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Abstract: We consider semi-local F-theory GUTs arising from a single E8 point of local

enhancement, leading to simple GUT groups based on E6, SO(10) and SU(5) with SU(3),

SU(4) and SU(5) spectral covers, respectively. Assuming the minimal Z2 monodromy, we

determine the homology classes and the associated spectra after flux breaking for each case.

Using these results we construct an E6 based model that demonstrates, for the first time,

that it is possible to construct a phenomenologically viable model which leads to the MSSM

at low energies. The exotics that result from flux breaking all get a large mass when singlet

fields acquire vacuum expectation values driven by D- and F-flatness. Due to the under-

lying GUT symmetry and the U(1)s descending from E8, bare baryon- and lepton-number

violating terms are forbidden up to and including dimension 5. As a result nucleon decay is

naturally suppressed below present bounds. The µ-term is generated by non-perturbative

U(1) breaking effects. After including the effect of flux and instanton corrections accept-

able quark and charged lepton masses and mixing angles can be obtained. Neutrinos get a

mass from the see-saw mechanism through their coupling to singlet neutrinos that acquire

large Majorana mass as a result of the monodromy.
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1 Introduction

Almost forty years after their inception, Grand Unified Theories (GUTs) [1] remain a tan-

talising combination of successes and challenges that still provides our best glimpse into the

possible unity of all particle forces. By combining GUTs with supersymmetry (SUSY) the

possibility of gauge coupling unification at a higher scale remains an attractive possibility,

while the hierarchy of scales is stabilised by the non-renormalisation theorem of SUSY, and

gauge mediated proton decay is suppressed below current limits. However new dimension-5

operators can occur in SUSY models which may destabilise the proton, and R-parity vio-

lating operators (baryon- and lepton-number violating) must be very carefully controlled to

avoid phenomenological disasters. In addition the SUSY Higgs/Higgsino mass parameter

µ must be forbidden at leading order (the GUT or Planck scale), but then subsequently

must be generated at the TeV scale. Moreover SUSY GUTs do not explain why there are

three chiral families of quarks and leptons in complete SU(5) representations, with one

pair of Higgs doublets, Hu and Hd, in incomplete SU(5) representations (i.e. without their

colour triplet SU(5) partners). Nor do they shed much light on the origin of the pattern

of Yukawa couplings, although b− τ unification predicted by SU(5) remains viable.

Recently there has been considerable activity [2–7] in the reformulation of GUTs as 8D

theories arising from F-theory versions of string theory [8] (for reviews and related work see

e.g. [9–12]). The reason for the renewed interest is that F-theory provides new opportunities

for addressing some of the above outstanding issues facing GUTs, such as GUT breaking

and Higgs doublet-triplet splitting by flux [4, 5]. The original formulation of such theories

on a del Pezzo surface [3] allows for gravity to be decoupled, MGUT ≪ MP lanck, simplifying

the analysis of possible effective GUT models. In this the GUT gauge group lives on

seven branes wrapping the del Pezzo surface, while quarks and leptons and Higgs live on

restricted (complex) matter curves constituting the intersections of this surface with other

seven branes. Yukawa interactions occur at points on the surface at the intersection of

three matter curves.

Using this structure there has been remarkable progress on model building in F-

theory over the last two or three years [13]–[65]. A considerable amount of this work

deals with the reconciliation of F-theory models with the low energy Standard Model

and the related phenomenology. These include papers related to fermion mass struc-

ture and the computation of Yukawa couplings in the context of F-theory and del Pezzo

singularities [13, 16, 19, 27–29, 33, 44, 47–49, 58]. In particular, some interesting mecha-

nisms were suggested to generate Yukawa hierarchy either with the use of fluxes [13,

44] and the notion of T-branes [57] or with the implementation of the Froggatt-Nielsen

mechanism [27–29, 33, 58]. More specifically, in [44] it is argued that when three-form

fluxes are turned on in F-theory compactifications, rank-one fermion mass matrices are

modified, leading to masses for lighter generations and CKM mixing. Ibanez et al. [49]

have recently shown that flux and instanton effects can generate a realistic hierarchy of

fermion masses. In the F-theory context, such non-perturbative contributions were com-

puted in [50], although the magnitude of such corrections remains somewhat unclear.
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Larger GUT groups than SU(5) have also been considered, such as the F-theory

E6 model of ref [52] where non-Abelian fluxes are introduced to break the symmetry.

Flipped SU(5) [13, 22, 28, 53, 55] has also been considered, including an attempt using an

SU(4) spectral cover [54]. Some examples of SO(10) F-theory models were also considered

in [13, 34, 35].

Many (or all) of these models predict exotic states below the unification scale, and

the renormalization group (RG) analysis of gauge coupling unification including the effect

of such states and flux effects has been discussed in a series of papers [38]–[43]. Other

phenomenological issues such as neutrinos from KK-modes [46], proton decay [37] and

the origin of CP violation [56] have also been discussed. The possibility of obtaining the

Standard Model directly from F-theory [45] has also been considered.

Following this work some generic challenges have been identified that result from the

highly constrained nature of the constructions, in particular the constraints related to the

compatibility of unification (due to the appearance of exotics), the suppression of proton

decay (due to R-parity violating operators and dimension-5 operators) the suppression of

the µ term and the generation of realistic Yukawa couplings. These occur when flux is

used to break the GUT group and generate doublet-triplet splitting. To date no fully

realistic model has been constructed using just the symmetries descending from the un-

derlying unified gauge group [27, 58, 63] and this provides additional motivation for the

present paper.

In this paper we classify semi-local F-theory GUTs arising from a single E8 point of

local enhancement, leading to simple GUT groups based on E6, SO(10) and SU(5) on

the del Pezzo surface with SU(3), SU(4) and SU(5) spectral covers, respectively. In the

semi-local approach to F-theory, it is normally assumed that there exists a single point of

E8 enhancement in the internal geometry [24], from which all the interactions come. We

study the matter that descends from the adjoint of E8 for the following breaking patterns:

E8 ⊃ E6 × SU(3)⊥ ,

E8 ⊃ SO(10)× SU(4)⊥ ,

E8 ⊃ SU(5)× SU(5)⊥ .

Assuming the minimal case of a Z2 monodromy, we discuss the flux breaking and homology

classes of the spectrum for each case, and provide a dictionary relating the representations

of the different GUT groups that can lead to new physical insights into model building.

We assume that all breaking of the GUT gauge group to the Standard Model occurs when

fluxes associated with the U(1)s in the perpendicular groups are turned on. To determine

the chiral spectrum we need to know how the fluxes restrict on the various matter curves.

There two kinds of flux that we need to consider. Firstly, we have the fluxes associated

with the U(1)s remaining after the imposition of a Z2 monodromy and the perpendicular

gauge group has been broken. These fluxes determine the chirality of the complete GUT

representations. Secondly, we have the hypercharge flux inside the GUT group, which

breaks the remaining gauge symmetry down to that of the Standard Model. To determine

the effect of the flux it is convenient to work in the spectral cover approach. Using this we
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determine the spectrum after flux breaking. As an example of an application of our results

we consider the construction of a viable low-energy-model in which the U(1) symmetries

and flux effects answer all the challenges posed above. We start with the identification

of R-parity in an E6 GUT. After flux breaking the model has some undesirable features

but it proves possible to eliminate these by relaxing the E6 constraints on the spectrum.

However the dangerous R−parity violating operators are still forbidden. In addition the

dimension 5 nucleon decay operators, allowed by R-parity, are also forbidden due to the

U(1) global symmetries of the model.

Due to the flux breaking the spectrum has additional vector-like states beyond those

of the minimal supersymmetric extension of the Standard Model (MSSM). We show that

these exotic states get a large mass, close to the compactification scale, if certain SM (and

SU(5)) singlet fields acquire vacuum expectation values (VEV). We identify the necessary

singlet fields and show that these VEVs are needed for D- and F-flatness of the scalar

potential, the VEVs being driven close to the compactification scale. Moreover we show

that these VEVs do not re-introduce terms that can give rapid proton decay.

Finally we show that the model may have a realistic structure for the quark and

charged lepton masses in which the light generation masses and mixings are driven by flux

and instanton effects. The neutrinos can get mass from the (type I) “see-saw” through the

coupling of the doublet neutrinos to singlet neutrinos that acquire Majorana mass due to

the monodromy.

