
J
H
E
P
0
4
(
2
0
1
2
)
0
9
7

Published for SISSA by Springer

Received: February 13, 2012

Accepted: March 19, 2012

Published: April 19, 2012

Anomaly/transport in an Ideal Weyl gas

R. Loganayagama and Piotr Surówkab

aJunior Fellow, Harvard Society of Fellows, Harvard University,

Cambridge, MA 02138, U.S.A.
bTheoretische Natuurkunde, Vrije Universiteit Brussel and The International Solvay Institutes,

Pleinlaan 2, B-1050 Brussels, Belgium

E-mail: nayagam@physics.harvard.edu, piotr.surowka@vub.ac.be

Abstract: We study some of the transport processes which are specific to an ideal gas

of relativistic Weyl fermions and relate the corresponding transport coefficients to various

anomaly coefficients of the system. We propose that these transport processes can be

thought of as arising from the continuous injection of chiral states and their subsequent

adiabatic flow driven by vorticity. This in turn leads to an elegant expression relating the

anomaly induced transport coefficients to the anomaly polynomial of the Ideal Weyl gas.

Keywords: Holography and quark-gluon plasmas, Holography and condensed matter

physics (AdS/CMT)

ArXiv ePrint: 1201.2812

c© SISSA 2012 doi:10.1007/JHEP04(2012)097

mailto:nayagam@physics.harvard.edu
mailto:piotr.surowka@vub.ac.be
http://arxiv.org/abs/1201.2812
http://dx.doi.org/10.1007/JHEP04(2012)097


J
H
E
P
0
4
(
2
0
1
2
)
0
9
7

Contents

1 Introduction 1

2 The basic setup 5

3 Anomaly and transport in 2d Weyl gas 7

4 Adiabaticity of spectral flow 11

5 Chiral spectral current and anomaly 13

6 Solving the adiabaticity equation 15

7 Anomaly/transport in Ideal Weyl gas of arbitrary dimensions 16

8 Discussion 18

A Notes on Fermi-Dirac functions 21

B Anomaly polynomials 24

C Chiral magnetic effect in arbitrary dimensions 27

D Notation 29

1 Introduction

Anomalies are arguably among the most interesting phenomena to come out of studies of

quantum matter. Their importance lies in their robustness across various length/energy

scales — as one passes from one description of matter into another, anomaly matching ala

‘t Hooft ensures that the underlying anomalies of a theory survive in various disguises.

While this statement is relatively better understood within the realm of effective theo-

ries (as exemplified by the phenomenology of WZW term in particle physics and solid-state

physics), we have only a limited understanding of the role of anomalies in various finite tem-

perature/finite chemical potential setups. Any progress in the phenomenology of anomalies

is welcome especially given the important role of quantum anomalies and their associated

transport phenomena in fields ranging from solid-state physics to cosmology.
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To be more precise, we are concerned with the following situation: consider a quantum

system with a continuous symmetry1 which via Noether theorem corresponds to conserved

Noether currents. Consider gauging this symmetry by introducing a set of external non-

dynamical gauge fields. We will say the quantum system has an anomaly if in the presence

of such non-dynamical gauge fields the covariant Noether currents are no more conserved.

One can now consider instead turning on temperature/chemical potential for the Noether

currents and ask what novel processes are characteristic of a quantum system with under-

lying anomalies.

By now, such transport processes have been studied from various points of view — they

are known to be constrained by thermodynamics/adiabaticity in arbitrary dimensions [1–4],

the corresponding transport coefficients can be derived via a Kubo-like formula in 4d [5].

They are an established feature in various holographic fluid phases in CFTs dual to AdS3 [6]

and AdS5 [7–11] where the CFT anomalies are in one to one correspondence with the Chern-

Simons terms in the AdS bulk. The effect of Chern-Simons term for a U(1) gauge field

in arbitrary AdS2n+1/CFT2n was worked out in [3] — no analogous results are known for

gravitational Chern-Simons terms in higher AdS spacetimes.2

In 2d field theories, the relation between U(1) anomaly and transport is one the founda-

tions of modern theories of Hall effects and there is an analogous relation between thermal

transport and gravitational anomaly (see for example [14]). There are by now various

ways in which such transport processes in 4d free fermion theories have been derived —

some of them quite old [15–20] and others more recent [21–23]. Further, since 4d Weyl

fermions are systems with Berry phases, these transport processes have close links to the

general theory of Berry phases and transport [24, 25] and in particular transport in Weyl

semi-metals [26, 27]. The transport processes linked to anomalies have also made their

appearance in discussions about classification of topological insulators [28, 29].

At present, the most general set of results were derived via thermodynamic arguments

employing adiabaticity [3, 4]. These results can be summarized as follows:3 In a fluid the

energy, charge and entropy transport are given by

Tµν ≡ εuµuν + pPµν + qµanomu
ν + uµqνanom + Tµν

diss

Jµ ≡ nuµ + Jµ
anom + Jµ

diss

Jµ
S ≡ suµ + Jµ

S,anom + Jµ
S,diss

(1.1)

1To simplify our discussion, we will assume this global symmetry is not spontaneously broken - in other

words, we are interested in transport processes in normal fluid not superfluids. Though various ideas that

we discuss in the article have their counterparts in superfluids, we believe the phenomenology of anomaly-

induced transport in superfluids is sufficiently different to merit a separate discussion. There is by now a

vast literature on such transport phenomena which are beset with their own subtleties. Since it would be

too tedious/distracting to compare and contrast the effect of anomalies in the two situations, we will choose

entirely focus on normal fluids in what follows.
2It would be interesting to construct and study rotating solutions in AdS2n+1 with pure/mixed grav-

itational Chern-Simons terms and link the proposed modification of Wald entropy [12, 13] against the

anomaly-induced entropy transport in the dual CFT.
3We will use the notations of [4] in the following. See section 2 and the appendix D for a discussion of

the basic setup and notations.
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where uµ is the velocity of the fluid under consideration which obeys uµuµ = −1 when

contracted using the spacetime metric gµν . Further, Pµν ≡ gµν + uµuν , pressure of the

fluid is p and {ε, n, s} are the energy,charge and the entropy densities respectively. We

have denoted by {qµanom, J
µ
anom, J

µ
S,anom} the anomalous heat/charge/entropy currents and

by {Tµν
diss, J

µ
diss, J

µ
S,diss} the dissipative currents.

We are primarily interested in the anomalous currents in what follows. It is convenient

to work with forms — let {q̄anom, J̄anom, J̄S,anom} be the Hodge duals of the corresponding

currents.4 Using adiabaticity the following statements can be made in flat spacetime [4]

1. All these currents are derivable from a single Gibbs current Ḡanom which describes

the transport of Gibbs free energy G ≡ E − TS − µQ in the fluid. We have the

following thermodynamic relations

J̄anom = −
∂Ḡanom

∂µ

J̄S,anom = −
∂Ḡanom

∂T

q̄anom = Ḡanom + T J̄S,anom + µJ̄anom

(1.2)

2. Ḡanom is determined in terms of the fluid vorticity 2-form ω , the rest-frame magnetic

field 2-form B and a (n + 1)thdegree polynomial Fω
anom[T, µ] in temperature T and

chemical potential µ (where d = 2n is the number of spacetime dimensions). The

explicit expression for Ḡanom is given by5

Ḡanom =
1

(2ω)2

{

Fω
anom[T (2ω), B + µ(2ω)]−

[

Fω
anom[T (2ω), B + µ(2ω)]

]

ω=0

−ω
[ δ

δω
Fω
anom[T (2ω), B + µ(2ω)]

]

ω=0

}

∧ u

(1.3)

3. The polynomial Fω
anom[T, µ] obeys two constraints — first, it has no term linear in T .

Second, its value at zero temperature is completely determined by the U(1) anomaly

in the system.

4. To these statements, we can add the following statement which does not follow from

thermodynamic arguments in [4] but nevertheless seems to be true across various sys-

tems — the T 2 coefficient in 2d and 4d seem to be related to gravitational anomalies

(see for example [11, 23] for results in 4d.

This summary encompasses everything that is known till now about these transport

processes just from flat spacetime thermodynamics alone. But, this is unsatisfactory for

4Throughout this article, we will use overbars to denote Hodge duals.
5This is just a convenient rephrasing of the formulae/results presented in the appendix A of [4]. In

particular, we have the following relation relating the functions appearing there to the functions appearing

here

F
ω
anom[T (2ω), B + µ(2ω)] = f[B + µ(2ω)] +

1

2
T

2(2ω)2g[B + µ(2ω), Tω].
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various reasons — first of all, as we had mentioned various gravitational anomalies of the

system show up even in the flat spacetime transport and this is mysterious even from

the point of view of flat spacetime thermodynamics. Second, we do not know how these

relations to gravitational anomalies generalize to higher dimensions. Further, a more mi-

croscopic understanding of these transport processes would clearly be useful for various

reasons — for example, we would like to study these transport processes away from equi-

librium/in the presence of disorder/ in the lattice analogues of continuum Weyl fermions.

Our aim in this article is to begin addressing these questions in the simplest system exhibit-

ing such transport — free fermion theory in even spacetime dimensions d = (2n−1)+1 with

a collection of fermions with different chiralities χ
d=2n

and charges q under some specific

U(1) global symmetry of the free theory.

After establishing the basic setup/notations in the section 2, we proceed to study

in detail the simplest case of 1 + 1d chiral fermions in flat spacetime in section 3. We

then translate the thermodynamic arguments of adiabaticity in flat spacetime into a more

microscopic set of equations which one can take as an alternate starting point for the

2d analysis and which easily generalizes to higher dimensions. We propose the following

intuitive picture for how the transport phenomena linked to anomaly arise: first of all, we

propose that these transport processes can be thought of as arising from a certain chiral

density of states and their spectral flow. In a continuum description, we capture this by a

chiral spectral current J µ
q (x,Ep) whose time component is the chiral density of 1-particle

states with charge q and the rest-frame energy Ep and whose spatial components tell us

about the flow of such states as the fluid flows. In section 4, we argue that adiabaticity

can be simply seen as a conservation type equation for this chiral spectral current.

