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1 Introduction

Holography has recently been used to model superconductors (SCs) [1] with the hope

that it may shed light on the nature of high temperature superconductors, which evade

the weakly coupled paradigm of BCS theory. The application of holography to superflu-

ids/superconductors relies on considering a strongly coupled d-dimensional conformal field

theory (CFT) admitting a gravity dual and in which a global/local U(1) symmetry is spon-

taneously broken by the vev of some charged operator O. The gravity dual description is

composed of d+ 1-dimensional Anti de Sitter (AdS) gravity with a U(1) gauge field and a

charged scalar field Ψ dual to O which develops a U(1)-breaking condensate.

In the simplest concrete realization [1], the CFT lives in a homogeneous d − 1-

dimensional ‘plane’ at a finite temperature T . At high enough temperature, the ground

state corresponds to the Reissner-Nordstrom AdS planar Black Brane (or ‘BB’ for short),

corresponding to the CFT being in a deconfined plasma state. At low temperatures a hairy

BB with a nonzero smooth profile for Ψ around the horizon is energetically favored and

thus the superconducting state arises. Since the BB exhibits a finite conductivity, this

realizes the superconducting transition in a material which otherwise is a conductor.

Even more interestingly, the holographic duality successfully overcomes the challenge to

describe insulating materials that display superconductivity at low enough temperatures,
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Figure 1. We consider two types of configurations and external fields: (a) a 2-dimensional

cylindrical material with nonzero Wilson line W . In the lab, this can be accomplished by an ‘axial’

magnetic field threading the interior of the cylinder. (b) A planar configuration, in which the

cylinder is small and irrelevant for the dynamics. In this configuration we shall introduce a magnetic

field perpendicular to the plane. We will also discuss the response to both a (perpendicular)

magnetic field and a nontrivial Wilson line in this case.

like, remarkably, the cuprate high temperature superconductors [2]. As first discussed

in [3], the AdS Soliton [4, 5] geometry precisely realizes this kind of materials. Indeed, the

spectrum of fluctuations over the AdS Soliton has a (roughly temperature-independent)

mass gap, signaling an insulating behavior — which can also be viewed as a confining vac-

uum state. Moreover, the geometry lacks any horizons so heuristically one does not expect

any obstruction (other than the gap itself) that these geometries develop hairs. Indeed, a

large enough U(1) chemical potential µ eventually overcomes the mass gap associated with

Ψ, and it becomes energetically favorable for Ψ to condense near the infrared tip of the

geometry.1

These encouraging findings motivate us to continue a systematic study of this holo-

graphic insulator (the AdS Soliton) and its superconductor phase (the AdS Soliton super-

conductor or ‘Soliton SC’ for short). Specifically, in this work we shall study the impact of

external magnetic fields on such holographic ‘materials’. This will include in particular the

response of cylindrical materials under a threading magnetic flux. As an additional moti-

vation, let us point out that recently there have been discussions in the condensed matter

literature on the response to such a flux, which should undergo a periodicity change for

small enough cylinder radii [6–10]. Our results are perfectly in tune with these conclusions.

The first important fact to notice about the holographic insulator model is that in-

evitably one of the spatial directions of the material must be compactified on a circle —

because the AdS Soliton asymptotics include one compact direction. In fact, this is how

the mass gap is generated in the CFT: by compactifying it on a circle with appropriate

boundary conditions.

1The conductor/superconductor transition in the CFT language can be likewise understood as µ over-

coming a certain gap. The main difference is that for the conductor conformal invariance forces this gap to

be proportional to the temperature.
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This leads us to discuss two distinct situations:

(a) Firstly, we will consider 2-dimensional materials physically arranged in a cylindrical

geometry of radius R, as illustrated in figure 1a. In this case the boundary theory is

defined in 2 + 1 spacetime dimensions. This will allow us to visualize the dynamics

intrinsically associated with the compact direction more easily. The ‘external’ gauge

field configuration aµ which we will consider in this case is given by a Wilson line

W (see below), and as we shall show the material responds to it with unsuppressed

Aharonov-Bohm (AB) effects. In this article we shall call ‘Aharonov-Bohm effects’

any flux-dependent effect originating from the fundamental charge carriers (such as

the electrons), which may arise in the process of integrating them out. These will be

in spirit similar to well known AB-effects that occur in physical materials, such as the

existence of persistent currents in small non-superconducting rings (predicted in [11,

12] and observed in [13–16])2 or the oscillations in the resistivity of certain metals [17].

(b) Secondly, we slightly modify this construction in order to describe insulating mate-

rials in a planar non-compact configuration. This can be accomplished simply by

taking the same model with one additional (non-compact) space direction and taking

the limit that the compact direction becomes small, R→ 0. For sufficiently small R,

the dynamics along the circle becomes frozen and the presence of the circle can be

ignored in practice for most purposes. Of course, the theory inherits a (large) mass

gap and thus the insulating behaviour. The superconducting transition still occurs

for large enough chemical potentials, µ ∼ 1/R. Interestingly, a consistent ‘compacti-

fication’ limit for which the superconducting transition persists can be taken in many

different ways (e.g., by sending R→ 0 with a fixed Wilson line W ). Therefore really

what one describes in this way is a family of insulating materials with slightly differ-

ent properties (labeled e.g. by W ). Additionally, once we know how to arrange this

type of superconductor in a planar non-compact configuration, it is possible to study

the response to a (perpendicular) magnetic field. As we shall see, the superconductor

responds to it creating vortices and we can infer that the SC is of type II.

Let us now review the external or control parameters that we will consider. The

external gauge field that threads the material serves as a control parameter probing the

response of the system. In presence of the compact direction, there are two types of

magnetic fields i) an applied magnetic field Hperp on the non-compact directions, which we

will denote also by H henceforth; and ii) a gauge-invariant Wilson line3

W ≡ exp

(
ei

∮
dxµaµ

)
,

where the integral is done along the compact direction and e is the charge of the funda-

mental charge-carriers. The physical meaning of W can be seen as follows. In a physical

realization in the lab the electromagnetic field present on the cylinder-shaped material ex-

tends to its interior. Since, by the Stokes theorem, the circulation of the gauge potential

2More on persistent currents in section 2.3.
3Here and henceforth we use units of c = ~ = 1.
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equals the magnetic flux enclosed by the path,

Φaxial
H =

∫
dS ·Haxial =

1

e
arg(W ) , (1.1)

one can think that the Wilson line on the material is generated by the axial magnetic

flux. For the analysis that we perform in this paper, however, only the quantities defined

on the material matter. Therefore it will be completely irrelevant how the Wilson line is

‘generated’, and we shall not make any more reference to Haxial.

The response of the system under these control parameters is going to be character-

ized by i) the possible formation of vortices (in the non-compact directions) which are

characterized by the winding number n; and ii) by the formation of the so-called fluxoid

configurations in which the phase θ of the order parameter winds a number of times around

the compact direction. These configurations are characterized by the (gauge-invariant)

‘fluxoid number’

m ≡ 1

2π

∮
dxµ∂µθ = integer,

where the integral is done along the compact direction and which plays a role analogue to

the winding number associated with the vortices.

In section 3, to better understand the response to a Wilson line W , we first study the

system without gauge fields on the non-compact directions, i.e. with H = 0. The basic

characteristics of this response were presented in [18], and here we will further elaborate

some points. We argued in [18] that the response to W generically is in the form of

Aharonov-Bohm (AB) effects, meaning that the whole effective action acquires an explicit

dependence onW . In particular, this gives a characteristic impact on the phase diagram for

the SC transition. In the limit that the AB effects are absent, the phase diagram displays

a periodicity in the direction of the applied axial flux Φaxial
H given by

∆ΦLP = 2π/g0 ,

where g0 is the charge of the condensing operator O (for ordinary SCs, g0 = 2e). We will

refer to this as the Little-Parks periodicity for short. Instead, the natural periodicity of the

AB effects due to the fundamental charge carriers (the ‘electrons’) is 2π/e, so whenever

these quantum effects are important one expects that the LP period will be substituted by

the fundamental one,

∆Φfund = 2π/e.

Equivalently, one can say that in the Little-Parks (LP) regime, really, the two sub-periods

turn out to be degenerate — and that the degeneracy is uplifted when the AB effects

become important.

This degeneracy is simply understood as resulting from the quantum hair present in

superconductors in the form of a discrete gauge charge. Indeed, whenever the U(1) gauge

group is spontaneously broken by an operator O of charge g0 = Ne (where N can be any

integer), a discrete gauge subgroup ZN is realized nontrivially by the ‘fundamental’ fields

carrying charge e. The discrete charge associated with ZN is the simplest form of quantum

hair, and is realized in ordinary superconductors with N = 2.
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In these terms, it is clear that there can be a dramatic difference between the Black

Brane SC and the Soliton SC, because (even in AdS) black (horizon-full) classical geome-

tries obviously obey a classical uniqueness theorem, whereas — as it turns out — AdS

Solitons do not. In turn, this implies that the AB effects are completely suppressed in

the BB SC and can be unsuppressed in the Soliton SC. We will show that they are in-

deed unsuppressed in the Soliton SC. Accordingly, the flux-periodicity exhibited in the

insulator/SC transition is 2π/e whereas in the conductor/SC it is 2π/g0.