The layout of the remainder of the paper is as follows. In section 2 we discuss a

dictionary connecting the SU(3)⊥ × E6 and SU(5)⊥ × SU(5) representations and their

U(1)⊥ charges. This proves to be useful when constructing viable models. In section 3,

using the spectral cover approach, we determine the homology of the gauge non-singlet

and gauge singlet fields for the three breaking patterns given above. We discuss how the

homology gives constraints on the spectrum after flux breaking. In section 4 we discuss

the D-and F-flatness conditions that apply for the case only the SU(5) singlets acquire

VEVs. In section 5 we discuss the construction of a realistic model that, after a definite

set of singlet VEVs are switched on, has just the MSSM spectrum and renormalisable

couplings. Using the results of section 4 we show that the F-and D-flatness conditions

do indeed induce the needed VEVs and we determine their relative magnitude. We show

that, due to the U(1) symmetries and the underlying GUT structure, the model avoids

dangerous baryon- and lepton-number terms up to and including the dangerous dimension

5 operators. We also discuss how a µ term of the required order is generated. Finally we

consider the structure of the quark, charged lepton and neutrino masses and mixings and

show that they can be realistic.

2 Group theory dictionary between E6 and SU(5)

In this paper we are concerned with the sequence of rank preserving symmetry breakings,

induced by flux breaking. Starting from the highest allowed symmetry in elliptic fibration,

that is the E8 exceptional group, there exists a variety of breaking patterns to obtain

the Standard Model gauge symmetry. A complete classification of these possibilities from
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the F-theory perspective has been given in the appendix of ref [5]. Here, we shall be

interested in the general embeddings discussed in the Introduction, where the adjoint of

E8 decomposes in each case as

E8 ⊃ E6 × SU(3)⊥ , (2.1)

248 → (78, 1) + (27, 3) + (27, 3) + (1, 8) , (2.2)

E8 ⊃ SO(10)× SU(4)⊥ , (2.3)

248 → (1, 15) + (45, 1) + (10, 6) + (16, 4) + (16, 4) , (2.4)

E8 ⊃ SU(5)× SU(5)⊥ , (2.5)

248 → (24, 1) + (1, 24) + (10, 5) + (5, 10) + (5, 10) + (5, 10). (2.6)

The last one in particular has been extensively studied by many authors including [5, 21, 26–

28]. In this case, the SU(5)GUT is the maximal subgroup SU(5) ∈ E8 while the correspond-

ing matter content transforms non-trivially under the Cartan subalgebra of SU(5)⊥ with

weight vectors t1,...,5 satisfying

t1 + t2 + t3 + t4 + t5 = 0. (2.7)

In principle, the superpotential can be maximally constrained by four U(1)’s according to

the breaking pattern

E8 ⊃ SU(5)× SU(5)⊥ → SU(5)×U(1)4⊥ . (2.8)

The 5 representation of SU(5)⊥ may be expressed in the conventional basis of the five weight

vectors ti in which the 4 Cartan generators corresponding to U(1)4⊥ are expressed as:

H1 =
1

2
diag(1,−1, 0, 0, 0), H2 =

1

2
√
3
diag(1, 1,−2, 0, 0),

H3 =
1

2
√
6
diag(1, 1, 1,−3, 0), H4 =

1

2
√
10

diag(1, 1, 1, 1,−4). (2.9)

In general, however, there is an action on ti’s of a non-trivial monodromy group which is a

subgroup of the Weyl group W (SU(5)⊥) = S5. Such subgroups are the alternating groups

An, the dihedral groups Dn and cyclic groups Zn, n ≤ 5 and the Klein four-group Z2×Z2.

Throughout this paper we shall assume the minimal Z2 monodromy, t1 ↔ t2.

It is of interest to consider the possibility of a sequence of flux breaking, which may

be associated with different scales. Here we consider the sequence

E8 → E6 ×U(1)2⊥ (2.10)

→ SO(10)×U(1)ψ ×U(1)2⊥ (2.11)

→ SU(5)×U(1)χ ×U(1)ψ ×U(1)2⊥. (2.12)
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E6 SO(10) SU(5) Weight vector

27t′
1

16 53 t1 + t5

27t′
1

16 10M t1

27t′
1

16 θ15 t1 − t5

27t′
1

10 51 −t1 − t3

27t′
1

10 52 t1 + t4

27t′
1

1 θ14 t1 − t4

27t′
3

16 55 t3 + t5

27t′
3

16 102 t3

27t′
3

16 θ35 t3 − t5

27t′
3

10 5Hu
−2t1

27t′
3

10 54 t3 + t4

27t′
3

1 θ34 t3 − t4

Table 1. Complete 27s of E6 and their SO(10) and SU(5) decompositions. For the SU(5) states

we use the notation of ref [27] where indices in 5i, 10j representations are associated to the corre-

sponding matter curves Σ5i ,Σ10j .

which for the E6 representations gives

78 → [24(0,0) + 10(4,0) + 10(−4,0) + 1(0,0)]45

+[10(−1,−3) + 5(3,−3) + 1(−5,−3)]16

+[10(1,3) + 5(−3,3) + 1(5,3)]16

+[1(0,0)]1

27 → [10(−1,1) + 5(3,1) + 1(−5,1)]16

+[5(2,−2) + 5(−2,−2)]10

+[1(0,4)]1 , (2.13)

where the subscripts refer to the U(1)χ,U(1)ψ charges and SO(10) representation respec-

tively. It is convenient to choose a basis for the weight vectors such that the charge

generators have the form

Qχ ∝ diag[−1,−1,−1,−1, 4]

Qψ ∝ diag[1, 1, 1,−3, 0]

Q⊥ ∝ diag[1, 1,−2, 0, 0] . (2.14)

where Q⊥ is the charge of the U(1)⊥ in the breaking pattern of eq. (2.10) that remains

after imposing the t1 ↔ t2 monodromy. This is in fact the same as the conventional basis

for the SU(5)⊥ generators in eq. (2.9), and the normalisation of the generators is given by

identifying,

H1 = H ′
1, H2 = Q⊥, H3 = Qψ, H4 = −Qχ. (2.15)

– 6 –
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This almost trivial equivalence shows that the SU(5)GUT states in eq. (2.6) have well defined

E6 charges Qχ and Qψ. For example SU(5) singlets will in general carry Qχ and Qψ

charges which originate from E6 and which may be unbroken. The equivalence will provide

insights into both anomaly cancellation and the origin of R-parity for example, in terms of

the underlying E6 structure, in the explicit models discussed later. Throughout this paper

we shall assume the minimal Z2 monodromy, t1 ↔ t2 [29] which trivially corresponds to

the minimal Z2 monodromy, t′1 ↔ t′2. It is clear from eq. (2.9) that this corresponds to

H1 = H ′
1 being broken leaving only three independent Cartan symmetries {H2, H3, H4} or

equivalently {Q⊥, Qψ, Qχ}.
In this basis the weight vectors t′1, t

′
2, t

′
3 (t′1 + t′2 + t′3 = 0) of SU(3)⊥ are related to the

SU(5)⊥ weight vectors by t′i = ti+(t4+ t5)/3, i = 1, 2, 3. As an example of the use of this

dictionary that will play an important role when building a realistic theory we can now

connect the two independent representations 27t′
1
and 27t′

3
that appear in the E6 breaking

pattern of eq. (2.10) to the SU(5) representations of eq. (2.12). These are shown in table 1

with SU(5) states given in the notation of [27].

3 Flux breaking and matter content in F-theory GUTs

In this section we determine the light matter content that results if the underlying E8

is broken to some subgroup by a Higgs bundle on the del-Pezzo surface S [21]. We are

interested in the cases that the unbroken gauge group is E6, SO(10) or SU(5). One reason

to study these patterns of breaking is because subsequent breaking to the Standard Model

may proceed via the normal Higgs mechanism with fields acquiring VEVs along flat direc-

tions. In this knowledge of the multiplet content before such breaking is crucial. A second

reason to study these patterns is because it can suggest promising phenomenological mod-

els based on a high degree of unification even though they are subsequently further broken

by flux to just the Standard Model. We will present a viable model in the next section.

We proceed by studying the spectral cover of the transverse groups for the three cases

of interest E6 × SU(3)⊥, SO(10) × SU(4)⊥ and SU(5) × SU(5)⊥. This will allow us to

determine the homology of the matter fields and hence the effect of flux breaking. In

dealing with singlets, we note that for a given surface S with associated singularity GS ,

there are singlet fields residing on curves that extend away from S and can be affected

by U(1)⊥ fluxes not supported by S. There are also singlet fields emerging from the

decomposition of GUT representations after the breaking of the covering group GS by the

flux mechanism. The latter singlets localise on certain line bundles of the corresponding

surface S and as a consequence they are affected by the fluxes breaking GS . In this case

the homologies of the corresponding matter curves can be determined and, as shown in this

paper, certain properties including chirality and multiplicities can be expressed in terms of

a few integers parameterising the associated U(1) fluxes.