This is of course a very well-known aspect of anomalies whereby the basic process driv-

ing the anomaly is the continuous injection of chiral zero modes by the external magnetic

field (which we will assume to be small and slowly varying) into the system. We make this

precise in section 5 by simply matching the microscopic discussion of adiabaticity to the

thermodynamic discussion of adiabaticity. This matching gives a boundary condition for

the conservation equation for the chiral spectral current by giving the rate at which chiral

modes are injected into the fluid.

J̄q|Ep=0 =
χ

d=2n

2π

(

qB

2π

)n−1

∧
u

(n− 1)!
(1.4)

These modes, once injected by the magnetic field are then convected along with the fluid

flow and the adiabaticity is just the statement that there is no more creation/annihilation

of states at finite energies.

Armed with this intuitive picture, we proceed in section 6 to solve the conservation

equation in flat spacetime. This results in a simple expression for the chiral spectral current

J̄q =
χ

d=2n

2π

(

qB + 2ωEp

2π

)n−1

∧
u

(n− 1)!
(1.5)

where χ
d=2n

is the chirality of the 1-particle state. This solution tells us how the states of

different energies and charges flow hence solving once for all the spectral flow problem in

– 4 –
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an arbitrary fluid flow (in flat spacetime). We now notice a remarkable result — if we take

the external field strengths to zero B → 0, there is no more an injection of new zero-energy

states into the fluid, but the chiral spectral flow is still non-zero even if the anomaly is

turned off ! In this case, the vorticity is sufficient to drive the chiral spectral current and

this is the basic reason why rotational response encodes information about the anomalies

in the system — both gravitational and non-gravitational.

In the next section 7, we add up the Gibbs-free energy contribution of each 1-particle

state to get the anomaly-induced free-energy current Ḡanom. We find that Ḡanom is of the

form given in eq. (1.3) which was derived in [4] by thermodynamic considerations. While

this is not surprising, we find the the polynomial Fω
anom is derived by a very simple formula

from the anomaly polynomial of the system. We get

Fω
anom = Panom

(

F 7→ µ, p
1
(R) 7→ −T 2, p

k>1
(R) 7→ 0

)

(1.6)

where Panom is the anomaly polynomial of the system written in terms of the U(1) field

strength F and the kth Pontryagin forms6 of the spacetime curvature p
k
(R). The above

formula gives a simple replacement rule by which one can go from the anomaly polynomial

to the polynomial Fω
anom.

Note that this a generalization of the observation made in [23] that T 2 coefficient in 4d

free theories seem to be related to gravitational anomalies. Since the 4d relation continues

to hold in strongly coupled holographic phases too [11], it is tempting to conjecture that the

above replacement rule would continue to hold even beyond free theories. We emphasize

that this is quite a non-trivial conjecture and what we have is a preliminary evidence that

it might be true. We discuss this along with other further directions in our discussion

section 8. We collect various useful results in our appendices. In the next section, we begin

by explaining our basic setup and defining our notation - most of it being quite standard

and elementary, the reader should feel free to skim through the section just noting various

remarks on notation.

2 The basic setup

The main system we will be concerned about throughout this article is a system of free

relativistic fermions at finite temperature and chemical potential in a flat spacetime with

the spacetime dimension d = 2n = (2n − 1) + 1 being even. Every particle state occurs

along with its anti-particle state and we will call such a particle/anti-particle pair as a

species. Hence, we will denote by
∑

species the summation where each particle/anti-particle

pair contributes a single term to the sum. This should be distinguished from
∑

F which

denotes the summation where each particle (or anti-particle) state contributes separately

to the sum.

Among the large symmetry that the free theory enjoys, we will choose a specific U(1)

symmetry for which we will turn on the chemical potential µ and put the system at a

finite temperature T (we will use the letter β ≡ 1/T to denote the inverse temperature).

6See appendices B for definitions of various quantities related to anomaly polynomials.
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The thermodynamic T and µ are of course defined on a local rest frame defined via a unit

time-like vector uµ. The thermodynamic potential appropriate to such a grand-canonical

description is the Gibbs free-energy density G ≡ ε−Ts−µn where ε, s, n are the rest-frame

energy density, entropy density and the charge density respectively. The first law takes the

form dG = −sdT − ndµ.

For a free theory, the Gibbs free-energy is obtained by simply multiparticling contri-

bution from the 1-particle sector. We will denote the Gibbs free-energy contribution of a

fermionic state with a charge q and rest frame energy Ep by gq. Hence

gq ≡ −
1

β
ln
[

1 + e−β(Ep−qµ)
]

The occupation of a given 1-particle fermionic state is given by the Fermi-Dirac distribution

denoted by fq

fq ≡
1

eβ(Ep−qµ) + 1

The contribution of a 1-particle state to the entropy is given by the negative of the Boltz-

mann’s H-function which for fermionic states takes the form

Hq ≡ fq ln fq + (1− fq) ln (1− fq)

Using the standard terminology , we will call a state with slowly varying T, µ, uµ with

the local density matrix being close to the thermal density matrix as an Ideal gas. Since

the constituents are Weyl fermions, we will call this an Ideal Weyl gas. In this article, we

will be concerned about a specific subset of transport processes which are linked to various

anomalies in the ideal Weyl gas. Before proceeding let us dispose of a specific technicality:

as is well known, in the strictly non-interacting limit, all the dissipation length/time scales

diverge which in turn means that dissipative transport coefficients like viscosity also diverge

in this limit. While this is true, this shall not worry us too much since the effects that we are

looking for are non-dissipative and are not plagued by such ‘free-theory’ infinities. While we

expect addition of interactions/dissipation would not modify our results (this expectation is

partially justified by various existent calculations in strongly coupled holographic phases),

it would be nice to explicitly prove this statement.

Having addressed that technicality, let us continue: we want to study such an ideal

Weyl gas in presence of non-dynamical background electric and magnetic fields. Let F be

the field-strength 2-form, we define the rest frame electric 1-form via Eµ ≡ Fµνu
ν . We can

then do an electric-magnetic decomposition

Fµν − [uµEν − Eµuν ] ≡ Bµν (2.1)

or in the language of forms

F = B + u ∧ E (2.2)

where B is the rest-frame magnetic 2-form completely transverse to uµ, i.e., Bµνu
ν = 0.

We will also use the standard decomposition of the velocity gradients

Dµuν = σµν + ωµν − uµaν +
θ

d− 1
Pµν (2.3)

– 6 –
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in terms of the shear strain rate σµν , the vorticity ωµν , the acceleration aµ and the expansion

rate θ of the fluid. Further Pµν ≡ gµνuµuν as before. This in particular means the exterior

derivative of the velocity 1-form has the decomposition

Du = 2ω − u ∧ a (2.4)

where ω is the vorticity 2-form.

Before we enter the main argument of the paper, we will make some comments re-

garding our conventions for chirality in higher dimensions. Consider the 1-particle states

which are given by the solutions of the Weyl equation of appropriate chirality (which is

just the massless Dirac equation with the opposite chirality projected out). We will define

our conventions for chirality now by essentially equating it to the helicity. To do this, let

us divide the 2n − 1 spatial directions into a direction x1 and n − 1 planes where the kth

plane is the (xi2k , xi2k+1
) plane where k = 1, . . . , n− 1.

Consider first the positive frequency solutions of the Weyl equation. Further we will

consider only the solutions with only p0 > 0, p1 6= 0 — all other components of momentum

being zero and the spin along kth plane being Si2ki2k+1
≡ 1

2σk with σk = ±1. Any other

solution can be obtained by rotating this solution or by linear combinations thereof. For

these solutions, we will assign the chirality via their helicity

χ
d=2n

≡ sign(p1)
n−1
∏

k=1

σk

For a Weyl equation of a particular chirality χ
d=2n

only the σk obeying the above equation

are allowed. When n = 1 (when d = 1 + 1d) this gives a single state with the sign of p1
fixed. For n ≥ 2, we get 2n−2 states with p1 being arbitrary.

We now turn to the negative frequency solutions which are complex conjugates of

positive frequency anti-particle solutions. The complex conjugate of a Weyl spinor of

chirality χ
d=2n

is another Weyl spinor of chirality (−1)n−1χ
d=2n

. Hence, for corresponding

to every particle state above we get an anti-particle state with chirality (−1)n−1χ
d=2n

. We

will call the Weyl fermions with positive chirality as left fermions and those with negative

chirality as right fermions. This summarizes the basic definitions needed for the rest of the

paper. The reader can find a table of notation in the appendix D for ready reference.

3 Anomaly and transport in 2d Weyl gas

Before trying to tackle the case of a Weyl gas in higher dimensions, it is instructive to work

out the simplest case of 1 + 1 dimensions. This is a very well-studied system and in some

sense we will not have anything new7 to add except for a way of looking at the standard

results which will prepare us for the more subtle effects in higher dimensions. With this

objective in mind, we will focus on this simple case in some detail.

We will begin by considering a single species of a free left Weyl fermion in 1 + 1

dimensions with charge q. We will assign this fermion a chirality χ
d=2

= +1. The anti-

particle of this fermion is again a left Weyl fermion with charge −q. This follows from the

7See for example [30] for a different take on anomaly/transport in 2d fluids.

– 7 –



J
H
E
P
0
4
(
2
0
1
2
)
0
9
7

general rule that in (2n − 1) + 1d the chirality of the anti-particle is (−1)n+1 times the

chirality of the particle.

