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1 Introduction

Classical solutions in Chern-Simons-like theories [1, 2] are given by flat connections. The

easiest way to find a flat connection is to assume that the solution can be written in the

form

A = U−1dU. (1.1)

Naively this implies that A is pure gauge. However, the solution can be nontrivial if, for

some reason, U is not an acceptable gauge transformation. This can happen in a couple

of ways. One way is if the gauge transformation U does not belong to the space of fields

used to define the theory. For example, in Chern-Simons theory on a 3-manifold M, we

can construct a Wilson line wrapping a noncontractible cycle using a gauge parameter U

which lives on the universal cover of M. The string field theory analogue of this is to

construct U using an insertion of a boundary condition changing operator, so that U is
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not a state within a single boundary conformal field theory.1 This idea is a starting point

for the construction of analytic solutions for marginal deformations in open string field

theory [3–6].

However, U can fail to be a gauge transformation for another reason: U might not

have an inverse. This is the sense that Schnabl’s solution for the tachyon vacuum is

“almost” pure gauge [7, 8]. This suggests an appealingly simple strategy for discovering

new solutions: Make an educated guess for U , and then solve the linear inhomogeneous

equation QU = UΦ for Φ. This strategy has lead to interesting proposals for the tachyon

lump [9, 10] and multiple branes solutions [11, 12], but unfortunately these constructions are

singular and it is not known how to make them consistent with the equations of motion [12–

15]. The problem can be traced to the fact that because U is not invertible, in general

U−1QU is not well-defined.

In this paper we attempt to confront this issue. First we show that any pair of solutions

in open string field theory can be related by a gauge transformation of the form (1.1), with

the understanding that U might not be invertible. We call this a left gauge transformation.

We then observe that the expression U−1(Q+Φ1)U only makes sense if (Q+Φ1)U is equal

to U times something. This imposes a nontrivial constraint on the possible Us which can

be used to define new solutions. To phrase this condition in a more useful way, we assume

the existence of a star algebra projector X∞ which projects onto the left and right kernel

of U . Then a consistent left gauge transformation must satisfy the constraint:

X∞QΦ1
U = 0. (1.2)

where QΦ1
is the kinetic operator around the reference solution. Our understanding of

this equation is formal, and we will not attempt to solve it to find new solutions in this

paper. However, we show that, under a few assumptions, it is nontrivially satisfied for

all analytic solutions we have studied, and it is violated for the multibrane and lump

solutions of [9–12], which are known to encounter difficulties. One interesting byproduct

of our analysis concerns the projector X∞. By formal arguments and examples, we find

that X∞ is a projector-like state representing a surface of open string connecting the

boundary conformal field theories of the classical solutions related by U . Accordingly,

we call X∞ the boundary condition changing projector. The boundary condition changing

projector is important not only because of the consistency condition (1.2), but also because

it determines the structure of the phantom term needed to precisely define the solution in

pure gauge form [7, 8, 16–21].

This paper is organized as follows. In section 2 we develop the formalism assuming

that the string field algebra can be usefully modeled as a (preferably finite dimensional)

algebra of operators acting on some vector space. We show how to relate any two classical

solutions by a left gauge transformation, state the assumptions needed in order to define the

boundary condition changing projector, and state two conditions — the strong and weak

1For the Wilson line deformation on a circle, the analogy between string field theory and Chern-Simons

theory is direct: The boundary condition changing operator for the Wilson line deformation is e±iAX , which

is a vertex operator in the boundary conformal field theory whose target space is the universal cover of the

circle.
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consistency conditions — which every singular gauge transformation should satisfy in order

to generate a new solution. Computing the BRST variation of X∞, we motivate a physical

interpretation of the boundary condition changing projector in terms of a stretched string

connecting two boundary conformal field theories. We comment on the relation between

the boundary condition changing projector and the characteristic projector defined by

Ellwood [9]. Finally we demonstrate the formalism using a finite dimensional toy model

of vacuum string field theory. In section 3, we observe that left gauge transformations can

be interpreted as the morphisms of a category whose objects are classical solutions. We

explain how this structure can be naturally related to a picture of open strings ending on

D-branes. In section 4 we apply the formalism to some known analytic solutions in string

field theory, finding that, with some assumptions, it does a pretty good job at explaining

why some candidate formal gauge transformations define solutions, while others do not. We

also work out explicit examples of the boundary condition changing projector and describe

how it implements the change of boundary condition. We end with some discussion.

2 Formalism

To set up the formalism, we consider a “model” of the open string star algebra consisting

of three ingredients:

1) An associative algebra A with an integer grading which we call ghost number, and a

Z2 grading corresponding to Grassmann parity. Grassmann parity is identified with

ghost number mod Z2.

2) A nilpotent, Grassmann odd and ghost number 1 derivation of A which we call the

BRST operator Q.

3) A representation of A as an algebra of operators acting on some vector space, D.

In string field theory, D might be identified with the space of half-string wavefunction-

als [22–24], but at present it is difficult to say much concrete about this. We will not

attempt to be rigorous about the precise analytic definition of the operator algebra A and

its topology; unless otherwise mentioned, we will effectively assume D is a finite dimen-

sional vector space. This means that, for string field theory purposes, our discussion will

be formal. Its relevance should be justified by examples, as discussed in section 4.

Note that ingredients 1)-3) are not specific to string field theory, but can be realized

in Chern-Simons [1] or noncommutative Chern-Simons theory [25, 26]. However, as we will

see the formalism is less interesting in these examples due to the absence of fields with

negative ghost number.

2.1 Left gauge transformations

Consider two solutions Φ1 and Φ2 related by a finite gauge transformation:

Ũ(Q+Φ1)U = Φ2, (2.1)
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where ŨU = UŨ = 1. Multiplying this equation by U from the left, we find the relation

(Q+Φ1)U = UΦ2, (2.2)

and multiplying by Ũ from the right gives the equation

−QŨ + ŨΦ1 = Φ2Ũ . (2.3)

We will call U satisfying (2.2) a left gauge transformation from Φ1 to Φ2, and Ũ satisfy-

ing (2.3) a right gauge transformation from Φ1 to Φ2. A left gauge transformation from

Φ1 to Φ2 is also a right gauge transformation, in reverse, from Φ2 to Φ1. Note that these

definitions are meaningful even when U or Ũ are not invertible, in which case Φ1 and Φ2

may not be gauge equivalent solutions. If U or Ũ is invertible, then we will call it a proper

gauge transformation, and, if not, singular gauge transformation.

A short explanation of terminology: When discussing left gauge transformations, we

will think of operators in the algebra A as acting from the left on the representation space

D. For right gauge transformations, it turns out to be more natural to treat operators as

acting from the right on the dual space D′. In the following development we will focus on

left gauge transformations. The story for right gauge transformations is simply a “mirror

image.”

It is convenient to introduce the operator

QΦ1Φ2
A ≡ QA+Φ1A+ (−1)AAΦ2. (2.4)

This is nilpotent, but not a derivation. However it satisfies a modified Leibniz rule,

QΦ1Φ3
(AB) = (QΦ1Φ2

A)B + (−1)AA(QΦ2Φ3
B), (2.5)

where Φ2 on the right hand side is any solution. Rewriting (2.2), we can define a left gauge

transformation U as a ghost number zero solution to the equation:

QΦ1Φ2
U = 0. (2.6)

The obvious solution is U = 0, but this is too trivial to be interesting. If the theory has a

nonzero field b at ghost number −1, we can find a more interesting solution

U = QΦ1Φ2
b. (2.7)

Since string field theory has many fields with negative ghost number, this implies the

following:

In string field theory there is always a nonzero left gauge transformation

connecting any pair of solutions.

This is not the case in Chern-Simons theory. Since there are no negative rank forms,

the construction of nonzero left gauge transformations depends on whether QΦ1Φ2
has

cohomology at ghost number zero. If Φ1 and Φ2 are gauge equivalent, QΦ1Φ2
will have

cohomology by construction, but this is not guaranteed if they are not gauge equivalent.

Therefore, the existence of nonzero singular gauge transformations is something particularly

characteristic of string field theory.
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Figure 1. We assume that the image and kernel of U are linearly independent and span the whole

space, as shown above in case C). In cases A) and B) the image and kernel of U are not linearly

independent or do not span the whole space. This would happen if U was a non-unitary isometry.

2.2 Consistency conditions and the BCC projector

The basic question we want to ask is this: Given a solution Φ1, when can a field U be

regarded as a left gauge transformation to another solution Φ2? From equation (2.2) it is

obvious that that (Q+Φ1)U should be equal to U times something. If the fields are linear

operators acting on D, this means

ImQΦ1
U ⊆ ImU. (2.8)

In other words, the kinetic operator around the solution Φ1 must map the image of U into

itself. We will call this the strong consistency condition. This condition implies that we

can find a field Φ2 satisfying (Q + Φ1)U = UΦ2, but it does not guarantee that Φ2 is a

solution. However, Φ2 at least satisfies

U(QΦ2 +Φ2
2) = 0, (2.9)

so it is a solution up to the kernel of U .

While the strong consistency condition (2.8) is true, it is not very helpful since checking

it seems to require that we already know whether Φ2 exists. So let’s derive a different

condition which can be more useful. To do this, we will make an assumption about U :

The kernel and image of U are linearly independent and span all of D. (2.10)

See figure 1. This assumption is motivated by string field theory examples, but it is also

a generic property of operators in finite dimensions except in degenerate cases. We should

mention, however, that this assumption excludes the possibility that U could be a non-

unitary isometry.2 Non-unitary isometries play an important role in the construction of

solutions in noncommutative field theories [27], and have been speculated to be important

in string field theory as well [28], though this remains to be seen. However, suppose that the

assumption (2.10) holds. Then we can uniquely define a projector X∞ with the property

2A prototypical example is the forward shift operator U =
∑∞

n=0
|n + 1〉〈n|, which satisfies U†U = 1,

but UU† = 1− |0〉〈0|.
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that it projects onto the kernel of U , and also annihilates states proportional to U :3

kerU = ImX∞, ImU ⊆ kerX∞. (2.11)

For reasons to be explained later, we will callX∞ the boundary condition changing projector

(or BCC projector for short). We can compute the BCC projector from U in many ways.