3.1 SU(3)⊥ spectral cover

E6 models are quite attractive and have been extensively studied in compactifications on

Calabi-Yau manifolds, in the context of the heterotic superstring with underlying E8 ×

– 7 –
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E8 symmetry (see [66–68] and references therein). Furthermore, recent phenomenological

investigations based on string motivated versions with E6 gauge symmetry have inspired the

exceptional supersymmetric standard model [69]. This is distinguished from the minimal

one by the appearance of an additional Z ′ boson and extra matter content at the TeV scale.

Interestingly, although these new ingredients are also potentially present in the F-theory

E6-analogue, they are subject to constraints from flux restrictions on matter curves and

the topological properties of the compact manifold, and in the model considered later the

Z ′ boson has a GUT scale mass and the extra matter also has a similarly large mass.

In the context of F-theory in which the GUT group on the brane is E6, we need to

look at the breaking

E8 → E6 × SU(3)⊥ . (3.1)

We can determine what matter curves arise by decomposing the adjoint of E8 as follows

248 → (78, 1) + (27, 3) + (27, 3) + (1, 8) . (3.2)

The E6 content consists of three 27s (and 27s) plus eight singlet matter curves. In terms

of the weight vectors ti, i=1,2,3, of SU(3)⊥ the equations of these curves are

Σ27 : ti = 0 , (3.3)

Σ1 : ±(ti − tj) = 0 i 6= j . (3.4)

The SU(3) spectral cover is found by determining two sections U, V of the projective bundle

P(O⊕KS) over the compact surface S. Let c1 be the 1
st Chern class of the tangent bundle

to SGUT and c1(NS) = −t that of the normal bundle. Note that the homological classes

are [U ] = −t and [V ] = c1 − t. The SU(3) spectral cover is

C3 : b0U
3 + b2UV 2 + b3V

3 = 0 . (3.5)

Associated to this is the polynomial

P3 =
3

∑

k=0

bks
3−k = b3 + b2s+ b1s

2 + b0s
3 , (3.6)

where we have introduced the affine parameter s = U
V .

We define for convenience η = 6c1 − t and, as usual, we demand that the coefficients

bk are sections of

bk : [bk] = η − k c1 , (3.7)

where k spans the integers k = 1, 2, 3, 4, 5. The roots of the spectral cover equation

0 = b3 + b2s+ b0s
3 ∝

3
∏

i=1

(s+ t′i)

are identified as the SU(3)⊥ weight vectors t′i. In the above the coefficient b1 is taken to be

zero since it corresponds to the sum of the roots which, for SU(n), is always zero,
∑

i t
′
i = 0.

– 8 –
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3.1.1 27 and 27 fields

The coefficient b3 is equal to the product of the roots, i.e. b3 = t′1t
′
2t

′
3 and the Σ27 curves

where the corresponding matter multiplets are localized are determined by its three zeros

Σ27i , b3 =
3
∏

i=1

t′i = 0 → t′i = 0, i = 1, 2, 3 . (3.8)

To obtain different curves for 27’s we need to split the spectral cover. (If the polynomial

is not factorized, there is only one matter curve). There are two possible ways to split

a third degree polynomial: either to a binomial-monomial (2 − 1) or to three monomials

(1 − 1 − 1). Since we need to impose a monodromy action, we choose this to be Z2 and

therefore we get a (2 − 1) split. The Z2 monodromy corresponds to the following split of

the spectral cover equation

0 = Π3(s) = (a1 + a2s+ a3s
2)(a4 + a5s)

= a1a4 + (a2a4 + a1a5)s+ (a2a5 + a3a4)s
2 + a3a5s

3 , (3.9)

with s = U/V and ai coefficients, constituting sections of line bundles each of them being

of specific Chern class to be determined.

The first bracket contains the polynomial factor that corresponds to the Z2 monodromy

t′1 ↔ t′2, so that the corresponding two Σ27 curves lift to a common one in the spectral

cover. The Σ27 curves are found setting s = 0 in the polynomial

b3 ≡ Π3(0) = a1a4 = 0 → a1 = 0, a4 = 0 .

Thus, after the monodromy action, we obtain two matter curves. When building a realistic

theory it is necessary to assign the three families of quarks and leptons and the Higgs to

these curves. As there are more than one way to do this, the optimal choice will be dictated

by phenomenology.

To determine the distribution of families and Higgs on the two matter curves we need

to know how the flux restricts on the available curves. To do this we first determine

their homology classes [ak] corresponding to the sections ak, k = 1, 4. This can be done

comparing the coefficients of eqs. (3.6), (3.9). We get

b0 = a3a5 ,

b1 = a2a5 + a3a4 = 0 ,

b2 = a2a4 + a1a5 ,

b3 = a1a4 .

The homology classes [bk] of the sections bk are given in eq. (3.7), while those of ai can be

determined by the system of linear equations in one to one correspondence with the above

relations. This linear system consists of four equations with five unknowns [ai], therefore

we can solve the system in terms of one arbitrary parameter. Let a5 be of some unspecified

homology class [a5] = χ. For the remaining ai, we find that they are sections of

[a1] = η − 2c1 − χ, [a2] = η − χ− c1, [a3] = η − χ, [a4] = χ− c1, [a5] = χ . (3.10)

– 9 –



J
H
E
P
0
4
(
2
0
1
2
)
0
9
4

Matter Section Homology

27t1,2 a1 η − 2c1 − χ

27t3 a4 χ− c1

Table 2. The three columns show the quantum numbers of matter curves under E6 × U(1)ti , the

section and the homology class.

For the two curves we obtain the results of table 2. For the homology classes of the two

curves C3 = Ct1,2Ct3 from eq. (3.5) we get

Ct1,2 = a1V
2 + a2UV + a2U

2 , (3.11)

Ct3 = a4V + a5U , (3.12)

so that their homology classes are given by

[Ct1,2 ] = η − χ− 2 t, [Ct3 ] = χ− t .

Using the data of table 2, we can turn on a FU(1) flux on the external U(1) and find

the restriction on the curves of 27’s:

nt1 = FU(1) · (η − χ− 2c1) ; nt3 = FU(1) · (χ− c1) . (3.13)

These determine the chiral content of states arising from the decomposition of 27’s along

the matter curves. We have also seen that χ is some unspecified homology class (associated

to a5) and it can be chosen at will. For acceptable choices it can be seen from table 2 the

two curves cannot be of the same homology class. Since the two curves belong to different

homology classes, in general flux restricts differently on them. The two conditions can be

combined as follows

nt3 + nt1 = FU(1) · (η − 3c1) = FU(1) · (3c1 − t) . (3.14)

From eq. (3.14) we deduce that if FU(1) · (3c1− t) = 0, then nt3 = −nt1 i.e., we get opposite

flux restrictions on 27t1 and 27t3 . Notice that the choice FU(1) · c1 6= 0 implies that the

corresponding gauge boson becomes massive. This is not a problem however, for the extra

U(1)’s that do not participate in the hypercharge definition.1

3.1.2 E6 singlets

Singlet fields are important for the construction of the low energy effective field theory

model. Some of them may develop VEVs that can be used to create mass terms for

the fermion generations and make massive other potentially dangerous fields mediating

proton decay. In certain models, those carrying charges under the weights t′i undergoing a

monodromy action can play the role of the right handed neutrino [46]. The E6 singlets θij

1For a recent work on the U(1) symmetries in F-theory see [65].
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lie in the t′i − t′j directions of the corresponding Cartan subalgebra, and because of their

central role in phenomenology, it would be useful to determine their homology classes. If

the worldvolume theory on S has gauge group E6, these singlets θ12, θ13 and θ23 are localised

on curves which do not lie within the surface S, and as such, spectral cover analysis can no

longer be used to determine their properties.

It should also be noted that the discrete group Z2 which identifies t1 ↔ t2 leads

also to the identification of the singlet fields θ12 ↔ θ21. This will also lead to geometric

identification of the corresponding matter curves in the covering theory. Therefore these

singlets carry no U(1)-charges and are treated as moduli of the spectral cover and differently

from the θ13 singlet fields, in accordance with previous studies [21, 24].

3.2 SU(4)⊥ spectral cover

SO(10) GUT is one of the most promising Unified Theories and the smallest one incorpo-

rating the right-handed neutrino into the same multiplet with the remaining fundamental

particles (quarks and leptons). For the case that the GUT group on the brane is SO(10)

we need to consider the breaking

E8 → SO(10)× SU(4)⊥ . (3.15)

We can determine which matter curves arise from the decomposition of the adjoint of E8:

248 → (1, 15) + (45, 1) + (10, 6) + (16, 4) + (16, 4) . (3.16)

Thus there are four 16 (and 16) matter curves, six 10 matter curves, and fifteen singlets.