We are interested in a gas of such Weyl fermions at a finite temperature T and chemical

potential µ. These quantities are of course defined in a center of mass frame of the ideal

Weyl gas — let this frame be defined by a 1 + 1-d unit time-like vector uµ which we will

take it to be constant. It is this uµ which in the hydrodynamic description will describe

the fluid velocity.

The question we want to address is this — what is the hydrodynamic description of

such an ideal gas? We will first give a naive answer to this question which will later correct.

The conventional intuition is that this system behaves like an ideal fluid with the

following naive constitutive relations for energy/charge/entropy currents

Tµν
naive = εuµuν + p (gµν + uµuν)

Jµ
naive = nuµ

Jµ
S,naive = suµ

(3.1)

where the energy density ε, pressure p, charge density n and entropy density s can be

calculated from the usual statistical mechanics of an ideal fermion gas. We will calculate

this in a moment, but before that we will argue that the above form is definitely incomplete!

The reason is simple — a theory of a free Weyl fermion is a holomorphic 2d CFT

and hence only the holomorphic components of the currents can be non-zero. The above

relations are in clear contradiction with holomorphy — for one, the charge/entropy currents

are time-like rather than null as would be predicted by holomorphy. So we are led to the

surprising statement that conventional semi-classical intuition about the ideal gas is in

direct contradiction with holomorphy in this simple system. Having concluded thus, let us

actually calculate carefully what the actual constitutive relations should be.

A left Weyl fermion field in 2d is just a single component complex field ψ which obeys

the Weyl equation (or the massless Dirac equation)

[∂t + ∂x]ψ = 0

This follows from the particular choice for the Gamma matrices {Γt,Γx} = {−iσy, σx}. We

can repeat the same exercise for the right Weyl fermion with χ
d=2

= −1 where we just flip

the sign of the ∂x term. In the following we will write our formulae in such a way that the

expressions for the right Weyl fermion can be obtained by putting χ
d=2

= −1. Hence we

write the Weyl equation as

[∂t + χ
d=2
∂x]ψ = 0

This equation is easily solved - solutions are just plane-waves that travel from left to right

in the space

ψ =

∫ ∞

0

dEp

2π

1
√

2Ep

[

ape
ip.x + b†pe

−ip.x
]

pµ=Ep{1,χd=2
}

where a†p and b
†
p are the creation operators for the particle and the anti-particle respectively

and Ep is the energy in some arbitrary frame.

– 8 –
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Let us work in the rest frame define by uµ from now on — so we take uµ = {1, 0}. Let

ǫµν be the completely antisymmetric tensor in 2d with ǫtx = 1 which implies ǫµνuν = {0, 1}.

The Weyl equation is

[uµ + χ
d=2
ǫµνuν ] ∂µψ = 0

and the plane-wave solutions above are

ψ =

∫ ∞

0

dEp

2π

1
√

2Ep

[

ape
ip.x + b†pe

−ip.x
]

pµ=Ep[uµ+χ
d=2

ǫµνuν]

We want to populate the states of these fermions/anti-fermions in this frame according to

the Fermi-Dirac distribution and calculate the conserved currents in the thermal ensemble.

This gives

Tµν =
∑

species

∫ ∞

0

dEp

2π
(fq + f−q)Ep [u

µ + χ
d=2
ǫµαuα]

[

uν + χ
d=2
ǫνλuλ

]

= εuµuν + p (gµν + uµuν) + qµanomu
ν + qνanomu

µ

Jµ =
∑

species

∫ ∞

0

dEp

2π
(qfq − qf−q) [u

µ + χ
d=2
ǫµαuα]

= nuµ + Jµ
anom

Jµ
S = −

∑

species

∫ ∞

0

dEp

2π
(Hq +H−q) [u

µ + χ
d=2
ǫµαuα]

= suµ + Jµ
S,anom

(3.2)

where we have used the relation χ
d=2
ǫµαuα χ

d=2
ǫνλuλ = gµν + uµuν . We have collected

together the deviations from the conventional hydrodynamic expectation under the objects

with the subscript anom. We get the conventional expressions which could have been

naively guessed

ε = p =
∑

species

∫ ∞

0

dEp

2π
(fq + f−q)Ep =

∑

F

∫ ∞

0

dEp

2π
fqEp

n =
∑

species

∫ ∞

0

dEp

2π
(qfq − qf−q) =

∑

F

∫ ∞

0

dEp

2π
qfqEp

s = −
∑

species

∫ ∞

0

dEp

2π
(Hq +H−q) = −

∑

F

∫ ∞

0

dEp

2π
Hq

(3.3)

where the sum is over every fermionic species with particles and antiparticles counted

separately. The anomalous corrections are given by

qµanom =
∑

F

χ
d=2
ǫµαuα

∫ ∞

0

dEp

2π
fqEp

Jµ
anom =

∑

F

χ
d=2
ǫµαuα

∫ ∞

0

dEp

2π
qfq

Jµ
S,anom = −

∑

F

χ
d=2
ǫµαuα

∫ ∞

0

dEp

2π
Hq

(3.4)
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At this point, the curious reader might wonder what happens to these relations in the

case of a Dirac fermion. The massless Dirac fermion is just a left Weyl fermion of charge q

along with a right Weyl fermion of charge q. In this case, it is evident from the expressions

above that the conventional terms add up and the anomalous terms cancel out. Hence the

naive guess turns out to be correct for a massless Dirac fermion. It is not very difficult to

convince oneself by explicit computation that the naive guess works even for the massive

Dirac fermion. This then is the first lesson from this exercise: there are transport processes

in hydrodynamics to which only chiral species contribute.

Since we will be studying these anomalous contributions in more detail — let us sim-

plify them by writing the currents above as 1-forms {qanom, Janom, JS,anom}. Further take

a Hodge-dual on both sides (which we will denote by an overbar) to remove the ǫµν to get

q̄anom =
∑

F

∫ ∞

0

dEp

2π
fqEp χd=2

u

J̄anom =
∑

F

∫ ∞

0

dEp

2π
qfq χd=2

u

J̄S,anom = −
∑

F

∫ ∞

0

dEp

2π
Hq χd=2

u

(3.5)

These are easily calculated from the Gibbs free-energy current

Ḡanom =
∑

F

∫ ∞

0

dEp

2π
gq χd=2

u

J̄anom = −
∂Ḡanom

∂µ
, J̄S,anom = −

∂Ḡanom

∂T

and q̄anom = Ḡanom + T J̄S,anom + µJ̄anom

(3.6)

This means we basically have to evaluate only one thermal integral. This can be done by

pairing up the particle and anti-particle contribution and using the identity8

∫ ∞

0

dEp

2π
(gq + g−q) = −2π

[

1

2!

(qµ

2π

)2
+
T 2

4!

]

This gives

Ḡanom = −2π





µ2

2!(2π)2





∑

species

χ
d=2
q2



+
T 2

4!





∑

species

χ
d=2







u (3.7)

where the sum is performed over the fermionic species with a particle-antiparticle pair

contributing to a single term in the sum. Now we note a crucial fact: the anomalous

contribution is completely proportional to the U(1) anomaly coefficient
∑

species χd=2
q2

and the Lorentz anomaly coefficient
∑

species χd=2
. So, we come to the second lesson of

this exercise: The anomalous transport is completely determined by the anomalies in the

system. Hence, we will call such a transport as anomaly-induced.

8See appendix A for a derivation of this/related identities.
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Let us make this more precise — the anomaly coefficients of a system are neatly

summarized by a polynomial in gauge field strength F and spacetime curvature R. For a

collection of 2d Weyl fermions the anomaly polynomial is given by (see the appendix B for

a review of anomaly polynomials for fermions)

Panom(F,R) ≡ −2π





F 2

2!(2π)2

(

∑

species

χ
d=2
q2
)

−
p
1
(R)

4!

(

∑

species

χ
d=2

)





2d

(3.8)

where p
1
(R) is the first Pontryagin class of spacetime curvature defined as

p
1
(R) ≡ −

1

2(2π)2
Ra1

a2 ∧Ra2
a1 = −

R2

(2π)2

where we use the notation

Rk ≡
1

2
Ra1

a2 ∧Ra2
a3 . . .Rak

a1

Using this, we can write a simple rule to get from the anomaly polynomial to the

anomaly-induced Gibbs free current

Ḡanom = u Panom

(

F 7→ µ , p
1
(R) 7→ −T 2

)

(3.9)

This elegant result tells us that one can just read off the anomaly-induced Gibbs-free current

of an ideal Weyl gas in 2d directly from its anomaly polynomial. Let us now compare this

form with eq. (1.3) which was derived in [4] by thermodynamic arguments. By inspection,

it is clear that the above equation follows from (1.3) if we take

Fω
anom = Panom

(

F 7→ µ , p
1
(R) 7→ −T 2

)

(3.10)

Hence, there is a straightforward algorithm in 2d free fermion theories which takes us from

the anomaly polynomial of the theory to the polynomial Fω
anom in T and µ which determines

the anomaly-induced transport.

One of the main aims of the rest of this article is to generalize this result to arbitrary

even dimensions. However, in higher dimensions one does not have a powerful principle like

holomorphy to help us and the anomaly induced transport is hence a more subtle effect to

derive. So we will spend the next section to formulate a principle which will help us find

the higher dimensional analogues of the above result.

4 Adiabaticity of spectral flow

One of the crucial lessons one draws from the previous section is that there is a single Gibbs

free energy current from which energy/charge/entropy currents could be derived. We will

make the reasonable assumption that this continues to hold true in higher dimensions. In

2d we derived the expression for this current in terms of a thermal integral

Ḡanom =
∑

F

∫ ∞

0

dEp

2π
gq χd=2

u (4.1)
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and a natural generalization of the above expression is

Ḡanom =
∑

F

∫ ∞

0
dEpJ̄q gq (4.2)

where J̄q should be a 2n − 1 form in d = (2n − 1) + 1 dimensions since it is proportional

to the Hodge dual of the Gibbs current 1-form Gµ
anom. Taking a Hodge dual on both sides,

we can remove the overbars and write

Gµ
anom =

∑

F

∫ ∞

0
dEpJ

µ
q gq (4.3)

Our task is to understand better the physical meaning of J µ
q and hence formulate some

sort of an equation for it which then can be solved.

