
J
H
E
P
0
4
(
2
0
1
2
)
1
3
8

Published for SISSA by Springer

Received: March 16, 2012

Accepted: April 9, 2012

Published: April 30, 2012

The ABCDEF’s of matrix models for supersymmetric

Chern-Simons theories

Daniel R. Gulotta,a Christopher P. Herzogb and Tatsuma Nishiokaa

aDepartment of Physics, Princeton University

Princeton, NJ 08544, U.S.A.
bYITP, Stony Brook University

Stony Brook, NY 11794, U.S.A.

E-mail: dgulotta@princeton.edu, cpherzog@insti.physics.sunysb.edu,

nishioka@princeton.edu

Abstract: We considerN = 3 supersymmetric Chern-Simons gauge theories with product

unitary and orthosymplectic groups and bifundamental and fundamental fields. We study

the partition functions on an S3 by using the Kapustin-Willett-Yaakov matrix model. The

saddlepoint equations in a large N limit lead to a constraint that the long range forces

between the eigenvalues must cancel; the resulting quiver theories are of affine Dynkin

type. We introduce a folding/unfolding trick which lets us, at the level of the large N

matrix model, (i) map quivers with orthosymplectic groups to those with unitary groups,

and (ii) obtain non-simply laced quivers from the corresponding simply laced quivers using

a Z2 outer automorphism. The brane configurations of the quivers are described in string

theory and the folding/unfolding is interpreted as the addition/subtraction of orientifold

and orbifold planes. We also relate the U(N) quiver theories to the affine ADE quiver

matrix models with a Stieltjes-Wigert type potential, and derive the generalized Seiberg

duality in 2 + 1 dimensions from Seiberg duality in 3 + 1 dimensions.

Keywords: Matrix Models, 1/N Expansion

ArXiv ePrint: 1201.6360

c© SISSA 2012 doi:10.1007/JHEP04(2012)138

mailto:dgulotta@princeton.edu
mailto:cpherzog@insti.physics.sunysb.edu
mailto:nishioka@princeton.edu
http://arxiv.org/abs/1201.6360
http://dx.doi.org/10.1007/JHEP04(2012)138


J
H
E
P
0
4
(
2
0
1
2
)
1
3
8

Contents

1 Introduction 1

2 Matrix models for N = 3 gauge theories 3

2.1 Unfolding trick 7

2.2 Unfolding and Z2 automorphism of affine Dynkin diagrams 10

2.3 More on unfolding 11

3 Brane constructions 12

4 Examples 16

4.1 The O(2N)2k ×USp(2N)−k theories 16

4.2 Unfolding D
(1)
4 and folding A

(1)
3 18
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1 Introduction

In this paper, we continue an investigation, started in refs. [1–4], of the large N limit

of the S3 partition function of supersymmetric (SUSY) Chern-Simons (CS) theories. The

partition function ZS3 is calculated using the matrix model derived in ref. [5] by localization

(later improved by [6, 7] to allow matter fields to acquire anomalous dimensions). For the

CS theory at its superconformal fixed point, the matrix model of ref. [5] computes exactly

the partition function and certain supersymmetric Wilson loop expectation values. The

theories we examine here have N = 3 SUSY, a product classical gauge group structure,

and bifundamental field content summarized by a quiver diagram. While in our previous

work [1–4] we examined CS theories that had only unitary groups, in this work we allow

for O(N) and USp(2N) groups as well.

We are motivated by the hope that SUSY gauge theories in 2+1 dimensions will help

us learn about general features of 2+1 dimensional gauge theories which in turn might

shed light on certain condensed matter systems with emergent gauge symmetry at low

temperatures. One powerful tool for examining these 2+1 dimensional SUSY CS matter
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theories is the AdS/CFT correspondence [8–10]. In this 2+1 dimensional N = 3 SUSY

context, the correspondence can be motivated by placing a stack of N M2 branes at the

singularity of a four complex dimensional hyperkähler cone. On the one hand, the low

energy description of the M2-branes is the CS matter theory. An N fold symmetric product

of the cone is a branch of the moduli space. On the other, there is a dual eleven dimensional

supergravity description of the theory: Close to the M2 branes the geometry is AdS4 × Y
where Y is a seven real dimensional base of the cone (a tri-Sasaki Einstein manifold) that

is threaded by N units of ?F4 flux. In the limit N →∞, the correspondence maps the CS

matter theory in a strong coupling limit to this classical supergravity description where

correlation functions can be easily computed.

In order to use AdS/CFT as a tool to deduce universal properties of strongly interacting

gauge theories, one should first understand what kinds of strongly interacting gauge theories

have classical gravity duals. In this paper we use the matrix model to find a large class of

N = 3 SUSY CS matter theories with a dual eleven dimensional supergravity description.

These theories are described by affine Dynkin diagrams where the nodes are the classical

groups U(N), O(N), and USp(2N) and the arrows are bifundamental fields. To each group

factor, we associate a CS level.

On the matrix model side, the existence of an AdS4 × Y eleven dimensional super-

gravity limit appears to be related to the cancellation of the long range forces between the

eigenvalues in a saddle point approximation along with a constraint on the sum of the CS

levels [1, 11]. Given these two conditions, which we describe in more detail in section 2.1,

the free energy, defined as

F ≡ − lnZS3 , (1.1)

will scale as F ∼ N3/2. This scaling is then in agreement with an older gravity calcula-

tion [12],

F =
πL2

2GN
, (1.2)

where L is the radius of curvature of the AdS4 and GN is an effective four-dimensional

Newton constant.1 The quantization of L in Planck units implies that at large N eq. (1.2)

becomes [1]

F = N3/2

√
2π6

27 Vol(Y )
. (1.3)

(Here, the volume of Y is computed with an Einstein metric that satisfies the normalization

condition Rmn = 6gmn.)2

1The N3/2 scaling was seen earlier in the thermal free energy [13].
2There is a more nuanced story relating the cancellation of long range forces to the existence of a

gravity dual. The cancellation we discuss here depends on an ansatz for the eigenvalue distribution. A

more elaborate ansatz or a different large N approximation of the matrix model may also lead to an N3/2

scaling. For example, while for N = 2 CS theories with chiral bifundamental fields the long range forces do

not naively cancel, ref. [14] proposed a remedy that involves first symmetrizing the matrix model integrand

with respect to a Z2 subgroup. On the other hand, relaxing the constraint on the CS levels should lead to

type IIA supergravity duals [11].
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To treat quiver theories with orthosymplectic groups, we introduce a process we call

unfolding in section 2.1. In the large N limit of the matrix model, unfolding relates

theories containing O(N) and USp(2N) groups to quiver theories with only U(N) groups.

For gauge theories with only U(N) groups and bifundamental fields, ref. [4] established

that the only CS theories for which the long range forces between the eigenvalues cancel

have quivers which are in one-to-one correspondence with the simply laced affine Dynkin

diagrams (see figure 1). Given this restriction to ADE Dynkin diagrams, the inverse of

the unfolding procedure, which we call folding, is then an identification of the simply laced

Dynkin diagrams under a Z2 outer automorphism (see figure 2).

Given the restriction to N = 3 SUSY, classical groups, and bifundamental matter

fields, we believe that figure 1 and the left hand column of figure 2 is a complete enumeration

of the CS matter theories with cancellation of long range forces between the eigenvalues in

the large N limit. However, we note there are larger Z2×Z2 and Z3 outer automorphisms

of certain simply laced Dynkin diagrams for which we have no gauge theory interpretation

of the corresponding folded quiver (see figure 3).

This unfolding procedure gives a simple relationship between the free energy of the

unfolded theory and the folded theory that involves some factors of two. There is a corre-

sponding simple relation between the volume of Y and hence between the moduli spaces.

We shall examine these factors of two and how the unfolding works in a few specific exam-

ples in detail in section 4.

Folding and unfolding of the matrix model has a string theory representation as the

addition and subtraction respectively of orientifold and orbifold planes. In section 3 we

review how to construct these orthosymplectic theories from D3 branes, O3 planes, O5

planes, and orbifold planes in type IIB string theory. Although we will not discuss it further,

we mention in passing that these brane constructions can be T-dualized and uplifted to

the eleven dimensional supergravity solutions discussed previously [15].

While the folding/unfolding story is the central theme of the paper, there are a few

more sections of interest. In section 5, we relate our U(N) quiver theories to the ÂDE quiver

matrix models of refs. [16, 17] with a ln(x)2 Stieltjes-Wigert potential. One nice aspect of

this relationship is that at the level of the matrix model it connects the generalized Seiberg

duality for the 2+1 dimensional gauge theories [18, 19] with Seiberg duality for a class

of 3+1 dimensional gauge theories [20, 21]. The appendices collect some well known but

useful facts about orthosymplectic gauge theories. Appendix A describes the fundamental

and adjoint representations of the classical groups. Appendix B recalls how the CS term

in the action is conventionally normalized. Appendix C reviews the flavor symmetries and

the definition of a half hypermultiplet for gauge theories with orthosymplectic groups.