The equations for these curves in terms of the weight vectors ti, i=1,2,3,4, of SU(4)⊥ are

Σ16 : ti = 0 , (3.17)

Σ10 : (−ti − tj) = 0, i 6= j , (3.18)

Σ1 : ±(ti − tj) = 0 i 6= j , (3.19)

where
∑

i ti = 0. In order to determine how fluxes restrict on these matter curves, taking

into account the effects of monodromy, the spectral cover approach is used. The SU(4)

spectral cover is a hypersurface given by the constraint

C4 : b0U
4 + b1V U3 + b2V

2U2 + b3V
3U + b4V

4 = 0 . (3.20)

We can set an affine parameter s = U/V which eq. (3.20) is a polynomial in, and whose 5

roots are the ti. This s can be equated with the value of the Higgs field that breaks the

E8 gauge theory. In terms of s, we have:

C4 = b0s
4 + b1s

3 + b2s
2 + b3s+ b4 = 0 , (3.21)

= b0(s+ t1)(s+ t2)(s+ t3)(s+ t4) = 0 , (3.22)

where the second line reflects the fact that the ti are the roots of the polynomial. This

polynomial describes the 16 matter curves, which are given by setting s to zero in the
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above equations, leading to b4 = 0. Equations for the b’s in terms of the t’s can be found

by comparing powers of s in eqs. (3.21) and (3.22). This leads to the following equations,

once t4 has been eliminated by using the fact that the sum of the ti is zero:

b1 = −b0(t1 + t2 + t3 + t4) = 0 , (3.23)

b2 = b0(t
2
1 + t22 + t23 + t1t2 + t2t3 + t1t3) , (3.24)

b3 = b0(t1 + t2)(t2 + t3)(t1 + t3) , (3.25)

b4 = −b0t1t2t3(t1 + t2 + t3) . (3.26)

It can be seen that the equation b4 = 0 does indeed reproduce eq. (3.17) for the 16 matter

curves in terms of the ti.

3.2.1 Z2 monodromy

Imposing a Z2 monodromy implies the splitting of eq. (3.21) as follows

C4 = (a1 + a2s+ a3s
2)(a4 + a5s)(a6 + a7s) . (3.27)

The first bracket is quadratic in s reflecting the fact that we have chosen a Z2 mon-

odromy, which in the weight language corresponds to an identification of two weights

t1 ↔ t2. We can now match powers of s in eqs. (3.21) and (3.27) to get equations for the

bi in terms of the ai.

b0 = a3a5a7 , (3.28)

b1 = a2a5a7 + a3a5a6 + a3a4a7 , (3.29)

b2 = a1a5a7 + a2a4a7 + a2a5a6 + a3a4a6 , (3.30)

b3 = a1a4a7 + a1a5a6 + a2a4a6 , (3.31)

b4 = a1a4a6 . (3.32)

Solving for b1 = 0 gives2

a2 = −γ(a5a6 + a4a7) , (3.33)

a3 = γa5a7 , (3.34)

where γ is unspecified. Now we can demand that the homology classes of the bn are

[bn] = η − nc1 , (3.35)

where, as before, η = 6c1 − t, c1 is the first Chern class of the tangent bundle to SGUT

and −t is the first Chern class of the normal bundle. We can now determine the homology

classes of the ai coefficients by using eqs. (3.28)–(3.32), setting the homology class of a

2It is understood that some solutions of the b1 = 0 constraint might lead to additional degeneracies.

However, for each case in the paper, we pick up the solution which leads to acceptable factorization,

avoiding non-Kodaira singularities. We are also aware that subtleties could in principle appear on split

spectral covers. However, we mainly concentrate on general phenomenological issues of F-GUT model

building, and it is not our intention to address all these issues in the present paper.
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Coefficient Homology

a1 η − 2c1 − χ̃

a2 η − c1 − χ̃

a3 η − χ̃

a4 −c1 + χ5

a5 χ5

a6 −c1 + χ7

a7 χ7

Table 3. Homology classes of the ai coefficients.

given bn equal to the homology class of each product of ais on the left hand side of the

appropriate equation. This leads to

η = [a3] + [a5] + [a7] , (3.36)

η − c1 = [a2] + [a5] + [a7] , (3.37)

η − 2c1 = [a1] + [a5] + [a7] , (3.38)

η − 3c1 = [a1] + [a4] + [a7] , (3.39)

η − 4c1 = [a1] + [a4] + [a6] . (3.40)

As such, we have 5 equations in 7 unknowns, and so we can solve the equations in terms

of two free parameters, which we can set as

[a5] = χ5 , (3.41)

[a7] = χ7 , (3.42)

χ̃ = χ5 + χ7 . (3.43)

Solving the system of equations gives the homology classes of the remaining ai

[a1] = η − 2c1 − χ̃ , (3.44)

[a2] = η − c1 − χ̃ , (3.45)

[a3] = η − χ̃ , (3.46)

[a4] = −c1 + χ5 , (3.47)

[a6] = −c1 + χ7 . (3.48)

We now have determined the homology classes of all the ai coefficients (which are sum-

marised in table 3), and can use them in order to find the homology classes of the matter

curves.
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3.2.2 Homology of the 16 matter curves

As discussed after eq. (3.22), the 16 matter curves are given by b4 = 0. From eq. (3.32),

this means that the equations of the 16s are

a1 = 0, a4 = 0, a6 = 0 (3.49)

and so the homology classes are

[161] = η − 2c1 − χ̃ , (3.50)

[162] = −c1 + χ5 , (3.51)

[163] = −c1 + χ7 . (3.52)

3.2.3 Homology of the 10 matter curves

Just as the correct polynomial to describe the 16 matter curves was the spectral cover

polynomial, the polynomial for the 10s is given by

P10 = b20
∏

i<j

(s+ ti + tj)

= b20(s− t1 − t2)(s+ t1 + t2)(s− t1 − t3)(s+ t1 + t3)(s− t2 − t3)(s+ t2 + t3) (3.53)

= s6 + c1s
5 + c2s

4 + c3s
3 + c4s

2 + c5s+ c6 , (3.54)

where in eq. (3.53), t4 has been eliminated by using
∑

i ti = 0. Comparing coefficients of

s between eqs. (3.53) and (3.54) the following equations for the ci in terms of the ti are

obtained

c1 = 0 (3.55)

c2 = −2(t21 + t22 + t23 + t1t2 + t1t3 + t2t3)b
2
0 (3.56)

c3 = 0 (3.57)

c4 = [t41 + 2t31(t2 + t3) + (t22 + t2t3 + t23)
2 + t21(3t

2
2 + 8t2t3 + 3t23)

+ 2t1(t
3
2 + 4t22t3 + 4t2t

2
3 + t33)]b

2
0 (3.58)

c5 = 0 (3.59)

c6 = −(t1 + t2)
2(t1 + t3)

2(t2 + t3)
2b20 . (3.60)

We can now use eqs. (3.23)–(3.26) to write the ci coefficients in terms of the bi. The

results are

c2 = −2b0b2 , (3.61)

c4 = b22 − 4b4b0 , (3.62)

c6 = −b23 . (3.63)

Substituting into eq. (3.54) gives

P10 = s6 − 2b0b2s
4 + (b22 − 4b4b0)s

2 − b23 . (3.64)
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Matter Equation Homology U(1)X

16t1,2 a1 η − 2c1 − χ̃ M − P

16t3 a4 −c1 + χ5 P5

16t4 a6 −c1 + χ7 P7

10(t1+t3) a1 − γa4a6 η − 2c1 − χ̃ M − P

10(t1+t2) a5a6 + a4a7 −c1 + χ̃ P

10(t1+t4) a1 − γa4a6 η − 2c1 − χ̃ M − P

10(t3+t4) a5a6 + a4a7 −c1 + χ̃ P

Table 4. 16 and 10 matter curves and their equations and homology classes.

As in the case of the 16 polynomial, the 10 matter curves are found by setting s to zero

in this equation, giving b23 = 0. In order to know the equations and homology classes for

the 10 matter curves when the monodromy is imposed, we must express this equation in

terms of the ai coefficients. From eq. (3.31), we know b3 in terms of the ai. Substituting

eq. (3.33) in for a2 leads to

b3 = (a5a6 + a4a7)(a1 − γa4a6) . (3.65)

As such, the 10 matter curves are defined by the equation

(a5a6 + a4a7)(a1 − γa4a6)(a5a6 + a4a7)(a1 − γa4a6) = 0 . (3.66)

We therefore have four 10 matter curves, two of which have homology class [a1] = η−2c1−χ̃,

and two of which have homology class [a5a6] = [a5] + [a6] = −c1 + χ̃. The information

about the homology classes of all the 16 and 10 matter curves is summarised in table 4.