For example, if we define

U ≡ 1−X. (2.12)

Then if the limit exists, the infinite power of X converges to the BCC projector:

X∞ = lim
N→∞

XN . (2.13)

Another useful formula for the BCC projector is the limit

X∞ = lim
ǫ→0+

ǫ

ǫ+ U
. (2.14)

Often this expression is easier to work with, and converges in many cases when limN→∞XN

does not.4 Provided the BCC projector exists, the strong consistency condition implies

ImQΦ1
U ⊆ kerX∞, (2.15)

or, equivalently

X∞QΦ1
U = 0. (2.16)

We call this the weak consistency condition. It is weaker than (2.8) since (in infinite

dimensions) a state can be annihilated by X∞ without being proportional to U . We will

encounter an example of this in section 4.3. However, unlike (2.8), the weak consistency

condition is a nontrivial constraint on U which we can check without a priori knowledge

of the existence of a solution Φ2.
5

Suppose we have established that U satisfies the strong and weak consistency condi-

tions. How do we use U to construct a new solution? Formally we would like to write

Φ2 = U−1(Q + Φ1)U , but since U is generally not invertible we should be more precise.

Even when U is not invertible, on the restricted domain D/kerU we can define the inverse:

U−1 : Im U → D/kerU. (2.18)

3In finite dimensions, the assumption (2.10) implies that ImU = kerX∞. In infinite dimensions, we

allow for the possibility that the image of U might only be dense in the kernel of X∞.
4If X is a diagonalizable matrix, limN→∞ XN converges only if its eigenvalues are equal to one or

strictly less than one in absolute value. However, limǫ→0+
ǫ

ǫ+U
, always converges as long as U does not

have a continuous spectrum of negative eigenvalues in the neighborhood of 0.
5Note that we can write a more general form of the weak consistency condition,

X
∞
QΦ1ΨU = 0, (2.17)

where Ψ is any classical solution. If we choose Ψ = Φ2 to be the target solution of the left gauge transforma-

tion U , then QΦ1Φ2
U = 0 and the weak consistency condition is satisfied identically. So for a consistent left

gauge transformation, the weak consistency condition in any form should follow trivially from the equation

X∞U = 0.
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This represents an equivalence class of operators from ImU into D. Suppose we choose a

representative of this equivalence class

(U−1)′ : ImU → D. (2.19)

Then we can write Φ2 = (U−1)′(Q+Φ1)U up to some arbitrary field in the kernel of U . But

the kernel of U consists precisely of states proportional to the BCC projector. Therefore,

Φ2 = (U−1)′(Q+Φ1)U +X∞Φ′, (2.20)

where Φ′ is a ghost number 1 field. The last term is precisely the phantom term known

from studies of analytic solutions in open string field theory [7, 8, 16–21]. Unfortunately,

the phantom term cannot be determined from knowledge of the reference solution Φ1 or

the gauge parameter U alone; it requires new input. In principle, it’s possible that there

is no consistent choice of phantom term which produces a solution. However, we should

mention that the formula (2.20) does not completely capture what happens in string field

theory. In string field theory, the phantom term only appears in the context of a precise

regularization of the solution, whereas in (2.20) there is no regularization. This is because

in our naive considerations we have assumed that the BCC projector is a well-defined

object in the algebra of operators acting on D. This is certainly not the case in string field

theory, where projectors are singular states whose star products are generally afflicted with

associativity anomalies [9, 29]. This implies that acceptable solutions in string field theory

should belong to a “well-behaved” subspace of states where projectors are excluded. But

since the phantom term is itself proportional to a projector, this requires that the phantom

term must be chosen so as to cancel projector-like states arising from the first term in (2.20).

This is what happens for Schnabl’s solution, as the sliver state is needed to cancel a sliver-

like contribution from the sum over derivatives of wedge states [7]. Therefore, it is possible

that the phantom term is uniquely fixed in string field theory by considerations of regularity.

2.3 Physical interpretation of the BCC projector

We would like to motivate a physical interpretation for the boundary condition changing

projector. For this purpose we compute

QX∞, (2.21)

since the BRST operator will act as a kind of probe of the internal structure of the projector.

Our derivation will turn out to be formal for string field theory purposes, which is most

likely related to singularities of the BCC projector caused by the shift in boundary condition

at the midpoint (see section 4.5). Nevertheless, the computation of QX∞ has an important

physical interpretation.

To start, we take the weak consistency condition (2.16) and subtract Q(X∞U) = 0 to

find

(QX∞ −X∞Φ1)U = 0. (2.22)

This implies that the factor in parentheses must be proportional to X∞:

QX∞ −X∞Φ1 = ΠX∞. (2.23)

– 7 –
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To calculate Π, multiply by U from the left:

UQX∞ = UΠX∞. (2.24)

Using Q(UX∞) = 0 this becomes

(QU)X∞ = −UΠX∞. (2.25)

Now assume that U is a left gauge transformation from the solution Φ1 to the solution Φ2.

Then QU = UΦ2 − Φ1U and

UΦ2X
∞ = −UΠX∞. (2.26)

Then without loss of generality we can assume Π takes the form

Π = −Φ2 −X∞M. (2.27)

Plugging in to (2.23) we find:

QX∞ +Φ2X
∞ +X∞MX∞ −X∞Φ1 = 0. (2.28)

To determine M , multiply (2.28) by X∞ from the left and from the right

X∞(QX∞)X∞ +X∞(M +Φ2 − Φ1)X
∞ = 0. (2.29)

The first term in this equation is zero, as can be seen from the following manipulation:

QX∞ = Q(X∞X∞X∞)

= (QX∞)X∞X∞ +X∞(QX∞)X∞ +X∞X∞(QX∞)

= (QX∞)X∞ +X∞(QX∞)X∞ +X∞(QX∞)

= Q(X∞X∞) +X∞(QX∞)X∞

= QX∞ +X∞(QX∞)X∞. (2.30)

Therefore (2.29) determines M , and the final result is

QX∞ +Φ2X
∞ +X∞(Φ1 − Φ2)X

∞ −X∞Φ1 = 0. (2.31)

To motivate our interpretation of this equation, consider a wedge state with boundary

conditions deformed by a (nonsingular) marginal current V [30]:

e−(K+V ) = σ01Ωσ10, (2.32)

where σ01 is a boundary condition changing operator (BCC operator) which shifts from the

reference boundary conformal field theory to the marginally deformed boundary conformal

field theory, and σ10 shifts back. Taking the BRST variation of this equation gives

− cV e−(K+V ) + e−(K+V )cV = (Qσ01)Ωσ10 + σ01Ω(Qσ10). (2.33)

Thus we can informally identify,

cV ∼ Qσ10. (2.34)
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Figure 2. The BCC projector should structurally look like a surface of stretched string probed

from a reference boundary conformal field theory. As shown above, such a surface should have an

insertion of the boundary condition changing operator σ21 between the BCFTs at the two endpoints.

It should also have boundary condition changing operators σ02 and σ10 to probe with a test state.

Now note that cV is a solution to the string field theory equations of motion. This suggests

a general interpretation: A solution in open string field theory corresponds, from the

worldsheet perspective, to the BRST variation of a BCC operator.

Then an interpretation of the identity (2.31) immediately presents itself: X∞ is a star

algebra projector representing a stretched string connecting the boundary conformal field

theories of Φ2 and Φ1. To see this, suppose we represent a stretched string as a surface

state with an insertion of a boundary condition changing operator σ21 between the BCFTs

of Φ2 and Φ1. In order to probe this surface with a test state, we need to insert two other

BCC operators σ02 and σ10 on either side of σ21 to match the boundary condition of the

reference BCFT (see figure 2). Now if we compute the BRST variation of this object,

we find a direct correspondence with the BRST variation of X∞: Φ2 corresponds to the

the BRST variation of σ02; Φ1 − Φ2 corresponds to the BRST variation of σ21; and Φ1

corresponds the BRST variation of σ10 (see figure 3 A). The projector X∞ may not appear

quite as simple as figure 2, since the way that string field theory represents worldsheet

boundary conditions can be indirect. However, the shift in boundary condition inside X∞

is remarkably clear in the examples we have studied. Therefore, we call X∞ the boundary

condition changing projector.

The identity (2.31) can be written in a few other forms which help illuminate the

interpretation of X∞. For example,

QΦ2Φ1
X∞ = X∞(QΦ2Φ1

1)X∞ (2.35)

is analogous to the statement that the BRST variation of a surface of stretched string only

receives contribution from the boundary condition changing operator between the open

string endpoints. (See figure 3 B). Multiplying (2.35) by X∞ on either side, we also find

(QΦ2
X∞)X∞ = X∞(QΦ1

X∞) = 0. (2.36)

– 9 –



J
H
E
P
0
4
(
2
0
1
2
)
1
0
7

Figure 3. Figure A) demonstrates the analogy of equation (2.31), B) demonstrates the analogy

of (2.35) and C) the analogy of (2.36).

This corresponds to the statement that the boundary conditions are BRST invariant sep-

arately on each endpoint of the open string. (See figure 3 C).