2 Matrix models for N = 3 gauge theories

The partition function of anN = 3 SUSY Chern-Simons matter theory on an S3 localizes to

an eigenvalue integral [5]. Let us review how to construct this integral for a gauge group that

is a direct product of simple compact Lie groups, G = ⊗aGa. The eigenvalues in question
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Figure 1. Affine ADE quivers. Each node corresponds to a gauge group, and each edge corre-

sponds to a bifundamental hypermultiplet. When two adjacent nodes are O×USp or USp×O, the

edge between them means a half hypermultiplet. The numbers in the circles denote the comarks or

dual Kac labels [22, 23]. The numbers are also the ranks of the gauge groups divided by an overall

factor of N .

are the eigenvalues of the auxiliary scalars σa in the vector multiplet (see appendix C for

our conventions). Let us denote the eigenvalues of σa by µa,i, i = 1, . . . , Na.

The vector multiplets and the matter fields contribute separately to the partition

function,

Z =

∫ ∏
a,l

dµa,l
rank(Wa)

(∏
a

LV (Ga, ka, µa)

)(∏
I

LM (RI , µ)

)
(2.1)

=

∫ ∏
a,l

dµa,l
rank(Wa)

 exp (−F ({µa,l})) , (2.2)

where ka is the CS level and Wa the Weyl group associated to Ga [5]. The rank(Wa)

normalization factor will turn out to be subleading in our large N expansion. We give the

ranks of the Weyl groups along with some other representation theory data for the classical

groups in appendix A. We denote by LV (Ga, ka) the vector multiplet contribution from

gauge group Ga, and by LM (RI) the hypermultiplet contribution from the representations

RI and R∗I .
More precisely, the vector multiplet contribution is

LV (G, k, µ) = eiπkµ
2
∏
α>0

(2 sinh[πα · µ])2 , (2.3)

where µ is a weight vector, and α is a positive root. We normalize the α such that the

longest root has length squared equal to two. We expand µa = (µa,1, µa,2, . . . , µa,N )/ca in
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Figure 2. Affine quiver diagrams with double-lined arrows (left) obtained by folding simply laced

quivers (right). The double-lined arrow is drawn from an orthosymplectic group to a unitary group.

The numbers in the circles denote the comarks or dual Kac labels and are proportional to the gauge

group ranks.
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Figure 3. Affine Dynkin diagrams other than figure 2.
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terms of an orthonormal basis on the weight lattice of Ga and choose the normalization

constant ca to ensure that some arguments of the hyperbolic sine function have the form

π(µa,l − µa,m). (Note the rescaling will change the normalization of the measure factor,

but we ignore this rescaling because it will be subleading in N .) For U, O and USp groups

we obtain

Ga LV

U(N)k eiπk
∑N
m=1 µ

2
m
∏
l<m(2 sinh[π(µl − µm)])2

O(2N)k eiπk
∑N
m=1 µ

2
m
∏
l<m(4 sinh[π(µl + µm)] sinh[π(µl − µm)])2

O(2N + 1)k eiπk
∑N
m=1 µ

2
m
∏
l<m(4 sinh[π(µl + µm)] sinh[π(µl − µm)])2

∏
m(2 sinh[πµm])2

USp(2N)k ei2πk
∑N
m=1 µ

2
m
∏
l<m(4 sinh[π(µl + µm)] sinh[π(µl − µm)])2

∏
m(2 sinh[2πµm])2

(2.4)

For U and USp groups, we anticipate that k is an integer, while for O groups, k must be

an even integer (see appendix B).

The contribution from a hypermultiplet is

LM (R, µ) =
∏
ρ∈R

1

2 cosh[πρ · µ]
, (2.5)

where ρ is a weight vector in the representation R (not the Weyl vector). In this paper,

we are interested in bifundamental representations of the classical groups U, USp, and O.

Three different types of LM arise for us:

R LM

U(Na)×U(Nb)
(∏

l,m 2 cosh[π(µa,l − µb,m)]
)−1

U(Na)×O(2Nb),U(Na)×USp(2Nb),
(∏

l,m 4 cosh[π(µa,l − µb,m)] cosh[π(µa,l + µb,m)]
)−1

O(2Na)×USp(2Nb)

U(Na)×O(2Nb+1),USp(2Na)×O(2Nb+1)
(∏

l,m 4 cosh[π(µa,l − µb,m)] cosh[π(µa,l + µb,m)]
)−1

× (
∏

l 2 cosh[πµa,l])
−1

(2.6)

The matter fields involving a U group are hypermultiplets under the supersymmetry algebra

of the CS theory. For O × USp bifundamentals, the rules giving the contribution of a

hypermultiplet would naively give the square of the result in the right hand column because

the fundamental weights appear in pairs ±ei where ei ∈ RN are orthonormal basis vectors

of the weight lattice. In these cases, having taken a square root, what we have listed in

the right hand column is the contribution of a half hypermultiplet. Half hypermultiplets

exist for O × USp bifundamentals because the product representation is pseudoreal (see

appendix C). Recall that Nf hypermultiplets for an O group have an enhanced USp(2Nf )

global symmetry for N = 3 SUSY theories. Similarly, Nf half hypermultiplets under a

– 6 –
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USp group transform under an O(Nf ) global symmetry. (For more details, see appendix C

or [24].) Conveniently for O(N)×USp(2M) bifundamentals, these two global symmetries

are completely gauged.

Note that we have not given the results for O×O or USp×USp bifundamentals; LM
for such a representation is roughly the square of LM for a O × USp half hypermultiplet.

Because the product representation is real, these O × O and USp × USp bifundamentals

cannot be half hypermultiplets. The fact that O(N) ⊂ USp(2N) ⊂ O(4N) allows one to

gauge the appropriate subgroup of the global flavor symmetry group for these bifundamen-

tals. It will turn out the only quivers that contain such representations and that satisfy

the long range force cancellation condition we discuss below are of A
(1)
1 type, i.e. O(N)2

or USp(2N)2 with a full bifundamental hypermultiplet between the groups. We will see in

section 3 how this type of gauge theory can arise in a type IIB brane construction of the

C
(1)
1 quiver.

We henceforth will consider arbitrary theories consisting of products of U, USp, and O

gauge groups and bifundamental fields of the type listed in (2.6). Thus, our field theory can

be specified by a quiver, or equivalently a collection of nodes V and edges E. Each node

corresponds to a gauge group factor Ga. Each edge corresponds to a pair of bifundamental

representations R and R∗. When R 6= R∗, an edge means a full hypermultiplet. When

R = R∗, an edge means a half hypermultiplet (except in the O×O and USp×USp cases).

2.1 Unfolding trick

We present a trick we call unfolding which, in the large N limit, reduces a matrix model

involving O/USp groups to a matrix model involving only U groups. The unfolding pro-

duces a quiver theory with a Z2 symmetry. An O(N) or USp(N) group is converted into

a U(N) group. (For USp, N should be even.) Each U(N) group is converted into a pair

of U(N) groups. A half hypermultiplet between an O and USp group is lifted to a full hy-

permultiplet between two U groups. A hypermultiplet between an O/USp and a U group

is lifted to two hypermultiplets between the U uplift of the O/USp and two U groups. A

hypermultiplet between two U groups is lifted to a pair of hypermultiplets.

Let us show how this unfolding works in detail. For the U(N) vector multiplets, we

duplicate the eigenvalues, introducing λ = µ and λ′ = µ:

LV (U(N), k, µ) = LV (U(N), k, λ)1/2LV (U(N), k, λ′)1/2 . (2.7)

For O(2N), O(2N + 1), and USp(2N) vector multiplets, we define a set of eigenvalues that

is twice as large, λl = µl and λl+N = −µl. For O(2N + 1), the unfolded U(2N + 1) has an

additional zero eigenvalue λ2N+1 = 0. Up to an overall −1 that we will not keep track of,

LV (O(N), k, µ) = (−1)#LV (U(N), k, λ)1/2

(∏
m

2 sinh[2πλm]

)−1/2

, (2.8)

LV (USp(2N), k, µ) = (−1)#LV (U(2N), 2k, λ)1/2

(∏
m

2 sinh[2πλm]

)1/2

. (2.9)

– 7 –
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With the same conventions for the eigenvalues, we can also write down how the hypermul-

tiplets unfold

R LM

U(Na)×U(Nb)
(∏

l,m 4 cosh[π(λa,l − λb,m)] cosh[π(λ′a,l − λ′b,m)]
)−1/2

U(Na)×O(Nb),U(Na)×USp(2Nb),
(∏

l,m 4 cosh[π(λa,l − λb,m)] cosh[π(λ′a,l − λb,m)]
)−1/2

O(Na)×USp(2Nb)
(∏

l,m 2 cosh[π(λa,l − λb,m)]
)−1/2

(2.10)

We would like to argue that in a large N limit, the difference between an unfolded

matrix model and a matrix model constructed out of a product ⊗aU(Na) is subleading in

N . More specifically, taking advantage of a large N limit to perform a saddlepoint integra-

tion, we will argue that the saddlepoint eigenvalue distributions are identical. Recall the

distributions are determined by the saddlepoint equations ∂F/∂µa,m = 0 before unfolding

and ∂F/∂λa,m = 0 after unfolding.