For convenience, the following notation is introduced

M = F1 · (η − 3c1) , (3.67)

P = F1 · (χ− c1) , (3.68)

Pn = F1 · (χn − c1) , (3.69)

C = F1 · (−c1) . (3.70)

3.2.4 Homology of the SO(10) singlets

We have already pointed out that singlet fields can play a decisive role in building the low

energy effective model. If the worldvolume theory on S is seen to have gauge group SO(10),

then the same argument about singlets applies as before. The SO(10) singlets will reside

on curves which extend away from S, forbidding us from computing the homology classes

in the local prescription. If we look at a model where the worldvolume group on S is E6

however, only the singlets θ12 and θ13 do not live on S. The other SO(10) singlets then

have the homologies of the 27 curves which they originate from in the E6 formalism.
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3.3 SU(5)⊥ spectral cover

Our final investigation in the present work concerns the SU(5)GUT. Considering again

the maximal symmetry E8, the spectral cover encoding the relevant information (bundle

structure etc.) is associated to the commutant of the GUT group, which is SU(5)⊥. Hence,

in this case the breaking pattern is

E8 → SU(5)× SU(5)⊥ . (3.71)

This case has been extensively studied and the homology of the gauge non-singlets deter-

mined. The associated adjoint representation decomposition is

248 → (24, 1) + (1, 24) + (10, 5) + (5, 10) + (5, 10) + (5, 10) . (3.72)

Although this case has been analysed by many authors in the recent F-theory model build-

ing literature, a detailed examination of the breaking mechanism of the higher intermediate

symmetries and possible implications is still lacking. In the following we attempt to im-

plement the constraints obtained from the previous symmetry breaking stages into the

SU(5)GUT model.

To start with, we recall that the global model is assumed in the context of elliptically

fibered Calabi-Yau compact complex fourfold over a three-fold base. Using the Tate’s algo-

rithm [70, 71], the SU(5) singularity can be described by the following form of Weierstrass’

equation [2]

y2 = x3 + b0z
5 + b2xz

3 + b3yz
2 + b4x

2z + b5xy .

We determine the corresponding spectral cover by defining homogeneous coordinates

z → U, x → V 2, y → V 3

so that the spectral cover equation becomes

0 = b0U
5 + b2V

2U3 + b3V
3U2 + b4V

4U + b5V
5 .

We can see this equation as a fifth degree polynomial in terms of the affine parameter

s = U/V :

P5 =
5

∑

k=0

bks
5−k = b5 + b4s+ b3s

2 + b2s
3 + b1s

4 + b0s
5 ,

where we have divided by V 5, so that each term in the last equation becomes section of

c1 − t. The roots of the spectral cover equation.

0 = b5 + b4s+ b3s
2 + b2s

3 + b0s
5 ∝

5
∏

i=1

(s+ ti)

are identified as the SU(5) weights ti.

In the above the coefficient b1 is taken to be zero since it corresponds to the sum of

the roots which for SU(n) is always zero,
∑

ti = 0. Also, it can be seen that the coefficient
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b5 is equal to the product of the roots, i.e. b5 = t1t2t3t4t5 and the Σ10 curves where the

corresponding matter multiplets are localized are determined by the five zeros

Σ10i , b5 =
5
∏

i=1

ti = 0 → ti = 0, i = 1, 2, 3, 4, 5 . (3.73)

Following [29], we impose the Z2 monodromy corresponding to the following splitting of

the spectral cover equation

0 = (a1 + a2s+ a3s
2)(a4 + a5s)(a6 + a7s)(a8 + a9s) , (3.74)

with s = U/V and ai undetermined coefficients, constituting sections of line bundles each

of them being of specific Chern class to be determined. The first bracket contains the

polynomial factor which corresponds to the Z2 monodromy, while the remaining monomials

leave three U(1)’s intact. Expanding, we may determine the homology class for each of the

coefficients ai by comparison with the bk’s. Thus,

b0 = a3a5a7a9 ,

b1 = a3a5a7a8 + a3a4a9a7 + a2a5a7a9 + a3a5a6a9 ,

b2 = a3a5a6a8 + a2a5a8a7 + a2a5a9a6 + a1a5a9a7 + a3a4a7a8 + a3a4a6a9 + a2a4a7a9 ,

b3 = a3a4a8a6 + a2a5a8a6 + a2a4a8a7 + a1a7a8a5 + a2a4a6a9 + a1a5a6a9 + a1a4a7a9 ,

b4 = a2a4a8a6 + a1a5a8a6 + a1a4a8a7 + a1a4a6a9 ,

b5 = a1a4a6a8 .

We first solve the constraint b1 = 0. We make the Ansatz:

a2 = −c(a5a7a8 + a4a9a7 + a5a6a9), a3 = ca5a7a9

Substituting into bn’s we get

b0 = c a25a
2
7a

2
9 ,

b2 = a1a5a7a9 −
(

a25a
2
7a

2
8 + a5a7 (a5a6 + a4a7) a9a8 +

(

a25a
2
6 + a4a5a7a6 + a24a

2
7

)

a29
)

c ,

b3 = a1 (a5a7a8 + a5a6a9 + a4a7a9)− (a5a6 + a4a7) (a5a8 + a4a9) (a7a8 + a6a9) c ,

b4 = a1 (a5a6a8 + a4a7a8 + a4a6a9)− a4a6a8 (a5a7a8 + a5a6a9 + a4a7a9) c ,

b5 = a1a4a6a8 .

Next, we observe that we have to determine the homology classes of nine unknowns

a1, . . . a9 in terms of the bk-classes, which we demand to be η − kc1. Three classes are left

unspecified which we choose them to be [al] = χl, l = 5, 7, 9. The rest are computed easily,

and the results are [a1] = η − 2c1 − χ, [a2] = η − c1 − χ, [a3] = η − χ, [a4] = −c1 + χ5,

[a5] = χ5, [a6] = −c1 + χ7, [a7] = χ7, [a8] = −c1 + χ9, [a9] = χ9.

The Σ10 curves are found setting s = 0 in the polynomial

b5 ≡ Π5(0) = a1a4a5a6 = 0 → a1 = 0, a4 = 0, a5 = 0, a6 = 0 . (3.75)

Thus, after the monodromy action, we obtain four curves (one less) to arrange the appro-

priate pieces of the three (3) families.

The Σ5 curves are treated similarly in [29] so we do not present the details here.
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Matter Charge Equation Homology NY MU(1)

5Hu
−2t1 a8a5a7+a6a5a9+a4a7a9 −c1 + χ̃ Ñ MHu

51 −t1 − t3 a1−ca4a8a7−ca4a6a9 η−2c1−χ̃ −Ñ M51

52 −t1 − t4 a1−ca6a8a5−ca4a6a9 η−2c1−χ̃ −Ñ M52

53 −t1 − t5 a1−ca6a8a5−ca4a8a7 η−2c1−χ̃ −Ñ M53

54 −t3 − t4 a6a5 + a4a7 −c1+χ5+χ7 N5+N7 M54

55 −t3 − t5 a8a5 + a4a9 −c1+χ5+χ9 N5+N9 M55

56 −t4 − t5 a8a7 + a6a9 −c1+χ7+χ9 N7+N9 M56

10M t1 a1 η − 2c1 − χ̃ −Ñ −(M51+M52+M53)

102 t3 a4 −c1 + χ5 N5 M102

103 t4 a6 −c1 + χ7 N7 M103

104 t5 a8 −c1 + χ9 N9 M104

θ13 t1 − t3 - - 0 M13

θ14 t1 − t4 - - 0 M14

θ15 t1 − t5 - - 0 M15

θ34 t3 − t4 - - 0 M34

θ35 t3 − t5 - - 0 M35

θ45 t4 − t5 - - 0 M45

Table 5. Table showing curves and flux restrictions with Z2 monodromy t1 ↔ t2. Ñ = N5+N7+N9.

The homologies of the singlet fields θij are also shown. Due to monodromy, θ12 and θ21 do not

couple to fluxes so they are not included.

3.4 Singlets in the SU(5)⊥ spectral cover

The way in which the singlets fit into the E6 and SO(10) pictures can be found by working

out the U(1)χ and U(1)ψ charges using the generators in eq. (2.14) and matching the charges

to the singlets in the decomposition in eq. (2.13). Putting this information together leads

to table 6. When the GUT group on S is taken to be SU(5), we again can’t compute the

homologies of the SU(5) singlets in the spectral cover formalism as they are localised on

curves which don’t lie within S.

