = −10−4 (constant).
(3.14)

Now Let us compute the spectral function with q = 0 and compare its result with the

data listed in table 5 and 6. (As for q 6= 0, see section 5.) The results are shown in figure 2, 3

and 4. As we set q = 0, the positions of the peaks in x-axis can read as the masses of mesons.

From the figures, it is seen that there are more spikes appearing at low temperature.

In particular, the locations of the spikes which stand at lower temperature are very close

to the values of the low-lying states obtained at zero temperature listed in table 5 and 6.

When the temperature is increased, the spikes become less and less and the peaks move to

the low value of ω. It is noticed that the spikes collapse in turns from the higher excited

states. Namely, the much higher a state is excited, the more unstable that state becomes.
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Figure 2. The results of the spectral function for vector meson defined in eq. (3.8) without the

quartic term (λ0 = 0). As q = 0, the positions of the peaks in x-axis can be read as masses of

mesons. The parameters used here are given in eq. (3.14) and table 2, and the unit of temperature

is in GeV. The radial coordinate is taken as u ∈ [1 − 10−8, 10−8] in the numerical computation.

The locations of the spike match with the results shown in table 5.

n ρV (MeV) IIa IIb ρAV (MeV) IIa IIb

0 775.5± 1 583 646 1230 ± 40 1128 913

1 1465± 25 900 1468 1647 ± 22 1643 1618

2 1720± 20 1248 1793 1930+30
−70 1953 1940

3 1909± 30 1564 2008 2096 ± 122 2225 2161

4 2149± 17 1860 2170 2270+55
−40 2486 2333

5 2265± 40 2143 2289 - 2742 2470

Table 6. The experimental and the predicted mass spectra for vector (left side) and axial-vector

(right side) mesons with the quartic term (λ0 = 9) given in [19].

To check explicitly how the peaks behave when temperature becomes higher, we

illustrate in detail the peak for the lowest lying state and plot in figure 5 its behavior for

various temperatures. It is seen that as the temperature becomes higher, the width of the

peak becomes wider and wider and eventually the peak disappears. We shall discuss it

qualitatively in next section.

From the above studies, we can draw the following statement that the peaks standing

like a spike in the figures of the spectral function indicate the resonances of meson, which
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Figure 3. The results of the spectral function for axial-vector meson. Other choices are the same

as ones in figure 2.
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Figure 4. The results of the spectral function with the quartic term (λ0 = 9). Other choices are

the same as ones in figure 2 but with the parameters given table 3.

can explicitly be seen in figures 2, 3 and 4 at low temperatures. When temperature

increases, the locations of the peak move to a lower value of ω and the width of the peak

becomes wider, as explicitly seen in figure 5. Eventually, the peaks disappear completely

at temperatures around T = 200MeV, which is regarded as a critical temperature for the

disappearance of mesons, or for the confinement/deconfinement transition.

The results of figure 5 imply that the critical temperature for the restoration of chiral

symmetry breaking in our model should also locate around T = 200MeV. The reason is

that the disappearance of the peak means the deconfinement of quarks within the mesons.
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Figure 5. The peak dissolves as temperature grows for the lowest lying state. The other choices

are the same as ones in figure 3 or 4.

In a general consideration, the restoration of chiral symmetry will occur at the temperatures

around that point. On the other hand, the VEV v(z) is going to become much small at the

temperatures around T = 200MeV . This can be understood from the 5D AdS/QCD where

the bulk coordinator z plays the role of the running energy scale, i.e., a large z corresponds

to the low energy and a small z to the high energy. The AdS/QCD is actually more reliable

to describe the low energy dynamics of QCD with a large z, which may explicitly be seen

from the wave functions of the mesons as shown in figure5 of ref. [19], it is noticed that the

peak of the wave function for the ground state appears at z ∼ 1.5GeV−1 ≃ 1/667MeV−1,

when z < 1.0GeV−1 the wave function goes far from the peak and becomes negligible

small at z < 0.5GeV−1, which corresponds to the energy scale around µ ≃ 2GeV where

perturbative QCD gets available. Here, it is easy to check that at temperatures around

T = 200MeV, the allowed value for z is given by z < 1/(πT ) ≃ 1/628MeV−1 due to the

requirement for the black hole metric f ≥ 0. From the boundary condition at UV, it is

known that with the small values of z, the VEV v0(z) for mq = 0 approaches to zero as

the power z3 for the given condensation σ at low energies, and the part v1(z) goes to zero

exponentially. Thus it is expected that the VEV v(z) holographically corresponding to the

chiral condensation with the bulk coordinator z characterizing the running energy scale

approaches to be very small as z goes to be at the UV boundary. In this sense, we are led

to the statement that the chiral symmetry will be restored around T = 200MeV.