One obvious difference between the unfolded model and a ⊗aU(Na) model is the eigen-

value integration measure. In the unfolded model, we have constraints on the eigenvalues,

while in an ⊗aU(Na) model, there are no such constraints. In the cases we have examined

numerically, the constraints are respected by the eigenvalue distribution of the ⊗aU(Na)

model. From an analytic perspective, we can prove the constraints are obeyed modulo a

uniqueness assumption. The constraint we placed on an unfolded O/USp node was that

the eigenvalue distribution of the U(2N) group be symmetric about the origin. Indeed,

if the set {λa,i} satisfies the saddlepoint equations, then so does the set {−λa,i}. Thus if

there is only one solution to the saddlepoint equations, then the constraint will be obeyed.

In unfolding a U(N) group to U(N)2, we created two sets of identical eigenvalues. Because

of the Z2 symmetry of the unfolded quiver, the saddlepoint equations for the eigenvalues

in the two U(N) groups will be the same and the eigenvalue distributions will be identical,

again provided there is a unique solution.

A further obvious difference are the square roots that appear in the unfolded versions

of the LV and LM factors. In a saddlepoint analysis, these square roots assemble to become

an overall 1/2 multiplying the free energy F . We need to keep track of this 1/2, but it will

not change the form of the saddlepoint eigenvalue distribution.

A final troubling difference are the factors of sinh[2πλa,l]. At worst, in our large N

limit they contribute in the same way as flavor fields in the fundamental representation, but

it turns out that these factors will largely cancel at leading nontrivial order in N . To see

this cancellation, we first need to review the large N analysis of the saddlepoint equations

∂F/∂λa,m = 0 performed in [4].

The key ingredient in being able to find a solution to the saddle point equations and a

corresponding eigenvalue distribution is the cancellation in the long range forces between

the eigenvalues. Given a gauge group ⊗aU(Na), let Na = naN where the na are relatively

prime integers and N � 1. We take a continuum large N limit by assuming that the

– 8 –
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eigenvalues lie along the curves

λa,I(x) = Nαx+ iya,I(x) , (2.11)

I = 1, 2, . . . , na, characterized by an eigenvalue density ρ(x) such that
∫
ρ(x)dx = 1.

We examine the saddlepoint equation for an eigenvalue in the λa,I curve. At leading

order in N , we can replace the tanh and coth functions that appear in the saddle point

equations with sign functions. Because of the double sum, only the tanh and coth functions

that involve differences λa,l − λb,m of eigenvalues will appear at this leading order in N .

The contributions from the sinh[2πλa,l] factors are suppressed by one additional power of

N . In the continuum limit, the leading order in N term in the saddle point equation for

an eigenvalue in the λa,I curve is2na −
∑

b|(a,b)∈E

nb

N

∫
dx′ sgn(x− x′)ρ(x′) . (2.12)

We call such a force on the eigenvalue long range because there is a contribution from

non-neighboring eigenvalues. Thus we conclude that

2na =
∑

b|(a,b)∈E

nb . (2.13)

As noted in [4], this condition implies that the quivers for these ⊗aU(Na) theories must be

affine ADE Dynkin diagrams (see figure 1). In more detail, note that the condition (2.13)

can be written as
∑

b Âabnb = 0, where Â is an affine Cartan matrix of ADE type: Â

is symmetric with diagonal entries Âaa = 2 and non-zero off-diagonal entries Âab = −1.

Affine Cartan matrices Â have a one dimensional kernel, and it turns out that the ranks

of the gauge groups nb are the comarks or dual Kac labels [22, 23] shown in figure 1. A

corresponding force cancellation condition can be derived directly for general quiver theories

with both unitary and orthosymplectic groups. The condition is still
∑

b Âabnb = 0 but

now Âab = −2 if a is O/USp type and b is U type. Otherwise the off-diagonal entries are

0 or −1 as before.

Before returning to the main thread of our argument, we make two remarks. Although

for simplicity we consider here only the case of S3, a similar analysis for N = 2 gauge

theories on a squashed three-sphere [25, 26] leads to the same constraint (2.13) in a large N

limit. In the introduction, we mentioned a secondary condition necessary for the existence

of an AdS4 × Y dual gravity description. If the CS levels of the unfolded quiver are ka,

this condition is [1, 11] ∑
a

naka = 0 . (2.14)

Returning now to the extra factors of sinh[2πλa,l] in the unfolded matrix model, note

first that these factors occur only for O and USp type groups. An O(Na) group con-

tributes a sinh[2πλa,l] to the denominator of the partition function which at large N has

the same effect as adding a fundamental flavor hypermultiplet. A USp(2Nb) group con-

tributes a sinh[2πλb,l] to the numerator, which would exactly cancel the contribution from

– 9 –
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a flavor hypermultiplet at leading order in N . More specifically, if the original theory had

an (⊗aO(Na))(⊗bUSp(Nb)) gauge group factor, then the free energy would have a term

proportional to (∑
a

Na −
∑
b

Nb

)
sgn(x) , (2.15)

where Neff = (
∑

aNa −
∑

bNb)/N is like an effective number of flavors.

If we want the unfolded model to match exactly a ⊗aU(Na) model (with no extra

fundamental fields) at leading order in N , then we must always take Neff ≤ 0. In this

way, we can make up the discrepancy in the free energy by adding a few extra fundamental

hypermultiplets to the original orthosymplectic theory to cancel the effect of the sinh[2πλa,l]

in the numerator. Interestingly, this type of restriction on the number of USp and O

groups was discussed in ref. [27] from the point of view of brane constructions and tadpole

cancellation. We will come back to this point at the end of section 3 which discusses brane

constructions for some of these theories.

Let us see for what types of quivers we need to worry about a nonzero Neff . If we

take an A
(1)
n (n > 1) quiver where all of the U(N) groups have been replaced with O and

USp groups, then in order to avoid having a half hypermultiplet in O × O or USp × USp

representations, we need to take n odd. But in this case, the number of O and USp groups

will be equal and Neff = 0.

For the D
(1)
n quivers where all of the U(N) groups are replaced with O and USp groups,

we find two cases. For n odd, Neff = 0 and the unfolded model matches the ⊗aU(Na) model.

For n even, Neff = ±2. In the case where we have a couple of extra USp gauge groups, we

find a minus sign which we could cancel by adding a couple of fundamental hypermultiplets.

Similarly, for E
(1)
6 , we find Neff = 0 while for E

(1)
7 and E

(1)
8 , Neff = ±2. Continuing down

the list, we see that B
(1)
n , C

(1)
n and D

(2)
n+1 theories have Neff = 0, ±2, while A

(2)
2n−1, E

(2)
6 , and

F
(1)
4 theories have Neff = ±2. As we will discuss in section 3, the fact that the discrepancy

Neff is either 0, −2 or 2 is related to the charge of an O5 plane in a brane construction of

the A, B, C, and D type gauge theories.

2.2 Unfolding and Z2 automorphism of affine Dynkin diagrams

Restricting to affine ADE Dynkin diagrams, we discover that the procedure we have called

unfolding has a long history. (See for example [28] for an application to 2d conformal field

theory.) The inverse of this unfolding procedure, let us call folding, takes advantage of a

Z2 outer automorphism of the Dynkin diagram. The simplest type of folding operation is

one in which every U node in an affine ADE Dynkin diagram is replaced by an O/USp

type node. More complicated folding procedures are also allowed. Let us start with the

third row of figure 2 and an A
(1)
2n−1 quiver. We pairwise identify 2n − 2 of the U(N)2n

groups, folding them to obtain n− 1 U(N) groups. In this identification, we need to make

sure that two U(N) groups we combine to form a single U(N) group have the same CS

level. The remaining two U(N) groups at the ends are folded to obtain O/USp(N) groups.

In the folding procedure, the pairwise identification of the edges of the A
(1)
2n−1 quiver is a

corresponding identification of the bifundamental hypermultiplets.
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The other examples in figure 2 fold in a similar way. For the A
(2)
2n−1 quiver, the node

at the right edge with orthosymplectic group comes from a node in the middle of the D
(1)
2n

quiver. The remaining nodes in the D
(1)
2n quiver are pairwise identified and fold down to

unitary groups in A
(2)
2n−1. For B

(1)
n and D

(2)
n+1, the nodes at the edges with unitary group

descend from pairs of unitary nodes from the forked ends of D
(1)
n+1 and D

(1)
n respectively.

The remaining unitary groups in D
(1)
n+1 and D

(1)
n fold to orthosymplectic groups. For E

(2)
6

and F
(1)
4 , there is a short chain of unitary groups which descends from a pair of chains in

E
(1)
7 and E

(1)
6 respectively.

We believe that figures 1 and 2 give a complete list of N = 3 SUSY CS bifundamental

matter theories where the long range forces cancel in the corresponding matrix model. In

figure 1, the nodes can be interpreted either as U(N) groups or as alternating O/USp

groups. (Note that for the A
(1)
n quivers (n > 1), n must be odd in order to avoid having

an O ×O or USp×USp half hypermultiplet.) All our non-simply laced examples come in

pairs: A
(1)
2n−1 and B

(1)
n , C

(1)
n and D

(2)
n+1, and E

(2)
6 and F

(1)
4 . Note that the Cartan matrix

for one member of the pair is the transpose of the Cartan matrix for the other. The simply

laced examples, in contrast, have symmetric Cartan matrices.