When calculating the BRST variation of X∞ we assumed that all operators could be

treated like finite dimensional matrices. However, in string field theory the double-projector

term X∞(Φ1−Φ2)X
∞ in (2.31) is problematic, since star products of projector-like states

are not in general well-defined. Therefore in string field theory equation (2.31) should be

understood in the context of some regularization. Let us present two regularizations. The

first represents the BCC projector as the limit

X∞ = lim
ǫ→0+

ǫ

ǫ+ U
. (2.37)

Assuming U is a left gauge transformation from Φ1 to Φ2, we can easily calculate

Q
ǫ

ǫ+ U
= − ǫ

ǫ+ U
QU

1

ǫ+ U

= − ǫ

ǫ+ U

[

(U + ǫ)Φ2 − Φ1(U + ǫ) + ǫ(Φ1 − Φ2)
] 1

ǫ+ U

= −Φ2
ǫ

ǫ+ U
+

ǫ

ǫ+ U
Φ1 −

ǫ

ǫ+ U
(Φ1 − Φ2)

ǫ

ǫ+ U
. (2.38)

Therefore

Q
ǫ

ǫ+ U
+Φ2

ǫ

ǫ+ U
+

ǫ

ǫ+ U
(Φ1 − Φ2)

ǫ

ǫ+ U
− ǫ

ǫ+ U
Φ1 = 0. (2.39)

Note that this reproduces the basic form of (2.31) even before taking the ǫ→ 0 limit. The

second regularization represents the BCC projector as an infinite power of X:

X∞ = lim
N→∞

XN . (2.40)

With some algebra one can prove the identity

QX2N +Φ2X
2N−1 +XN (Φ1 − Φ2)X

N −X2N−1Φ1 = R(N), (2.41)

– 10 –
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where the remainder R(N) is the expression

R(N) =

[

Φ1X
N−1 +X

N−2∑

k=0

XN−1−k(Φ1 − Φ2)X
k

]

UXN

+UXN

[

−XN−1Φ2 +
N−2∑

k=0

XN−2−k(Φ1 − Φ2)X
k+1

]

. (2.42)

Equation (2.41) reproduces (2.31) if R(N) vanishes in the N → ∞ limit. The remainder

does vanish if XN (Φ1 − Φ2)X
N is finite for large N .

2.4 BCC projector vs. characteristic projector

Let us explain the relation between the BCC projector and the characteristic projector in-

troduced by Ellwood [9]. The characteristic projector is defined given an arbitrary solution

Φ together with a reference solution Ψ and homotopy operator A satisfying

QΨA = 1, A2 = 0. (2.43)

This implies that the kinetic operator around Ψ supports no cohomology, and therefore Ψ

can be interpreted as the tachyon vacuum [29, 31]. The characteristic projector is defined6

P ≡ lim
N→∞

(−[A,Φ−Ψ])N . (2.44)

We claim that the characteristic projector is the BCC projector for a singular gauge trans-

formation from a solution to itself. To see this, note that

U1 = QΦΨA

= 1 + (Φ−Ψ)A (2.45)

is a left gauge transformation from Φ to the tachyon vacuum, and

U2 = QΨΦA

= 1 +A(Φ−Ψ) (2.46)

is a left gauge transformation from the tachyon vacuum to Φ. Therefore the product,

U = U1U2 = 1 + [A,Φ−Ψ], (2.47)

is a left gauge transformation from Φ to itself. To find the BCC projector we take the

infinite power of

X = −[A,Φ−Ψ]. (2.48)

This is just the characteristic projector. In [9] it was conjectured, and demonstrated in

examples, that the characteristic projector is a sliver-like state representing the boundary

conditions of Φ deep in its interior. The BCC projector should represent a change of

6We use the bracket [ , ] to denote the graded commutator.
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boundary condition between two BCFTs. But in this case the source and target solutions

are the same, so we only see the boundary conditions of a single BCFT, consistent with

Ellwood’s interpretation of the characteristic projector.

One of the main insights of [9], which was an inspiration for the current work, was

that singular gauge transformations could be thought of as possessing a kernel which could

be described with a star algebra projector. However, the treatment of singular gauge

transformations presented here differs substantially from [9]. A central assumption of [9],

which we do not follow, is that the characteristic projector is annihilated by the homotopy

operator:

AP = PA = 0. (2.49)

This equation is true in known examples in string field theory, provided one is only con-

cerned with string fields as they are defined in the Fock space expansion. However, this

assumption leads to a number of apparent inconsistencies. For example, the BCC projector

for the left gauge transformation U2 from the tachyon vacuum to Φ can be written

X∞ = −PA(Φ−Ψ) (2.50)

Assuming (2.49) this means X∞ = 0, which implies that U2 has no kernel and all solutions

should be gauge equivalent to the tachyon vacuum. On the other hand, (2.49) also implies

U2P = 0 (2.51)

which contradicts what we just proved, i.e. that U2 has no kernel. The contradiction comes

because (2.49) implies an associativity anomaly [9]

P (U2P ) = 0 6= P = (PU2)P (2.52)

This means that (2.49) can never be true in the type of matrix-like model of the string field

algebra we have been assuming. Therefore in our approach (2.49) is false, which means that

we require a stronger notion of equality than the Fock space expansion of the string field.

Indeed, we believe that this is physically necessary since (2.49) implies that the phantom

term for Schnabl’s solution vanishes, which misses the nontrivial contribution the phantom

term makes to gauge invariant observables. We will return to this issue in section 4.2.

2.5 Toy model

Before considering string field theory, it is helpful to see how the formalism is supposed to

work in a finite dimensional toy model. Suppose the open string star algebra is just the

Clifford algebra generated by two elements b, c satisfying

[b, c] = 1, b2 = c2 = 0. (2.53)

These elements are Grassmann odd and have the obvious ghost number. The algebra allows

a 2-dimensional representation D in terms of Pauli matrices. We define the BRST operator

to be

Q = [c, ·]. (2.54)
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The cohomology is empty. Therefore, our toy model can be thought of as a simplified

version of vacuum string field theory [32].

The equation of motion,

QΦ+ Φ2 = 0, (2.55)

is easy to solve:

Φ = −λc, λ ∈ R. (2.56)

What is less obvious is whether any of these solutions is physically nontrivial. We can

construct a left gauge transformation relating the tachyon vacuum Φ = 0 and the general

solution Φ = −λc:

U = Q0,−λcb

= 1− λbc. (2.57)

Computing the BCC projector with (2.14),7 we find:

X∞ = lim
ǫ→0

(

ǫ+
ǫλ

1− λ+ ǫλ
bc

)

. (2.58)

The limit vanishes in all cases except λ = 1, where the BCC projector becomes

X∞ = bc, (λ = 1). (2.59)

Therefore our toy model has only one nontrivial solution:

Φ = −c. (2.60)

Note that the projector appears discontinuously at λ = 1, and not in the λ → 1 limit.

This is reminiscent of how Schnabl’s solution formally appears to be a limit of pure gauge

solutions as λ→ 1, but at λ = 1 there is a physical discontinuity which brings the solution

to the tachyon vacuum. A similar discontinuity appears for the pure gauge and tachyon

vacuum solutions of Takahashi and Tanimoto [33–35]. In this toy model, what makes the

solution Φ = −c different from the others is that it supports cohomology. In fact, the

shifted kinetic operator vanishes identically:

Q− [c, ·] = 0, (2.61)

and therefore any nonzero state is in the cohomology. At ghost number 1 the cohomology

includes only c, which we can interpret as the tachyon of an unstable brane. Therefore the

solution Φ = −c represents a D-brane sitting on top of the tachyon vacuum.

Though the equations of motion are easy to solve in this model, let’s try to construct

the solutions indirectly using singular gauge transformations. Within this subalgebra,

7We can also compute the limit limN→∞ XN , but this diverges if |λ| > 1. This does not indicate the

absence of a BCC projector for λ > 1.
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there are only two nonzero and noninvertible ghost number zero fields which could give an

interesting solution (up to a trivial multiplicative factor):

U1 = 1− bc, → X∞
1 = bc,

U2 = 1− cb, → X∞
2 = cb. (2.62)

To the right of the arrow we wrote the corresponding BCC projector. Starting from the

tachyon vacuum Φ = 0, the first case obviously corresponds to the solution Φ = −c which
we have already discovered. What about the second case? It is easy to check that the weak

consistency condition is not obeyed:

X∞
2 QU2 = (cb)Q(1− cb) = c 6= 0, (2.63)

so there is no corresponding solution. Now, given U1, how do we reconstruct the solution

Φ = −c? Following (2.20), we need to define a formal inverse for U1. It suffices to choose

(U−1
1 )′ = 1, (2.64)

since this inverts U1 up to the kernel of U1. Then

Φ = (U−1
1 )′QU1 +X∞

1 Φ′

= Q(1− bc) + bcΦ′

= −c+ bcΦ′. (2.65)

Here we are lucky that any choice of Φ′ must be proportional to c, which is killed by bc.

Therefore the phantom term vanishes and the solution is uniquely determined by U1.

To see an example of a nontrivial phantom term, we have to consider a more com-

plicated model. Suppose that the algebra consists of Clifford algebra generated by four

elements c1, c2, b1, b2 satisfying

[bi, cj ] = δij , b2i = c2i = 0 (i, j = 1, 2). (2.66)

with the obvious ghost number assignments. Taking Q = [c1, ·], consider the solution

Φ = −c1 + b1c1c2. (2.67)

This solution is nontrivial because the shifted kinetic operator supports cohomology. At

ghost number 1 the cohomology is 1-dimensional and consists of states proportional to c2
modulo exact terms:

QΦc2 = 0, c2 6= QΦ(something). (2.68)

We can find a left gauge transformation from the tachyon vacuum to the solution (2.67):

U = Q0Φb1 = 1− b1c1. (2.69)

The BCC projector is X∞ = b1c1. Choosing (U−1)′ = 1 we can reconstruct the solution

out of U :

Φ = (U−1)′QU +X∞Φ′

= −c1 +X∞Φ′. (2.70)
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If we want the solution we started with, apparently we must have a nonzero phantom term:

X∞Φ′ = (b1c1)c2. (2.71)

Note that this choice requires additional information not contained in the left gauge trans-

formation. In fact, we could have chosen the phantom term to vanish, though the resulting

solution Φ = −c1 is physically different from the solution we started with. (The spectrum

of fluctuations around Φ = −c1 includes all ghost number 1 states, not just c2). As men-

tioned before, in string field theory the situation may be different, since regularity may fix

the phantom term uniquely once we have chosen U .