We are now ready to briefly review the recent developments in the condensed matter

literature on the LP effect and its uplifting. Using a microscopic description of the materi-

als [6–10] one concludes that the periodicity in the response to the flux — or W — should

differ from the LP one for cylinder radii smaller than the (zero-temperature) correlation

length ξ0. Heuristically, one can think that the concrete Aharonov-Bohm effect at stake

is the one enjoyed by the electrons participating in the pair [9]. Since ξ0 is the typical

pair-size, only for R < ξ0 can an interference take place. This characteristic behaviour is

no different from what we find: the length ξ0 turns out to be always smaller than R for the

holographic conductor/SC transition [18], in which case no AB effect is seen. Instead, ξ0 is

always comparable to R for the holographic insulator/SC transition [18], and the AB effects

are noticeable. The only additional feature in the holographic model is that for R > ξ0 in

addition to the exponential suppression [7] from the small overlap of the electron’s wave

function, there is an extra 1/N suppression.

Once the role of W and m in our model is clarified, in section 4 we will study gauge

fields on non-compact directions. The effect of the magnetic field and vortex solutions in the

original HS model of ref. [1] has been studied in [19–23] and [24–28] respectively. Here, in

the context of the compactified theory, we show that such solutions also exist in the broken

phase of the superconductor/insulator regime and find them explicitly (the corresponding

result in the conductor/superconductor regime can be trivially extracted from previous

studies). In order to obtain true superconductor vortices we promote aµ to a dynamical

gauge field by making use of the method in ref. [28]. We also compute the penetration

length of the magnetic field and show that the vortices are energetically favorable for some

window of values of the external magnetic fieldH: Hc1 < H < Hc2; namely these HSs are of

type II; interestingly, the high temperature superconductors known so far are of this type.

This paper is organized as follows. In the next section we review various aspects of the

Holographic Superconductor models which are necessary for our discussion: their effective

field theory (EFT) description in section 2.1, the physical interpretation of the system

when the U(1) gauge field is non-dynamical in section 2.2, the precise definition of the

holographic model in section 2.3 and the treatment of the gauge field as a dynamical field

in section 2.4. In section 3 we describe the response to a Wilson line on the circle. In

section 4, we discuss the response to a magnetic field on the non-compact directions and

the formation of vortices. We summarize our conclusions in section 5.

Given that we will discuss applications involving different number of spatial dimensions,

we will from now on work in an unspecified number, d − 1, of spatial (including compact

and non-compact) dimensions.
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2 Preliminaries

2.1 Effective theories for superconductors and superfluids

Before introducing explicitly the holographic model let us now discuss in a model inde-

pendent way the effect of magnetic fields on superconductors with compact as well as

non-compact dimensions. Our treatment will be similar in spirit to that in [29]. We are

interested in the effective action Γ for time-independent configurations of a U(1) gauge

field aµ = (a0, ai), where i, j = 1, . . . , d−1, and a scalar field Ψcl whose non-zero value will

be responsible for the U(1) breaking. We consider this system at finite temperature T and

U(1) chemical potential µ. The effective action is a gauge invariant functional of aµ and

the ‘order parameter’ Ψcl.

In the following we will partly review the model independent results provided in [18, 28],

which will be used in this paper, and partly extend them in some directions. The reader

can therefore refer to [18, 28] for the proofs of some non-trivial statements given in the

following. Here, like in [18, 28], we assume that only the magnetic part of the U(1) gauge

field is present.

An important observation is that the true superconductor case corresponds to a dy-

namical ai while a background ai is suitable to describe superfluids. The sharpest difference

between the two cases arises in inhomogeneous configurations like vortices; we will return

to this point when we explicitly consider such configurations. In this paper we will al-

ways use the superconductor language, but all quantities can be translated in the language

usually adopted in the superfluid literature: for example a magnetic field corresponds to

an external angular velocity performed on the superfluid and arg(Ψcl) to the superfluid

velocity potential.

There are two distinct regimes that can be used to define the effective field theory

for aµ and Ψcl: when the gradients of the fields are small and when both the fields and

their gradients are small. In the former case, the effective action Γ can be organized as a

gradient expansion. The latter case reduces to the so-called Ginzburg-Landau (GL) regime,

in which the free energy, F = TΓ, is well approximated by4

FGL ≡
∫
dd−1x

[
1

4g20
F2
ij + |DiΨGL|2 + VGL(|ΨGL|)

]
, (2.1)

where Fij = ∂iaj − ∂jai, DiΨGL = (∂i − iai)ΨGL, g0 is the (renormalized) charge of the

order parameter ΨGL and

VGL ≡ − 1

2ξ2
GL

|ΨGL|2 + bGL|ΨGL|4 . (2.2)

Here we introduce the notation ΨGL for the order parameter to emphasize that it is chosen

to have a canonically normalized kinetic term in the GL regime.

We first turn on only the component of the gauge field along the compact direction,

aχ, where χ ∈ [0, 2πR). A convenient way to analyze this configuration is to perform

4From now on, we will denote the canonically normalized gauge field as âi and we introduce a rescaled

field ai = g0âi.
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a decomposition in Fourier modes (or “Kaluza-Klein decomposition”) of the S1 for the

theory defined by (2.1) in the presence of a Wilson line W . In order not to introduce

further notation, we will from now on denote the non-compact coordinates only by the

latin index i, j . . . — the distinction between when this includes the compact direction will

always be clear from the context.

The Kaluza-Klein (KK) decomposition delivers a tower of massive modes, of which we

will only keep the most relevant for the dynamics. Thus, truncating the gauge field to the

‘zero modes’ (with no dependence on χ) for both ai and aχ, and to the m-th fluxoid (or

KK mode) for ΨGL,

ΨGL = Ψm eimχ/R

(here Ψm may depend on the non-compact coordinates, and we will take it to be real) one

readily obtains the following d− 2 dimensional tree-level free-energy in the GL regime:

FS1, tree
GL = 2πR

∫
dd−2x

[
F2
ij

4g20
+

(∂iaχ)
2

2g20
+ |DiΨm|2 +

(
aχ − m

R

)2
|Ψm|2 + VGL(|Ψm|)

]
.

(2.3)

Let us focus on the GL theory for simplicity: the main conclusions we will find for the

set-up described in the introduction in the absence of Hperp hold in general.

One observes that the effective mass-term for every fluxoid mode Ψm includes a fluxoid-

dependent correction,

− ξ−2
GL

→ −ξ−2
GL

+ 2
(
aχ − m

R

)2
. (2.4)

The Little-Parks effect immediately follows basically from this observation: because of

this mass-term in the SC state, the fluxoid channel that minimizes the free energy is

basically the one minimizing (aχ −m/R)2. Then, by increasing W (i.e., aχ) there must be

transitions between subsequent fluxoids. With no corrections to the above tree-level free

energy, one then expects the transitions between different fluxoids to occur at the values

aχ = (k + 1/2)/R with k an integer. Since all fluxoids have identical properties except

for a shift in aχ, the whole SC phase transition must display a periodic dependence in aχ
with period 1/R. This is indeed the equivalent of the Little-Parks effect, and its associated

flux-periodicity ∆Φ(LP ) = 2π/g0. As we showed in [18] and will review in section 3.1, this

is exactly what happens in the holographic conductor/SC transition.

The other important observation regarding (2.3), is that the KK reduction for the

gauge field ‘delivers’ a scalar field, aχ, that is massless at tree-level — in fact it has no

self-potential. This field does appear in the interaction terms with the KK modes Ψm (such

as the fourth term in (2.3)) via the combination m− aχ, which originates from local terms

involving the covariant derivative DχΨm. This already suggests that a potential for aχ can

be generated by quantum effects. In fact, it is easy to see that upon compactification on

the circle, higher-dimensional gauge invariance does not forbid a potential for aχ. Rather,

it only requires it (and the whole effective action) to be periodic with period ∆âχ = 1/(eR)

where e is the smallest charge in the theory e = g0/N , taken here to be a generic fraction

of the charge of the condensate g0. Indeed, the Wilson line is gauge-invariant, and so the

effective action is perfectly allowed to acquire a dependence onW , which on the background

– 7 –
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considered here translates on (among others) a periodic potential for aχ. To be specific,

the GL free energy incorporating the quantum corrections takes generically the same form

as (2.3) but with all the coefficients replaced by functions of W ,

ξ−2
GL

→ ξ−2
GL

(W ) , bGL → bGL(W ) , (2.5)

in addition to a possible additive potential for aχ only, which is irrelevant for the SC

transition.

Physically, the dependence of the effective action on W can be viewed as an AB

effect — an interaction between the charge-carriers and a ‘magnetic flux’ which appears

only at quantum level. This dependence was obtained long ago in the context of KK

compactifications in [30], where the one-loop (self-)potential for the analog of aχ was found

explicitly to arise as (an Aharonov-Bohm version of) the Casimir effect. We are not aware of

previous literature where the dependence onW of the GL parameters ξGL, bGL is computed.

However it seems granted that, e.g., the fundamental charge carrier contribution to the self-

energy of ΨGL will generically lead to a W−dependent (or ‘Aharonov-Bohm’) correction to

the mass δξ−2(W ). In a weakly-coupled theory, this AB mass term can be estimated as a

one-loop effect,

δξ−2(W ) ∼ ℓ
f(W )

R2
, (2.6)

where ℓ is a ‘loop factor’ giving a moderate suppression (typically of order 10−2), f(W )

is an O(1) function while the overall 1/R2 factor follows from dimensional analysis and

by requiring that in the de-compactification limit R → ∞ there should be no effect. Of

course, in a strongly coupled theory higher loops may significantly modify the factor ℓ,

to possibly O(1) values. Notice that while this represents a quantum correction to the

effective mass-squared ξ−2
m , it is parametrically comparable to the classical contribution

∼ (aχ −m/R)2 arising in (2.5) from the KK decomposition — in fact it is only suppressed

compared to it in a weakly coupled theory.