Certain simply laced Dynkin diagrams have an outer automorphism group that is

larger than Z2. For example, E
(1)
6 and D

(1)
4 can both be folded using a Z3, as shown in

figure 3. It would be interesting to understand if the resulting folded Dynkin diagrams

have a quiver gauge theory interpretation.

Before ending this section, let us consider in more detail folding an A
(1)
2n−1 U(N)2n

quiver which according to the prescription outlined thus far would yield an [O(N) ⊗
USp(N)]n quiver. The appearance of a USp(N) would naively seem to suggest that N

must be even. However, we can modify slightly the unfolding above to allow for an odd

N . In particular, we can unfold a USp(2Na) quiver to a U(2Na + 1) quiver instead of a

U(2Na) quiver by allowing for a λ2Na+1 = 0 eigenvalue. This extra eigenvalue will intro-

duce an extra factor of
∏
m sinh[πλa,m]−1/2 in the vector multiplet and extra factors of∏

b|(a,b)∈E
∏
m cosh[πλb,m]1/2 in the hypermultiplets. Because of the condition (2.13), these

factors will cancel out at leading nontrivial order in N . In this way, we can fold an A
(1)
2n−1

U(2N + 1)2n quiver to an [O(2N + 1)⊗USp′(2N)]n quiver where we have marked the USp

group with a ′ for reasons that will become clearer after we discuss the brane constructions.

2.3 More on unfolding

The type of unfolding prescription investigated above can also be applied to a certain class

of D
(1)
n U(N)4 ×U(2N)n−3 quivers where the CS levels are restricted, converting the D

(1)
n

quiver into an A
(1)
2n−5 quiver. The restriction is that the two U(N) gauge groups at a forked

end of the D
(1)
n quiver must have equal CS levels. The unfolding procedure will replace

these two U(N)k groups with a U(2N)2k group. In more detail, let the eigenvalues of the

two U(N) groups be µl and µ′l. The eigenvalues of the U(2N) group will then be λl = µl
and λl+N = µ′l. With these assignments, we can rewrite the contribution of the U(N)2
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vector multiplets as

LV (U(N), k, µ)LV (U(N), k, µ′) = LV (U(2N), 2k, λ)1/2 . (2.16)

The vector multiplets for the U(2N)n−3 groups (and the hypermultiplets between them)

unfold just as they did above in (2.7) and (2.10). It remains to specify how the hypermul-

tiplets at the forked ends of the D
(1)
n quiver unfold. Let us label the eigenvalues of the

U(2N) group neighboring the U(N)2 as νm and the unfolded eigenvalues of the U(2N)2

group as κl and κ′l. we can rewrite the contribution from the hypermultiplets:

LM (U(N)×U(2N), µ, ν)LM (U(N)×U(2N), µ′, ν) =

LM (U(2N)×U(2N), λ, κ)1/2LM (U(2N)×U(2N), λ, κ′)1/2 . (2.17)

This unfolding procedure suggests that the free energy of such a D
(1)
n quiver theory

(with the corresponding restriction on the CS levels) will be half that of the corresponding

unfolded U(2N)2n−4 A
(1)
2n−5 quiver theory. Not every A

(1)
2n−5 quiver will fold down to a D

(1)
n

quiver. One has to make sure first that the CS levels of the pairs of U(2N) groups that

get folded together are equal.

We could now combine this additional kind of unfolding with the unfolding procedures

described above to find more relations between the Dynkin diagrams. For example, we

can unfold the B
(1)
n quiver to an A

(1)
2n−3 quiver, assuming that the CS levels of the U(N)2

groups at the forked end of the B
(1)
n quiver are equal. Given the restriction on the CS

levels, however, this new type of unfolding seems to be less general.

We make one more comment in passing. The folding and unfolding operations we

have carried out so far involve a “crease” at the the nodes of the quiver. One can ask

what happens if one puts the crease on an edge. The answer is that folding on an edge

introduces a new kind of matter field in a two index representation of the neighboring gauge

group [29]. As we restricted initially to quivers with only bifundamental matter fields, we

did not need to consider unfolding involving these more exotic representations.

3 Brane constructions

The A, B, C, and D type quiver theories that we discussed above can for the most part be

constructed from D-branes, orientifold planes, and orbifold planes in IIB string theory. In

this context, the folding procedures we outlined above amount to the addition of orientifold

or orbifold planes to a brane configuration with a Z2 symmetry. Below, we review the rules

behind these constructions but do not explain where the rules come from. For derivations,

we refer the reader to [27, 30–35].

The A
(1)
n type U(N)n+1 CS theories are the simplest to construct. The example A

(1)
3

is shown in the top left of figure 4. We place a stack of N D3-branes in the 0123 directions

and periodically identify the 3-direction. In type IIB string theory there exist so-called

(p, q)-branes which are bound states of p NS5-branes and q D5-branes. We take n + 1

(1, qa)-branes and intersect the D3-branes at intervals around the circle in the 3-direction.
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A
(1)
3

(1, q3)

(1, q1) (1, q2)

(1, q4)

O3+

(1, 2q1) (1, 2q2)

(1, 2q4) (1, 2q3)

O3−O3−

O3+

A
(2)
5 I(−1)FL

(1, q1) (1, q2)

(1,−q1) (1,−q2)

O5+ B
(1)
3

O3−

(1, 2q1) (1, 2q2)

(1,−2q1) (1,−2q2)

O5−O5+

O3+

O3−

C
(1)
2 O5+

(1, q1) (1, q2)

(1,−q1) (1,−q2)

O5± D
(2)
5

O3+

(1, 2q1) (1, 2q2)

(1,−2q1) (1,−2q2)

O5+O5+

O3−

O3+

D
(1)
4 I(−1)FL

(1, q1) (1, q2)

(1,−q1) (1,−q2)

I(−1)FL
O3−

(1, 2q1) (1, 2q2)

(1,−2q1) (1,−2q2)

O5+O5+

O3+

O3−

Figure 4. The brane configurations of the affine Dynkin quivers. The big circle and dotted circle

stand for N D3-branes and one O3-plane, respectively. A segment with numbers (p, q) represents

a (p, q) five-brane, and a dotted segment is an O5-plane. The small circles are the orbifold planes,

which are always induced in the presence of both O3- and O5-planes.

The (1, qa)-branes fill the 012 directions. To preserve N = 3 SUSY, the 5-branes are

tilted at an angle θa in the 45, 67, and 89 planes where θa ≡ arg(1 + iqa) [36, 37]. To

each D3-brane interval between a (1, qa)- and (1, qa+1)-branes, we associate a U(N) gauge

group. The CS level is determined by the difference ka = qa+1 − qa. If required, we can

add additional hypermultiplets in the fundamental representations of the U(N) groups by

intersecting the D3-branes with D5-branes at angle θ = π/2.
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To convert the U(N) groups in this A
(1)
n quiver into O/USp groups, we add an O3 plane

parallel to and coincident with the stack of D3-branes [32]. There are actually four different

types of O3 planes which are conventionally denoted O3± and Õ3
±

. The D3-branes parallel

to O3− and Õ3
−

planes support O type gauge theories, while the D3-branes parallel to

O3+ and Õ3
+

planes support USp theories.

The presence of an O3 plane means that type IIB string theory now allows for 1
2 NS5-

branes, 1
2 D5-branes, and 1

2 D3-branes provided they intersect the O3 plane. Given that

the D3-brane charge of an O3− plane is −1/4 and the D3-brane charge of an Õ3
−

plane is

+1/4, one simple way of thinking about an Õ3
−

plane is as a bound state of an O3− plane

and a 1
2 D3-brane. It then makes sense that we associate a O(2N) gauge group with an

O3− plane and an O(2N + 1) gauge group with an Õ3
−

plane.

Charge conservation arguments imply that the O3 plane changes type when it crosses

a 1
2 NS5-brane or 1

2 D5-brane. Crossing a 1
2 D5-brane converts an O3− plane to an Õ3

−

plane or an O3+ plane to an Õ3
+

plane. Similarly, crossing a 1
2 NS5-brane converts an

O3− plane to an O3+ plane or an Õ3
−

plane to an Õ3
+

plane. Thus a 1
2 NS5-brane causes

the gauge group to change from O to USp.

These rules are summarized in the table (3.1). We have called the USp group associated

with an Õ3
+

plane USp′(2N) to indicate that it will always be neighbored by O(2N + 1)

groups instead of O(2N) groups. In other words, the USp′(2N) group has an extra couple

of half hypermultiplets compared with the USp(2N) group.

Type D3 charge gauge group for N D3’s 1
2 NS5 1

2 D5

O3− −1
4 O(2N) O3+ Õ3

−

Õ3
− 1

4 O(2N + 1) Õ3
+

O3−

O3+ 1
4 USp(2N) O3− Õ3

+

Õ3
+ 1

4 USp′(2N) Õ3
−

O3+

(3.1)

At the level of this brane construction, folding an A
(1)
n quiver consisting of U groups

to get an A
(1)
n quiver consisting of O/USp groups amounts to adding an O3 plane on top

of the stack of D3-branes and removing half of the D-branes. The example A
(1)
3 is shown

in the first row of figure 4. To remove half the D-branes, some quantities in the unfolded

construction must be even. The total number of NS5-branes n + 1 (or equivalently the

number of gauge groups) must be even so that moving around the circle we can get back to

the type of gauge group we started with after having crossed n+1 1
2 NS5-branes. Similarly,

the total number of D5-branes
∑

a qa must be even. Interestingly, these brane constructions

allow the CS levels associated with the individual O and USp gauge groups to be odd and

half integral respectively. The constraint that
∑

a qa must be even means that there is no

overall parity anomaly.