So what is J µ
q ? It is clear from the way it occurs in the expression for Gibbs-current

that J µ
q is a current whose time-component is just the 1-particle chiral density of states

participating in anomalous transport. Hence, we will call it the chiral spectral current from

now on. It tells us how a subset of states related to anomaly flow as the whole fluid(the

ideal Weyl gas in this case) flows. In 2d, we have

J µ
q |2d = χ

d=2

1

2π
ǫµνuν

Hence, two identical states which differ only in their chirality have opposite chiral spectral

currents. We will assume that this is true in higher dimensions too J µ
q |d=2n ∼ χ

d=2n
hence

justifying the adjective chiral.

In general, we expect the chiral spectral current to be a function of both spacetime

co-ordinates x and the local rest frame energy Ep i.e., J µ
q = J µ

q (x,Ep) which emphasizes

the fact that the chiral spectral current at different energies could be different. Further, the

subscript q denotes the fact that 1-particle states with different charges can have different

chiral spectral currents.

With this understanding, we now turn to the question — how do we determine the

chiral spectral current J µ
q for an ideal Weyl gas? Our crucial tool would be adiabaticity —

as was argued by authors of [3, 4] (which is a generalization of a d = 4 argument in [1]) the

anomaly induced transport in arbitrary dimensions is heavily constrained by adiabaticity.

At the level of states, adiabaticity is basically a statement that the states responsible for

anomaly induced transport do not get created or annihilated9 as they move up or down in

the energy or in case of localized states as they move around in spacetime. This assumption

as stated is easily formulated in terms of a chiral spectral current — it is just the continuity

equation for the chiral spectral current in the (x,Ep) space,i.e.,

∇µJ
µ
q +

∂

∂Ep
J E
q = 0 (4.4)

where J E
q (x,Ep) is the current of chiral states in the energy direction — which is the

density of states times rate at which their energies are increasing.

9Except at zero energy due to the anomaly as we will see below.
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For single particle states with the charge q — there are two forces which lead to a

change in energy. First is the rest-frame electric force — the work done by the electric

force is just the electric field times the charge current EµqJ
µ
q . Second is the pseudo force

(since the rest frame of the fluid is in general accelerating) given by −Epaµ where aµ is

the acceleration of the fluid. The work done by it is −aµ times the energy current i.e.,

−aµEpJ
µ
q . Combining these together, we get

J E
q = EµqJ

µ
q − aµEpJ

µ
q (4.5)

Taking Hodge duals back again we get the equation that we were after

DJ̄q +
∂

∂Ep
J̄ E
q = 0 with J̄ E

q = (qE − Epa) ∧ J̄q (4.6)

It is easily checked that the 2d result J̄q =
1
2πχd=2

u solves the above equation.

5 Chiral spectral current and anomaly

A curious reader might wonder how the equation we just derived relates to the adiabaticity

assumption as it appears in [1, 3, 4] where the discussion was entirely macroscopic with no

reference to microscopic states. Further, we have not input anywhere the information about

the anomaly in the above equations. In this section we will show that those macroscopic

equations could be thought of as arising from the above microscopic equation. Further this

would also clarify how anomalies are related to the chiral spectral current.

The flux of density of states is associated with the following energy/charge/entropy

currents

q̄anom =
∑

F

∫ ∞

0
dEpJ̄qEpfq

J̄anom =
∑

F

∫ ∞

0
dEpJ̄qqfq

J̄S,anom = −
∑

F

∫ ∞

0
dEpJ̄qHq

(5.1)

For a general system with anomalies, the statement that these transport processes

have to be adiabatic is equivalent to the following equation (as shown in [4])

Dq̄anom + a ∧ q̄anom − E ∧ J̄anom = TDJ̄S,anom + µ
[

DJ̄anom − Ā[F ]
]

(5.2)

where Ā[F ] is the anomaly 2n-form in a given theory. This equation above assumes that

one is working in flat spacetime and hence all gravitational anomalies are turned off. We

will refer the reader to [4] for a proper derivation of this equation and its consequences for

a general system. Here we are mainly interested in exploring what it means for the chiral

spectral current. Substituting the above expressions for the various currents and using the
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following relations

fq ≡
1

eβ(Ep−qµ) + 1
=

∂gq
∂Ep

Epfq + THq − qµfq = gq

EpDfq + TDHq − qµDfq = 0

(5.3)

the adiabaticity equation of [4] assumes an especially simple form

∑

F

∫ ∞

0
dEp

[

gqDJ̄q − J̄ E
q

∂gq
∂Ep

]

+ µĀ = 0 (5.4)

where as before J̄ E
q = (qE − Epa) ∧ J̄q. In this form, the relation to the microscopic

equation that we had derived before is evident. To see this we should integrate by parts

— this should be done carefully since the boundary contributions do not vanish. We get

∑

F

∫ ∞

0
dEp gq

[

DJ̄q +
∂

∂Ep
J̄ E
q

]

+ µĀ−
∑

F

[

gqJ̄
E
q

]Ep=∞

Ep=0
= 0 (5.5)

We can now use the continuity equation for the chiral spectral current to set the integrand

inside the integral to zero.

Now we turn to the boundary contributions: first the UV contribution — gq falls

exponentially as the rest-frame energy Ep → ∞ and it is reasonable to assume that the

growth of J̄ E
q is slow enough that the contribution from Ep = ∞ is zero.10 This is

consistent with the fact that anomalies and their related transport processes are not UV-

sensitive despite the fact that historically they were discovered in calculations where one

should renormalize UV-sensitive quantities.

Now we turn to the IR contribution — there is no good reason for the boundary

contribution from Ep = 0 to vanish and in fact we need it to balance the contribution from

the anomaly. Equating the anomaly to this IR contribution, we get

Ā = −
1

µ

∑

F

gq(Ep = 0) J̄ E
q (Ep = 0) (5.6)

This is an interesting equation which is a version of the well-known relation between the

spectral flow of chiral zero energy states and the anomaly in the system. To see how this

might work, we will now write the anomaly term also as a sum. For a set of charged Weyl

fermions in d = (2n− 1) + 1 dimensional flat spacetime, the covariant anomaly is given by

Ā[F ] = −
1

n!

(

F

2π

)n
∑

species

χ
d=2n

qn+1
(5.7)

where the sum runs over every species with one term appearing in the sum for every

particle-antiparticle couple.11

10In fact, if J̄
E
q did grow exponentially with energy the various integrals we have been writing down

would all be UV divergent and we would have to worry how to make sense out of them. We will assume

that this is not the case and this assumption can be justified in explicit examples.
11It does not matter which among that couple is chosen, since χ

d=2n
qn+1 is the same for both —

this follows from the fact that if the particles charge and chirality is (q, χ
d=2n

) then the antiparticle’s

charge/chirality is (−q, (−1)n−1χ
d=2n

) .
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Let us divide the field-strength F appearing in the above equations into electric and

magnetic fields in the rest frame of the fluid. The rest frame electric field is Eµ = uνFµν

which we can think of as a 1-form E. The rest frame magnetic field is a 2-form obtained

by subtracting the electric part from F ,

B ≡ F − u ∧ E

where u = uµdx
µ is the velocity 1-form. Substituting F = B − E ∧ u into the anomaly

above we get

µĀ[F ] =
∑

species

χ
d=2n

qE ∧
qµ

2π

(

qB

2π

)n−1

∧
u

(n− 1)!
(5.8)

Now use the fact that gq(Ep = 0)− g−q(Ep = 0) = −qµ to get

Ā[F ] = −
1

µ

∑

F

gq(Ep = 0)χ
d=2n

qE

2π
∧

(

qB

2π

)n−1

∧
u

(n− 1)!
(5.9)

where the sum now runs over all the fermions with particles and antiparticles counted

separately. Comparing this with (5.6), we get for each particle

J̄ E
q (Ep = 0) = qE ∧ J̄q(Ep = 0) =

qE

2π
∧ χ

d=2n

(

qB

2π

)n−1

∧
u

(n− 1)!

or

J̄q(Ep = 0) =
χ

d=2n

2π

(

qB

2π

)n−1

∧
u

(n− 1)!
(5.10)

This flow of density of states at zero energy has a direct explanation in terms of Landau

level physics in the local rest frame of the fluid. We review this connection in more detail

in the appendix C and relate it to the chiral magnetic effect in ideal Weyl gas. Hence, to

conclude the following equations

DJ̄q +
∂

∂Ep
J̄ E
q = 0 with

J̄ E
q = (qE − Epa) ∧ J̄q

J̄q(Ep = 0) =
χ

d=2n

2π

(

qB

2π

)n−1

∧
u

(n− 1)!

(5.11)

implies for an ideal Weyl gas the macroscopic adiabaticity condition in eq. (5.2). Our

next task is to solve these equations for an arbitrary fluid flow which we will do in the

next section.