3 The category of classical solutions

It is interesting to ask what happens if we generalize the gauge group of open string field

theory to include singular gauge transformations. Obviously we don’t have a group anymore

since we don’t have inverses. But it is not even a semi-group, since the product of two left

gauge transformations is not generally a left gauge transformation. However, it is a left

gauge transformation if the target solution of the first left gauge transformation matches

the source solution of the second. Let U12 be a left gauge transformation from Φ1 to Φ2,

and U23 be a left gauge transformation from Φ2 to Φ3. Then the Leibniz rule (2.5) implies

QΦ1Φ3
(U12U23) = (QΦ1Φ2

U12)U23 + U12(QΦ2Φ3
U23) = 0, (3.1)

so U12U23 is a left gauge transformation from Φ1 to Φ3. Therefore multiplication of left

gauge transformations works like the composition of maps; we can only compose two maps

if the image of the first is contained in the domain of the second.

The structure we’re describing is a category, which we call Left. The objects of Left

are classical solutions, and the morphisms are left gauge transformations. Composition

of morphisms is associative because the star product is associative. Each object has an

identity morphism, which is just the identity string field U = 1.8

The category Left is a nice description of a structure, but we would like to get some

insight into its physical meaning. To start, note that the operator QΦ1Φ2
is the kinetic

operator for a stretched string in a 2× 2 string field theory expanded around the classical

solution

Φ =

(

Φ1 0

0 Φ2

)

. (3.2)

Then the morphisms of Left consist of ghost number zero states which are closed under

the action of the kinetic operator of a stretched string. An important subset of these

morphisms are those which are not only closed, but exact, i.e. take the form

U = QΦ1Φ2
b. (3.3)

8The category description allows us to import some terminology: A proper gauge transformation between

equivalent solutions is an isomorphism; The left gauge transformation U = 0 is a zero morphism, and the

category whose morphisms are right gauge transformations is the opposite category from Left.
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Figure 4. Schematic picture of the category Left. The points represent classical solutions, the

curves represent left gauge transformations, and the grey circles enclose solutions describing the

same BCFT. The curves inside the grey circles are proper gauge transformations, and those outside

the circles are singular. Singular gauge transformations are often exact, and can be interpreted

as generating surfaces of open string connecting BCFTs. Therefore the curves in this picture also

represent open strings ending on D-branes.

We call these exact left gauge transformations. They form an ideal in Left, in the sense that

the composition of any left gauge transformation with an exact left gauge transformation

is again exact. As we will see, exact left gauge transformations are what make the category

Left interesting.

Consider the exact left gauge transformation

K = QB, (3.4)

which relates the perturbative vacuum to itself. The string field K has an important

property: It is a worldsheet Hamiltonian, and it generates a 1-parameter family of surfaces

which define wedge states [8]:

Ωt = e−tK . (3.5)

In fact, this appears to be general: an exact left gauge transformations is a (generalized)

BRST variation of an antighost, and therefore it is natural to think of it as generating a

surface. If the “wedge state” e−tU converges in the t → ∞ limit, we should get the BCC

projector,

X∞ = lim
t→∞

e−tU , (3.6)

which, as we have conjectured, describes a surface of stretched string connecting two

BCFTs. Therefore exact left gauge transformations have “endpoints” which are fixed

to a source and target solution because open strings have endpoints fixed to corresponding

D-branes. This gives a physical interpretation of the category Left: The objects, up to

isomorphism, represent D-branes, and the morphisms represent open strings connecting

them. (See figure 4). This structure is reminiscent of the description of D-branes in terms

of derived categories [36–38], and it would be interesting to explore the relation.

One aspect of this picture requires explanation. Exact left gauge transformations

are not necessarily singular, or vice-versa. Yet both should define a BCC projector with
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an open string interpretation. To explain the relation between exact and singular gauge

transformations, we state two facts:

Fact 1. The only exact left gauge transformations which are invertible relate the tachyon

vacuum to itself.

Proof. Suppose an exact left gauge transformation U12 = QΦ1Φ2
b has an inverse, U−1

12 .

Then

1 = U−1
12 U12 = QΦ2Φ2

(U−1
12 b) = QΦ1Φ1

(bU−1
12 ). (3.7)

This implies that both solutions Φ1 and Φ2 support no cohomology at any ghost number,

so they must both describe the tachyon vacuum.

This result is consistent with the expectation that exact left gauge transformations generate

surfaces, and, at the same time, only singular gauge transformations define a nonzero BCC

projector. The only case where an exact left gauge transformation can be nonsingular is

around the tachyon vacuum, where there is no open string surface to generate.

Fact 2. Any singular gauge transformation between two solutions is exact provided that the

spectrum of stretched strings between the two corresponding backgrounds has no cohomology

at ghost number 0.

Proof. This follows immediately from the assumption that the cohomology of QΦ1Φ2
should

reproduce the cohomology of a stretched string connecting the BCFTs corresponding to

the solutions Φ1 and Φ2.

Generally, an open string connecting two D-branes will have different boundary conditions

at its two endpoints, and therefore will have no cohomology at ghost number zero. So in

the general situation, singular gauge transformations are exact. However, let us give two

counterexamples. Consider a string field theory with 2 × 2 Chan-Paton factors and two

solutions

Φ1 = 0, Φ2 =

(

0 0

0 Φ

)

, (3.8)

where Φ is a solution of the string field theory defined by the 2-2 strings. Then

U =

(

1 0

0 Q0Φb

)

(3.9)

is a singular gauge transformation from Φ1 to Φ2 which is not exact, due to the identity

string field in the 1-1 component. The kernel of U is contained solely in the 2-2 component,

and the resulting BCC projector describes a single string stretching from the perturbative

vacuum of the second D-brane to the background Φ of the second D-brane. There is no

surface generated for strings attached to the first D-brane. To give a second example,

consider the left gauge transformation

U = 1− 2Ω, (3.10)
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which relates the perturbative vacuum to itself. The level expansion of U starts with

−|0〉, so it is not an exact left gauge transformation. However, the inverse U−1 appears

to be divergent, or at least it is not possible to express it as a superposition of wedge

states [21, 39]. This problem can be understood from the fact that U , as a function of K,

has a zero at K = ln 2. The BCC projector of U is formally

X∞(K) =

{

1 for K = ln 2

0 otherwise
. (3.11)

This projector can be considered as a limiting case of the class of infinite-rank projectors

discussed in [21]. It vanishes in the Fock space, and it does not have a known representation

in terms of open string surfaces. We do not know whether U should be considered a singular

gauge transformation in a physically important sense, or whether defining its inverse is just

a technical problem.

4 Examples

In this section we demonstrate the weak consistency condition and the construction of the

BCC projector for some known analytic solutions.

We will employ the algebraic notation for wedge states with insertions developed in [8,

40], following the conventions explained in appendix A of [20]. Let us review the essentials.

We will frequently employ the string fields K and B introduced in [8], which correspond to

vertical line integral insertions of the energy-momentum tensor and b-ghost in the cylinder

coordinate system. We have QB = K, [B,K] = 0, and B2 = 0. Exponentials of K define

wedge states [41]:

Ωt = e−tK , (4.1)

which are star algebra powers of the SL(2,R) vacuum Ω ≡ |0〉. The infinite power of

the vacuum is a projector of the star algebra, the sliver state Ω∞ [41, 42]. We will also

encounter other string fields c, σ10, and so on, which correspond to insertions of operators

on the open string boundary in the cylinder coordinate system. For properties of these

insertions we direct readers to the appropriate references where the solutions are described

in detail.

4.1 Trivial case: U = 0

The string field U = 0 is a left gauge transformation between any two solutions. The

associated BCC projector is the identity string field:

X∞ = 1. (4.2)

We can interpret this as a projector where all boundary condition changing operators have

collapsed on top of one another and canceled out. Both the strong and weak consistency

conditions are satisfied. Using (2.20) we can therefore express Φ2 as a formal gauge trans-

formation of Φ1:

Φ2 = (0−1)′(Q+Φ1)0 + 1 · Φ′. (4.3)

– 18 –



J
H
E
P
0
4
(
2
0
1
2
)
1
0
7

Since there are no nonzero vectors in the image of U = 0, the operator (0−1)′ must vanish

over its entire domain. Then Φ2 = Φ′, and the entire solution consists of the phantom

term. Not surprisingly, U = 0 does not give any information about how to construct Φ2

from Φ1.

4.2 Schnabl’s solution

Schnabl’s solution for the tachyon vacuum takes the form9

Ψ =
√
Ωc

KB

1− Ω
c
√
Ω. (4.4)

As discovered by Okawa [8], Schnabl’s solution can be constructed as a left gauge trans-

formation of the perturbative vacuum:

QU = UΨ, (4.5)

where

U = 1−
√
ΩcB

√
Ω. (4.6)

Now we want to compute the boundary condition changing projector and verify that

Okawa’s U satisfies the weak consistency condition. This will quickly lead to some puzzles,

but with a few assumptions the formalism works consistently with our understanding of

the physics.