In the subsequent model building, if the GUT group on S is taken to be E6, we cannot

know the properties of the singlets θ12 and θ13 using the spectral cover approach for the

reasons discussed previously. If the GUT group is taken to be SO(10) or SU(5), the situation
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Singlet Qχ Qψ Representations

θ12 0 0 SO(10) singlet in 78

θ13 0 0 45 ⊂ 78

θ14 0 4 SO(10) singlet in 27t1,2

θ15 -5 1 16t1,2 ⊂ 27t1,2

θ34 0 4 SO(10) singlet in 27t3

θ35 -5 -1 16t3 ⊂ 27t3

θ45 -5 -3 16t4 ⊂ 78

Table 6. Table showing the E6 charges and origin of some of the singlets in table 5.

is clearly worse, as then there are more GUT singlets for which we can’t compute homology

classes. As such, we can never have a complete knowledge of the singlet properties in a

local framework. This means that in model building, we will simply make assumptions

about the singlet spectrum (which in turn would amount to making assumptions about the

global completion of the model).

4 Singlet VEVs and D- and F-flatness conditions

The homology constraints just discussed can be used to construct models capable of ac-

commodating the Standard Model — an example of this is given in section 5. To obtain

a viable model it is usually necessary to remove additional Standard Model “vectorlike”

states by generating mass for them through their coupling to E6 singlets which acquire

VEVs. Any such VEVs should be consistent with F and D flatness conditions and we turn

now to a discussion of this. Since, in this paper, we have assumed all GUT breaking is

driven by flux no GUT non-singlet fields acquire VEVs until the electroweak scale and so

these VEVs can be ignored when determining high scale VEVs.

In general the superpotential for the massless singlet fields is given by

W = µijkθijθjkθki . (4.1)

The F-flatness conditions are given by

∂W

∂θij
= µijkθjkθki = 0 . (4.2)

The D-flatness condition for UA(1) is

∑

j

QA
ij(|〈θij〉|2 − |〈θji〉|2) = −TrQA

192π2
g2sM

2
S , (4.3)

where the right-hand side (rhs) is the anomalous contribution, QA
j are the singlet charges

and the trace TrQA is over all singlet and non-singlet states. The D-flatness conditions

must be checked for each of the UA(1)s.
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4.1 E6 case

In this case after the monodromy action there is only a single U(1) and, in the t′i basis

the charge is given by diag[1, 1,−2]. As both the 27s and the θij are charged under the

U(1), we must know the number of each after the monodromy action and the flux breaking

mechanism in order to compute the trace. The contribution of the 27ti to TrQA is

27(q1n1 + q3n3) = 27(n1 − 2n3)q1 (4.4)

and the contribution of the θij is

1× [(q1 − q2)n12 + (q1 − q3)n13] = 3n13q1 . (4.5)

The multiplicities are given in terms of the flux restrictions as the flux dotted with the

homology class, and so we have

n1 + n3 = F · (η − 3c1) , (4.6)

n12 = n13 = F · (η − 2c1) . (4.7)

Assuming that only the pair θ13, θ31 get VEVs, the flatness condition is

q3(|〈θ13〉|2 − |〈θ31〉|2) +
9(n1 − 2n3) + n13

64π2
q1g

2
sM

2
S = 0 (4.8)

and as we have q3 = −2q1

|〈θ13〉|2 − |〈θ31〉|2 =
9(n1 − 2n3) + n13

128π2
g2sM

2
S . (4.9)

In order to relate the multiplicities to each other, we define for convenience ω = FU(1) · η,
p = FU(1) · c1 and x = FU(1) · χ. As such, in this notation, we have

n1 = ω − 2p− x , (4.10)

= n13 − x , (4.11)

n3 = x− p . (4.12)

As chirality requires n1 > 0 and n3 < 0, the term 9(n1− 2n3) is always positive. If we take

the case n1 = 4 and n3 = −1 (i.e. the minimal case of three 27’s accommodating the three

families and a pair 27H + 27H̄), we have n13 = 3 + p, and

|〈θ13〉|2 − |〈θ31〉|2 =
54 + n13

128π2
g2sM

2
S . (4.13)

This condition is consistent with 〈θ13〉 6= 0 and 〈θ31〉 = 0 for any n13 > 0, but not with the

case 〈θ13〉 = 0, 〈θ31〉 6= 0 as this would require n13 < −54.

4.2 SO(10) case

Analogous to the E6 case, the D-flatness condition for the anomalous U(1)s is given by

eq. (4.3). In this case there are two UA(1)s with charges that can be taken as Q1 =

diag[1, 1, 1,−3] and Q2 = diag[1, 1,−2, 0]. For example, for the case of Q1, using table 4,

the trace is given by

TrQ1
j = 16(n16

1 + n16
3 − 3n16

4 ) + 10(2n10
13 + 2n10

12 − 2n10
14 − 2n10

34) + 4n1
14 + 4n1

34 . (4.14)

– 20 –



J
H
E
P
0
4
(
2
0
1
2
)
0
9
4

4.3 SU(5) case

In this case there are three UA(1)s with charges given in eq. (2.14). In the next section we

discuss F- and D-flatness in detail for a realistic model.

5 Model building: a realistic model based on E6

There are several important ingredients to building a phenomenologically realistic low

energy theory. The first is the need to control the baryon- and lepton-number violating

terms in the Lagrangian that generate rapid nucleon decay. In addition to the dimension 3

and 4 terms (forbidden by R-parity in the MSSM) it is necessary to forbid the dimension

5 nucleon decay terms too. Although the latter are suppressed by an inverse mass factor,

this mass must be some 107 times the Planck mass, unacceptably large in string theory.

A second necessary ingredient is the control of the “µ term”. The Higgs doublet

supermultiplet mass term in the superpotential, µHuHd, is allowed by the Standard Model

Gauge symmetry but, for a viable theory, its coefficient, µ, must be of order the SUSY

breaking scale in the visible sector. To control this requires additional symmetry. At the

same time the Higgs colour triplets that are expected as partners of the Higgs doublets in

a unified theory must be very heavy — the “doublet-triplet splitting” problem.

Finally the quark and lepton masses and mixings must be consistent. In particular it is

necessary to explain why the quark masses and mixing angles have a hierarchical structure

while the leptons must have large mixing angles and a relatively small mass hierarchy to

explain the observed neutrino oscillation phenomena.

There has been a significant effort to build F-theory based models that use its U(1)

symmetries to obtain these ingredients but, to date, no fully satisfactory model has been

obtained; indeed it has been speculated that it is not possible. Here, using the results

obtained above, we construct an explicit example to demonstrate how the U(1) symmetries

alone are sufficient to build a viable theory.

5.1 The E6 inspired model

The first, most important, step in model building is to find a matter and Higgs multiplet

assignment that can eliminate rapid nucleon decay. In this we find that starting from an

underlying unified group is very helpful and we consider the case of E6. After imposing a

Z2 monodromy there are just two multiplets, 27t′
1,3
. The SU(5)×SU(5)⊥ properties of these

multiplets are given in table 1. The only E6 allowed trilinear term in the superpotential

is 27t′
1
27t′

1
27t′

3
. As a result, if we assign the quark and lepton supermultiplets to 27t1 and

the Higgs supermultiplets to 27t3 , there will be no dimension 3 or dimension 4 baryon- or

lepton-number violating terms.

Anomaly cancellation leads to constraints between the number of SU(5) 10 and 5

dimensional representations [29, 51]. These conditions are automatically satisfied for mul-

tiplets descending from complete E6 multiplets. In particular for the E6 27 dimensional
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E6 SO(10) SU(5) Weight vector NY MU(1) SM particle content

27t′
1

16 53 t1 + t5 Ñ −M53 −M53d
c + (−M53 + Ñ)L

27t′
1

16 10M t1 −Ñ −M53 −M53Q+(−M53+Ñ)uc+(−M53−Ñ)ec

27t′
1

16 θ15 t1 − t5 0 −M53 −M53ν
c

27t′
1

10 51 −t1 − t3 −Ñ −M53 −M53D + (−M53 − Ñ)Hu

27t′
1

10 52 t1 + t4 Ñ −M53 −M53D + (−M53 + Ñ)Hd

27t′
1

1 θ14 t1 − t4 0 −M53 −M53S

27t′
3

16 55 t3 + t5 −Ñ M5Hu
M5Hu

dc + (M5Hu
− Ñ)L

27t′
3

16 102 t3 Ñ M5Hu
M5Hu

Q+(M5Hu
−Ñ)uc+(M5Hu

+Ñ)ec

27t′
3

16 θ35 t3 − t5 0 M5Hu
M5Hu

νc

27t′
3

10 5Hu
−2t1 Ñ M5Hu

M5Hu
D + (M5Hu

+ Ñ)Hu

27t′
3

10 54 t3 + t4 −Ñ M5Hu
M5Hu

D + (M5Hu
− Ñ)Hd

27t′
3

1 θ34 t3 − t4 0 M5Hu
M5Hu

S

Table 7. Complete 27s of E6 and their SO(10) and SU(5) decompositions. The indices of the SU(5)

non-trivial states 10, 5 refer to the labeling of the corresponding matter curve (we use the notation

of [29]). We impose the extra conditions on the integers NY and MU(1) from the requirement of

having complete 27s of E6 and no 78 matter. The SU(5) matter states decompose into SM states

as 5 → dc, L and 10 → Q, uc, ec with right-handed neutrinos 1 → νc, while SU(5) Higgs states

decompose as 5 → D,Hu and 5 → D,Hd, where D,D are exotic colour triplets and antitriplets.