Another type of procedure we can perform on the A
(1)
n U(N)n+1 quiver is an orientifold

or orbifold of the circle in the 3-direction. We place orientifold and/or orbifold planes at

x3 = 0 and x3 = π, assuming the circle has circumference 2π. The orbifold plane I(−1)FL
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0 1 2 3 4 5 6 7 8 9

D3/O3 ◦ ◦ ◦ ◦
D5/O5 ◦ ◦ ◦ ◦ ◦ ◦

NS5/I(−1)FL ◦ ◦ ◦ ◦ ◦ ◦

Table 1. Orientation of the D-branes, orientifold planes, and orbifold planes.

reverses the orientation of the 3-, 5-, 7-, and 9- directions and is thus parallel to an NS5-

brane in our construction. To preserve the same amount of SUSY as the NS5-brane, we

also have to include a factor of (−1)FL acting on the left moving world-sheet fermions.

There are two types of orientifold planes, O5+ and O5−, that we will add.3 To preserve

the same amount of SUSY as a D5-brane, they must be placed parallel to the D5-branes

in the 012579 directions, thus reversing the orientation of the 3468 directions. The O5±

branes have ±1 unit of D5-brane charge. The locations of these branes and planes are

summarized in table 1.

The presence of these orbifold and orientifold planes changes the open string spectrum

on the D3-branes and alters the corresponding gauge theory. Let us start with the ori-

entifold planes. In analogy to the O3 planes, a stack of N D5-branes coincident with an

O5− plane produces an O(2N) gauge group while the same stack parallel to an O5+ brane

results in a USp(2N) group. With respect to these D5-branes, D3-branes look like the

addition of flavor fields. Thus, the gauge theory associated with a stack of N D3-branes is

reversed as compared with the D5-branes, USp(2N) for an O5− plane and O(2N) for an

O5+ plane [30].

If we start with an A
(1)
n brane construction with a Z2 reflection symmetry such that

each (1, qa)-brane at x3 6= 0, π has a mirror image (1,−qa)-brane at −x3, then placing O5

planes on the circle folds an A
(1)
2n−1 type quiver to produce a C

(1)
n type quiver where the

O/USp gauge groups at the ends depend on the choice of O5 plane. The example C
(1)
2

is shown in the third row of figure 4. In section 2, we discussed the possibility of O × O
and USp × USp quiver theories for a C

(1)
1 Dynkin diagram. We note in passing that we

can realize these quivers by placing a single (1, q) brane between either two O5+ or two

O5− planes respectively. Similar types of orientifold constructions are discussed in detail

in [27, 35] for 3+1 and 5+1 dimensional cousins of these quiver theories.4

Adding an orbifold plane produces a forked end to the quiver. In the presence of the

orbifold plane I(−1)FL , there are two types of D3-brane which we could call D3± [31, 38].

If we start with an A
(1)
n U(2N)n+1 quiver with equal types of D3+ and D3− branes, after

adding an orbifold plane, the U(2N) group from the D3-branes next to the orbifold plane

will break to U(N)×U(N). If we include two orbifold planes on the circle, we fold an A
(1)
2n−5

type quiver down to a D
(1)
n quiver. We can also contemplate more elaborate constructions

3We ignore the existence of Õ5
±

planes.
4Note that if a 1/2 NS5-brane is coincident with the orientifold plane, then the folding prescription is

modified. The An quiver is folded on an edge rather than a node. The gauge group at the end of the quiver

will be U type rather than O/USp, and there will be a matter field in a two index representation of the U

group at the end of the quiver, antisymmetric for O5− and symmetric for O5+ [35].
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where we include an orbifold plane at one end of the stack of D3-branes and an orientifold

at the other, thus folding an A
(1)
2n−3 quiver down to an A

(2)
2n−1 quiver. The examples A

(2)
5

and D
(1)
4 are shown in the second and fourth rows of figure 4.

We also have to worry about the CS levels. The CS levels of the U type groups in the

middle of the quiver are defined exactly as they were before, as the difference qa+1 − qa in

the 5-brane charges. An O/USp group or a U(N)2 factor at the end of the quiver descends

from a U group sandwiched between a (1, q) and a (1,−q) brane to which we associate a

CS level 2q. Reassuringly, given the unfolding relations (2.8), (2.9) and (2.16), 2q is even.

Finally, one can envision combining these three elements: orbifold planes, O5 planes

and O3 planes. It turns out that the product of the space-time and world-sheet reflection

symmetries of two of these objects is the reflection symmetry generated by the third. Thus,

if two of these objects are present, the third one is present as well. Consulting ref. [35],

and starting with a stack of 2N D3-branes, we find that intersecting an O5± plane with

an O3± plane will produce a U(N) group living on the D3-branes between the O5 plane

and the nearest (1, q)-brane. In contrast, intersecting an O5− plane with an O3+ plane

will yield a USp(N1)×USp(N2) group where N1 +N2 = 2N and N1 and N2 must be even.

Switching the charges on the orientifold planes, we can replace USp(N1) × USp(N2) with

O(N1)×O(N2). In sum, by suitably adjusting the charges on the orientifold planes, we can

construct the B
(1)
n quivers, the O/USp version of the D

(1)
n quivers, and the D

(2)
n quivers.

(In these constructions, we still have the restriction that the CS levels of the gauge groups

at a forked end of the quiver be equal.) Examples of such constructions are shown in the

second column of figure 4.

In section 2.1, we discussed some extra factors of sinh[2πλl] that occur in unfolding the

matrix model that contribute (at large N) in the same way as fundamental fields would.

We now explain how these factor are connected with the brane constructions. Since the

O5 planes carry D5-brane charge, the relation between the A
(1)
2n−1 quiver and the C

(1)
n

quiver involves some extra flavor fields. An O5+ plane lifts to a theory with effectively one

additional D5-brane or fundamental hypermultiplet field. An O5− plane lifts to a theory

with one anti-D5-brane which one could think of as reducing by one the total number

of fundamental hypermultiplets. Reassuringly, this counting is consistent with the extra

factors of sinh[2πλl] in (2.8) and (2.9). More complicated examples with orbifold planes

work similarly.

4 Examples

4.1 The O(2N)2k ×USp(2N)−k theories

As a particular example of the brane constructions of section 3, we can realize an O(2N)2k×
USp(2N)−k theory [39, 40] as an orientifold projection of the U(2N)2k×U(2N)−2k ABJM

model [41]. The U(N)k×U(N)−k ABJM model is anN = 6 supersymmetric Chern-Simons-

matter theory realized by N D3-branes wrapped on a circle with an intersecting NS5-brane

and a (1, k) 5-brane in type IIB string theory. After a T-duality, this brane construction

lifts to N coincident M2-branes in M-theory sitting at the origin of the orbifold space
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C4/Zk. There are four bifundamental (chiral) fields (A1, A2, B
∗
1 , B

∗
2) in the theory, and the

supersymmetry enhances to N = 8 when k = 1, 2.

As discussed in section 3, the orientifolded O(2N)2k ×USp(2N)−k theory can be real-

ized by adding an O3 plane to the type IIB brane construction. The orientifolded theory

has N = 5 SUSY [39, 40]. In terms of the field theory, the orientifold projection acts on

the four bifundamental fields of the ABJM model (A1, A2, B
∗
1 , B

∗
2) with U(2N) × U(2N)

gauge group as

A1 = BT
1 J , A2 = BT

2 J , (4.1)

where J is the invariant anti-symmetric matrix of the USp(2N) group acting from right on

the anti-fundamental indices of U(2N). The resulting model has two bifundamental half

hypermultiplets (A1, A2) with O(2N)×USp(2N) gauge symmetry.

The leading order effect of the O3 plane on the moduli space of the ABJM theory is to

quotient by a Z2 group. The moduli space of a single M2-brane in the orientifolded theory

is C4/D̂k where D̂k is the binary dihedral group with 4k elements. The simplest case is

D̂1 = Z4, which implies the equivalence between the O(2N)±2 × USp(2N)∓1 CS-matter

theory and the ABJM model with U(N)4×U(N)−4 gauge groups [40]. As discussed in the

introduction, in general the M2-brane moduli space of these N = 3 matter CS theories is a

four complex dimensional hyperkähler cone whose level surface is a seven real dimensional

tri-Sasaki Einstein space Y . Through the relation between the free energy and Vol(Y ) (1.3),

we can check this expectation that adding an orientifold plane quotients the moduli space

and halves the volume of Y .