The BCC projector is easy to compute from U :

X∞ =
√
ΩcBΩ∞. (4.7)

Since the field B annihilates the sliver state in the Fock space, the BCC projector vanishes

in the Fock space. But this means that Okawa’s U should have an inverse! In fact, it is

invertible in the Fock space:

U−1 = 1−
√
ΩcB

1

1− Ω

√
Ω, (formally). (4.8)

Expanding the factor 1
1−Ω as a geometric series produces a linear divergence proportional

to the sliver state, but this divergence is annihilated by B, so in total U−1 is finite. This

raises the obvious question: Why is Schnabl’s solution not pure gauge? The point is that

it is not enough for U to be invertible in the level expansion; it must be invertible from the

perspective of the gauge invariant action, for example when contracting the solution with

itself [8]. But in this context it is no longer true that B annihilates the sliver state. This

can be seen from the fact that the phantom term for Schnabl’s solution,

lim
N→∞

ψN =
√
ΩcBΩ∞c

√
Ω, (4.9)

9We focus on Schnabl’s solution, though the discussion is similar for other tachyon vacuum solutions in

the KBc subalgebra [18, 20, 40, 43, 44]. It would also be interesting to understand the tachyon vacuum

solution of Takahashi and Tanimoto [33–35] from the perspective of this formalism.
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Figure 5. The BCC projector for Okawa’s left gauge transformation should describe a (hypothet-

ical) open string with an endpoint disappearing into the tachyon vacuum.

makes a nontrivial contribution to the energy [7]. Therefore, we must have

BΩ∞ 6= 0. (4.10)

Under this assumption, the inverse of U is divergent and the BCC projector is nonzero.

Consistently, Schnabl’s solution is not pure gauge.

The above subtlety with BΩ∞ may have a physical origin. Following the discussion

of section 2.3, the BCC projector (4.7) should (in principle) represent an open string

connecting the tachyon vacuum and the perturbative vacuum, as in figure 5. But there is

no such open string; Any correlator with a boundary segment “attached” to the tachyon

vacuum should vanish identically. Consistently, the BCC projector (4.7) vanishes in the

Fock space. For other solutions we study, it will not vanish. Since the phantom term is

proportional to the BCC projector, this also explains why the phantom term for Schnabl’s

solution vanishes in the Fock space.

Equation (4.10) implies that the BCC projector is nontrivial, but to apply the weak

consistency condition we must also be able to assume that it is finite. This requires

KΩ∞ = 0, (4.11)

since, if the infinite power of the SL(2,R) vacuum converges to a limit, we must have

lim
t→∞

d

dt
Ωt = 0. (4.12)

The distinction between the string fields B and K with regard to the sliver state is subtle.

We will proceed with the assumption (4.11) and see where it leads.

Let us give two simple examples which help illustrate the meaning of equations (4.10)

and (4.11) for the purposes of the weak consistency condition. Consider the equation

B(1− Ω) = KA, (4.13)

which we want to solve for A. Since K has a kernel, the solution may not exist. To check

this, multiply the equation by sliver state:

BΩ∞(1− Ω) = 0. (4.14)
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The quantity Ω∞(1 − Ω) vanishes by (4.11), so the constraint is consistently satisfied.

Indeed, the solution A = B 1−Ω
K is the homotopy operator for Schnabl’s solution [18, 29],

and is a well defined string field. Now, by contrast, consider the equation

B = KH, (4.15)

which we want to solve for H. This time multiplying both sides by the sliver gives

BΩ∞ ?
= 0, (4.16)

which contradicts (4.10). Indeed, the formal solution H = B
K does not exist, since otherwise

QB
K = 1, which would trivialize the cohomology of physical states around the perturbative

vacuum.

With this preparation, we can check the weak consistency condition for Okawa’s U .

X∞QU =
√
ΩcBΩ∞(cKBc

√
Ω)

=
√
ΩcB(KΩ∞)c

√
Ω

= 0, (4.17)

where in the last step we used (4.11). This result is consistent with the fact that Schnabl’s

solution exists.

We can also consider a different left gauge transformation Ũ which maps (in the op-

posite direction) from Schnabl’s solution to the perturbative vacuum:10

(Q+Ψ)Ũ = Ũ · 0, (4.18)

where

Ũ = 1−
√
ΩBc

√
Ω. (4.19)

The BCC projector is

X̃∞ = Ω∞Bc
√
Ω. (4.20)

To check the weak consistency condition, compute

QΨŨ =
√
Ω
(

c− [Ω, c]
) KB

1− Ω
c
√
Ω. (4.21)

Then

X̃∞QΨŨ = Ω∞BcΩ
(

c− [Ω, c]
) KB

1− Ω
c
√
Ω

= Ω∞(1− Ω)[Ω, c]
KB

1− Ω
c
√
Ω

= 0, (4.22)

consistently.

10The expression Ũ was also written down in [8], where (from the current perspective) it was interpreted

as a right gauge transformation from the perturbative vacuum to Schnabl’s solution. This is the same as a

left gauge transformation, in the opposite direction, from Schnabl’s solution to the perturbative vacuum.
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If we compose Okawa’s U and Ũ , we transform from the perturbative vacuum, to

the tachyon vacuum, and back. The result is a singular gauge transformation from the

perturbative vacuum to itself:

U0 = UŨ = 1− Ω. (4.23)

The BCC projector of U0 is the sliver state:

X∞
0 = Ω∞. (4.24)

This also happens to be the characteristic projector computed in [9]. The sliver state can

be seen as a surface of string connecting the perturbative vacuum to itself. Unlike the

BCC projector for Okawa’s U , this does not vanish in the Fock space. However, let us

explain a point of possible confusion: There are many left gauge transformations from

the perturbative vacuum to itself whose BCC projector vanishes identically. The simplest

example is U = 1. What makes the BCC projector (4.24) nontrivial is that U0 is an exact

left gauge transformation,

U0 = Q

(

B
1− Ω

K

)

, (4.25)

and, as argued in section 3, exact left gauge transformations naturally generate a surface

of string connecting the source and target BCFTs (which, in this case, happen to be the

same). Proper gauge transformations, like U = 1, should not really be viewed as open

strings connecting solutions — indeed, a proper gauge transformation around one solution

is also a proper gauge transformation around any other. Accordingly, they do not generate

physically interesting BCC projectors.

4.3 Multibranes and ghost branes

Let see what the formalism has to say about the multiple brane and ghost brane solutions

discussed in [11, 12]. These solutions are known to suffer from singularities related to their

definition as formal gauge transformations of the perturbative vacuum [12, 14, 15].

The two-brane solution can be derived by applying Okawa’s Ũ in (4.19)—which takes

the tachyon vacuum to the perturbative vacuum — once again to the perturbative vac-

uum [45] (see figure 6). The projector X̃∞ = Ω∞Bc
√
Ω is the same as before, but since

we are starting from the perturbative vacuum, the weak consistency condition is different:

X̃∞QŨ = −Ω∞BcΩcKBc
√
Ω

= −Ω∞c(1− Ω)KBc
√
Ω

= BΩ∞cK(1− Ω)c
√
Ω. (4.26)

This is not zero. This means that Ũ is not a consistent left gauge transformation applied to

the perturbative vacuum, and there should be no corresponding 2-brane solution. Still the

2-brane solution can be formally defined, and recent studies have shown that it is possible to

recover the correct tension from the action [11, 12, 15], the closed string tadpole [11, 12, 46],

and, in a limiting case, the boundary state [14, 47]. This suggests that there is something

essentially “correct” about the solution which remains to be understood.
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Figure 6. Multiple brane and ghost brane solutions can be formally defined by iterating the left

gauge transformation U from the perturbative vacuum to the tachyon vacuum, and the left gauge

transformation Ũ from the tachyon vacuum to the perturbative vacuum.

Ghost brane solutions are defined by applying Okawa’s U in (4.6) more than once to

the perturbative vacuum [45]. They correspond to “removing” D-branes from an already

empty vacuum (for a possible interpretation see [48]). For example, the (−1)-brane solution

can be obtained by applying

U2 = 1−
√
ΩcB(2− Ω)

√
Ω (4.27)

to the perturbative vacuum. We find the BCC projector is

X∞ =
√
ΩcB

[

lim
N→∞

ΩN−1(2− Ω)N
]√

Ω

=
√
ΩcBΩ∞, (4.28)

which turns out to be the same BCC projector as for U alone.11 To see whether U2 is a

sensible left gauge transformation, compute

X∞(QU2) = (X∞QU)U + (X∞U)QU

= 0. (4.29)

Surprisingly, the weak consistency condition does not reveal an obstruction for negative

tension branes! Still, it turns out that U2 is inconsistent. To see what’s going on, consider

the equation

1− Ω = K2M. (4.30)

which we want to solve for M . Multiplying both sides by the sliver state consistently gives

0 = 0. But still (4.30) has no solution because the image of K2 is smaller than the image

of 1 − Ω (which vanishes only linearly at K = 0). In a similar way, while U2 satisfies the

weak consistency condition, the BRST charge does not map the image of U2 into itself.

Actually, there is nothing special going on here with the ghost brane solutions. It is a

general expectation that the BCC projector for any left gauge transformation U should be

11It is worth noting that the subleading corrections to the sliver state in this limit are very different

from those of a wedge state ΩN for large N . In some contexts the subleading behavior can be physically

important [21].
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the same as for UN for any positive power N . Then it follows that the weak consistency

condition is obeyed for any power UN if it is satisfied for U . For example, if we had applied

Okawa’s Ũ twice to the tachyon vacuum, instead of once to the perturbative vacuum, the

weak consistency condition would also work for the 2-brane solution. Therefore, to really

test the ghost brane we should apply Okawa’s U once to the tachyon vacuum, rather than

twice to the perturbative vacuum. Then the weak consistency condition takes a different

form:

X∞QΨU = X∞QU +X∞[Ψ, U ]

=
√
ΩcBΩ∞

(

−c KB
1− Ω

cΩcB
√
Ω+ cBΩc

KB

1− Ω
c
√
Ω

)

=
√
ΩcBΩ∞

(

−cΩcB
√
Ω+ c

√
Ω
)

=
√
ΩcBΩ∞c(2− Ω)

√
Ω. (4.31)

This time we do not find zero.