6 Solving the adiabaticity equation

We now seek a solution of eq. (5.11) for an arbitrary fluid flow of an ideal Weyl gas. We

begin by decomposing the exterior derivative of the velocity into its vorticity part and the

acceleration part

Du = 2ω − u ∧ a (6.1)
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where ω is the vorticity 2-form with ωµνu
ν = 0. We will now make an ansatz for the

solution of the form

J̄q =
χ

d=2n

(2π)n

n−1
∑

k=0

αk
(2ωEp)

k

k!
∧

(qB)n−1−k

(n− 1− k)!
∧ u (6.2)

This ansatz is motivated by the solution to the macroscopic adiabaticity equations pre-

sented in [4] which took the form of a polynomial in 2-forms B and ω. The powers of Ep

are then fixed by dimensional analysis. The numerical coefficients are arranged such that

the Ep = 0 boundary condition fixes α0 = 1. We now want to substitute this ansatz into

the eq. (5.2) to fix other αk s. Using the following identities [4]

Du = 2ω + a ∧ u

D(qB) ∧ u = −qE ∧ 2ω ∧ u

D(2ω) ∧ u = a ∧ 2ω ∧ u

(6.3)

we get

DJ̄q = −
χ

d=2n

(2π)n

n−1
∑

k=0

[

kαk−1
qE

Ep
− (k + 1)αka

]

∧
(2ωEp)

k

k!
∧

(qB)n−1−k

(n− 1− k)!
∧ u (6.4)

where we have in addition used the fact that any 2n form made of purely spatial forms B

and ω is zero. On the other hand

∂

∂Ep
J̄ E
q =

χ
d=2n

(2π)n

n−1
∑

k=0

[

kαk
qE

Ep
− (k + 1)αka

]

∧
(2ωEp)

k

k!
∧

(qB)n−1−k

(n− 1− k)!
∧ u (6.5)

and demanding that the sum of the last two equations should vanish sets αk = αk−1 for

all k ≥ 1. Along with the boundary condition at Ep = 0 which sets α0 = 1 this determines

αk = 1 for all k. Substituting this into our ansatz, we finally get

J̄q =
χ

d=2n

2π

(

qB + 2ωEp

2π

)n−1

∧
u

(n− 1)!
(6.6)

This expression is the central result of the article - it is a formula for how the chiral states

of a given energy flow when the fluid flows. Since we have not invoked any equations of

motion for the fluid in our derivation, this is an ‘off-shell’ solution valid for arbitrary fluid

flows — a microscopic analogue of the off-shell solution derived in [4]. In the rest of the

article we will explore various consequences of the above formula.

7 Anomaly/transport in Ideal Weyl gas of arbitrary dimensions

We begin by substituting for J̄q in the expression for Ḡanom

Ḡanom =
∑

F

∫ ∞

0
dEpJ̄q gq

=
∑

F

χ
d=2n

∫ ∞

0

dEp

2π

(

qB + 2ωEp

2π

)n−1

∧
u

(n− 1)!
gq

(7.1)
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To evaluate this integral, we will again pair the particles and anti-particles together and

use the fact that if the charge/chirality of a particle is (q, χ
d=2n

) then the charge/chirality

of the anti-particle is (−q, (−1)n−1χ
d=2n

).

Ḡanom

=
∑

species

∫ ∞

0

dEp

2π

[

gq

(

qB + 2ωEp

2π

)n−1

+ (−1)n−1g−q

(

−qB + 2ωEp

2π

)n−1
]

∧
χ

d=2n
u

(n− 1)!

=
∑

species

∫ ∞

0

dEp

2π

[

gq

(

qB + 2ωEp

2π

)n−1

+ g−q

(

qB − 2ωEp

2π

)n−1
]

∧
χ

d=2n
u

(n− 1)!
(7.2)

To proceed further, it is convenient to employ a formal trick — the trick is to construct

a generating function which will in one sweep contain in its Taylor expansion Ḡanom of

arbitrary even dimensions. To this end let us multiply the above expression by τn−1 where

τ is a formal parameter and perform a sum over all integers n ≥ 1. We get

∞
∑

n=1

τn−1
(

Ḡanom

)

d=2n

=
∞
∑

n=1

∑

species

∫ ∞

0

dEp

2π

[

gq

(

qB + 2ωEp

2π

)n−1

+ g−q

(

qB − 2ωEp

2π

)n−1
]

∧
τn−1χ

d=2n
u

(n− 1)!

=
∑

species

e
τ
2π

qB

∫ ∞

0

dEp

2π

[

gqe
τ
2π

2ωEp + g−qe
− τ

2π
2ωEp

]

∧ χ
d
u (7.3)

where we have used χ
d
to represent the chirality in the appropriate dimension.

We evaluate this integral in the appendix A. The final result is

∞
∑

n=1

τn−1
(

Ḡanom

)

d=2n

= −
∑

species

e
τ
2π

qB 2π

(2ωτ)2

[ τ
22ωβ

−1

sin τ
22ωβ

−1
e

τ
2π

2ωqµ −
(

1 +
τ

2π
2ωqµ

)

]

∧ χ
d
u

(7.4)

or

∞
∑

n=1

τn+1
(

Ḡanom

)

d=2n

= −
1

(2ω)2

∑

species

[

2π
τ
22ωβ

−1

sin τ
22ωβ

−1
e

qτ

2π
(B+2ωµ) − 2πe

τ
2π

qB
(

1 +
τ

2π
2ωqµ

)

]

∧ χ
d
u

(7.5)

We want to now compare this with the form eq. (1.3) derived in [4] which we reproduce

for the convenience of the reader

Ḡanom =
1

(2ω)2

{

Fω
anom[T (2ω), B + µ(2ω)]−

[

Fω
anom[T (2ω), B + µ(2ω)]

]

ω=0

− ω
[ δ

δω
Fω
anom[T (2ω), B + µ(2ω)]

]

ω=0

}

∧ u

(7.6)
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By comparing term by term, we get a simple expression

(Fω
anom)d=2n = −2π

∑

species

χ
d=2n

[ τ
2T

sin τ
2T

e
τ
2π

qµ

]

τn+1

(7.7)

where the subscript τn+1 denotes that one needs to Taylor-expand in τ and retain the

coefficient of τn+1.

Our aim was to give a prescription to get to Fω
anom from the corresponding anomaly

polynomial. The anomaly polynomial of an Ideal Weyl gas is given by (see appendix B for

explicit expressions in various dimensions)

(Panom)d=2n = −2π
∑

species

χ
d=2n

[

Â (τR) e
τ
2π

qF
]

τn+1

Now using (see appendix B for a derivation)

[

Â (τR)
]

p
k>1

(R)=0
=

τ
2

√

−p
1
(R)

sin
(

τ
2

√

−p
1
(R)

) (7.8)

we can write

Fω
anom = Panom

(

F 7→ µ, p
1
(R) 7→ −T 2, p

k>1
(R) 7→ 0

)

(7.9)

in any dimension for arbitrary collection of free fermions. This is a remarkably elegant

result which takes the anomaly polynomial and via simple substitutions converts it into

the polynomial which governs the anomaly-induced transport.

8 Discussion

One of our main motivations in undertaking this study was to understand at a more

microscopic level how the anomaly-induced transport comes about. While the transport

proportional to the magnetic field can be understood relatively easily,12 the microscopic

origins of the vortical effect were relatively obscure. Having understood now the relevant

microscopic dynamics as that of spectral flow, one might ask whether one can proceed away

from equilibrium. In other words, how does this picture of chiral spectral current help us

understand the non-equilibrium phenomena driven by anomaly.

While we do not have a complete answer to this question, let us give an idea of what

the form the answer might take. Ideally to answer non-equilibrium questions, one would

like to have a Boltzmann-type equation describing an ideal Weyl gas to which interactions

can be added via collision terms. The Boltzmann equation is intimately tied to the flow of

states in the semi-classical phase-space: in fact, it is just a conservation-type equation on

the phase space. Let ζA be the co-ordinates on the phase-space and J A
tot be the net flow of

states (the total spectral current) in the phase-space. Then the Boltzmann equation takes

the schematic form
∂

∂ζA
[

fJ A
tot

]

= C[f ]

12By a Landau level argument which we review in appendix C.

– 18 –



J
H
E
P
0
4
(
2
0
1
2
)
0
9
7

where the r.h.s. is the collision term which takes into account the scattering from one point

in the phase-space to the other point. Assuming the total number of states is conserved,

we can assume ∂AJ
A
tot = 0 so that the Boltzmann equation reduces to

J A
tot∂Af = C[f ]

Hence, we see that a spectral current in the phase space leads us immediately to a Boltz-

mann type equation. To proceed further we need to figure out what the expression for J A
tot

is? Conventional kinetic theory would suggest that

ẋµ ∼ pµ and ṗµ ∼ qpνFµν

=⇒ J A
naive∂A ∼ pµ

∂

∂xµ
+ qpνFµν

∂

∂pµ

(8.1)

which would be identical to the Boltzmann operator one would write down for a Dirac

fermion. But, as we had argued in this article, in an ideal Weyl gas there is an additional

contribution to the spectral current over and above the contribution in a Dirac gas. This

should lead to the modification of the naive Boltzmann operator that we had written

above. Unfortunately, the spectral current that we have written down in this article has no

momentum information — it is only a function of {xµ, Ep} and hence we cannot yet write

down the exact modification of the Boltzmann operator. It would be nice to work out the

momentum-resolved chiral spectral current in order to write down this modification.

We will now give an alternate argument on why we expect such a modification to the

Boltzmann equation — as is known in the phenomenology of Weyl semi-metals [26, 27]

(these are 3 + 1d phases with Weyl fermionic excitations), the Weyl fermion in 3 + 1d

should be thought of as a source of Berry flux in the momentum space. The presence of

such a Berry-flux is known to lead to exactly the kind of modifications of the Boltzmann

equations [24, 25] that we propose above. It would be nice to clarify the relation between

such Berry phase related ideas and the ideas presented in this article.

Let us recap: what we have done is to use adiabaticity as the basic idea which drives

the anomaly-induced transport in Ideal Weyl gases. This has resulted in a simple rule given

by eq. (7.9) which determines completely the polynomial introduced in [4]. The novel result

is the way gravitational anomalies seem to enter into the temperature dependence as was

noted by [11]. While we have reproduced their 4d results, we have done it by an entirely

different method — they had employed the 4d Kubo formulae derived in [5] whereas our

derivation relies on adiabaticity.

Kubo formulae for anomaly-induced transport in higher dimensions involve higher

point functions and since the Kubo formalism is not well-developed beyond two-point func-

tions, it is a priori more difficult to take that route for calculations in higher dimensions.