This discussion is meant to illustrate that the Wilson line W exhibits a remarkable

property: its classical (self-)potential vanishes, but at at quantum level a non-zero effective

potential is generated. Put another way, at classical level all values of W are degenerate,

while physically inequivalent. At quantum level, this classical degeneracy is uplifted. This

is very reminiscent to what is known as Quantum Hair : an observable (such as a charge,

or a field) that is measurable quantum mechanically but not classically.

This is not exactly the case for W since we have just seen in (2.4) that the correla-

tion length (indeed a classical observable) around any fluxoid does depend on aχ (though

partially, since it is always in the combination aχ − m). So the identification of W is

really only valid concerning its self-potential and it would be more appropriate to call W

a quasi-quantum hair. However, for the sake of simplicity from now on we will treat it as

one more example of quantum hair.5 See below for the actual rigorous form of quantum

hair which is relevant to the present setup (which is related to the discrete gauge charge

present in a superconductor).

5In hindsight, one realizes that it is gauge invariance and locality of the higher dimensional theory which

enforces that W behaves as a quantum hair — that it has no classical potential.
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In terms of quantum hair, the main result of [18] can be simply stated as follows:

the CFT in a deconfined plasma state (dual to the Black Brane) is insensitive to quantum

hair, whereas the CFT in the confining vacuum (dual to the Soliton) is sensitive to it.

Applying this to the Wilson line, it translates as the Aharonov-Bohm effect being

suppressed in the deconfined plasma state and unsuppressed in the confining vacuum state.

When SC occurs (in either the plasma or confining states), then one expects no modification

from the tree-level picture in the deconfined plasma and so the conductor/SC transition

should exhibit the Little-Parks period ∆ΦB = 2π/g0. Conversely, one expects a large

deformation from the tree-level picture in the confining vacuum and so the insulator/SC

transition should manifest the fundamental flux period ∆ΦB = 2π/e. This is, in brief, the

main point which section 3 is going to substantiate.

The last issue which we have to mention at this point is that following the same logic

that leads us expect a dependence on W in the quantum effective action, one similarly

concludes that there should also be a dependence on the fluxoid number m. As observed

in [31], from the EFT point of view, one may include the following coupling between the

fundamental charge carriers and the phase of the condensate θ = arg(ΨGL)

e′ jµ∂µθ , (2.7)

where jµ is the conserved current of fundamental charge carriers (the electrons). This

coupling is certainly gauge-invariant, and its strength e′ represents an independent charge

(from the usual electric charge). If this interaction is present, then the fluxoid configurations

can give rise to additional Aharonov-Bohm-like effects which translates in the dependence

on m of the effective action [18]. Let us emphasize here that the fluxoid number m also

plays the role of a kind of quantum hair — just like the Wilson line W , it has no classical

‘potential’.

Finally, let us be more precise about the actual notion of quantum hair in our setup.

Obviously, there are some particular kinds of combined dependence on W and m which do

arise classically, namely, via the local gauge invariant quantity

|DχΨGL| = |g0âχ −m/R| |ΨGL|.

The actual quantum hair is properly identified as the (gauge-invariant) magnitude on which

the most general classical effective action does not depend. Assuming that the classical

effective action (even beyond the GL approximation) involves (powers of) local gauge-

covariant operators such as DχΨcl, the relevant quantum hair is the combination of m and

W not appearing in âχ−m/(g0R) (recall that âi denotes the canonically normalized field).

More explicitly, splitting the gauge field as

âχ ≡ m′/g0R+ ãχ

with m′ an integer and ãχ the non-integer part of aχ modulo 1/g0R. The classical depen-

dence is through local gauge invariant combination (or ‘classical hairs’) ãχ and on m−m′.

– 9 –
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superfluids superconductors

vortex aφ-behavior aφ is frozen aφ
large r≃ n+ a1

√
re−r/λ′

vortex energy Fn − F0
large rM∼ n2 ln(rM/ξGL)− nBr2M/2 finite as rM → ∞

1st critical field Hc1
large rM≃ 2 ln(rM/ξGL)/r

2
M

rM→∞→ 0 Hc1 = g20(F1 − F0)/2π

2nd critical field Hc2 =
1

2ξ2
GL

Hc2 =
1

2ξ2
GL

Table 1. Comparison between superconductors and superfluids. The penetration length λ′ is

a model-dependent constant, generically different from the inverse mass of ai, λ. The quantity

a1 is another model dependent constant. Fn is the free energy per unit of volume V d−3 (of the

space orthogonal to the (r, φ)-plane) of a vortex with winding number n. B = ∂raφ/r is the total

magnetic field, while H is the external one, normalized in a way that it coincides with B at Ψcl = 0.

In the superfluid case we always have H = B.

Therefore we identify the quantum hair as the possible choices

m = m′ = k

with k = 0, . . . N − 1. These are granted to be degenerate classically and they represent a

magnetic counterpart of the usual discrete gauge charge: there is an N -fold of them and

the winding number m is locked to the ‘magnetic flux’ m′.

To summarize this part, we conclude that for a given Wilson line W and fluxoid

mode m, one expects that there will be AB effects that generically can be incorporated by

promoting the GL parameters to be generic functions of W and m,

ξGL → ξGL(W,m) , bGL → bGL(W,m) .

The computation of ξGL(W,m), bGL(W,m) from first principles is outside the scope of this

article. However, it is easy to see [18] that introducing such a dependence allows one to

describe the change from the flux periodicity from the Little-Parks value 2π/g0 to the

fundamental one 2π/e.

Let us now turn to the case where ai is along the non-compact dimensions and to

vortex configurations. Notice that to this purpose we need d > 2 + 1. In this work we

will be considering time-independent vortex configurations with cylindrical symmetry as

the main example of our theoretical framework. We define (r, φ) as the polar coordinates

restricted to 0 ≤ r ≤ rM , 0 ≤ φ < 2π and take the Ansatz aφ = aφ(r),Ψcl = einφψcl(r)

and the other components of ai set to zero, where n is an integer. In table 1 we give the

model-independent form of important quantities associated with the vortex configurations

(n 6= 0) in terms of the GL parameters in the superconductor case and, for comparison, in

the superfluid case. There and henceforth we assume rM to be much bigger than the vortex

core and the radius size of the magnetic tube passing through the vortex. Another model-

independent property of superconductors is the fact that the total magnetic flux through

the vortex line equals 2πn [29], and therefore is quantized. This property is crucially based

on the fact that ai is dynamical: it does not occur in superfluids.
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In the ‘mixed’ case with both a magnetic field and a Wilson line (i.e. with nonzero ai
both along the compact and non-compact dimensions) it is still true that the coefficients

in Γ generic have a dependence on (W,m). It follows that the properties of the vortex will

depend on the quantum hairs (W,m). Therefore, the vortices also provide a probe of the

Aharonov-Bohm effect in the compact direction: if the AB effects are (un)suppressed, then

the periodicity in the axial-flux (1.1) of the votrex properties is (2π/e) 2π/g0.

2.2 Superfluids and supersolids in a rotating cylinder

As is well known, there is a well defined mapping between superconductivity and superflu-

idity which allows one to translate all the previously described phenomena into superfluid

physics. This translation basically amounts to taking the limit where the U(1) group be-

comes a global symmetry and the U(1) gauge potential becomes a non-dynamical external

field that can be identified as the velocity of the fluid container. In the following we shall

make this parallelism explicit for the cylindrical configuration.

The first thing to notice is that in the global U(1) limit the black brane BB corresponds

to a normal fluid (a plasma), and the hairy-BB phase (with scalar hair) represents that

fluid having developed superfluidity.

In the regime where the AdS Soliton dominates over the BB, there will be a similar

superfluidity transition, but starting from the Soliton. Now, it is quite clear that the (hair-

less) Soliton must correspond to a solid, just like in the gauged U(1) case it is an insulator.6

Therefore, one concludes that the hairy Soliton phase corresponds to a supersolid — a solid

material which undergoes superfluidity. This form of superfluidity was conjectured to be

possible a long time ago [32] and it has been realized experimentally quite recently in

solid 4He [33, 34] (see [35, 36] for recent reviews). From the holographic perspective, a

solid/supersolid transition is not only possible but it is as simple as the transition between

the (AdS-Reissner-Nosdstrom) Soliton to a hairy version of itself.

The second important thing to note is that in order to have a closer parallel with

ordinary superconductivity, we shall focus here on pairing-based superfluids, such as the

case of 3He. In this case it is still true that i) there is a global U(1) symmetry (the number

of 3He atoms), ii) the condensing operator spontaneously breaks this symmetry and iii)

this operator has charge 2 so a Z2 subgroup is unbroken and realized nontrivially by the
3He atoms not bound in pairs.