The matrix model of the O(2N)2k×USp(2N)−k theory consists of the vector multiplets

for O(2N) and USp(2N) gauge groups and two bifundamental fields between them:

Z =
1

(N !)2

∫  N∏
i,j=1

dλidµj

 e2πik
∑
i(λ

2
i−µ2i )

(∏
i<j 4 sinh[π(λi − λj)] sinh[π(µi − µj)]

)2

(∏
i,j 2 cosh[π(λi − µj)]

)2

×

(∏
i<j 4 sinh[π(λi + λj)] sinh[π(µi + µj)]

)2

(∏
i,j 2 cosh[π(λi + µj)]

)2

(∏
i

2 sinh[2πλi]

)2

. (4.2)

Now we demonstrate how the unfolding trick works. Let `I and mJ be `i = λi, mi = µi
and `i+N = −λi and mi+N = −µi, respectively. Then, the matrix model (4.2) becomes

Z =
1

(N !)2

∫ ( 2N∏
I=1

d`IdmI

)
e2πik

∑
I(`2I−m

2
I)/2

(∏
I<J 4 sinh[π(`I − `J)] sinh[π(mI −mJ)]

)(∏
I,J 2 cosh[π(`I −mJ)]

)
×

(∏
J

sinh[2π`J ]

sinh[2πmJ ]

)
. (4.3)

The integrand in the first line is the square root of the integrand of the matrix model

of the U(2N)2k × U(2N)−2k ABJM theory. The integrand in the second line will not

contribute in the large N limit. The remaining expression has a saddle point very similar
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to that of the partition function of the ABJM theory. If we let FABJM (N, k) be the

free energy of the ABJM U(N)k × U(N)−k theory, we find that our free energy must be

F = FABJM (2N, 2k)/2. As the free energy scales as k1/2N3/2, it follows that in the large

N limit F =
√

2FABJM (N, 2k). The volume of the tri-Sasaki Einstein space is proportional

to 1/F 2. Thus our volume must be

Vol(Y ) = Vol(YABJM, (N,2k))/2 , (4.4)

with the expected factor of two. Similarly, one can check that the free energy of the

O(2N)±2 ×USp(2N)∓1 theory is the same as that of the U(N)4 ×U(N)−4 ABJM theory

in the large N limit.

4.2 Unfolding D
(1)
4 and folding A

(1)
3

In the previous section, the unfolding trick was used to change the gauge groups from

orthosymplectic to unitary without changing the quiver. Here we present a different illus-

tration of unfolding where the type of quiver is changed: We unfold the D
(1)
4 quiver to get

an A
(1)
3 quiver and then fold A

(1)
3 to get C

(1)
2 .

The D
(1)
4 quiver is shown in figure 5, where the ranks (divided by N) of the unitary

groups, the CS levels and the eigenvalues are given in, next to and below the nodes,

respectively. The partition function of the D
(1)
4 quiver takes the following form:

Z
D

(1)
4

=

∫
LV (U(N), k, µ)LV

(
U(N), k, µ′

)
· LV

(
U(N), k′, µ̃

)
LV
(
U(N), k′, µ̃′

)
· LV

(
U(2N), k′′, ν

)
· LM (U(N)×U(2N), µ, ν)LM

(
U(N)×U(2N), µ′, ν

)
· LM (U(N)×U(2N), µ̃, ν)LM

(
U(N)×U(2N), µ̃′, ν

)
, (4.5)

where we have omitted the measure of the eigenvalues for simplicity.

By using the formula (2.16), the two U(N) groups of the D
(1)
4 quiver with the eigenval-

ues and the CS levels (k, µ) and (k, µ′) are mapped to (the square root of) the U(2N) group

with (2k, λ). The other two U(N)’s with (k′, µ̃) and (k′, µ̃′) are also combined into another

U(2N) with (2k′, λ̃). For the U(2N) of D
(1)
4 with (k′′, ν), we introduce two eigenvalue sets

κ = ν and κ̃ = ν and rewrite the partition function of the vector multiplet

LV (U(2N), k′′, ν) = LV (U(2N), k′′, κ)1/2LV (U(2N), k′′, κ̃)1/2 , (4.6)

where the eigenvalue distributions for κ and κ̃ are supposed to be equal by definition. The

formula (2.16) lets us write the four bifundamentals in U(N) × U(2N) of D
(1)
4 as (the

square root of) four bifundamentals in U(2N)×U(2N). All of these operations lead to the

following expression of the D
(1)
4 partition function (4.5)

Z
D

(1)
4

=

∫
LV (U(2N), 2k, λ)1/2LV (U(2N), 2k′, λ̃)1/2

· LV (U(2N), k′′, κ)1/2LV (U(2N), k′′, κ̃)1/2

· LM (U(2N)×U(2N), λ, κ)1/2LM (U(2N)×U(2N), λ, κ̃)1/2

· LM (U(2N)×U(2N), λ̃, κ)1/2LM (U(2N)×U(2N), λ̃, κ̃)1/2 . (4.7)
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D
(1)
4 :

µ′

1 1

11

2

k′

k′

k′′

k

k

µ̃

µ̃′

ν

µ

A
(1)
3 :

κ

2

2 k′′

2

2k′2

k′′

2k

λ̃

κ̃

λ
C

(1)
2 : 2 2 2

α γβ

2k k′′ k′

Figure 5. The D
(1)
4 , A

(1)
3 and C

(1)
2 quivers are related by the unfolding trick. The numbers in and

next to the circles denote the rank of the gauge groups and the Chern-Simons levels, respectively.

Here the eigenvalue distributions of κ and κ̃ are assumed to be equal. The integrand

of (4.7) is the square root of that of the A
(1)
3 quiver shown in figure 5. The saddle point

equations of (4.7) and A
(1)
3 give the same eigenvalue distribution.

We can now fold this A
(1)
3 quiver to obtain a C

(1)
2 quiver of the form O(2N)2k ×

U(2N)k′′ × USp(2N)k′ . Let us label the eigenvalues of the O, U and USp groups α, β,

and γ respectively. Making the appropriate identifications between the A
(1)
3 eigenvalues

(λ, λ′, κ, κ′) and the C
(1)
2 eigenvalues (α, β, γ), we find that

Z
C

(1)
2

= Z
D

(1)
4

=

∫
LV (O(2N), 2k, α)LV (U(2N), k′′, β)LV (USp(2N), k′, γ)

· LM (O(2N)×U(2N), α, β)LM (U(2N)×USp(2N), β, γ) . (4.8)

Here we used the formulae (2.8) and (2.9) for the nodes at both ends and the formula (2.7)

for the middle node of C
(1)
2 .

5 The ÂDE quiver matrix models and generalized Seiberg duality

In this section, we relate our affine ADE matrix models for N = 3 CS matter theories with

unitary groups to a class of conformal multi-matrix models first introduced by refs. [16, 17].

We call these multi-matrix models ÂDE quiver matrix models. It turns out that these

same ÂDE quiver matrix models were used to study N = 1 ADE quiver theories in 3+1

dimensions [20, 42]. One interesting consequence of this relationship is that at the level of

the matrix model Seiberg duality acting on the 3+1 dimensional gauge theory is the same

as a 2+1 dimensional analog of Seiberg duality [18, 19] acting on the CS theory. In both

cases, the duality is equivalent to the action of the Weyl group associated with the ADE

Dynkin diagram.

The partition function for the ÂDE quiver matrix models is given by

Z =

∫ ( r∏
a=1

Na∏
i=1

dλa,i

)
e−

∑r
a=1

∑Na
i=1Wa(λa,i)

∏
a

∏
i<j

(λa,i − λa,j)2
∏
a<b

∏
i,j

(λa,i + λb,j)
(αa,αb) ,

(5.1)
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where r is the rank of the Dynkin diagram and αa are the simple roots. The roots are

normalized such that (αa, αa) = 2 and (αa, αb) = −1 for the adjacent nodes. Note that

the eigenvalues λa,i must be positive [17, 43].

To relate this model to ours, we redefine the eigenvalues as follows:

λa,i → e2πλa,i , (5.2)

where the new eigenvalues λa,i run from −∞ to ∞. After this redefinition, the matrix

model (5.1) becomes

Z =

∫ ( r∏
a=1

Na∏
i=1

dλa,i

)
eπ

∑
a(

∑
b(αa,αb)Nb)

∑
i λa,i

·e−
∑r
a=1

∑Na
i=1Wa(e2πλa,i)

∏
a

∏
i<j

(2 sinh[π(λa,i − λa,j)])2
∏
a<b

∏
i,j

(2 cosh[π(λa,i − λb,j)])(αa,αb) ,

(5.3)

and it looks like the N ≥ 3 matrix models on S3 with unitary gauge groups. The condi-

tion (2.13) is translated to ∑
b

(αa, αb)Nb = 0 , (5.4)

which cancels the exponential term in the first line. If we take the potential terms as

Wa(x) = − ika
4π

(log x)2 , (5.5)

they reproduce the Chern-Simons terms of the N ≥ 3 matrix models.5

Modulo some subtle convergence issues, refs. [45, 46] demonstrated that the absolute

value |ZS3 | of the CS matter theory partition function is invariant under a generalized

Seiberg duality [18, 19]. Ref. [4] studied this invariance in the large N limit for our CS

N = 3 ⊗aU(Na) quiver theories satisfying
∑

a naka = 0 and (2.13).6 Under a duality at

node a, the ranks of the gauge groups do not change but the CS levels and averaged saddle

point eigenvalue distributions shift according to the rules

kb → kb − (αa, αb)ka ,
na∑
I=1

ya,I →
na∑
I=1

ya,I −
∑
c

nc∑
J=1

(αa, αc)yc,J . (5.6)

Given the relation between these ⊗aU(Na) quiver theories and the ÂDE quiver matrix

models, we note that this type of Seiberg duality is a special case of a more general Seiberg

5Interestingly, the Â-type (or necklace quiver) theories can be reformulated in terms of an ideal Fermi

gas [44].
6See also [14].
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duality that acts on a matrix model with arbitrary potential terms Wa(x) [20, 21]. Under

this more general Seiberg duality, again at node a,

Na → Na −
∑
b

(αa, αb)Nb , (5.7)

Wb(λb)→Wb(λb)− (αa, αb)Wa(λb) .