We identify RH neutrinos as νc = θ15,35 and extra singlets from the 27 as S = θ14,34.

representations we have, in the notation of [29]

M10M = M51 = −M52 = −M53 , (5.1)

M102 = −M54 = −M55 = M5Hu
. (5.2)

Furthermore, in the absence of matter in the 78 dimensional representation we have

M103 = M104 = M56 = N8 = N9 = 0, (5.3)

which implies:

N7 = Ñ . (5.4)

The resulting states arising from complete 27s are shown in table 7 where we have allowed

also for the breaking of SU(5) through hypercharge flux. The SM particle content is

also shown in table 7 in the usual notation where a generation of quarks and leptons is

Q, uc, dc, L, ec. The Higgs doublets Hu, Hd are accompanied by exotic colour triplets and

anti-triplets D,D. The 27s also contain the CP conjugates of the right-handed neutrinos

νc and extra singlets S.

The only undetermined parameters in table 7 are the three integers M53 , M5Hu
and Ñ .

To maintain the E6 based suppression of the baryon- and lepton-number violating terms
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we require that the Higgs should come from 27t′
3
and the matter from 27t′

1
and that any

states transforming as Hu,d in 27t′
1
be heavy.

We first choose M53 = −3 to get three families of quarks and leptons in 27t′
1
. To

get a single pair of Higgs doublets in 27t′
3
without colour triplet partners we next choose

M5Hu
= 0 and Ñ = 1. According to table 7 this gives the following SM spectrum, grouped

according to SO(10) origin:

[

53 → 3dc + 4L, 10M → 3Q+ 4uc + 2ec, θ15 → 3νc
]

16
,

[

51 → 3D + 2Hu, 52 → 3D + 4Hd

]

10
,

[θ14 → 3S]1 ,
[

55 → L, 102 → uc + ec
]

16
,

[

5Hu
→ Hu, 54 → Hd

]

10
. (5.5)

Note that the matter content is just that contained in 3 complete 27s of E6:

3[Q, uc, dc, L, ec, νc]16, 3[Hu, D,Hd, D]10, 3[S]1 plus some extra vector pairs L + L, ec +

ec, uc + uc, Hd +Hd that may be expected to get a large mass if some of the singlet states

acquire large VEVs.

It may be seen that the U(1) flux breaking has resulted in one of the lepton super-

multiplets, ec, being assigned to 27t′
3
in conflict with our original strategy of assigning all

matter states to 27t′
1
. However this does not lead to the dimension 4 R-parity violating

superpotential term LLec because one of the ec comes from the 16 of SO(10) and there is

no 163 coupling allowed by SO(10). In this case it is a combination of the original R-parity

and the underlying GUT symmetry that eliminates dangerous baryon- and lepton-number

violating terms. In fact the combination is more effective than R-parity alone for it also

forbids the dangerous dimension 5 terms.

More troublesome is the fact that Hd now comes from 27t′
1
so that down quark masses

are forbidden in tree level. However there is an allowed coupling of HdLe
c for the ec

belonging to 27t′
3
. This discrepancy between down quark and charged lepton masses looks

unacceptable even if the remaining masses are generated in higher order through coupling

to singlet fields that acquire large VEVs. To avoid this we look at a slightly modified

structure choosing

M10M = −M53 = 4,

M51 = −M52 = 3,

M102 = −M55 = −1,

M54 = MHu
= 0,

Mθ15 = 2,

Ñ = 1. (5.6)

This leads to the spectrum given in table 8 where now both the down quarks and leptons

originate in 27t′
1
, avoiding the troublesome difference in their mass matrices just discussed.

The difference in the spectrum compared to the previous case is in the vectorlike sector

with additional pairs of L+L,Q+Q, uc+uc, dc+dc and Hd+Hd and no ec+ec. Provided
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E6 SO(10) SU(5) Weight vector NY MU(1) SM particle content Low energy spectrum

27t′
1

16 53 t1 + t5 1 4 4dc + 5L 3dc + 3L

27t′
1

16 10M t1 −1 4 4Q+ 5uc + 3ec 3Q+ 3uc + 3ec

27t′
1

16 θ15 t1 − t5 0 3 3νc -

27t′
1

10 51 −t1 − t3 −1 3 3D + 2Hu -

27t′
1

10 52 t1 + t4 1 3 3D + 4Hd Hd

27t′
3

16 55 t3 + t5 −1 −1 dc + 2L -

27t′
3

16 102 t3 1 −1 Q+ 2ūc -

27t′
3

16 θ35 t3 − t5 0 0 − -

27t′
3

10 5Hu
−2t1 1 0 Hu Hu

27t′
3

10 54 t3 + t4 −1 0 Hd -

27t′
3

1 θ34 t3 − t4 0 1 θ34 -

- 1 θ31 t3 − t1 0 4 θ31 -

- 1 θ53 t5 − t3 0 1 θ53 -

- 1 θ14 t1 − t4 0 3 θ14 -

- 1 θ45 t4 − t5 0 2 θ45 -

Table 8. Complete 27s of E6 and their SO(10) and SU(5) decompositions. We use the notation of

ref [29] for the indices of the SU(5) states and impose the extra conditions on the integers NY and

MU(1) from the requirement of having complete 27s of E6 and no 78 matter. The SU(5) matter

states decompose into SM states as 5 → dc, L and 10 → Q, uc, ec with right-handed neutrinos

1 → νc, while SU(5) Higgs states decompose as 5 → D,Hu and 5 → D,Hd, where D,D are exotic

colour triplets and antitriplets. We identify RH neutrinos as νc = θ15. The extra singlets are needed

for giving mass to neutrinos and exotics and to ensure F- and D-flatness.

the vectorlike states are heavy the absence of the dimension 3 and 4 R-parity violating

operators is now guaranteed by the underlying U(1) symmetries.3 As we shall see the

underlying GUT symmetry still also eliminates the dimension 5 terms that would cause

nucleon decay.

5.2 Doublet-triplet splitting and vector-like masses

There remains the doublet-triplet problem of giving large mass to the D and D fields and

the problem of giving large mass to the vectorlike pairs of fields. Since the D and D fields

also come in vectorlike pairs these problems are related and are solved by generating mass

for vectorlike fields through their coupling to SM singlet fields that acquire large VEVs.

For the case the vectorlike pairs have components in both the 27t′
1
and 27t′

3
multiplets the

extra vector pairs are removed by introducing θ31, an E6 singlet, with couplings:

θ3127t′
1
27t′

3
= θ31QQ+ θ31(2u

c)(2uc) + θ31d
cdc + θ31(2L)(2L) + θ31HdHd. (5.7)

3Note that these operators do not involve Hd and so the fact that Hd originates in 27t′
1
does not cause

problems.
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If θ31 gets a large VEV these vector states get large masses as required. We shall discuss

how the D-terms associated with the anomalous UA(1)s can require a VEV for this field

close to the Planck scale.

To remove the remaining exotics we introduce θ34 which has the couplings:

θ345152 = θ34[3D + 2Hu][3D + 3Hd] = θ34[3(DD)] + θ34[2(HuHd)]. (5.8)

If it too acquires a large VEV it generates large mass to the three copies of D+D (solving

the doublet-triplet splitting problem) and two families of Higgs Hu, Hd, leaving just the

MSSM spectrum as shown in the last column of table 8.