It is interesting to speculate what the characteristic projector might look like for a

2-brane solution. Following the proposal of Ellwood [9], one expects that the characteristic

projector of a solution Φ describes the boundary conditions of Φ towards the midpoint of the

projector. We can generalize this proposal as follows. Let U be a left gauge transformation

from Φ1 to Φ2, and assume that Φ1 is real.12 Then the conjugate gauge parameter U ‡ is a

left gauge transformation from Φ‡
2 to Φ1 and

U ‡U (4.32)

is a singular gauge transformation from Φ‡
2 to Φ2. Assuming Φ‡

2 and Φ2 are gauge equiv-

alent, the BCC projector for U ‡U should describe the boundary conditions of the desired

BCFT towards the midpoint. For multiple brane solutions, these boundary conditions

must include Chan-Paton factors, and it has been speculated that the Chan-Paton structure

should be described by higher rank star algebra projectors [9, 22, 42, 49]. On the other hand,

applying this argument to the formal 2-brane solution constructed from Okawa’s Ũ gives

Ũ ‡Ũ = 1− Ω (4.33)

whose BCC projector is the sliver state. The sliver state is believed to be (in some sense)

a rank one projector, so we would not expect this ansatz to reproduce the non-abelian

Chan-Paton structure of the 2-brane.

4.4 Ellwood/BMT lumps

Following [9], there has been interest in using singular gauge transformations to construct

solutions describing the endpoint of an RG flow triggered by a relevant deformation [10,

13, 50–52], which in particular can describe the tachyon lump [53]. A simple example of

12In general U will not generate a real solution from Φ1, so we do not assume Φ2 is real.
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such a solution was discovered by Bonora, Tolla and one of the authors (BMT) and takes

the form [10]

Φ = cφ− B

K + φ
φ′c∂c, (4.34)

where φ is a relevant matter operator in the reference boundary conformal field theory

and φ′ describes the failure of φ to be marginal. The operator φ must be appropriately

“tuned” to trigger an RG flow to the desired boundary conformal field theory (BCFT∗) in

the infrared [9, 10, 13].

The solution can be derived from the tachyon vacuum [20]

Ψ =
1

1 +K
(c+Q(Bc)), (4.35)

using a (naive) singular gauge transformation [10]

U = 1− 1

1 +K
(1− φ)Bc. (4.36)

To derive the BCC projector, we use the formula (2.14) (with a redefinition ǫ→ ǫ/ǭ):

X∞ = lim
ǫ→0+

ǫ

ǫ+ ǭU
, ǭ ≡ 1− ǫ. (4.37)

This gives

X∞ = lim
ǫ→0+

[

ǫ

1− ǭ
1+K (1− φ)Bc

]

= lim
ǫ→0+

[

ǫ+
ǫ

1− ǭ
1+K (1− φ)

ǭ

1 +K
(1− φ)Bc

]

= lim
ǫ→0+

[
ǫ

ǫ+K + ǭφ

]

(1− φ)Bc. (4.38)

As shown in [13], the limit in parentheses converges to the so-called deformed sliver state

Ω̃∞, which is the sliver state with an insertion of the relevant boundary interaction at

constant RG coupling in the upper half plane representation. Then the BCC projector is

X∞ = Ω̃∞(1− φ)Bc. (4.39)

This state vanishes in the Fock space, which is apparently a consequence of the fact that

the source solution is the tachyon vacuum.

If we map the deformed sliver state to the unit disk representation [42], the midpoint

of the local coordinate touches the boundary of the disk, splitting the surface in two. Since

the conformal transformation is singular at the midpoint, the RG coupling of the rele-

vant boundary interaction is pushed to the strict infrared, so that the disk correlator has

BCFT∗ boundary conditions precisely where the midpoint of the local coordinate touches

the boundary of the unit disk. In this sense, the BCC projector (4.39) has BCFT∗ bound-

ary conditions at the midpoint. In fact, the naive left gauge transformation (4.36) was
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constructed to give precisely this result, based on the conjecture of Ellwood [9] that the

characteristic projector of a solution Φ should have boundary conditions corresponding to

the BCFT of Φ at the midpoint. While this idea seems correct, it is not sufficient; The

BRST variation of U must be proportional to U .

To see if this is the case, let’s look at the weak consistency condition. We assume (4.10)

and the analogue of (4.11) for the deformed sliver state:

(K + φ)Ω̃∞ = 0. (4.40)

Computing

QΨU = −(1− φ)c+
1

1 +K
(K + φ)

1

1 +K
Bc∂c− B

1 +K
φ′c∂c, (4.41)

we find

X∞QΨU = −Ω̃∞(1− φ)
1

1 +K

[

(K + φ)
1

1 +K
Bc∂c−Bφ′c∂c

]

. (4.42)

Now use (4.40) to replace 1 − φ with 1 +K. Then there is a cancellation with 1
K+1 and

the first term in brackets disappears when K + φ hits the deformed sliver. This leaves

X∞QΨU = −Ω̃∞Bφ′c∂c. (4.43)

The operator φ′ does not generally annihilate the deformed sliver [13], so the weak consis-

tency condition is violated. The only way to avoid this problem is to set φ′ = 0, in which

case the BMT solution describes a marginal deformation, or to set Ω̃∞ = 0 in which case

the BMT solution describes the tachyon vacuum. Otherwise, the BMT solution is singular

and does not satisfy the equations of motion [13]. Nevertheless, the solution is (in a sense)

very close to solving the equations of motion, and if one carefully treats its singularities,

one can recover almost all of the expected physics of the RG flow [13, 50–52].

4.5 Solutions of Kiermaier, Okawa, and Soler

To see a shift in boundary condition inside the BCC projector, we should consider a

singular gauge transformation relating two solutions which describe distinct backgrounds

which support open string states. For this purpose, it is useful to study the solutions

discovered by Kiermaier, Okawa, and Soler [30] (the KOS solutions):

Φ = −(c∂σ01)
1

1 +K
σ10(1 +K)Bc

1

1 +K
. (4.44)

Here σ01 and σ10 are dimension 0 primaries with the property that σ01σ10 = 1.13 In

interesting examples, σ01 and σ10 are boundary condition changing operators from a ref-

erence BCFT0 to the open string background BCFT1 described by the solution. Under

these assumptions the KOS solution is known to describe nonsingular marginal deforma-

tions [30, 54].

13We assume that σ01 and σ10 are dimension 0 primaries for simplicity. We put the “security strip” 1

1+K

on the right to make shorter formulas.
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We can build the KOS solution with a left gauge transformation out of the tachyon

vacuum:

U = QΨΦ

(
B

1 +K

)

= 1− σ01
1

1 +K
σ10(1 +K)Bc

1

1 +K
, (4.45)

where we choose Ψ to be the “simple” tachyon vacuum solution [20]:

Ψ = (c+Q(Bc))
1

1 +K
. (4.46)

Computing the BCC projector we find

X∞ = σ01Ω
∞σ10(1 +K)Bc

1

1 +K
. (4.47)

As expected, this vanishes in the Fock space since there are no open strings connecting

the tachyon vacuum to the marginally deformed D-brane. To check the weak consistency

condition, compute

QΨU =

(

c(1 +K)σ01
1

1 +K
σ10 + σ01

[

c,
1

1 +K

]

σ10

)

(1 +K)Bc
1

1 +K
, (4.48)

and then multiply by the BCC projector:

X∞QΨU =

(

σ01Ω
∞B∂c

1

1 +K
σ10 − σ01Ω

∞B

[

c,
1

1 +K

]

σ10

)

(1 +K)c
1

1 +K

=

(

σ01Ω
∞Bc

1

1 +K
σ10 − σ01Ω

∞Bcσ10

−σ01Ω∞Bc
1

1 +K
σ10 + σ01Ω

∞Bcσ10

)

(1 +K)c
1

1 +K

= 0, (4.49)

where in the second step we wrote ∂c = [1 + K, c] and canceled K against the sliver. If

we had only guessed the left gauge transformation (4.45) without knowing about the KOS

solution from the beginning, the final cancellation in (4.49) would seem quite miraculous.

For example, suppose we tried to build a marginal solution like KOS from the tachyon

vacuum using

U
?
= 1− σ01

1

1 +K
σ10Bc. (4.50)

At first sight, this guess seems physically plausible. It is non invertible, and the BCC

projector vanishes in the Fock space and has BCFT1 boundary conditions at the midpoint.

Nevertheless, this ansatz fails to satisfy the weak consistency condition. This is an im-

portant point: Constructing new solutions by a pure gauge ansatz requires more than a

plausible guess. The structure of the ansatz has to work in a nontrivial fashion.
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Our main interest in this section is computing a boundary condition changing pro-

jector which displays a shift in boundary condition between two nontrivial backgrounds.

Accordingly, consider two KOS solutions:

Φ1 = −(c∂σ01)
1

1 +K
σ10(1 +K)Bc

1

1 +K
, (BCFT1),

Φ2 = −(c∂σ02)
1

1 +K
σ20(1 +K)Bc

1

1 +K
, (BCFT2). (4.51)

related by the left gauge transformation

U12 = QΦ1Φ2

(
B

1 +K

)

= 1− cB(1 +K)σ01
1

1 +K
σ10

1

1 +K
− σ02

1

1 +K
σ20(1 +K)Bc

1

1 +K
. (4.52)

Note that U12 can be factorized into a product of left gauge transformations passing through

the tachyon vacuum (4.46). The reason is the following: If A is a homotopy operator of a

tachyon vacuum solution Ψ, and A2 = 0, we can factorize any exact left gauge transforma-

tion derived from A into a product of two left gauge transformations passing through Ψ:

QΦ1Φ2
A = (QΦ1ΨA)(QΨΦ2

A). (4.53)

We do not believe this property is essential for the interpretation of the BCC projector,

but it would be worth understanding this issue.