In our case, Na does not change under Seiberg duality due to the condition (2.13). For

the affine ADE quiver gauge theories in four dimensions, there is the constraint on the

potentials
∑

aNaWa = 0 [20, 42]. Although it was originally derived from geometric

construction of the super potentials in four dimensions, we may well impose it for our case.

Combined with (5.5), it leads to the constraint on the CS levels
∑

a naka = 0 necessary to

obtain an M-theory dual. As pointed out in [20, 21], the invariance under Seiberg duality

is a result of the Weyl reflection symmetry of the Dynkin diagrams which acts on the roots

as αb → αb− (αb, αa)αa. Seiberg duality of the orthosymplectic case in a large N limit can

be obtained by using the unfolding trick (2.8) and (2.9) which relates the matrix models

with orthosymplectic groups to those of unitary groups.

6 Discussion

The principal result of this paper is a classification of a certain type of N = 3 CS matter

theory. Consider theories that consist of a product of the classical groups

[⊗aU(Na)]⊗ [⊗bO(Nb)]⊗ [⊗cUSp(2Nc)] ,

with matter fields in bifundamental and fundamental representations. The form of the

superpotential and Kähler potential are fixed by the N = 3 SUSY. Having fixed the gauge

groups and the matter content, the only degrees of freedom left are the CS levels ka, which

we assume to be nonzero. We then compute the partition function of these matrix models

in a large N limit on an S3 using the matrix model of ref. [5]. The classification result

is that such theories for which the long range forces between the eigenvalues vanish in a

saddle point approximation of the matrix model (given the ansatz (2.11)) have gauge group

and bifundamental field content specified by the Dynkin diagrams in figure 1 and the left

hand column of figure 2.

We offer two speculations about the importance of this result. The first speculation

concerns the AdS/CFT correspondence. We wonder if there exists some sense in which

this set of CS matter theories is a complete classification of conformal N = 3 CS matter

theories with eleven dimensional (and massive type IIA) supergravity duals. At least this

class of CS theories is one for which we can check that the S3 matrix model free energy

agrees with the corresponding gravity calculation. Also, the examples in this paper give us

a better understanding of what types of CS theories appear in AdS/CFT correspondences,

but ideally we would like to say something stronger.

We mention three obstacles in the way of making a stronger statement. First, the

eigenvalue cancellation appears to depend in a nontrivial way on the choice of ansatz (2.11).
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Perhaps a smarter or more general ansatz would allow for a more general class of theories.

Next, we should clearly allow for more general types of matter fields. We mentioned in

passing in footnote 4 that folding a quiver along an edge instead of a node gives rise

to matter fields in symmetric and antisymmetric two index representations. However,

there is nothing to stop us from including matter fields in more exotic representations

of the classical groups. Finally, there may be gauge theories for which we do not even

know how to write the Lagrangian. For example, taking the S-dual of the type IIB brane

configurations described in section 3 produces (p, q) five-branes where p > 1. By S-duality,

we know such configurations have a gauge theory description, but we do not know how

to write the Lagrangian down directly. Optimistically, it might still be true that given an

arbitrary conformal N = 3 CS matter theory with an 11 dimensional supergravity dual,

such a theory will be related by duality to one of the theories in our list.

Related to these last two obstacles is the observation that there are other affine Dynkin

diagrams shown in the left of figure 3 whose interpretation in terms of the gauge theory is

less clear. Here are three questions we would like to be able to address eventually. Should

these Dynkin diagrams have an interpretation in terms of N = 3 CS matter theories? If

they do have such an interpretation, can their Lagrangians be constructed using matter

fields in more exotic representations? If there is no Lagrangian description, can we relate

them to more familiar theories using duality?

The second speculation is mathematical in nature. Given the constraint on the CS

levels (which for the unfolded quivers is that
∑

a kaNa = 0), a branch of the moduli space

of these N = 3 theories is an N fold symmetric product of an eight real dimensional

hyperkähler cone [47]. The base of such a cone is the tri-Sasaki space Y that appears

in eleven dimensional supergravity. An open problem is the classification of such seven

dimensional tri-Sasaki spaces [48]. We wonder if the list of N = 3 CS matter theories in

this paper might provide (or help provide) such a classification. An immediate objection

is that a cone realized as a hyperkähler quotient always has a base which is tri-Sasaki

which in turn could be used in an eleven dimensional supergravity construction. Our list

of Dynkin diagrams gives only a small subset of such quotient constructions. Additionally,

it seems likely that there exist hyperkähler cones which are not hyperkähler quotients.

Optimistically, if our list is in some sense complete for N = 3 CS matter theories and

if the AdS/CFT correspondence is correct, then our list must also be complete for tri-

Sasaki spaces. While this mathematical speculation may be too ambitious, we would still

like to understand from a purely geometric point of view what is special about our set of

tri-Sasaki spaces.

In conclusion, we would like to mention some aspects of this paper that should be

developed further. First, it would be nice to understand how the Lie group associated with

the Dynkin diagram appears in the physics of our N = 3 CS matter theories. Clearly the

Weyl group is important in understanding Seiberg duality. Also, we know from ref. [33]

that if we set the CS levels to zero which will enhance the SUSY to N = 4, the Coulomb

branch of the moduli space has an enhanced global symmetry given by the corresponding

simple Lie group. In more detail there is a topological U(1) global symmetry for each node

whose current is given by Ja = 1
4π ∗ Fa, where Fa is the field strength of the gauge theory

– 22 –



J
H
E
P
0
4
(
2
0
1
2
)
1
3
8

of the node labeled by a. These U(1) symmetries give rise to the Cartan subgroups, and

enhance to the global symmetry of the quiver diagram when combined with the monopole

operators. However, it is not clear to us how nonzero CS levels affect this global symmetry

enhancement.

Second, we have been brief in our treatment of the parity of the gauge group ranks

and the CS levels. The D-brane construction of section 3 suggests USp and O groups can

have half integral and odd CS levels respectively in these quiver constructions, despite the

standard argument to the contrary reviewed in appendix B. We only briefly discussed how

Õ3
±

planes allow for O(2N+1) and USp′(2N) groups, and we neglected Õ5
±

planes which

presumably add extra fundamental hypermultiplets to the quiver theory.

Third, we expect that in a manner similar to the Alday-Gaiotto-Tachikawa conjec-

ture [49], the quiver gauge theories we considered will have a connection to Toda field

theory. The ÂDE quiver matrix models we introduced in section 5 make clear a rela-

tion between generalized Seiberg duality in our three dimensional CS matter theories and

Seiberg duality of the ÂDE quiver gauge theories in four dimensions. Without the CS

levels, the partition function of the Ân quiver matrix models can be written as a corre-

lation function of vertex operators of the c = n Toda field theory [44, 50]. Although the

Stieltjes-Wigert type potential is not straightforward to include, we expect that the quiver

gauge theories we considered have some connection to Toda field theory.
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A Adjoint and fundamental representations of simply laced Lie groups

SU(N). Let ei be unit vectors in RN with the inner product ei · ej = δij − 1/N . The

fundamental representation has the N weights ei, i = 1, . . . , N . The adjoint representation

has the N(N −1) weights (or roots) ei−ej , i 6= j, along with N −1 elements that generate

the Cartan sub-algebra.

SO(2N). Let ei be unit vectors in RN with the standard inner product. The fundamental

representation has the 2N weights ±ei, i = 1, . . . , N . The adjoint representation has the

2N(N−1) roots ei±ej , i 6= j along with N elements that generate the Cartan sub-algebra.

SO(2N + 1). Let ei be unit vectors in RN with the standard inner product. The

fundamental representation has the 2N weights ±ei, i = 1, . . . , N along with 0. The

adjoint representation has the 2N(N − 1) roots ei±ej , i 6= j along with 2N roots ±ei and

N elements that generate the Cartan sub-algebra.
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USp(2N). Let ei be unit vectors in RN with the standard inner product. The fundamen-

tal representation has the 2N weights ±ei/
√

2, i = 1, . . . , N . The adjoint representation

has the 2N(N − 1) roots (ei ± ej)/
√

2, i 6= j along with 2N roots ±
√

2ei and N elements

that generate the Cartan sub-algebra. Note we have included factors of
√

2 so that the

longest weights will have their conventional length squared equal to two.

The ranks of the Weyl groups are

Ga rank(Wa)

SU(N) N !