Accordingly to these ingredients, close to the phase transition there must be a

Ginzburg-Landau effective description in terms of a charge 2 (scalar) operator. In fact,

the GL effective lagrangian takes exactly the same form as (2.1) with only two changes: 1)

we remove the kinetic term for the gauge field, as it is now not dynamical; 2) we rewrite

the terms formally grouped in |DµΨGL|2 as |∂µΨGL|2 + aµJ
µ + aµa

µ |ΨGL|2 with ai now in-

terpreted as an external velocity field, and Jµ = i(Ψ∗
GL
∂µΨGL−ΨGL∂µΨ

∗
GL
) is the conserved

current. The crossed term aµJ
µ now plays the role of the source term for Jµ. This allows

in particular to still treat a0 ≡ µ as the chemical potential, and the aµa
µ term then ensure

6What we mean by a ‘solid’ is a material exhibiting an energy gap in the mechanical deformations. It

would be interesting to see whether this property implies any form of underlying spatial order, but we have

nothing to say in this regard here.
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that a constant µ leads to a mean field of the form ΨGL ∝ eµit. As usual, the superfluid

velocity is ∝ Ji ∝ ∂iθ where θ = arg(ΨGL). The formally covariant form of the current

Ji − 2ai|ΨGL|2 is interpreted as the momentum density in the frame of the container.

Specializing the dictionary to the cylindrical setup considered here, one identifies the

‘magnetic flux’ arg(W )/e as the circulation, C =
∮
v · dx, which can also be viewed as

the surface integral of the vorticity. For a closed path winding around a cylinder of radius

R, this is C = 2πR2w. Likewise, the ‘fluxoid’ number m simply maps to the angular

momentum m carried coherently by the condensate.

The fluid-mechanical analogue of the LP effect is identified as the Hess-Fairbank ef-

fect [37] — the decrease of inertia of a superfluid in a cylindrical tank rotating with angular

velocity w. This effect follows simply in the GL description from the quantization of the

angular momentum m along the circular direction. Because of this, the superfluid angular

velocity is quantized in units of
~

2MR2
(2.8)

with 2M the mass of the pair. Hence, the superfluid cannot keep with the container ve-

locity unless this is precisely a multiple of (2.8). Thus, one expects that in the frame

comoving with the container, the response of the superfluid will be periodic in w with pe-

riod (2.8). This is the global analogue to the Little-Parks effect. In terms of the circulation,

it corresponds to a periodicity of the phase transition in C given by7

∆CHF =
h

2M
. (2.9)

Now, following the same logic as for the superconductors, it is clear that for pairing-

based superfluids this is not the end of the story. Certainly the circulation C and m equally

behave effectively as quantum hairs and an Aharonov-Bohm-type effect of the unpaired

charge-carriers can introduce a periodicity twice that of (2.9). To be more precise, the

relevant AB-type effect in this context is the so-called Sagnac effect (see e.g. [38, 39]).

Indeed, generically the quantum effects of the unpaired carriers give rise to corrections to

the GL parameters with periodicity ∆Cfund = h/M . In our setup, this is a consequence of

the fact that the ‘single-3He atom’ Hamiltonian in the lab frame is8 obtained by replacing

the momentum in the compact direction pχ by pχ − MwR. Since the spectrum of pχ
is quantized with equal spacings and the quantum correction to the GL parameters is

expressed as a sum over all the modes, it follows that the sum must be a periodic function

of w with period ~/MR2, implying a period in the circulation

∆Cfund =
h

M
.

The results obtained in the following sections translated to fluid-mechanical language

can be simply stated as the holographic solid/supersolid transition has a periodicity in the

7For general superfluids, the periodicity is the inverse of the mass of the condensing object. Thus, the

Hess-Fairbank experiment used 4He, and observed a periodicity given by h/M4 with M4 the 4He mass.
8We ignore here the coupling between unpaired atoms with the condensate (the analog of (2.7)), which

seems to be possible in the global case also.
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circulation ∆C = h/M whereas the holographic fluid/superfluid transition has periodicity

∆C = h/2M .

A similar parallel can be driven between the superconducting and superfluid vortices,

and we refer the reader to ref. [26, 28] and section 4 for all details in this respect. In the

remainder of the paper, we will mostly use superconductor language.

2.3 The holographic model

Let us now define the holographic SC model which we will study. The model was introduced

in [1, 3], and consists of gravity with a negative cosmological constant Λ coupled to a U(1)

gauge field Aα and a charged scalar Ψ in d+ 1 dimensions (α, β = 0, 1, . . . , d). The action

is given by

S =

∫
dd+1x

√
−G

{
1

16πGN
(R− Λ) +

1

g2
L
}
, with L = −1

4
F2
αβ − 1

L2
|DαΨ|2 ,

(2.10)

where GN is the gravitational Newton constant, the cosmological constant Λ defines the

asymptotic AdS radius L via the relation Λ = −d(d − 1)/L2; moreover we introduced

Fαβ = ∂αAβ − ∂βAα and Dα = ∂α − iAα. For simplicity, we have not added any potential

for the scalar. We are interested in geometries with a compact spatial direction, so we

use coordinates (t, z, χ, yi) where z is the holographic direction (with the AdS-boundary

sitting at z = 0), the compact direction is parametrized by 0 ≤ χ < 2πR and yi, with

i = 1, . . . , d − 2, are flat non-compact directions. In addition, we will work at finite

temperature, corresponding to a compact Euclidean time direction with radius β = 1/T .

We will work in the limit GN → 0 taken such that the gravitational effect of L can be

neglected. In this limit, the relevant background metrics are either the neutral AdS BB

ds2BB =
L2

z2

[
−f(z)dt2 + dy2d−2 + dχ2 +

dz2

f(z)

]
(2.11)

or the so called AdS soliton

ds2Sol =
L2

z2
[
−dt2 + dy2d−2 + f(z)dχ2

]
+

L2

z2f(z)
dz2 , (2.12)

where f(z) ≡ 1 − (z/z0)
d, and, for the AdS BB, z0 = d/(4πT ) and, for the AdS soliton,

z0 = dR/2. Since we are interested in the theory at finite temperature, we will perform the

Euclidean continuation with compact time it ∈ [0, 1/T ). The metrics in (2.11) and (2.12)

are energetically favorable for T > 1/2πR and T < 1/2πR respectively. Notice that, in the

soliton case, the circle parametrized by χ collapses to a point at z = z0 defining the end of

a cigar geometry, while it remains finite in the BB case.

The standard dual CFT interpretation of this setup consists of a d dimensional CFT

compactified on a circle and at finite temperature. The vacuum expectation value (VEV)

of operators and the external fields are recovered by studying the asymptotic behavior of

the bulk fields near z = 0, such as the gauge field:9

〈Ĵµ〉 =
1

zd−3
∂zAµ|z=0. (2.13)

9In this paper we always gauge fix Az = 0.
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One then identifies 〈Ĵµ〉 with the VEV of the U(1) current carried by the CFT (we then

identify 〈Ĵi〉 = Ji) and aµ as the gauge field that couples to it. If, say, one chooses Dirichlet

boundary conditions where aµ is fixed, then the dependence of 〈Ĵµ〉 on aµ encodes the

response of the CFT to an external gauge field. Similarly, from the AdS-boundary behavior

of the scalar field Ψ → s+ 〈O〉zd/d one identifies O as the condensing operator that breaks

the U(1) symmetry (we identify 〈O〉 with Ψcl), and s as its source term.

The very first exercise that illuminates what is going to happen in this holographic

setup is to consider the effect of a Wilson line in the absence of any U(1)-breaking operators,

that is, with the gauge field in the bulk only. While in the BB solution the gauge field

configuration Aχ = const is a solution, in the Soliton geometry it is not. One can easily

foresee (see section 3.2) that the boundary condition for Aχ at z = z0 is Aχ(z0) = 0, simply

because in this geometry the χ circle closes to a point. Then, in the absence of condensate

the solution for Aχ has a non-trivial profile10 implying that the response of the CFT to the

Wilson line is to generate a persistent current (see section 3.2 for the numerical coefficients)

〈Ĵχ〉vac =
2− d

zd−2
0

aχ

of a very similar nature of the observed ones [11–16].11 Indeed, such a nonzero vev of

Ĵχ is always present in the Soliton (superconducting or not). In particular, in the CFT

picture we see that in the presence of a threading flux the holographic insulator responds

by building up a persistent current which arises purely as a vacuum polarization effect —

the simplest manifestation of the Aharonov-Bohm effects in our setup.12 In contrast, in the

BB 〈Ĵχ〉vac is always zero classically. One would expect it nonzero at quantum level in the

gravity description, which translates as 〈Ĵχ〉vac being simply 1/N suppressed in this case.

In [1, 3] it was found that turning on a constant chemical potential A0 |z=0= µ intro-

duces a phase transition at a critical value µc, from which the scalar field acquires a VEV.