To compute the BCC projector we use (4.37)

X∞
12 = lim

ǫ→0+

ǫ

ǫ+ ǭU12
. (4.54)

Plugging in U12,

ǫ

ǫ+ ǭU12
=

ǫ

1− ǭ
[

cB(1 +K)σ01
1

1+Kσ10 + σ02
1

1+Kσ20(1 +K)Bc
]

1
1+K

=
ǫ

(

1− ǭcB(1 +K)σ01
1

1+Kσ10
1

K+1

)(

1− ǭσ02
1

1+Kσ20(1 +K)Bc 1
1+K

)

= ǫ

(

1

1− ǭσ02
1

1+Kσ20(1 +K)Bc 1
1+K

)(

1

1− ǭcB(1 +K)σ01
1

1+Kσ10
1

K+1

)

= ǫ

(

1 + σ02
ǭ

K+ǫ
σ20(1 +K)Bc

1

1+K

)(

1 + cB(1 +K)σ01
ǭ

ǫ+K
σ10

1

1+K

)

.

(4.55)

At this point we can already see the boundary conditions of BCFT2 gathering on the left

and the boundary conditions of BCFT1 on the right. Multiplying this out we get four

terms:

ǫ

ǫ+ ǭU12
= ǫ+ ǭ

(

σ02
ǫ

ǫ+K
σ20(1 +K)Bc

1

1 +K

)

+ ǭ

(

cB(1 +K)σ01
ǫ

ǫ+K
σ10

1

1 +K

)

+ǭ2
(

σ02
ǫ

ǫ+K
σ21B∂c

1

ǫ+K
σ10

1

1 +K

)

, (4.56)
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where σ21 ≡ σ20σ01 is the boundary condition changing operator between BCFT2 and

BCFT1. For simplicity we are assuming that σ20 and σ01 have trivial contractions. In

principle this assumption should not be necessary — the collision between σ20 and σ01
could be vanishing or divergent, depending on whether the BCC operator σ21 has positive

or negative conformal dimension. However, this limitation is an artifact of the KOS solution

and the chosen left gauge transformation (4.52). Other choices naturally regulate the

collision. But we are seeing a precursor to a deeper issue that we will discuss shortly.

To simplify (4.56) further, consider the fourth term and expand using the Schwinger

parameterization:

1

ǫ+K
σ21B∂c

1

ǫ+K
=

∫ ∞

0
dt e−ǫt

∫ t

0
dsΩt−sσ21B∂cΩ

s. (4.57)

Note the identity

∂

(∫ t

0
dsΩt−sΦΩs

)

= [Φ,Ωt]. (4.58)

This suggests that we define the formal expression

1

∂
[Φ,Ωt] ≡

∫ t

0
Ωt−sΦΩs. (4.59)

Then we can write
1

ǫ+K
σ21B∂c

1

ǫ+K
=

1

∂

[

σ21B∂c,
1

ǫ+K

]

, (4.60)

and (4.56) becomes

ǫ

ǫ+ ǭU12
= ǫ+ ǭ

(

σ02
ǫ

ǫ+K
σ20(1 +K)Bc

1

1 +K

)

+ ǭ

(

cB(1 +K)σ01
ǫ

ǫ+K
σ10

1

1 +K

)

+ǭ2
(

σ02
1

∂

[

σ21B∂c,
ǫ

ǫ+K

]

σ10
1

1 +K

)

. (4.61)

Finally, taking the ǫ→ 0+ limit gives:

X∞
12 =

[
(

cB(1 +K)σ01Ω
∞σ10

)

+
(

σ02Ω
∞σ20 (1 +K)Bc

)

+
(

σ02
1

∂

[
σ21B∂c,Ω

∞
]
σ10

)
]

1

1 +K
. (4.62)

The first two terms are BCC projectors for left gauge transformations from Φ1 to the

tachyon vacuum (4.46), and from the tachyon vacuum to Φ2. These terms vanish in the

Fock space. The last term contains a shift in boundary condition between BCFT2 and

BCFT1, which is integrated (with some ghosts) through the entire width of the sliver state

(see figure 7). This term does not vanish in the Fock space.
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Figure 7. Cylinder representation of the nontrivial term in the BCC projector (4.62). The inte-

gration over t moves the boundary condition changing operator over the whole width of the sliver

state.

The BCC projector we just computed should reduce to the characteristic projector in

the special case when BCFT2 = BCFT1. Let’s see how this happens:

X∞
11 =

[

cB(1 +K)σ01Ω
∞σ10 + σ01Ω

∞σ10(1 +K)Bc+ σ01
1

∂
∂[Bc,Ω∞]σ10

]
1

1 +K

=
[

cB(1+K)σ01Ω
∞σ10 + σ01Ω

∞σ10(1+K)Bc+Bcσ01Ω
∞σ10 − σ01Ω

∞σ10Bc
] 1

1+K

= σ01Ω
∞σ10

1

1 +K
+
[

cBKσ01Ω
∞σ10 + σ01Ω

∞σ10KBc
] 1

1 +K
. (4.63)

Since K annihilates the sliver, the Ks next to the BCC operators in the second term can

be traded with worldsheet derivatives. Then

X∞
11 = σ01Ω

∞σ10
1

1 +K
+
[

(Qσ01)BΩ∞σ10 − σ01BΩ∞(Qσ10)
] 1

1 +K
, (4.64)

and the characteristic projector simplifies to

X∞
11 =

[

σ01Ω
∞σ10 +Q

(

σ01BΩ∞σ10

)
]

1

1 +K
. (4.65)

Extrapolating from Schnabl gauge, this expression agrees with the characteristic projector

computed in [9] except for the second term, which would have been ignored in [9] because

it vanishes in the Fock space. Further specifying BCFT1 = BCFT0 gives X
∞
00 = Ω∞, which

is the BCC projector for a singular gauge transformation from the perturbative vacuum to

itself.

The form of the BCC projector X∞
12 substantially simplifies if we only contract with

regular test states. Then first two terms in (4.62) can be ignored, and the third term

simplifies to:

X∞
12 =

[

σ02Ω
∞σ21Ω

∞σ10

] 1

1 +K
, (Fock space). (4.66)
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Figure 8. The BCC projector (4.62) contracted with a Fock space state, represented as a correlator

on the unit disk. Note that the change of boundary condition happens precisely at the point where

the midpoint of the local coordinate touches the boundary of the disk.

For the detailed argument, see appendix A. This is precisely the structure we expected:

X∞
12 is proportional to the sliver state with the boundary conditions of BCFT2 on its left

half and the boundary conditions of BCFT1 on its right half, with the BCC operator σ21
inserted at the midpoint (see figure 8).

The KOS solutions are a special case of the solutions for regular marginal deformations

in dressed Schnabl-gauges [20, 55]. Let us see how this discussion extends to the Schnabl-

gauge marginal solutions [56, 57]:

Φ1=
√
Ω cV1

1

1 + 1−Ω
K V1

Bc
√
Ω, (BCFT1),

Φ2=
√
Ω cV2

1

1 + 1−Ω
K V2

Bc
√
Ω, (BCFT2), (4.67)

where V1, V2 are nonsingular marginal currents. These solutions can be related by a left

gauge transformation

U12 = QΦ1Φ2

(

B
1− Ω

K

)

= 1−
√
Ω cB

1

1 + V1
1−Ω
K

√
Ω−

√
Ω

1

1 + 1−Ω
K V2

Bc
√
Ω. (4.68)

This left gauge transformation factorizes through Schnabl’s solution for the tachyon vac-

uum, (4.4). Computing the BCC projector, we find three terms analogous to (4.62):

X∞
12=

√
Ω

[(

cB
K

1− Ω
σ01Ω

∞σ10

)

+

(

σ02Ω
∞σ20

K

1− Ω
Bc

)

+

(

σ02
1

∂

[

σ20
K

1− Ω
BcΩcB

K

1− Ω
σ01,Ω

∞

]

σ10

)]√
Ω. (4.69)
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The first two terms are BCC projectors for singular gauge transformations from Φ1 to the

tachyon vacuum and from the tachyon vacuum to Φ2. In the third term, note that σ20 and

σ01 are separated by a finite region of undeformed surface,

σ20
K

1− Ω
BcΩcB

K

1− Ω
σ01, (4.70)

unlike with KOS, where they collide to form σ21. However, in the projector limit the

collision between σ10 and σ02 effectively re-emerges since the surface separating them is

squeezed to vanishing width at the midpoint:

X∞
12 =

√
Ωσ02Ω

∞σ21Ω
∞σ10

√
Ω, (Fock space). (4.71)

Now if σ21 has nonzero conformal dimension, the BCC projector will be vanishing or infinite

in the Fock space as a result of the singular conformal transformation of σ21. This problem

is most likely generic. Between any pair of BCFTs, the boundary condition changing

operator generally carries nonzero conformal weight, and if the BCC projector places this

operator at the midpoint, there will be a vanishing or divergent factor when contracting

with Fock space states.