O(2N + 1) 2NN !

USp(2N) 2NN !

O(2N) 2N−1N !

B Normalization of the Chern-Simons action

We write the Chern-Simons action as follows:

SCS =
k

4π

∫
M

Tr′
(
A ∧ dA+

2

3
A3

)
. (B.1)

We define A ≡ −iTaAaµdxµ. The Ta are generators in some irreducible representation of

a Lie algebra g corresponding to a compact simple Lie group G. The generators obey the

commutation relations [Ta, Tb] = ifab
cTc. The field strength is defined to be F = dA+A2.

We have defined the trace Tr′ such that the action is independent of the choice of

irreducible representation. Let us review what this definition entails. Up to a constant of

proportionality, all bilinear forms on G are proportional to the Killing form. If we take

an arbitrary representation of G described by highest weight λ, then we can choose the

generators to be orthogonal such that the standard trace satisfies the relation Tr(T aλT
b
λ) =

|θ|2xλδab. We have included the norm of the longest root θ because rescaling T a will rescale

the length of all the weights and roots. (Typically, one makes the choice |θ|2 = 2.) The

Dynkin index xλ should then be independent of this normalization. Taking a trace of both

sides relates xλ to the quadratic Casimir from which one deduces that

xλ =
dim(λ)

dim(g)

(λ, λ+ 2ρ)

|θ|2
, (B.2)

where ρ = 1
2

∑
α>0 α is half the sum of the positive roots. The normalized trace is defined

such that Tr′ = Tr /|θ|2xλ.

The representation independence of Tr′ means we do not need to worry about the

precise values of the Dynkin indices, but we give them for completeness. For the funda-

mental representation of SU(n) (n ≥ 2) and USp(2m) (m ≥ 1), the Dynkin index is always

xλ = 1/2. For the fundamental representation of SO(n) (n > 3), the Dynkin index is

always xλ = 1, while for SO(3), xλ = 2.

We now review the gauge invariance argument that shows k must be an integer. Gauge

invariance implies the path integral is invariant under gauge transformations,

A → gAg−1 + g dg−1 , (B.3)
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where g ∈ G. Up to boundary terms that we assume vanish, the variation of the action is

the Wess-Zumino term

δSCS =
k

12π

∫
M

Tr′
(
dg−1 g

)3
. (B.4)

Naively, this term looks like it breaks gauge invariance, but in fact it is proportional to

the winding number w of the map g : M → G, i.e. δSCS = 2πk w. That w is integer or

half integer allows the path integral, which depends on eiSCS , to be invariant if k is chosen

appropriately.

A straightforward calculation demonstrates that w is integer for maps g : S3 → SU(2).

Similarly, w is half-integer for maps g : S3 → SO(3). We conclude that for SU(2), k must

be an integer, while for SO(3), k must be an even integer.

Note that SU(2) is always a subgroup of SU(n) (for n ≥ 2) and USp(2m) (for m ≥ 1).

Also SO(3) is always a subgroup of SO(n) (for n ≥ 3). Thus, the maps g : S3 → SU(2)

and g : S3 → SO(3) are also maps into the larger classical groups. From this embedding

and the representation independence of Tr′, it follows that k should be an integer for SU

and USp groups and it should be an even integer for SO groups.

C Conventions for N = 3 SUSY Chern-Simons matter theories

We review the construction of N = 3 SUSY CS matter theories. Such theories have an

SU(2)R R-symmetry while N = 2 theories in contrast have only a U(1)R. We follow the

notation of ref. [51]. The CS action itself may be given N = 2 SUSY by the addition of a

fermion χ and two auxiliary scalars D and σ:

SN=2
CS =

k

4π

∫
Tr′
(
A ∧ dA+

2

3
A3

)
− k

4π

∫
Tr′ (χχ− 2Dσ) d3x . (C.1)

A complete N = 3 action is then

S = SN=2
CS +

∫
d3x d4θ

(
Q†eVQ+ Q̃te−V Q̃∗

)
+

[∫
d3x d2θ

(
− k

4π
Tr′Φ2 + Q̃ΦQ

)
+ c.c.

]
.

(C.2)

HereQ and Q̃ are chiral superfields in the fundamental and anti-fundamental representation

of the gauge group G respectively. The scalar components q of Q and q̃† of Q̃† fill out a

doublet under SU(2)R. The chiral field Φ is in the adjoint of G. Its scalar component φ

combines with σ to give a three dimensional representation of SU(2)R.

We would like to verify some earlier claims about the global symmetry group under

which the fundamental matter fields Q and Q̃ transform when G = SO(n) or G = Sp(2m).

From appendix A, it is clear that the adjoint representation of Sp(2m) is a symmetric tensor

product of two fundamental representations. Similarly, the adjoint representation of SO(n)

is an antisymmetric tensor product. If we consider Φab where a and b are fundamental

group indices, this property of the adjoint representation means that Φab is a symmetric

matrix for Sp(2m) and an anti-symmetric matrix for SO(n). We can take advantage of the

symmetry properties of Φ to rewrite the superpotential as

2Q̃jaQ
j
bΦab =

(
Q̃jaQ

j
b ±Q

j
aQ̃

j
b

)
Φab , (C.3)
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where we use the plus sign for G = Sp(2m) and the minus sign for SO(n). The indices

j, k = 1, . . . , Nf index the flavors. Summation over the indices is implied.

Let us start with G = SO(n). In this case, we can introduce a doublet field XI
a =

(Qja, Q̃ka), I = 1, . . . , 2Nf . We also introduce the 2Nf × 2Nf antisymmetric matrix

J =

(
0 Id

−Id 0

)
. (C.4)

With these two ingredients, the superpotential can be written in the form

2Q̃jaQ
j
bΦab = XI

aJ
IJXJ

b Φab . (C.5)

This superpotential makes manifest a global Sp(2Nf ,C) symmetry. The kinetic term mean-

while preserves a U(2Nf ) global symmetry. In more detail, we can rewrite the kinetic

term as

Q†eVQ+ Q̃te−V Q̃∗ = Q†eVQ+ Q̃†
(
e−V

)t
Q̃ . (C.6)

Given that the gauge group is SO(2n), we know that eV is an orthogonal matrix and hence

that
(
e−V

)t
= eV . The kinetic term can thus be written in the form

(
XI
a

)∗ (
eV
)
ab
XI
b . The

intersection of USp(2Nf ,C) and U(2Nf ) is USp(2Nf ).

For G = Sp(2m), we play a similar game. First we need to recall that representations

of Sp(2m) are pseudoreal. If Tab are Hermitian generators of the Lie algebra in the funda-

mental representation, we can write the pseudoreality condition as J −1TJ = −T ∗ = −T t,
where Jab is the analog of J acting on the color indices instead of the flavor indices. We

introduce the doublet field

XI =
(
Qj + iJ Q̃j , iQk + J Q̃k

)
. (C.7)

We find that

1

2i
XI
aX

I
b (JΦ)ab = Qja(JΦ)ab(J Q̃j)b + (J Q̃j)a(JΦ)abQ

j
b

= 2Q̃jaQ
j
bΦab , (C.8)

where we have used the facts that J 2 = −1 and that Φ = Φt = JΦJ . This last condition

comes from the pseudoreality of representations of Sp(2n). This form of the superpotential

makes manifest a global O(2Nf ,C) symmetry. The kinetic term still preserves a U(2Nf )

symmetry although it’s slightly more involved to see. In more detail, note that

(XI)†eVXI = (Q+ iJ Q̃)†eV (Q+ iJ Q̃) + (iQ+ J Q̃)†eV (iQ+ J Q̃)

= 2Q†eVQ+ 2(J Q̃)†eV (J Q̃)

= 2Q†eVQ+ 2Q̃†
(
e−V

)t
Q̃ ,

where in the last line we used the pseudoreality condition J eV J = −
(
e−V

)t
. The inter-

section of O(2Nf ,C) and U(2Nf ) is O(2Nf ).

Something special can happen when the tensor product of the R-symmetry, gauge

symmetry, and global symmetry representations is a real representation. Let us consider

– 26 –
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the hypermultiplet (Q, Q̃∗). The R-symmetry representation is a pseudoreal doublet of

SU(2) where the analog of J and J above is now iσ2. To get a real representation, the

product of the gauge and global symmetries should be pseudoreal as well. Let us take the

hypermultiplet to transform under the fundamental representation of Sp(2m) and assume

the flavor representation is real. We consider the antilinear map τ :

τ

(
Q

Q̃∗

)
= J ⊗ iσ2

(
Q∗

Q̃

)
=

(
J Q̃
−JQ∗

)
. (C.9)

Note that τ2 = 1 and has eigenvalues ±1. A half hypermultiplet is an eigenvector of τ . We

can think of a half hypermultiplet as a full hypermultiplet with the constraint Q = ±J Q̃.

In the presence of half hypermultiplets, the argument demonstrating O(2Nf ) flavor

symmetry needs to be adjusted. We start with Nf hypermultiplets which have a global

O(2Nf ) symmetry. Under the constraint Q = J Q̃ leaving Nf half hypermultiplets, only a

O(Nf ) global symmetry is preserved. Note that Nf can be odd.
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