In this article, rather than generalize the Kubo formulae in [5] we have taken an alternate

route. But having got the answer, let us provide a guess as to how the results of [5] would

generalize. Consider the small frequency/small momentum limit of the following n-point

function in d = 2n dimensions at finite T, µ:

ǫ0i1i2...inj1j2...jn−1〈 T0i1(k
α
1 )T0i2(k

α
2 ) . . . T0il(k

α
l )Jil+1

(kαl+1)Jil+2
(kαl+2) . . . Jin(k

α
n) 〉

∼ ξl(T, µ) δ
2n (k1 + k2 + . . .+ kn) k

[j1
1 kj22 . . . k

jn−1]
n−1

(8.2)
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then generalizing the results of [5], it is tempting to conjecture that ξl(T, µ) is the transport

coefficient associated with (2ω)l−1∧Bn−l∧u term in q̄anom or equivalently (2ω)l∧Bn−l−1∧u

term in J̄anom since these two are related by the generalised Onsager type relation [4]

δq̄anom
δB

=
δJ̄anom
δ(2ω)

(8.3)

This in particular would mean that for a free theory we expect the transport coefficient

ξl(T, µ) to be related to a Fermi-Dirac integral of the type13

ξl(T, µ) ∼

∫ ∞

0

dEp

2π
El

p

[

fq − (−1)lf−q

]

It would be nice to show that such a Kubo-type formula as conjectured above does hold,14

since it then opens up the possibility that we can calculate such transport coefficients in

any field theory. In particular, such a Kubo formula would be of enormous use in checking

whether the substitution rule in eq. (7.9) holds beyond free theory. It would be interesting

to see what happens to this rule as the effective anomaly polynomial is changed via Green-

Schwarz mechanism.

There is already some evidence that this rule holds in strongly coupled holographic

phases [23]. It would be interesting to generalize this by constructing and studying rotating

black hole solutions in AdS2n+1 with pure/mixed gravitational Chern-Simons terms. This

would presumably link the proposed modification of Wald entropy [12, 13] in the presence

of such Chern-Simons terms to the anomaly-induced entropy transport in the dual CFT.

We do not yet have an intuitive field theory understanding why the higher Pontryagin

classes do not contribute to the anomaly induced transport that we discuss in this article.

One way to undertsand this statement better would be to see whether this is true in fluids

with gravity duals via the calculation we just outlined. One way this might work out is

if higher Pontryagin classes fall off too fast in the bulk to contribute to boundary trans-

port while the first Pontryagin class falls off slowly and asymptotes to −T 2(2ω)2 near the

AdS boundary.15

Another way in which the T 2 coefficients in 4d were calculated was by Vilenkin using

rotating ensembles [15–20]. This method as Vilenkin used is plagued with technical sub-

tleties which have to do with trying to define rigid rotation in a relativistic field theory

in the Minkowski spacetime. But these subtleties can be avoided by studying rotating en-

sembles on a sphere which serves as an infrared regulator. We have done some preliminary

calculations in Weyl fermions using this method and they seem to agree with the results

presented here. The details of this calculation will be presented elsewhere.

Further it would be interesting to generalise all these arguments to spacetimes with

non-zero curvature. A first step towards such a generalisation would be to first classify the

various curvature dependent transport processes which are sensitive to anomalies. Since

a free theory of Weyl fermions is conformal, we can restrict our attention to just the

13We would like to thank Carlos Hoyos for suggesting such a relation.
14This would presumably involve generalising the Kubo formalism to higher point functions [31–36].
15We would like to thank Karl Landsteiner and Mukund Rangamani for discussions regarding this issue.
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Weyl-covariatised curvature tensors [37] and the holographic computations that we had

outlined above could be easily used to identify the transport processes which are sensitive

to anomalies. It would be satisfying to understand the chiral spectral current in the strongly

interacting systems via holography.16

Acknowledgments

It is a pleasure to thank Tatsuo Azeyanagi, Koushik Balasubramanian, Jyotirmoy Bhat-

tacharya, Sayantani Bhattacharyya, Alejandra Castro, Amar V. Chandra, Clay Cordova,

Thomas Faulkner, Liang Fu, Alessandra Gnecchi, Andrzej Görlich, Tarun Grover, Sean

Hartnoll, Carlos Hoyos, Nabil Iqbal, Romuald Janik, Matthias Kaminski, Vijay Kumar,

Karl Landsteiner, Tongyan Lin, Hong Liu, Andreas W. W. Ludwig, Juan Maldacena, John

McGreevy, Max Metlitski, Shiraz Minwalla, Gim-Seng Ng, Mukund Rangamani, Arnab

Sen, David Simmons-Duffin, Tarun Sharma, Dam Thanh Son, Wei Song, Andrew Stro-

minger, Washington Taylor, Dan Thompson, Senthil Todadri and Naoki Yamamoto for

various useful discussions on ideas presented in this paper. RL would like to thank Con-

ference on Cold Materials, Hot Nuclei and Black Holes: Applied Gauge/Gravity Duality

at the Abdus Salam International Centre for Theoretical Physics, Trieste and Holographic

Duality and Condensed Matter Physics workshop at the Kavli Institute for Theoretical

Physics, UCSB, Santa Barbara for their hospitality while this work was being completed.

PS would like to thank Harvard University, Institute for Nuclear Theory in Seattle and

Niels Bohr Institute in Copenhagen for hospitality while this work was completed. RL is

supported by the Harvard Society of Fellows through a junior fellowship. PS is supported

in part by the Belgian Federal Science Policy Office through the Interuniversity Attraction

Pole IAP VI/11 and by FWO-Vlaanderen through project G011410N. Finally, RL would

like to thank various colleagues at the Harvard society for interesting discussions.

A Notes on Fermi-Dirac functions

Our objective in this section is to evaluate various moments associated with Fermi-Dirac

distributions. We will start by defining some basic functions which would be useful later

on. First we want to define the nth poly-logarithm Lin(x) defined via

Lin(x) ≡
∞
∑

k=1

xk

kn
=

∞
∑

k=1

∫ ∞

0
dy(xe−y)k

yn−1

(n− 1)!

=

∫ ∞

0
dy

1

x−1ey − 1

yn−1

(n− 1)!
=

∫ ∞

0
dy

d

dy

[

ln
(

1− xe−y
)] yn−1

(n− 1)!

=

∫ ∞

0
dy
[

− ln
(

1− xe−y
)] yn−2

(n− 2)!

(A.1)

16We would like to thank Jyotirmoy Bhattacharya for discussions regarding this issue.
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the last line being valid for n ≥ 2. The importance of polylogarithm lies in its relation to

various moments of Fermi-Dirac integrals - it follows from above that

∫ ∞

0
dEp

Ek
p

k!
gq =

1

βk+2
Lik+2

(

−eβqµ
)

∫ ∞

0
dEp

Ek
p

k!
fq = −

1

βk+1
Lik+1

(

−eβqµ
)

(A.2)

We introduce next the nth Bernoulli Polynomials Bn(x) - these are polynomials defined

via the following generating function

t ext

et − 1
≡

∞
∑

n=0

tn

n!
Bn(x) (A.3)

We now write the identity relating poly-logarithms with Bernoulli polynomials (which itself

is a special case of the relation between poly-logarithms and Hurwitz zeta function)

Lin

(

−eβqµ
)

+ (−1)nLin

(

−e−βqµ
)

= −
(2πi)n

n!
Bn

(

1

2
+
βqµ

2πi

)

(A.4)

which implies the following identity for the Fermi-Dirac moments

∫ ∞

0

dEp

2π

1

k!

(

Ep

2π

)k
[

gq + (−1)kg−q

]

= −
2π

(k + 2)!

(

i

β

)k+2

Bk+2

(

1

2
+
βqµ

2πi

)

(A.5)

or more explicitly

∫ ∞

0

dEp

2π
[gq + g−q] = −2π

[

1

2!

(qµ

2π

)2
+
T 2

4!

]

∫ ∞

0

dEp

2π

(

Ep

2π

)

[gq − g−q] = −2π

[

1

3!

(qµ

2π

)3
+
(qµ

2π

) T 2

4!

]

∫ ∞

0

dEp

2π

(

Ep

2π

)2

[gq + g−q] = −2π

[

1

4!

(qµ

2π

)4
+

1

2!

(qµ

2π

)2 T 2

4!
+

7

8

T 4

6!

]

(A.6)

∫ ∞

0

dEp

2π

(

Ep

2π

)3

[gq − g−q] = −2π

[

1

5!

(qµ

2π

)5
+

1

3!

(qµ

2π

)3 T 2

4!
+
(qµ

2π

) 7

8

T 4

6!

]

∫ ∞

0

dEp

2π

(

Ep

2π

)4

[gq + g−q] = −2π

[

1

6!

(qµ

2π

)6
+

1

4!

(qµ

2π

)4 T 2

4!
+

1

2!

(qµ

2π

)2 7

8

T 4

6!
+

31

24

T 6

8!

]

Similarly, we can write

∫ ∞

0

dEp

2π

1

k!

(

Ep

2π

)k
[

fq − (−1)kf−q

]

=
1

(k + 1)!

(

i

β

)k+1

Bk+1

(

1

2
+
βqµ

2πi

)

(A.7)
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or more explicitly

∫ ∞

0

dEp

2π
[fq − f−q] =

(qµ

2π

)

∫ ∞

0

dEp

2π

(

Ep

2π

)

[fq + f−q] =
1

2!

(qµ

2π

)2
+
T 2

4!
∫ ∞

0

dEp

2π

(

Ep

2π

)2

[fq − f−q] =
1

3!

(qµ

2π

)3
+
(qµ

2π

) T 2

4!
∫ ∞

0

dEp

2π

(

Ep

2π

)3

[fq + f−q] =
1

4!