This problem should be irrelevant if we are using the BCC projector inside the phantom

term to compute physical observables [58]. Still we would like to see the BCC projector

shift the boundary condition in a nonsingular fashion when contracted with regular test

states. One way around this problem is to put the operator σ21 on-shell, that is, replace

σ21 → cV21, where cV21 is a dimension zero element of the cohomology of Q for a stretched

string between the BCFTs of Φ2 and Φ1. Then the “on-shell” BCC projector takes the form

X∞
V21

=
√
Ωσ20Ω

∞ cV21Ω
∞σ10

√
Ω. (4.72)

This is now a nonsingular state in the Fock space, and is a projector-like representative of

the ghost number 1 cohomology of QΦ1Φ2
. In a much more physical sense than the bare

BCC projector, X∞
V12

represents a stretched string connecting two BCFTs. Note that BCC

projectors around the tachyon vacuum cannot be made nonvanishing in this way, since

there are no on-shell states to insert at the midpoint. One shortcoming of this picture is

that we would like to define the on-shell BCC projector as a limit of a sequence of regular

states, rather than by hand after the projector limit has been taken. We will leave this

problem to future work.

5 Summary and discussion

The results of this paper can be summarized by three central ideas:

1) Any two classical solutions in open string field theory can be related by a left gauge

transformation, i.e. formal gauge transformation defined by a finite gauge parameter

U possibly without an inverse. Left gauge transformations define the morphisms of

a category Left, whose objects are classical solutions.
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2) Given any left gauge transformation connecting solutions Φ1 and Φ2, one can define

a star algebra projector which describes a stretched string connecting the BCFTs of

Φ1 and Φ2. We call this the boundary condition changing projector. The boundary

condition changing projector allows us to naturally associate the morphisms of Left

with open strings connecting D-branes. It also determines the nontrivial part of the

mysterious phantom term, as will be described in subsequent work [58].

3) Given any left gauge transformation U from a source solution Φ1 to any target solution

Φ2, the kinetic operator around Φ1 maps the image of U into itself. This observation

can be used to constrain the possible Us which define consistent left gauge transforma-

tions, as summarized by the strong and weak consistency conditions, (2.8) and (2.16).

If one wants to construct a new solution using singular gauge transformations, one

must be sure that the proposed U satisfies these consistency conditions.

We have tried to provide a clear account of these ideas and their motivation, though there

are many aspects of this picture which remain unexplored and we hope can be clarified

in future work. Our understanding of the BCC projector, in particular, is preliminary.

It would be desirable to extend our analysis to more examples, especially for solutions

describing singular marginal deformations [3–6]. Some aspects of these ideas could in

principle be tested in the level expansion. For example, one could construct (numerically)

a singular gauge transformation from the perturbative vacuum to the Siegel gauge tachyon

condensate [59–62], and verify that its BCC projector tends to vanish in the level expansion,

but still nontrivially computes the shift in the closed string tadpole amplitude between

the perturbative vacuum and the tachyon vacuum (via the Siegel gauge analogue of the

phantom term for Schnabl’s solution).

A central assumption of our work is that the image and kernel of a left gauge transfor-

mation are linearly independent and span the whole space, and therefore define a boundary

condition changing projector. However, it is not difficult to find ghost number zero string

fields where this assumption is false, for example

U = B∂c (5.1)

This is nilpotent, so its kernel and image are not linearly independent. However, we are

not aware of any genuine left gauge transformations of this type. That does not mean they

do not exist, and do not have an important role to play in the construction of classical

solutions. A particularly interesting possibility is that solutions could be constructed with

left gauge transformations that are non-unitary isometries [27, 28].

It would be interesting to see if our results have some generalization to other string

field theories, especially nonpolynomial superstring field theory [63–65] and open string

field theories based on homotopy associative algebras [66]. It is even possible that these

ideas have some realization in closed string field theory [67], but the analogy between left

gauge transformations and open strings suggests that a different type of structure might

be needed there. It would also be interesting to see if left gauge transformations can be

related to the derived category of the topological B-model [36–38]. If so, the category Left

could provide a setting for understanding D-brane charges in string field theory.
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The main motivation for our work is the idea that singular gauge transformations

could eventually provide a systematic construction of analytic solutions in open string field

theory corresponding to any choice of BCFT. Much more work remains, but we hope the

present contribution is a useful step in this direction.
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A KOS projector in Fock space

In this appendix we would like to describe how the BCC projector for the KOS solu-

tion (4.62) appears when contracted with Fock space states. The first two terms in (4.62)

can be ignored, since they are BCC projectors to and from the tachyon vacuum and mani-

festly vanish in the Fock space. The interesting term is the third, which contains the BCC

operator σ21. Regulating the sliver state, Ω∞ → Ω2N , this term contains the factor

F = σ02
1

∂

[
B∂cσ21,Ω

2N
]
σ10. (A.1)

Split this into a sum of two terms as follows:

F = −σ02
1

∂

[
∂cσ21,Ω

N
]
BΩNσ10 + σ02Ω

NB
1

∂

[
∂cσ21,Ω

N
]
σ10, (A.2)

and then write

∂cσ21 = ∂(cσ21)− c∂σ21. (A.3)

Substituting in (A.2), the inverse ∂ cancels with ∂(cσ21), giving

F = σ02Ω
Nσ21Ω

Nσ10 − σ01cBΩ2Nσ10 + σ02Ω
2NBcσ20

︸ ︷︷ ︸

lim
N→∞

= 0

+ σ02
1

∂

[
c∂σ21,Ω

N
]
BΩNσ10 − σ02Ω

NB
1

∂

[
c∂σ21,Ω

N
]
σ10

︸ ︷︷ ︸

lim
N→∞

= ?

. (A.4)

The first term gives the claimed Fock space expansion of the BCC projector. The second

two terms are easily seen to vanish in the Fock space when N → ∞. The last two terms

(above the question mark) are more complicated and it is not obvious what happens to

them in the N → ∞ limit. On the one hand, B acts on the sliver, which tends to

make these contributions vanish, but on the other hand there is a divergent integration of
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Figure 9. Pictorial representation of the correlator (A.5) on the unit disk. The picture is drawn

(following the left handed convention [20]) with the real axis increasing to the left.

c∂σ21 = Qσ21 on the left or the right half of the sliver state. To see what happens, we map

these terms to the unit disk in the representation where the local coordinate patch for the

sliver state is regular [42]. In this case, all operator insertions on the disk are at finite and

nonzero separation (see figure 9), and to analyze the N → ∞ limit all we have to do is

carefully keep track of the factors which appear from the conformal transformation from

the cylinder. Then the first term above the question mark in (A.4) takes the form:

〈

φ, σ02
1

∂

[
c∂σ21,Ω

N
]
BΩNσ10

〉

=

∫ π

θN

dθ

2π
CN (θ)

∫ qN

1/qN

dq BN (q)

〈

f ◦ φ(0) σ02(eiθN )
[

c∂σ21(e
iθ) b(q)

]

σ01(e
−iθN )

〉

disk

.

(A.5)

The quantities appearing in the above correlator are

CN (θ) =
2 sec2 θ

2

1 +
(
2
L

)2
tan2 θ

2

, (A.6)

BN (q) =
i

2L2

[(
L

2

)2

(q + 1)2 − (q − 1)2

]

, (A.7)

θN = tan−1

(
4L tan π

2L

4− L2 tan2 π
2L

)

, (A.8)

qN = −L− 2

L+ 2
. (A.9)

where L ≡ 2N +1. For large L, the integration over q only has support over a vanishingly

small line segment close to q = −1, which tends to make the state vanish. However, the

integration over θ has a divergence near eiθ = −1, where CN (θ) has a peak of height
L2

2 , and moreover a further divergence is produced from the singular OPE of b and c near

q = eiθ = −1. This is the anticipated competition between the divergence of the integration
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of c∂σ21 and the vanishing factor produced when B acts on the sliver. To isolate the overall

behavior we make a substitution:

t ≡ L(q + 1),

s ≡ L(π − θ). (A.10)

Focusing on the leading large L behavior, (A.5) becomes

〈

φ, σ02
1

∂

[
c∂σ21,Ω

N
]
BΩNσ10

〉

=
i

4L2

∫ L(π−θ∞)

0

ds

2π

∫ 4

−4
dt

[
t2

4
− 4

]
1

1 + ( s4)
2

×
〈

f ◦ φ(0) σ02(eiθ∞)

[

c∂σ21

(

−e−is/L
)

b

(

−1 +
t

L

)]

σ01(e
−iθ∞)

〉

disk

+ subleading.

(A.11)

The matter component of the correlator is regular when L → ∞. The ghost component

has two terms: one from contractions of b, c with the probe vertex operator φ, and another

from contractions between b and c. The former term is regular for large L; since the overall

expression is multiplied by 1/L2, it does not contribute in the limit. The latter term

however has a singularity from the collision of b and c in the L→ ∞ limit. Computing the

OPE we find

〈

φ, σ02
1

∂

[
c∂σ21,Ω

N
]
BΩNσ10

〉

=
i

4L2

∫ ∞

0

ds

2π

∫ 4

−4
dt

[
t2

4
− 4

]
1

1 + ( s4)
2

× 1
is
L − t

L
︸ ︷︷ ︸

OPE

〈

f ◦ φ(0) σ02(eiθ∞) ∂σ21(−1)σ01(e
−iθ∞)

〉

disk
+ subleading,

(A.12)

where the term above the braces comes from the OPE. Computing the remaining correlator

produces an overall constant, which leaves

〈

φ, σ02
1

∂

[
c∂σ21,Ω

N
]
BΩNσ10

〉

=
(constant)

L

∫ ∞

0

ds

2π

∫ 4

−4
dt

[
t2

4
− 4

]
1

1 + ( s4)
2

1

is− t

+subleading. (A.13)

The pole from the bc OPE at s = t is integrable, so in total the state vanishes as 1/L. A

similar argument applies for the second term above the question mark in (A.4). Therefore

we recover the claimed Fock space expansion of the BCC projector.
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