Such critical value is given by [1, 3, 18, 40]

µc ≃ 31.8 (20.4)T , for d = 2 + 1 (3 + 1) , (2.14)

µc ≃ 1.81 (1.70)

R
, for d = 2 + 1 (3 + 1) , (2.15)

for the AdS BB and the AdS soliton respectively. Eqs. (2.14) and (2.15) can be inverted to

give respectively the critical radius Rc and temperature Tc in terms of a fixed µ. Let us only

add here that the estimate for the (zero-temperature) correlation length ξ0 in both cases

10Corresponding to the decoupling limit of the Magnetic Reissner Nordstrom AdS Soliton, the double

Wick rotation of the Electrically charged RN AdS BB.
11The persistent currents of [11, 12] are in conducting rings, corresponding to d = 2. All our equations

strictly hold for d > 2. The case d = 2 requires a separate study because of the vanishing of the Weyl

curvature in 3D gravity, so it is unclear to us at present whether ‘holographic rings’ have 〈Ĵχ〉
vac = 0 or

not.
12Incidentally, in the fluid-mechanical analogue, this seems to imply the existence of a persistent flow for

solids (with appropriate coherence properties) subjected to rotation via a Sagnac effect. To the best of our

knowledge, we are not aware that this effect is known or even possibly measurable. We leave this issue for

the future.
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is ∼ 1/µ or ∼ R for the BB and the Soliton respectively [18] basically as a consequence of

conformality. Because of the form of the phase diagram between the Soliton and the BB [3]

this implies that ξ0 is biggest for the Soliton and that in the BB is is always smaller than R.

Finally, let us mention that the standard choice to solve the bulk equations of motion

is to fix Dirichlet boundary conditions at z = 0. Then all physical quantities can be

expressed in terms of fixed aµ and s. For example, the free energy F [aµ, s] is obtained

from the d + 1 dimensional AdS Euclidean action SE [aµ, s] evaluated with all bulk fields

on-shell: F [aµ, s] = T SE [aµ, s].

2.4 Dynamical gauge fields in holography

Another possible choice to define the dual CFT theory is to change the boundary conditions

of the bulk gauge field from Dirichlet to Neumann, which promotes aµ to a dynamical field.

Including the dynamics of the gauge field is crucial in superconductivity (see table 1);

for example, it is obviously necessary to observe the Meissner effect and the exponential

damping of B far away from a vortex core. A complete discussion on how to perform this

step in HSs has been provided in ref. [28]. Therefore, here we only summarize the results

that will be used in this paper. The above-mentioned boundary condition of the Neumann

type is
Ld−3

g2
z3−dF µ

z

∣∣∣
z=0

+
1

e2b
∂νFνµ

∣∣∣
z=0

+ Jµ
ext = 0 , (2.16)

where eb and Jµ
ext are additional input parameters, which represent respectively a bare

electric charge and an external current.

In the particular case d = 2 + 1, eq. (2.16) works even when the bare kinetic term

is removed, by taking the limit eb/g → ∞. In this limit, eq. (2.16) leads to a composite

gauge field, or in other words to an emergent gauge field, as it is shown by the fact that its

kinetic term is induced by the AdS bulk dynamics. For d = 3 + 1, the situation is rather

different. The gauge field aµ is a state of infinite norm with a logarithmic divergence in

the UV (which can be seen using, for example, the Kaluza-Klein expansion). Hence, if our

intention is to keep the gauge field in the theory we must renormalize it, changing the UV

structure of our theory. A way to do so is to absorb the divergence in the bare kinetic term

in eq. (2.16), i.e., taking eb in a way that

1

e2b
=

1

g20
+
L

g2
ln z|z=0 + finite terms . (2.17)

In this way one obtains a finite norm state that corresponds to an external dynamical gauge

field coupled to a CFT [41]. This result is also valid for d > 4, except that the logarithmic

divergence in (2.17) is replaced by stronger ones.

In this work we are interested in space-times with one compact space dimension, such

as the AdS soliton background in eq. (2.12). These are dual to CFTs with one compact

dimension, which lead to a d−1 effective field theory at low energies. The above statement

regarding the emergence of dual gauge fields needs to be accordingly modified if we are

interested in the low energy regime. For d = 3 + 1, we expect indeed an approximately

emergent gauge field at low energies. The Kaluza-Klein approach tells us that the 2 + 1
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dimensional gauge field has an effective electric charge at the normal phase with leading

behavior (when βz0 is large) given by

1

e22+1

∝ R ln(βz0) , (2.18)

where β is an energy scale coming from the renormalization. Then, in the dimensional

reduction limit, R → 0, we can have a finite e2+1 even if we remove the bare kinetic term

by taking βz0 → ∞, in agreement with the emergence of a gauge symmetry.

Finally, let us emphasize that the distinction between Dirichlet and Neumann bound-

ary conditions is pertinent to distinguish between the superfluid and the superconductor

regarding the vortices. As for the magnetic response along the compact direction, one can

of course define the problem with Neumann boundary conditions, which would treat aχ as

a dynamical field. Since we are considering homogeneous aχ-configurations, aχ would be

simply driven to the minimum of its effective potential in the absence of external sources

Jext
χ . One could even work out how the phase transition depends on a nonzero Jext

χ . How-

ever, since the issue of main concern is to identify the periodicity with respect to the

magnetic flux ∼ aχ, only the discussion holding aχ fixed is relevant — reducing in practice

to Dirichlet boundary conditions. For this reason, in section 3 we will not refer to the

formulation with Neumann boundary conditions, even though one can of course still treat

the dynamical case by switching on appropriate sources.

3 Response to a Wilson line

In this section we introduce a non-trivial gauge vector potential along the compact direction

only. Therefore, on the AdS-boundary we generically have

aχ = Aχ|z=0 6= 0 . (3.1)

Eq. (3.1) corresponds to the gauge invariant Wilson line W = exp
(
ie
∫
dχ aχ

)
that in the

cigar geometry (2.12) implies a non vanishing magnetic flux through the (z, χ)-surface.

The simplest Ansatz to study this problem is the following

Ψ = ψ(z)eimχ/R, A0 = A0(z), Aχ = Aχ(z) . (3.2)

We want to study a system with spontaneous symmetry breaking of the local U(1) sym-

metry and with a chemical potential, thus the boundary conditions for A0 and ψ at z = 0

are given by

s = 0, a0 = µ . (3.3)
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Figure 2. Phase diagram for the BB SC at T = 1/(πR). Thick solid blue lines separate the SC and

normal phases. Thin solid blue lines mark the appearance m-fluxoid condensates. Dashed green

lines separate different fluxoid domains. On the left d = 2 + 1. On the right d = 3 + 1.

3.1 Response to W in the conductor/SC transition

Let us first consider the AdS BB, which as already stated corresponds to a conducting

CFT plasma. The equations of motion for the Ansatz in (3.2) are

zd−1∂z

(
f

zd−1
∂zψ

)
+

[
A2

0

f
− (Aχ −m/R)2

]
ψ = 0 ,

zd−3∂z

(
f∂zAχ

zd−3

)
− 2 (Aχ −m/R)

z2
ψ2 = 0 ,

zd−3∂z

(
∂zA0

zd−3

)
− 2 A0

z2f
ψ2 = 0 . (3.4)

The requirement of regularity on the above set of equations implies at z = z0

d

z0
∂zψ + (Aχ −m/R)2ψ = 0 ,

A0 = 0,

∂zAχ +
2

d z0
(Aχ −m/R)ψ2 = 0 . (3.5)

Notice that everywhere in both the bulk equations of motion (3.4) and the boundary

conditions (3.5) Aχ enters (or can be equivalently written) in the combination (m/R−Aχ)

appearing in the the local covariant quantity DχΨ = i(m/R − Aχ)ψe
imχ/R. This already

suggests that from the CFT point of view the effective action will depend only on local

gauge invariant quantities (constructed from the condensing operator), and therefore will

display the exact Little-Parks flux periodicity ∆ΦH = h/g0. In other words, the effective

action will display no direct dependence on the ‘non-local’ gauge invariant objects W and

m [18], implying that the Aharonov-Bohm effects are somehow absent in this regime.

This is confirmed by the form of the phase diagram for the occurrence of supercon-

ductivity in the BB, as a function of the magnetic flux ∼ Raχ. The phase diagram can be

straightforwardly found by first solving (3.4) and (3.5) for the Ansatz (3.2) and then find-

ing which of them minimizes the free energy for every choice of temperature T , chemical
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Figure 3. The modulus of 〈O〉 as a function of aχ at µ = 1.03µc and T = 1/(πR) for the solutions

of the form (3.2). On the left d = 2 + 1. On the right d = 3 + 1.
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Figure 4. The current as a function of aχ at µ = 1.03µc and T = 1/(πR) for the solutions of the

form (3.2). On the left d = 2 + 1. On the right d = 3 + 1.

potential µ and Wilson line aχ. The result is shown in figure 2, which displays a periodicity

with period

∆aχ = 1/R ,

(corresponding to the Little-Parks periodicity in the magnetic flux ∆ΦH = 2π/g0) inde-

pendently of the dimensionality d. In figures 3 and 4 we give instead typical plots of the

condensate and the current as a function of aχ, which display the same periodicity.

From the discussion of section 2.1, we infer that the Aharonov-Bohm effects are there-

fore suppressed for the BB, at least when we treat the gravity theory classically. Of course,

were we to include quantum effects in the bulk, some dependence on W and m would in-

evitably appear (with periodicity dictated by the inverse of the charge of the field which is

integrated out). By the AdS/CFT dictionary, the quantum effects in the bulk translate to

subleading effects in the large N (number of colors) expansion of the CFT. Hence, we real-

ize that rather than absent, the AB effects are simply suppressed at large N . We proposed

in [18] that this can be understood as a consequence of the fact that the limit N → ∞ acts

as a classical limit [42]. Therefore, even though in the CFT picture the quantum effects

are included, this particular type of effect is sensitive to N depending on whether or not

the quantum state of the CFT has a classical analogue [42]. The BB phase corresponds to
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a deconfined plasma state, which certainly has a classical analogue. Hence in this case the

large N limit has to render a classical behavior and so the AB effects must vanish in the

limit N → ∞.