(qµ

2π

)4
+

1

2!

(qµ

2π

)2 T 2

4!
+

7

8

T 4

6!
∫ ∞

0

dEp

2π

(

Ep

2π

)4

[fq − f−q] =
1

5!

(qµ

2π

)5
+

1

3!

(qµ

2π

)3 T 2

4!
+
(qµ

2π

) 7

8

T 4

6!
∫ ∞

0

dEp

2π

(

Ep

2π

)5

[fq + f−q] =
1

6!

(qµ

2π

)6
+

1

4!

(qµ

2π

)4 T 2

4!
+

1

2!

(qµ

2π

)2 7

8

T 4

6!
+

31

24

T 6

8!

(A.8)

Alternately, we can directly write down a generating function for these integrals by

using the generating function of Bernoulli polynomials. Multiply eq. (A.5) by τk, sum over

k = 0 to ∞ and then use eq. (A.3) to get

∫ ∞

0

dEp

2π

[

gqe
τ
2π

Ep + g−qe
− τ

2π
Ep

]

= −
2π

τ2

[

τ
2T

sin
(

τ
2T
)eτ

qµ

2π −
(

1 + τ
qµ

2π

)

]

(A.9)

which we used in the main text to evaluate the integral in eq. (7.4). In a similar vein we

get a generating function for the fq integral

∫ ∞

0

dEp

2π

[

fqe
τ
2π

Ep − f−qe
− τ

2π
Ep

]

=
1

τ

[

τ
2T

sin
(

τ
2T
)eτ

qµ

2π − 1

]

(A.10)

These formulae can be used to explicitly calculate Ḡanom.

(

Ḡanom

)

d=2
= −2π

∑

species

χ
d=2

[

1

2!

(qµ

2π

)2
+
T 2

4!

]

u (A.11)

(

Ḡanom

)

d=4
= −2π

∑

species

χ
d=4

[

1

3!

(qµ

2π

)3
+
(qµ

2π

) T 2

4!

]

(2ω) ∧ u

− 2π
∑

species

χ
d=4

[

1

2!

(qµ

2π

)2
+
T 2

4!

]

(qB) ∧ u (A.12)

(

Ḡanom

)

d=6
= −2π

∑

species

χ
d=6

[

1

4!

(qµ

2π

)4
+

1

2!

(qµ

2π

)2 T 2

4!
+

7

8

T 4

6!

]

(2ω)2 ∧ u

− 2π
∑

species

χ
d=6

[

1

3!

(qµ

2π

)3
+
(qµ

2π

) T 2

4!

]

(2ω) ∧ (qB) ∧ u

− 2π
∑

species

χ
d=6

[

1

2!

(qµ

2π

)2
+
T 2

4!

]

(qB)2

2!
∧ u (A.13)
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(

Ḡanom

)

d=8
=− 2π

∑

species

χ
d=8

[

1

5!

(qµ

2π

)5
+

1

3!

(qµ

2π

)3 T 2

4!
+
(qµ

2π

) 7

8

T 4

6!

]

(2ω)3 ∧ u

− 2π
∑

species

χ
d=8

[

1

4!

(qµ

2π

)4
+

1

2!

(qµ

2π

)2 T 2

4!
+

7

8

T 4

6!

]

(2ω)2 ∧ (qB) ∧ u

− 2π
∑

species

χ
d=8

[

1

3!

(qµ

2π

)3
+
(qµ

2π

) T 2

4!

]

(2ω) ∧
(qB)2

2!
∧ u

− 2π
∑

species

χ
d=8

[

1

2!

(qµ

2π

)2
+
T 2

4!

]

(qB)3

3!
∧ u (A.14)

(

Ḡanom

)

d=10
=− 2π

∑

species

χ
d=10

[

1

6!

(qµ

2π

)6
+

1

4!

(qµ

2π

)4 T 2

4!
+

1

2!

(qµ

2π

)2 7

8

T 4

6!
+

31

24

T 6

8!

]

(2ω)4∧u

− 2π
∑

species

χ
d=10

[

1

5!

(qµ

2π

)5
+

1

3!

(qµ

2π

)3 T 2

4!
+
(qµ

2π

) 7

8

T 4

6!

]

(2ω)3 ∧ (qB) ∧ u

− 2π
∑

species

χ
d=10

[

1

4!

(qµ

2π

)4
+

1

2!

(qµ

2π

)2 T 2

4!
+

7

8

T 4

6!

]

(2ω)2 ∧
(qB)2

2!
∧ u

− 2π
∑

species

χ
d=10

[

1

3!

(qµ

2π

)3
+
(qµ

2π

) T 2

4!

]

(2ω) ∧
(qB)3

3!
∧ u

− 2π
∑

species

χ
d=10

[

1

2!

(qµ

2π

)2
+
T 2

4!

]

(qB)4

4!
∧ u (A.15)

The energy/charge/entropy currents can be obtained from these expressions via

J̄anom = −
∂Ḡanom

∂µ

J̄S,anom = −
∂Ḡanom

∂T

q̄anom = Ḡanom + T J̄S,anom + µJ̄anom

(A.16)

B Anomaly polynomials

One of the most succinct ways to capture the anomalies in a system is via the anomaly

polynomial Panom(F,R) of gauge field strengths F and the spacetime curvature R. We will

not review how these polynomials are calculated or how covariant anomalies are obtained

from them since these topics are covered well in various textbooks [38–40] and lecture

notes [41, 42]. We will mainly state the results relevant for Weyl fermions in arbitrary

dimensions to save the reader the effort of converting the standard results into our notation.

We will begin by reviewing various forms relevant for dealing with gravitational anoma-

lies. Let Rab be the curvature 2-forms of the spacetime with

Rab ≡
1

2!
Rabcd dx

c ∧ dxd (B.1)
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In d = 2n dimensions we can think of Rab as a real 2n × 2n antisymmetric matrix of

2-forms. At a given point in the manifold, we can diagonalize it with the diagonal entries

being 2-forms

Rab =



















+ir
1

0 . . . . . . . . . . . .

0 −ir
1
. . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . +irn 0

. . . . . . . . . . . . 0 −irn



















ab

(B.2)

where rj=1,...,n are real 2-forms. Polynomials in these 2-forms can be used to construct

various other useful forms. The rest of this section basically consists of various such poly-

nomials, relations between them and their generating functions etc. We start with the

most basic form

Rk ≡
1

2
Ra1

a2 ∧Ra2
a3 . . . ∧Rak

a1 =
1 + (−1)k

2

∑

j

(irj)
k (B.3)

so Rk is a is a 2k-form which is a kth-degree polynomial in the curvature 2-forms. As is

evident from the expression above, it is non-zero only when k is even.

The next form which is we will introduce is called the kth-Pontryagin class denoted by

p
k
(R) which is 4k-form using a specific 2k-th degree polynomial in the curvature 2-forms.

It is defined via the relation

det
[

1 +
τ

2π
R
]

=
∏

j

[

1−
( τ

2π
irj

)2
]

≡
∑

k

τ2kp
k
(R) (B.4)

This gives

p
1
(R) = −

1

(2π)2
R2

p
2
(R) = −

1

(2π)4

[

1

2
R4 −

1

2
R2

2

]

p
3
(R) = −

1

(2π)6

[

1

3
R6 −

1

2
R2R4 +

1

6
R3

2

]

(B.5)

which can be inverted to get

1

(2π)2
R2 = −p

1
(R)

1

(2π)4
R4 = −2p

2
(R) + p2

1
(R)

1

(2π)6
R6 = −3p

3
(R) + 3p

1
(R)p

2
(R)− p3

1
(R)

(B.6)

We will express all the other polynomials in the basis of either Rks or pk(R).
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An object that plays an important role in the anomalies generated by Weyl fermions

is the Dirac genus (or A-roof genus) Âk(R) which is defined via

Â (τR) ≡ det1/2

[

1
2

τ
2πR

sin
(

1
2

τ
2πR

)

]

=
∏

j

[

1
2

τ
2π rj

sinh
(

1
2

τ
2π rj

)

]

=
∑

k

τ2kÂ
k
(R) (B.7)

which gives

Â
1
(R) =

1

(2π)2

[

R2

4!

]

=
1

4!
[−p

1
(R)]

Â
2
(R) =

1

(2π)4

[

1

4

(

R4

6!

)

+
1

2

(

R2

4!

)2
]

=
1

6!(2π)4
1

8

(

2R4 + 5R2
2

)

=
1

6!

[

−
1

2
p
2
(R) +

7

8
p2
1
(R)

]

Â
3
(R) =

1

(2π)6

[

2

9

(

R6

8!

)

+
1

4

(

R2

4!

)(

R4

6!

)

+
1

6

(

R2

4!

)3
]

=
1

8!(2π)6
1

24

(

16

3
R6 + 14 R4R2 +

35

3
R3

2

)

=
1

8!

[

−
2

3
p
3
(R) +

11

6
p
1
(R)p

2
(R)−

31

24
p3
1
(R)

]

(B.8)

The kth-Dirac genus Â
k
(R) is hence a 4k-form using a specific 2k-th degree polynomial in

the curvature 2-forms.