Note that in ref. [35, 36] the mass spectra in vector and axial-vector have also been

computed in a different model from ours and obtained a different dissolved temperature. We
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λ0 = 0 λ0 = 9 λ0 = 0 λ0 = 9

Our results (IIb) 0.20 0.15 0.20 0.14

The results in ref. [35, 36] 0.14 - 0.10 -

Table 7. This table shows the dissolved temperatures obtained in vector (left) and axial-vector

sectors (right) in our present model and ref. [35, 36], where the unit is in GeV. Here our results

are obtained in model IIb. As the quartic scalar potential is not taken into account in ref. [35, 36],

their results correspond to λ0 = 0 case.

shall make a comparison about the dissolved temperatures between two models and discuss

the physical reasons causing the differences. Let us first present the results for both models

in table 7. Then it can clearly be seen that two results are quite different. We now discuss

the possible reasons causing the differences. One direct way to consider the difference is to

do an analysis for the existence of states as in figure1 in ref. [35, 36], here we will only make

a general comment for the obvious differences in two kind of models. There are actually

three differences: the modified background geometry due to µ2g as in eq. (2.2), the dilaton

and the bulk scalar field as in eq. (2.8) and (2.9), and the quartic scalar field potential with

the coupling λ as in eq. (2.7). We shall make more detail comments as follows:

First, the introduction of the scale µ2g in the modified 5D metric will be crucial

for causing the differences. As the differences shown in table 7 are the ones at finite

temperature, and the scale µ2g couples with temperature in the metric, which may be seen

from the redefined new variable u = πTz so that the modified term µ2gz
2 in 5D metric is

related to the temperature via µ2g/(π
2T 2)u2. Thus tuning of µ2g term will show us how the

effect of temperature is enhanced or softened.

Next, turning to the dilaton and the scalar field, the dilaton in our model is determined

as the solution of equation of motion with the given v(z) which consists of the finite

temperature and the zero-temperature parts as in eq. (2.10). It is different from the case

in [35, 36] where the dilaton is fixed first and the VEV is determined from the equation of

motion. It is important to notice that to cooperate the chiral symmetry breaking and linear

confinement we have to obtain the correct boundary conditions for both the VEV at the UV

boundary and the dilaton at the IR boundary, for this purpose we have shown in [19] that

it is necessary have a non-zero µ2g or adding a high order interaction in the scalar potential.

Therefore, we arrive at conclusion that the deformation of IR region of bulk by the

term µ2g is the key point for causing the differences given in table 7. Finally, it is clear

from table 7 that the effect of the quartic scalar field potential with nonzero coupling λ is

the reason for lowering the critical temperature.

Before closing this section, we would like to further make comments on the several

options considered in this paper, which include: the value for the coupling of the quartic

scalar interaction and the choices for the regularization parameters given in eq. (3.14),

and the four types of models shown in table 1. First, as for the coupling of the quartic

scalar potential, as mentioned in the introduction, it was first introduced for obtaining a

nontrivial solution of dilaton and meanwhile yielding the chiral symmetry breaking, while
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it was pointed out that the bulk scalar potential field is not bounded due to the opposite

sigen [18]. Concerning the values assigned in this study, we have followed the analysis in

ref. [19] with changing the sign for the stability consideration and the nontrivial solution

of dilaton is obtained as the consequence of the modified 5D metric at IR region with the

introduction of the µ2g term, and the value of the coupling λ is taken from ref. [19] by fitting

to the experimental data. Concerning the regularization parameters cv and cλ as shown

above, we have assigned the values as small as possible in the numerical calculations, so that

they do not affect our final conclusions. As for the four types of models discussed originally

in ref. [19], which is to show how the predicted mass spectra rely on the IR boundary

behaviors and the different forms with the same boundary behavior of the VEV. As a

consequence, it can be seen from ref. [19] that the results are more sensitive to the boundary

behaviors classified as ’a’ and ’b’ than the different forms named as ’I’ and ’II’ in table 1,

the model IIb leads to more consistent results with experiment data than other types of

models. This is the reason why we take the model IIb as the studying model in this paper.