Instead, the Soliton corresponds to a confining vacuum [3–5], which does not have a

classical analogue. Therefore, one expects that the large N limit may not result in a clas-

sical behavior and therefore the AB effects may still survive for the Soliton. This is indeed

what we shall see next. Of course, for the application to the real-world superconductors,

we may not have a good candidate parameter that plays the role of N . However, in the

real world case, there is another classical limit — ~ → 0 — and one expects that a similar

(un)suppression for the two types of vacua can persist.

3.2 Response to W in the insulator/SC transition

Now let us consider the AdS Soliton geometry, which represents the ground state at suf-

ficiently low temperature and which is dual to the CFT in the confining vacuum. The

equations of motion for the Ansatz in (3.2) take the form

zd−1∂z

(
f

zd−1
∂zψ

)
+

[
A2

0 −
(Aχ −m/R)2

f

]
ψ = 0 ,

zd−3∂z

(
∂zAχ

zd−3

)
− 2 (Aχ −m/R)

z2f
ψ2 = 0 , (3.6)

zd−3∂z

(
f∂zA0

zd−3

)
− 2 A0

z2
ψ2 = 0 .

This time the requirement of regularity on the above set of equations implies the following

boundary conditions at z = z0

ψ = 0 for m 6= 0 , − d

z0
∂zψ +A2

0ψ = 0 for m = 0 ,

∂zA0 +
2 A0

d z0
ψ2 = 0,

Aχ = 0 . (3.7)

The important thing to notice is that the boundary condition (3.7) now does not depend

only on local gauge covariant quantities (such as DχΨ) but it also depends directly on

Aχ at z0, requiring it to vanish. This is of course still a gauge-invariant condition and

arises from regularity: since now the spatial circle χ closes off smoothly at z = z0 (z and

χ represent radial and angular polar coordinates), so the restriction to regular gauge-field

configurations automatically demands Aχ(z0) = 0. Notice that in our ansatz (3.2) the

profile for bulk field Aχ(z) is in the homogeneous mode in the χ direction. Hence, it

coincides up to numerical factors and a logarithm with the (extension into the bulk of the)

Wilson line along the χ direction. Therefore this object is perfectly gauge-invariant from

the CFT perspective. Hence, it is not surprising that the bulk dynamics depends on it.

More importantly, having the IR condition Aχ(z0) = 0 together with the UV condi-

tion (3.1) (demanding a Wilson line in the external gauge field aχ ∼ logW ) implies that

Aχ(z) must acquire a nontrivial profile. Hence in the Soliton the presence of a Wilson line
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Figure 5. Phase diagram for the Soliton. Thick solid blue lines separate the SC and normal

phases. Thin solid blue lines mark the appearance m-fluxoid condensates. Dashed green lines

separate different fluxoid domains. On the left d = 2 + 1. On the right d = 3 + 1.

leads to the generation of a magnetic field Fzχ in the bulk (localized near the throat of the

Soliton). In addition, this nontrivial response of the Soliton to the Wilson line is dual to

an Aharonov-Bohm effect from the CFT perspective, since it implies a nonzero conjugate

current 〈Ĵχ〉 which depends on aχ. By the same token the whole effective action acquires

some aχ-dependence. Since the boundary conditions (3.7) are also directly sensitive to m,

one also expects that the effective action acquires dependence on m as well.13

All of this can be checked explicitly, by working out the phase diagram for super-

conductivity in the Soliton, and we will describe the result of this exercise in the next

paragraph. Before that, though, let us work out the response of the CFT in the Soliton

phase without the U(1)-breaking condensate. Assuming for the moment that ψ = 0, it

is easy to see that the regularity condition Aχ(z0) = 0 imposes that 〈Ĵχ〉 6= 0. In the

decoupling limit, with ψ = 0, the equations of motion with boundary conditions (3.7) can

be straightforwardly integrated to give Aχ(z) = aχ(1 − (z/z0)
d−2). Hence, one identifies

the CFT response to the Wilson line as

〈Ĵχ〉vac =
2− d

zd−2
0

aχ .

Let us emphasize that such a response should be interpreted as a normal-phase persistent-

current, since it occurs even in the absence of superconductivity — a kind of vacuum

polarization by the Wilson line. In the presence of superconductivity, there is of course an

additional contribution to 〈Ĵχ〉 due to the U(1)-breaking condensate, for which we shall

reserve the notation 〈Ĵχ〉O since it is entirely due to the order parameterO. For comparison,

close to the Ginzburg-Landau regime, 〈Ĵχ〉O should take the form ∼ (m/R−aχ)|ΨGL|2 with
some additional aχ-dependence hidden inside |ΨGL|2. Since Jχ is the operator conjugate

to aχ, a non-trivial response implies that the energetics of different aχ configurations are

affected. However, what matters for the superconductivity transition is only 〈Ĵχ〉O (the

13Notice that whereas the bulk description is perfectly local, the CFT interpretation is in terms of a ‘non-

local’ response, understood as a response to the non-local object W (physically, via the Aharonov-Bohm

effect discussed in section 2.1).
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Figure 6. The modulus of 〈O〉 as a function of aχ for the solutions of the form (3.2). On the left

d = 2 + 1 with µ/µc = 2.1. On the right d = 3 + 1 with µ/µc = 1.5. We observe a jump when the

m = 1 solution becomes energetically favorable at aχ ≃ 4.6/R (2.7/R)for d = 2 + 1 (3 + 1). The

second jump occurs when the m = 2 solution becomes the ground state.

contribution from 〈Ĵχ〉vac always cancels out in energy differences). Hence, in the plots

below we only display the superconducting contribution to the current, 〈Ĵχ〉O = 〈Ĵχ〉 −
〈Ĵχ〉vac.

With this in mind, we can straightforwardly obtain the phase diagram for supercon-

ductivity in the Soliton including the magnetic flux ∼ aχ and all the possible fluxoid

configurations. We have solved eqs. (3.6) with boundary conditions (3.1), (3.3) and (3.7).

We have found that indeed, there exist solutions with m 6= 0 that turn on a VEV for the

scalar operator. In figure 5 we give the phase diagram varying aχ and µ/µc. There is a

minimal value of µ/µc ≥ 1, that depends on m, below which there is no solution for any

aχ. Also we have found a region where the solutions with m 6= 0 are energetically favor-

able. Also, as we get deeper into the region of allowed m 6= 0, higher winding solutions

become energetically favorable. Unfortunately, we could not check if these solutions are

less favorable than multi-centered solutions with the same winding, due to the assumed

axial symmetry of our Ansatz. Nevertheless our results show that solutions with non-trivial

winding are energetically favorable in the region indicated in figure 5.

The way to understand these phase diagrams is by following the logic depicted in

section 2.1: by taking into account the Aharonov-Bohm effects one only needs to promote

the Ginzbur-Landau parameters ξ and b etc, in the effective action to include a dependence

on both aχ and m [18]. This leads to several distortions of the phase diagram and of the

plots of the order parameter O and of the current Jχ as functions of aχ, which we detail

in figures 5, 6 and 7. Let us emphasize that the jumps exhibited by O are a manifestation

of the non-trivial m-dependence of the GL coefficients [18]. Finally, let us point out that

while there is a clear dependence of these plots with the dimensionality d, this does not

seem to significantly change any qualitative features.

At any rate, it is obvious that there is no trace left of the LP periodicity ∆aχ = 1/R

for the Soliton. The only periodicity that survives in the Soliton case depends on what is

the charge of the operator with smallest charge. This is an additional parameter e = g0/N ,

which so far we needed not specify and which we did not fix in the plots, but which is
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Figure 7. The current as a function of aχ for the solutions of the form (3.2). On the left d = 2+1
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solution becomes energetically favorable at aχ ≃ 4.6/R (2.7/R) for d = 2 + 1 (3 + 1). The second

jump occurs when the m = 2 solution becomes the ground state.

trivially implemented by identifying them periodically with period ∆aχ = N/R.14

Hence, we find that the Holographic superconductors fall within the characterization

of the flux periodicities given in Sec 2.1. The only peculiarity is that in the BB phase the

Aharonov-Bohm effects are suppressed (and so the LP periodicity ∆aχ = 1/R is exact for

N → ∞), whereas in the Soliton phase the Aharonov-Bohm effects are unsuppressed and

therefore there is no trace of the LP periodicity.

4 Response to a magnetic field

Now that we understand the role of the Wilson line W and the winding number m in our

model, we are ready to study the impact of magnetic fields along non-compact directions,

that extends the phase diagram including a new vortex phase for both, the superconductor

and the superfluid cases. We will focus on the solitonic background only, since in the BB

background the different topological sectors are degenerate and also turning on a Wilson

line produces a very simple modification to the case (aχ = 0) already studied in [28] (see

also [24–26]).

Our strategy consists on studying first vortex configurations with no Wilson line (W )

neither winding (m) on the compact direction, i.e the simplest case. Later we include

them to consider more general possibilities. Also, although the discussion is done in an

unspecified dimension d, to be as general as possible, we set d = 4 before any numerical

calculations is carried on. All the resulting solution with or without (W,m) correspond to

physically relevant configurations that describe a vortex within the superconductor phase

in the insulator regime of the model [3]. Therefore they represent important new phases,

necessary to fully characterize the total phase space diagram of the system.