We now want to calculate the Dirac genus in the special case where the only non-zero

Pontryagin class is p
1
(R) with p

k>1
(R) = 0. It is clear that in this case Â

k
(R) ∼ pk

1
(R)

but we want to calculate the numerical coefficient exactly. To do this, we use the following

trick: we set the 2-forms rj>1 = 0 with a non-zero r1. Then

det
[

1 +
τ

2π
R
]

= 1−
( τ

2π
ir1

)2

which means

p
1
(R) =

( r1
2π

)2
, p

k>1
(R) = 0

The roof-genus is easily evaluated in this case as

1
2

τ
2π rj

sinh
(

1
2

τ
2π rj

) =
τ
2

√

p
1
(R)

sinh
(

τ
2

√

p
1
(R)

) =
τ
2

√

−p
1
(R)

sin
(

τ
2

√

−p
1
(R)

)

So this gives us the required answer

[

Â (τR)
]

p
k>1

(R)=0
=

τ
2

√

−p
1
(R)

sin
(

τ
2

√

−p
1
(R)

) (B.9)

The anomaly polynomial for a bunch of Weyl fermions in a d = (2n−1)+1 dimensional

spacetime is given by

(Panom)d=2n = −2π
∑

species

χ
d=2n

[

Â (τR) e
τ
2π

qF
]

τn+1
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where we have assumed that there is a single U(1) symmetry under which the charge of

the Weyl fermion is denoted by the letter q. The sum is over the species which means

that each particle/anti-particle pair contributes one term to the sum (the answer does not

depend on whether we take the chirality/charge of a particle or the anti-particle). We now

proceed to write down the explicit expressions for Panom by using the formula above.

(Panom)d=1+1
=− 2π

∑

species

χ
d=2

[

1

2!

(

qF

2π

)2

+ Â1(R)

]

(Panom)d=3+1
=− 2π

∑

species

χ
d=4

[

1

3!

(

qF

2π

)3

+

(

qF

2π

)

Â1(R)

]

(Panom)d=5+1
=− 2π

∑

species

χ
d=6

[

1

4!

(

qF

2π

)4

+
1

2!

(

qF

2π

)2

Â1(R) + Â2(R)

]

(Panom)d=7+1
=− 2π

∑

species

χ
d=8

[

1

5!

(

qF

2π

)5

+
1

3!

(

qF

2π

)3

Â1(R) +

(

qF

2π

)

Â2(R)

]

(Panom)d=9+1
=− 2π

∑

species

χ
d=10

[

1

6!

(

qF

2π

)6

+
1

4!

(

qF

2π

)4

Â1(R)

+
1

2!

(

qF

2π

)2

Â2(R) + Â3(R)

]

(B.10)

where explicit expressions for Âi(R) are given by eq. (B.8).

C Chiral magnetic effect in arbitrary dimensions

In this appendix, our main aim is to understand in more physical terms how the boundary

condition for the chiral spectral current arises. In particular, we would like to understand

the rate at which the zero modes are injected into the fluid in terms of Landau level physics.

Let us consider a Weyl fermion in (2n− 1) + 1 dimensions. As before we have a finite

temperature T , a chemical potential µ and a constant velocity uµ. We will again work in

the rest frame of uµ. The main aim of this section is to understand the transport that

arises when you turn on a magnetic field in this rest frame. To do this, let us divide the

2n − 1 spatial directions into a direction x1 and n − 1 planes where the kth plane is the

(xi2k , xi2k+1
) plane where k = 1, . . . , n − 1. We by consider the system with a uniform

magnetic field strength turned on in all these n − 1 spatial planes bk ≡ Bi2ki2k+1
6= 0 for

k = 1, . . . , n− 1 leaving out one spatial direction x1.

We can solve the Weyl equation in this magnetic background and the solutions are the

well-known Landau levels with their Landau degeneracies. The energy levels are determined

by the charge q, the momentum along the x1 direction p1 and the spin along kth plane

Si2ki2k+1
≡ 1

2σk (the allowed values are σk = ±1) and the Landau level number in the kth
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plane being a non-negative integer nk.

E2 ≡ p21 + 2
n−1
∑

k=1

[

|qbk|

(

nk +
1

2

)

−
1

2
qbkσk

]

(C.1)

where we see the free-particle dispersion along x1 direction, the harmonic oscillator like

spectrum of the covariant Laplacian along with the Zeeman splitting due to the magnetic

moment. The Landau degeneracy in momentum between p1 and p1 + dp1 (for a fixed

Landau level number nk and spins σk) is

DLandau =
dp1
2π

n−1
∏

k=1

|qbk|

2π
(C.2)

We notice that these are effectively a collection of 1 + 1 dimensional free Dirac/Weyl

Fermions with different masses. So one can repeat the analysis in section 3 and we conclude

that there should be a current in this rest frame (along x1 direction) which just depends

on the chiral states.

To get a chiral state one has to set the effective 2d mass appearing above to zero: it is

easy to see that the 2d-Weyl states are obtained only when nk = 0, σk = sign (qbk). These

states have E2 = p21 ≡ E2
p and a degeneracy

dp1
2π

n−1
∏

k=1

|qbk|

2π
=
dEp

2π

(

n−1
∏

k=1

qbk
2π

)(

n−1
∏

k=1

σk

)

If we denote the 1+1-dimensional chirality as χ
d=2

their total contribution to Gµ
anom is

(e1)
µ

(

n−1
∏

k=1

qbk
2π

)

χ
d=2

(

n−1
∏

k=1

σk

)

×

∫ ∞

0

dEp

2π
gq (C.3)

where (e1)
µ is the unit vector along x1 direction which ensures that the current is along

the x1 direction. We recognize the appearance of the d = 2n chirality

χ
d=2n

= χ
d=2

n−1
∏

k=1

σk = χ
d=2

n−1
∏

k=1

sign (qbk)

and this equation fixes the 2d chirality χ
d=2

of the zero Landau-level in terms of the

chirality χ
d=2n

of the original Weyl fermion. This means we get one 2d-Weyl fermion of

definite chirality for each Weyl fermion in higher dimensions.

As before, it is useful to take a Hodge dual and write this in terms of forms. Let Fµν

be the field strength which we can think of as a 2-form F . The rest frame electric field

is Eµ = uνFµν which we can think of as a 1-form E. The rest frame magnetic field is a

2-form obtained by subtracting the electric part from F ,

B ≡ F − u ∧ E
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where u = uµdx
µ is the velocity 1-form. In terms of these quantities, we finally get the

total contribution from all fermions as

(Ḡanom)u=constant =
∑

F

∫ ∞

0

dEp

2π
gq χd=2n

(

qB

2π

)n−1

∧
u

(n− 1)!
(C.4)

where the sum is performed over all the fermionic particles counting the particle and the

anti-particle separately. We have denoted in the subscript our assumption that the velocity

uµ is constant. This gives the rate of injection of chiral zero modes by the magnetic field as

J̄q(Ep = 0) = 1
χ

d=2n

2π

(

qB

2π

)n−1

∧
u

(n− 1)!
(C.5)

Certain comments are in order — when we turn on a mild magnetic field over a fluid, the

gap between the Landau levels (and the Zeeman split) are small and hence one expects that

any transport will get contribution from many Landau levels not just the lowest Landau

level. This expectation is in fact correct in the case of conventional quantities like pressure

or energy density — but remarkably enough the anomaly-induced contribution above does

not get any contribution from the higher Landau levels even when the magnetic field is

small. This is related to the statement that only chiral fermions contribute to the sum

above. As a consistency check, one can easily check that Dirac fermions do not contribute

to this sum (this follows since in a Dirac species for a given value of q, χ
d=2n

takes both

the values ±1 thus canceling out in the above sum).

D Notation

We work in the (− + + . . .) signature. The dimensions of the spacetime in which the

fluid lives is denoted by d = 2n. The Greek indices µ, ν = 0, 1, . . . , d − 1 are used as

space-time indices.

We denote Hodge-duals by an overbar — for example, J̄ is the 2n-1 form Hodge-dual

to the 1-form Jµ. We mostly just use the Hodge-duality between 1-forms and 2n-1 forms

and our conventions are completely defined by the following statement- given any 2n − 1

form V̄ hodge-dual to Vµ and a 1-form Aµ, we have

DV̄ = (DµV
µ) Vol2n

A ∧ V̄ = −V̄ ∧A = AµV
µ Vol2n

(D.1)

Given a 0-form α its Hodge-dual 2n-form is simply ᾱ ≡ α Vol2n.

We have included a table with other useful parameters used in the text. In the ta-

ble 1, the relevant equations are denoted by their respective equation numbers appearing

inside parentheses.
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Table of Notation

Symbol Definition Symbol Definition

ε Energy density p Pressure

n Charge density s Entropy density

µ Chemical potential T Temperature

β 1/T χ
d=2n

2n dimensional chirality

q Fermion charge Ep Fermion energy

gq − 1
β ln

[

1 + e−β(Ep−qµ)
]

fq
[

eβ(Ep−qµ) + 1
]−1

Rab Curvature 2-forms (B.1) Rk See (B.3)

Panom Anomaly polynomial p
k
(R) Pontryagin class (B.4)

Fω
anom See (1.3) Â

k
(R) A-roof genus (B.8)

uµ, u Fluid velocity, aµ, a Acceleration field

1-form (u.D)uµ, 1-form

gµν Spacetime metric Pµν gµν + uµuν

σµν Shear strain rate ωµν , ω Fluid vorticity, 2-form

Tµν Energy-momentum Jµ Charge currents

tensor of the fluid with anomalies

Jµ
S Entropy current D Exterior derivative

Gµ
anom Anomaly-induced Ḡanom Hodge-dual of Gµ

anom

Gibbs current 2n− 1 form

qµanom Anomaly-induced q̄anom Hodge-dual of qµanom

heat current 2n− 1 form

Jµ
anom Anomaly-induced J̄anom Hodge-dual of J iµ

anom

Charge current 2n− 1 form

Jµ
S,anom Anomaly-induced J̄S,anom Hodge-dual of Jµ

S,anom

Entropy current 2n− 1 form

Fµν , F non-dynamical gauge Eµ, E Rest frame electric

field strength, 2-form field Fµνu
ν , 1-form

Bµν , B Rest frame magnetic A Anomaly

fields F − u ∧ E DJ̄ ≡ Ā

J µ
q Chiral Spectral current J̄q Hodge-dual of J µ

q

J E
q See eq. (4.5) J̄ E

q Hodge-dual of J E
q

Table 1. Table of notation.
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