4 Mass shift and width of peak from spectral function

As we show in previous section how the peak dissolves as the temperature is increased

to a critical point. Here we are going to make a numerical study with fitting the spectral

function by the following Breit-Wigner form:

aωb

(ω2 −m2)2 + Γ2
+ P (ω2). (4.1)

Here m and Γ correspond to the location and width of the peak. P (ω2) represents the

part not forming peaks and is taken to be the form P (ω2) = c1 + c2ω
2 + c3(ω

2)c4 . Thus

it involves eight fitting parameters: a, b,m,Γ, c1, c2, c3 and c4. To see quantitatively the

mass shift and the width change of the peak, we consider the lowest lying state and

plot the relation between the mass shift ∆m2 ≡ (m −m0)
2 and the width Γ against the

temperature. Here m0 is the predicted meson mass at zero temperature given in table 5

and 6. The result is shown in figures 6 and 7. It is seen from figure 6 that ∆m2 is

proportional to Γ as shown by the dotted line.

From figure 5, it can explicitly be seen that the mass shift ∆m2 grows linearly as tem-

perature increases and begins to deviate from the linearity near the temperature which leads

the spectral function to dissolve. A similar phenomenology was also observed in ref. [35, 36]

and considered to be consistent with the results based on QCD sum rule calculation [47, 48].

It is noticed that the relation between ∆m2 ≡ (m−m0)
2 and Γ is not known in the low

temperature region where a peak appears as a spike. This is because there is no numerical

results as in such a low temperature region, the peak stands like delta function, it is difficult

to measure the width numerically. From figure 7, it is seen that the linearity occurs above

certain temperature. In the low temperature region, such a linearity changes since the mass

m and width Γ get values m = m0 and Γ = 0 at zero temperature, respectively. Thus, it is

expected that a similar change happens in the relation between ∆m2 ≡ (m−m0)
2 and Γ.
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Figure 6. The relation between the mass shift ∆m2 ≡ (m − m0)
2 and the width Γ, which is

obtained from the fitting to the numerical results of spectral function for the lowest lying state by

the Breit-Wigner form given in eq. (4.1). The parameters used here are given in eq. (3.14) and

table 2 and 3, and the unit of temperature is in GeV. The dotted lines with the linear behavior are

plotted for a comparison.
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Figure 7. It shows the temperature effect in ∆m ≡ m−m0 and Γ. The other choices are the same

as the ones in figure 6.

5 Finite momentum effect

In this section, we are going to study the finite momentum effect in the spectral function.

Such a momentum effect in the shape of spectral function was also studied in ref. [35–37].

Our results are shown in figure 8. Note that the spectral function in our present

consideration is defined with a step function in eq. (3.8) for a positive squared energy in

the boundary theory from a general point of view [46].

It is seen that there is a wall-like behavior caused by the step function defined in

eq. (3.8). In particular, when the momentum turns on, the peak moves to large ω2

direction and gradually decays. Such a phenomenology is consistent with the observation

in [49, 50], but different from the results obtained by the perturvative analysis in a field

theory [51], which may be considered as a peculiar and common behavior in strongly

coupled field theories.

Let us turn to the effect of the step function defined in eq. (3.8). Its effect appears as

a wall in figure 8. It is seen that there is a blow-up around the wall, and the hight of the

wall is changed depending on fineness of step of ω2 taken in the numerical computation.

As a result for the introduction of the step function, one may notice the difference in

the speed of the wall moving as q2 is increased. It may be seen from the differences
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Figure 8. The momentum effect in the spectral function for various momentum in unit GeV with

T = 0.10GeV. The parameters in the left and the right are given in eq. (3.14), table 2 and 3. The

radial coordinate are taken to be u ∈ [1− 10−8, 10−8] in the computation.

between the left plot and the right plot in figure 8 with λ0 = 0 and λ0 = 9, as well as with

parameters given in table 2 and 3.

6 Conclusions and remarks

In this paper, we have extended the predictive soft-wall AdS/QCD model [19, 20] to a

thermodynamic model by introducing a black hole metric. As the predictive AdS/QCD

model has adopted an IR-improved 5D metric to characterize the low energy dynamics of

QCD [19, 20], we have shown that it has to figure out a modified bulk vacuum expectation

value and a modified coefficient of quartic term for the scalar field to get a non-singular

dilaton solution. In obtaining the modified bulk vacuum expectation value and a modified

coefficient of quartic term, an additional term is introduced to regulate the singular

behavior. For that, the coefficients of the additional terms are taken to be small as

much as possible in the practical calculations. With the smooth dilaton solution, we have

computed the spectral function for the vector and axial-vector mesons.