14Just like in the θ-dependence of Yang-Mills theories [44], the fact that the response of the Soliton lacks

an explicit periodicity in aχ (as seen in figures 5-7) is a consequence of the multi-valuedness of the effective

action, that is, of the presence of a tower of excited states. The periodicity in aχ is restored once one restricts

to be in the ground state for all aχ. This is equivalent to the restriction (and periodic identification) of the

plots to the fundamental ‘domain’, −(∆aχ)/2 < aχ < (∆aχ)/2.
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To study cylindrical vortex configurations we require our fields to have the form [24–

26]:

Ψ = ψ(r, z) einφ , A0 = A0(r, z) , Aφ = Aφ(r, z) , (4.1)

where (r, φ) stand for the radial and angular cylindrical coordinates embedded in the non-

compact space. The equations of motion for the Ansatz in (4.1) in the corresponding

Solitonic background are given by

zd−1∂z

(
f

zd−1
∂zψ

)
+

1

r
∂r(r∂rψ) +

[
A2

0 −
(Aφ − n)2

r2

]
ψ = 0 ,

zd−3∂z

(
f

zd−3
∂zAφ

)
+ r∂r

(
1

r
∂rAφ

)
− 2 (Aφ − n)

z2
ψ2 = 0 ,

zd−3∂z

(
f∂zA0

zd−3

)
+

1

r
∂r (r∂rA0)−

2 A0

z2
ψ2 = 0 . (4.2)

For both the superfluid and the superconductor, we will demand (3.3). We also impose

regularity to our solutions. This requires that at z = z0

− d

z0
∂zψ +

1

r
∂r(r∂rψ) +

[
A2

0 −
(Aφ − n)2

r2

]
ψ = 0 ,

− d

z0
∂zAφ + r∂r

(
1

r
∂rAφ

)
− 2 (Aφ − n)

z20
ψ2 = 0 ,

− d

z0
∂zA0 +

1

r
∂r (r∂rA0)−

2 A0

z20
ψ2 = 0 , (4.3)

while at r = 0 we must have

∂rA0 = 0, Aφ = 0 ,

∂rψ = 0 for n = 0, ψ = 0 for n 6= 0 . (4.4)

In the next sections we will discuss numerical solutions to this set of equations both in

the superfluid and the superconductor case, which we have found by using COMSOL [43].

4.1 Holographic superfluid vortices

For a vortex superfluid configuration aφ is fixed:

aφ = Aφ|z=0 =
1

2
Br2 , (4.5)

where the constant B represents the external rotation (or, equivalently, the external mag-

netic field for a superconductor in a situation in which the magnetic field can be considered

frozen). This corresponds to a Dirichlet boundary condition at z = 0.

Also we impose the following boundary conditions at r = rM :

∂rψ = 0, ∂rA0 = 0, Aφ =
1

2
Br2M . (4.6)
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Figure 8. The modulus of 〈O〉 and 〈Ĵφ〉 as functions of r from the holographic model in the n = 1

superfluid vortex solution for d = 3 + 1 (solid lines). In this plot we chose R/Rc = 5 and B = 0.

The dashed lines are the corresponding profiles in the GL model.

These conditions are consistent with the variational principle which is used to derive the

equations of motion from the action. The first two conditions represent the physical re-

quirement that, far away from the vortex center, the solution should reduce to the super-

conducting/superfluid phase, which is independent of r, while the third one is a simple

option compatible with (4.5).

We have solved eqs. (4.2) with the boundary conditions in (3.3), (4.5), (4.3), (4.4)

and (4.6). In figure 8 we give the order parameter and the current as functions of r for the

n = 1 vortex solution.

At this point it is interesting to compare our results with the GL effective theory

in (2.1) . There ΨGL is identified with
√
h0〈O〉, with h0 a positive constant. For the vortex

configuration, the GL current is JGL

φ = 2(n−aφ)|ΨGL|2 and we identify it with 〈Ĵφ〉. We fit

ξGL and bGL from two predictions of the holographic model: Bc2 and 〈Ĵφ〉 at large r. The

quantity Bc2 is determined in the holographic model as the value of B at which 〈O〉 reduces
to zero everywhere in space. With this value we can obtain ξGL (see table 1). By requiring

the current for large r and B = 0 in the holographic model to be equal to the corresponding

quantity in the GL theory, JGL

φ (r → ∞) = 2n|ΨGL(r → ∞)|2, we can then extract bGL. We

observe that the GL curves differ considerably from the holographic ones. In particular we

observe that the radius size of the vortex core is bigger in the holographic model than in the

GL theory, like for the vortices on the AdS BB geometry [28]. However, we checked that,

as expected, the GL values for 〈O〉 and 〈Ĵφ〉 approximate to the corresponding holographic

quantities when we bring the system close to the critical point, R ≃ Rc.

We now turn to the determination of the range of B for which the vortex configurations

are energetically favorable. We have seen (table 1) that Bc1 → 0 as rM → ∞ and that

the second critical field coincides with the superconductor one, Bc2 = Hc2, which we will

give15 in section 4.2. Since Bc2 is non-vanishing, there exists a finite range of B for which

vortex solutions are energetically favorable. This result was expected because superfluids

can be considered as deep Type II superconductors. When B is slightly smaller than Hc2

the GL theory can be applied to predict a triangular lattice of vortices [46], like for the

15Hc2 for other values of the bulk scalar mass has been computed in [45].
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Figure 9. The modulus of 〈O〉 and B as functions of r from our holographic model in the n = 1

superconductor vortex solution for d = 3+1 (solid lines). In this plot we chose R/Rc = 5 and eb to

satisfy g−2

0
(R = Rc) ≃ 1.7L/g2. The dashed lines are the corresponding profiles in the GL theory.

AdS BB [28]. This property has been checked in ref. [47] for the AdS BB in d = 2+1. We

emphasize that it is also true in arbitrary dimensions and for the AdS soliton background

because is a consequence of the fact that when B is slightly smaller than Hc2 the GL theory

holds.

4.2 Holographic superconductor vortices

To model an Abrikosov vortex we consider stationary configurations that do not possess

a dynamical electric field but only a dynamical magnetic field. Therefore at z = 0 we

will impose the boundary condition eq. (3.3) for A0 and eq. (2.16) for Ai that, in polar

coordinates, reads

Ld−3

g2
z3−d∂zAφ

∣∣∣
z=0

+
1

e2b
r∂r

(
1

r
∂rAφ

) ∣∣∣
z=0

= 0 , (4.7)

where we have taken Jµ
ext = 0. When r → ∞ we impose that

∂rψ = 0 , ∂rA0 = 0 , Aφ = n . (4.8)

We have solved eqs. (4.2) with the boundary conditions in (3.3), (4.7), (4.3), (4.4)

and (4.8). In figure 9 we give the order parameter and the magnetic field B(r) = ∂rAφ|z=0/r

as functions of r for the n = 1 vortex solution; by using the profileB(r) one can explicitly see

that the total magnetic flux through the vortex line is equal to 2π, namely that
∫
drrB(r) =

1. We have checked that our solutions satisfy the aφ-behavior in table 1 and we provide

λ′ as a function of R in figure 10. We observe that, as expected, λ′ → ∞ as R → Rc: in

this limit the order parameter becomes small and the GL theory can be applied to predict

λ′ → ∞.

Also, in figure 9 we show the corresponding curves in the GL theory, eq. (2.1), where

the parameters ξGL and bGL in the GL potential are fixed as in the superfluid case. The

charge g0 is determined by using the GL relation

λ′ = 1/
(√

2g0|ΨGL(r → ∞)|
)
, (4.9)
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Figure 10. On the left, we have λ′ as a function of R from our holographic model for d = 3 + 1.

We chose eb to satisfy g−2

0
(R = Rc) ≃ 1.7L/g2. On the right, we give λ′ as a function of β for

R/Rc = 1.1; there the dots are obtained directly from the aφ-behavior in table 1, while the solid

line is constructed from eq. (4.9) by computing separately g0 and ΨGL(r → ∞). In both plots we

have set d = 3 + 1.

and by requiring λ′ to be equal to that of the holographic superconductor. Notice that in

the GL case λ′ = λ. Again, as in the superfluid case, we observe that the radius size of

the vortex core is bigger in the holographic model than in the GL theory. As expected, we

find that the differences disappear as R→ Rc.

In the particular case d = 3 + 1, our low energy effective theory is defined in 2+1

dimensions. Hence, as showed in the introduction we have a finite value of e2+1 when

R → 0 and the UV cut-off is removed, according to the presence of an emergent gauge

boson. In the superconducting phase, this property is reflected in the behavior of λ′ for

small R and large βz0. For example, in the GL regime , R ≃ Rc, the penetration length and

the electric charge are related by (4.9); the logarithmic running of the coupling constant

in the UV corresponds then to a logarithmic dependence of λ′ on β. In figure 10, we plot

the value of λ′ as a function of the renormalization scale, showing precisely this behavior.

It is interesting to know if the superconductors under study are of Type II. The value

of Hc2 coincides with Bc2 of the holographic superfluid, while a formula to compute Hc1 is

given in table 1. Fn is given by

Fn =
T

V d−3
SE + 2π

∫
drr

1

2e2b

(∂raφ)
2

r2
, (4.10)

where the second term is the contribution of the bare kinetic term in eq. (2.16) [28]. In

figure 11 we show Hc1 and Hc2 as functions of R. Notice that Hc1 → 0 as R → ∞. This

is due to our normalization of H that makes Hc1 ∝ g20, which goes to zero as R→ ∞. We

can, however, derive Hc2/Hc1 → ∞ as R → ∞ independently of such normalization. This

is a generic prediction of the model. Since we have Hc1 < Hc2 the superconductors under

study here are also, like those introduced in [1], of Type II. Like for the superfluids, when

H is slightly smaller than Hc2 the GL theory can be applied and predicts that a Type II su-

perconductor presents a lattice of vortices. Such configuration is therefore the energetically

favorable one at H just below Hc2 for the Soliton SC, as well as for the BB SC [28].
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Figure 11. Hc1 and Hc2 as functions of R from our holographic model for d = 3 + 1. We chose

eb to satisfy g−2

0
(R = Rc) ≃ 1.7L/g2.

4.3 Vortices and uplifting of the flux period

Now that we have fully characterized the phase space and the vortex configurations in the

simplest scenario on the soliton background, we are ready to study the impact of Wilson

linesW and winding numberm. Recalled what we showed in section 3, BB backgrounds are

blind to the different topological sectors controlled by (W,m) (due to uniqueness classical

theorems). Therefore we are guaranteed to see no differences in solutions that have different

W and m but equal aχ −m/R. On the other hand, due to the uplift of this degeneracy in

the solitonic background, we do expect to see differences among physical observables with

different W and m even if aχ −m/R is the same.

Therefore, we expect that as we change (W,m), the response of the system to exter-

nal parameters (like magnetic fields, temperature, size of the compact direction, etc) will

change. The simplest way to understand this behavior is perhaps to consider the particular

regime in which the effective field theory of the system reduces to the usual GL description.

In this case, the topological sectors selected via the external parameters (W,m), enter the

effective field theory through the coupling constants ξGL, bGL of the potential

VGL ≡ − 1

2ξGL(W,m)2
|ΨGL|2 + bGL(W,m)|ΨGL|4 , (4.11)

showing us that the vortex solutions will depend on the vacuum sector where they sit on.

Nevertheless, we should not forget that the GL approach is valid only near phase transitions

while the holographic description is much more general and applies to the whole range of

parameters defining the phase space.

To see the uplift of the degeneracy among the different topological sectors in the

soliton background, we will study the response of vortex configurations as function of

(W,m), comparing the solutions with different winding that would be identified if the

degeneracy was not broken (i.e. those with equal (aχ − m/R). The relevant ansatz for

these configurations is given by

Ψ = ψ(r, z)ei(nφ+mχ/R), A0 = A0(r, z), Aφ = Aφ(r, z), Aχ = Aχ(r, z) , (4.12)
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Figure 12. The modulus of 〈O〉 and 〈Ĵφ〉 as functions of r from the holographic model in the n = 1

superfluid vortex solution for d = 3 + 1. The solid and dashed lines correspond to (m = 0, aχ = 0)

and to (m = 1, aχ = 1/R). In this plot we chose µ/µc = 1.5 and B = 0.

The equations of motion for the Ansatz are given by

zd−1∂z

(
f

zd−1
∂zψ

)
+

1

r
∂r(r∂rψ) +

[
A2

0 −
(Aφ − n)2

r2
− (Aχ −m/R)2

f

]
ψ = 0 ,

zd−3∂z

(
f

zd−3
∂zAφ

)
+ r∂r

(
1

r
∂rAφ

)
− 2 (Aφ − n)

z2
ψ2 = 0 ,

zd−3∂z

(
f∂zA0

zd−3

)
+

1

r
∂r (r∂rA0)−

2 A0

z2
ψ2 = 0 ,

zd−3∂z

(
∂zAχ

zd−3

)
+

1

rf
∂r (r∂rAχ)−

2 (Aχ −m/R)

z2f
ψ2 = 0 . (4.13)

We will impose regularity to our solutions. This requires at z = z0

ψ = 0 for m 6= 0 , − d

z0
∂zψ +

1

r
∂r(r∂rψ) +

[
A2

0 −
(Aφ − n)2

r2

]
ψ = 0 for m = 0 ,

− d

z0
∂zAφ + r∂r

(
1

r
∂rAφ

)
− 2 (Aφ − n)

z20
ψ2 = 0 ,

− d

z0
∂zA0 +

1

r
∂r (r∂rA0)−

2 A0

z20
ψ2 = 0 ,

Aχ = 0 . (4.14)

while at r = 0 we must have

∂rA0 = 0, Aφ = 0, ∂rAχ = 0 ,

∂rψ = 0 for n = 0, ψ = 0 for n 6= 0 . (4.15)

The above set of equations define our cylindrical vortex solutions in different topological

sectors labeled by (W,m). As we have pointed out in section 3, already at this level, we

can explicitly see that there is no gauge transformation that identifies all the different

topological sectors, since in the solitonic background the associated gauge transformation

is broken due to the form of the boundary conditions.
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We have solved equations (4.13) with boundary conditions (4.14), (4.15) for the cases

(aχ = 1/R,m = 1) and (aχ = m = 0). Notice that these solutions would be “gauge

equivalent” if the relevant gauge transformation was not broken. In figure 12 we show the

order parameter 〈O〉 and the current 〈Ĵφ〉 as a function of r, for both cases. As predicted

before, the profiles of our observables are indeed sensitive to the topological sector where

the vortex is defined, showing a clear signal of the uplifting of the degeneracy among the

topological sectors. In other words vortices in the solitonic background can tell, in which

sector they sit on while BB vortices can not.

5 Conclusions and discussion

In this paper we have studied the magnetic response of holographic superconductors which

in the normal phase are insulators. These materials can be obtained by compactifying

a CFT to a cylinder, which is dual to the AdS Soliton in the gravity side. We have

studied separately the response to a Wilson line on the circle and to a magnetic field

perpendicular to the non-compact directions. Continuing the analysis of [18], we have

found that the response to the Wilson line for holographic conductors and holographic

insulators is dramatically different: at leading order in the large N (number of colours)

expansion the Aharonov-Bohm effects generated by the Wilson line are suppressed for

the conductor and unsuppressed for the insulator. The (un)suppressed Aharonov-Bohm

effects leave a clear signature in the superconductivity phase transition in the form of a

different periodicity in the cylinder-threading magnetic flux. Regarding the response to

the perpendicular magnetic fields, qualitatively there is no great difference between the

two types of materials since both of them respond by creating vortices and are of Type II.

Still, we found that for the insulator/superconductor transition the vortices are sensitive to

the quantum hair provided by the discrete gauge charge. We have also elaborated on the

fluid mechanical analogue of the problem, that is, the response to rotation of pairing-based

superfluids or supersolids in a cylindrical topology. We concluded similarly that there is

an unsuppressed sensitivity to quantum hair (via the Sagnac effect) in supersolids that

manifests in a larger periodicity with respect to the angular frequency of rotation.

Our findings agree with the predictions from condensed matter microscopic theories.

Recent literature [6–10] has discussed how the LP period ΦLP = 2π/g0 should be up-

lifted to the fundamental period Φfund = 2π/e when R is lowered at least down to the

zero-temperature coherence length, ξ0 & R. Exactly the same phenomenon occurs in the

holographic model [18] and we also developed an effective field theory description of it.

An interesting benefit of the holographic methods is that, as a ‘bonus’, one obtains the

‘prediction’ that the Aharonov-Bohm effects are generically bigger for materials with an

insulator normal phase than for those with conductor normal phase.

One obvious improvement of the present analysis is to include the gravitational back-

reaction, which will allow to explore beyond the limit g → ∞ taken here. In practice

what one should do is to introduce a magnetic field and/or a Wilson line in the set-up

of [48], which studied the gravitational backreaction in the holographic superconductor

with a compact space-dimension. Let us note that ref. [49] appeared recently taking into
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account the backreaction in a similar model. However, in ref. [49] the various fluxoid

sectors with m 6= 0 are incorrectly treated as gauge-equivalent to m = 0, so a proper

analysis is still necessary. We do not expect that this will modify qualitative features such

as the suppression of the Aharonov-Bohm effects in the BB phase. One can foresee that

the phase diagram will be enriched by the superimposition of (de)confinement transitions

between the Soliton and BB phases in addition to the superconductivity transitions. An-

other interesting direction to study is how much quantum correction in the bulk change the

picture (mapping to the 1/N corrections in the CFT), especially in the BB case. Again,

one expects only small correction to the present analysis. The present paper can also be

generalized (i) to extend the holographic Josephson junctions of [50] to superconducting

materials with insulating normal phase, which could lead to simple holographic duals to

so called Superconductor-Insulator-Superconductor (SIS) Junctions, and (ii) to describe p-

wave holographic superconductors [51–54]. Finally, other elaborations such as the inclusion

of some fermionic matter could also be useful to make closer contact with real materials.

Let us end by emphasizing once more the main result of this work, namely a generic

and sharp prediction on superconductivity from holography: the magnetic response of

superconductors in the form of Aharonov-Bohm effects must be bigger for for strongly

coupled materials which in the normal phase are insulators than for those which in the

normal phase are conductors. To the best of our knowledge, we ignore if this pattern is

already known or if it occurs in known materials. In any case, it at least offers another

means to test the usefulness of the holographic techniques for real-world materials.
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