It has been demonstrated that the peaks in the spectral function indicate the

resonance mesons, as shown in figures 2, 3 and 4. The location and the width of the peaks

moves to a lower value of ω and becomes wider as the temperature increases, respectively,

as seen in figure 5. We have found that the peak disappears completely at temperatures

around T = 200MeV, which implies the deconfinement of quark and the restoration

of chiral symmetry breaking. To see how the peak dissolves quantitatively when the

temperature is increasing to the critical point, we have made a numerical study by fitting

the spectral function with taking the Breit-Wigner form. It has been seen that the mass

shift ∆m2 = (m−m0)
2 with m0 as the meson mass at zero temperature grows in a linear

way as temperature increases. We have also investigated momentum effects and shown

that the peak moves to a large ω2 direction.
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A The formula for two-point retarded Green function

In this appendix, we will show how to obtain eq. (3.10). It is seen that the Lagrangian up

to third-order perturbations of vector and axial-vector sector can be written as

Sgauge = −
∫
dz

e−Φ(z)a(z)

2(g5)2

∫
d4p eip·x

{
f(z)

(
Ṽ a
x
′(p, z)

)2
+

ω2

f(z)

(
Ṽ a
x (p, z)

)2
}
+· · · , (A.1)

where “· · · ” denotes the axial-vector part which has the same form as the vector part and

we abbreviate it.

In general, the action is assumed to have the following form

S[φ] =

∫
dz
{
A(z)φ(z)φ′′(z) + B(z)(φ′(z))2 + C(z)φ(z)φ′(z) +D(z)(φ(z))2

}
, (A.2)

where φ(z), A(z), B(z), C(z) and D(z) are arbitrary coefficients. It can be shown that

eq. (A.2) may be rewritten as follows

S[φ] =
1

2

∫
dz
{
EOM · φ(z) + ∂z(ST)

}
. (A.3)

“EOM” denotes equations of motion and it will vanish as the bulk gravity is evaluated at

classical level. On the other hand, “ST” denotes a surface term given as

ST ≡ A(z)φ(z)φ′(z) +
{
φ(z)A(z)− φ(z)A′(z)

}
φ(z) + 2B(z)φ(z)φ′(z) + C(z)φ2(z). (A.4)

Here we will mention briefly how to obtain eq. (A.3) from eq. (A.2): Firstly, we take

the variation in an usual way to get equations of motion as S[φ + δφ] − S[φ]. Then

it can be summed up in “EOM” part and “ST” part up to the second order, i.e.,

S[φ + δφ] − S[φ] =

∫
dz
{
EOM · δφ(z) + ∂z(ST)

}
+ O(δφ2). Then, discarding the

higher-order terms and replacing δφ with φ, its l.h.s. becomes 2S[φ] (provided that powers

of all fields are same), and we arrive at eq. (A.3).

Using this prescription, eq. (A.1) can be written at classical level as

Sgauge = −e
−Φ(z)a(z)f(z)

2(g5)2

∫
d4p eip·xṼ a

x (p, z)Ṽ
a
x
′(p, z)

∣∣∣∣∣

1

z=0

+ · · · . (A.5)
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The evaluation at z = 0 in the above can be written as

e−Φ(z)a(z)f(z)

2(g5)2

∫
d4p eip·xṼ a

x (p, z)Ṽ
a
x
′(p, z)

∣∣∣∣∣
z=0

=

∫
d4p eip·x

Ṽ a
x (p, z)Ṽ

a
x
′(p, z)

2(g5)2z

∣∣∣∣∣
z=0

=

∫
d4p eip·x

Aa(ω, q)Aa(−ω,−q)
g25

[
Ba(ω, q)

Aa(ω, q)
+
q2−ω2

2

{
γE+log

(z
2

√
ω2−q2

)}]∣∣∣∣
z=0

. (A.6)

Here we have substituted eq. (3.11). Aa(ω, q) = Aa(−ω,−q) as can be seen from eq. (3.3)

and (3.6). γE means Euler constant. Thus following GKP-W relation and the prescription

given in ref. [53], the retarded Green functionGa(ω, q) = −i
∫
d4x e−q·xθ(t)

〈[
Ja
x (x), J

a
x (0)

]〉

(As for what Ja
x (x) means, see below eq. (3.1).) can be obtained as

Ga(ω, q) = − 2

g25

[
Ba(ω, q)

Aa(ω, q)
+
q2 − ω2

2

{
γE + log

(z
2

√
ω2 − q2

)}] ∣∣∣∣∣
z=0

. (A.7)

Thus from the imaginary part given in Ba(ω, q)/Aa(ω, q), we obtain the spectral function

for vector and axial-vector mesons.
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