5.3 Singlet VEVS

In the model under consideration we assume the SUSY breaking soft masses are such that

only the SM singlet fields acquire very large VEVs. To determine them we consider the F -

and D-flatness conditions. Taking account of the Z2 monodromy, t1 ↔ t2 the D-flatness

conditions are of the form given in eq. (4.3) where there are three UA(1)s with charges

given in eq. (2.14). We wish to show that the D-flatness conditions are satisfied by the

massless fields θ31, θ34, θ53 needed to give mass to exotics and, as discussed below, to

generate viable neutrino masses. Using the spectrum given in table 8 we compute TrQA

for the three UA(1)s. In a general basis, Q = diag[t1, t2, t3, t4, t5], eq. (4.3) can be written

(t5 − t3)|θ53|2 + (t3 − t4)|θ34|2 + (t3 − t1)|θ31|2 = −XTrQA . (5.9)

The trace is taken over all states, and is given by

TrQA = 5
∑

nij(ti + tj) + 10
∑

nktk +
∑

mij(ti − tj) . (5.10)

For our model, this trace is computed to be

TrQA = 61t1 − 26t3 + 14t4 + 11t5 . (5.11)

Applying this to the three UA(1)s using the generators given in eq. (2.14) leads to

5|θ53|2 = 5X (Qχ)

−|θ53|2 + 4|θ34|2 = 7X (Qψ)

2|θ53|2 − 2|θ34|2 − 3|θ31|2 = −113X (Q⊥) , (5.12)

where X =
g2sM

2

S

192π2 . These equations are solved by

|θ53|2 = X ,

|θ34|2 = 2X ,

|θ31|2 = 37X . (5.13)

It remains to demonstrate F -flatness. The only allowed superpotential terms that can

give a non-zero F -term involves the fields with VEVs plus at most a single additional

light field. The only problematic terms have the form λijθ53θ
i
31θ

j
15 where i = 1, 2, 3, 4 and
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j = 1, 2, 3. The F-terms of θj15 are potentially non-zero but minimisation of the singlet

potential will make λi1〈θi31〉 = 0 and λi2〈θi31〉 = 0. This means three independent θi31 fields

have zero VEVs but the fourth one can have a VEV as it decouples from θj15. It is this

combination that enters in eqs. (5.12) and (5.13).

To complete the singlet discussion we note that most of the singlets acquire mass

through the singlet VEVs. In particular the coupling θ14θ45θ53θ31/M is allowed by the

symmetries and generated a high scale mass, 〈θ53θ31〉/M for the θ14 and θ45 fields. The

reason these vector-like sets of singlet fields were included in the spectrum was to ensure the

D-flat conditions could be satisfied — they play no role in the low energy phenomenology.

Since we have three θ14 fields and two θ45 fields in the massless spectrum below the string

scale there will be one field θ14 left over.

5.4 Gauge coupling unification

As we have seen, the result of flux splitting is to add SM non-singlet states in vector-like

representations. Although these all acquire a large mass they still affect gauge coupling

running. If they come in complete SU(5) representations they do not affect the relative

gauge coupling running at the one loop order. However this is not the case as may be seen

from table 8 where there are incomplete multiplets. Therefore we would not expect the

gauge couplings to meet at some unification scale MGUT. On the other hand, as discussed

in appendix A, in F-theory it has been observed [38] that U(1)Y flux mechanism splits the

gauge couplings at the unification scale. Taking into account flux threshold effects, at the

GUT scale the gauge couplings αi = g2i /4π are found to satisfy the relation,

1

αY (MGUT)
=

5

3

1

α1(MGUT)
=

1

α2(MGUT)
+

2

3

1

α3(MGUT)
, (5.14)

Although this is not sufficient to yield a prediction for the low energy gauge couplings, we

find that the spectrum of exotics in the considered model tends to compensate for the flux

splitting at MGUT, so that the low energy gauge couplings can remain close to the same

values as predicted in conventional GUT models, independently of the exotic mass scale.

We shall also find that this exotic mass scale independence remains true even when two

different exotic mass thresholds are taken into account. The compensation is not exact

however as noted in [6] and in [63] for the case of models with one or two U(1)⊥s, and we

shall see that this also applies in the model with three U(1)⊥s. Moreover, the situation

here is more involved because the exotic states are not expected to be degenerate, so this

requires a dedicated analysis for this particular model.

In our model we have the following vector pairs of exotics, which get large masses

when θ31 gets a VEV according to eq. (5.7): (Q + Q), 2(uc + uc), (d + d
c
), 2(L + L),

(Hd+Hd). Below some scale MX < MGUT these exotics decouple. We also have 3(D+D),

2(Hu, Hd) exotics which get masses when θ34 gets a VEV according to eq. (5.8). Below a

scale MX′ < MX these exotics decouple and only the MSSM spectrum remains massless

for scales µ < MX′ . As discussed above, the VEV for θ31 is expected to be much larger

than that of θ34. Consequently the exotic states getting mass from different VEVs will

have significantly different masses. From eqs. (5.7) and (5.8) we see that a vectorlike
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pair of D, D̄ quarks in an incomplete SU(5) multiplet are much lighter than the net

2L, 2L̄ incomplete multiplets. We find that this effect goes in the direction of cancelling

the flux contribution. Since the effect depends sensitively on the scale at which gauge

coupling running ceases, we now investigate the implications of these scales using a one-

loop renormalisation group analysis.

Assuming that extra matter decouples at mass scales MX and MX′ (MZ < MX′ <

MX < MGUT) we can express the GUT scale as follows (see appendix A for details)

MGUT = e
2π
βA

ρ
Mρ
ZM

γ−ρ
X′ M1−γ

X (5.15)

ρ =
β

βx

γ =
βx′

βx
MZ ,

where A is a function of the experimentally known low energy values of the SM gauge

coupling constants

1

A =
5

3

1

α1(MZ)
− 1

α2(MZ)
− 2

3

1

α3(MZ)
, (5.16)

where β, βx′ , βx are the beta-function combinations in the regions MZ < µ < MX′ , MX′ <

µ < MX and MX < µ < MGUT respectively

βx = bxY − bx2 −
2

3
bx3 , (5.17)

βx′ = bx
′

Y − bx
′

2 − 2

3
bx

′

3 , (5.18)

β = bY − b2 −
2

3
b3. (5.19)

Imposing the well known condition c1(L)2 = −2 which eliminates the exotic states (3, 2)−5/6+

(3̄, 2)5/6 originating from the SU(5)-adjoint decomposition in the bulk, we note that all

other types of these extra states descend from Σ10,Σ5 matter curves. Let us denote with

nQ, nuc , ndc , nL, nec , nh

the multiplicities of all types of possible extra states, in a self explanatory notation. We find

βx′ − β = −2nQ + nuc + nec

and a similar equation for the exotics which are in the massless spectrum above the MX

scale. We observe that the above difference depends on the number of additional quark

doublets, u-type right handed quarks and electrons nQ, nuc , nec and is independent of the

number of other types of additional states.

In the model under consideration, we analyse this information for the spectrum with

two decoupling scales in appendix A, where we find the remarkable result that the GUT

scale becomes independent of the decoupling scales MX , MX′ ,

MGUT = e
2π
βA MZ = e

π
6A MZ ≈ 2× 1016GeV (5.20)
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that is, it is identical with the MSSM GUT scale. Although one cannot predict the low

energy QCD coupling constant in F-theory, in appendix A we obtain an approximate lower

bound α3 ≥ 0.11, which is consistent with experiment.

5.5 Baryon- and lepton-number violating terms

As discussed above the R-parity violating superpotential couplings ucdcdc, QdcL, LecL,

κLHu are not allowed because of the underlying U(1) symmetries which play the role of

R-parity. Dimension 5 terms in the Lagrangian, corresponding to the superpotential terms

QQQL and ucucdcec, which would be allowed by usual R-parity, are forbidden by the U(1)

symmetries that originate in the underlying E6.

Of course one must be careful that spontaneous symmetry breaking terms coming from

SM singlet field VEVs do not allow these dangerous operators to appear. Allowing for arbi-

trary singlet fields to acquire VEVs the dangerous the baryon- and lepton-number violating

operators arise through the terms θ15LHu, (θ31θ45+θ41θ35)10M53
2
and θ31θ4110

3
M53. Thus,

provided θ15, θ41 and θ45 do not acquire VEVs these dangerous terms will not arise.

However this is not sufficient to ensure the absence of baryon and lepton number

violating terms because, even in the absence of these VEVs, tree level graphs can generate

the dangerous operators at higher order in the singlet fields. The dangerous graph is shown

in figure 1 and is driven by colour triplet exchange coming from the couplings

10M 10M 5Hu
→ QQDh + . . .

5Hu
5̄H̄u

→ MDDhD̄h + . . .

θ34515̄2 → 〈θ34〉D′
hD̄h

′′′ + . . . = 〈θ34〉DD̄ + . . . .

As may be seen from table 8 only the states D′
h and D̄′′′

h appear in the spectrum with

mass generated by the singlet VEV 〈θ34〉 which from eq. (5.13) is predicted to be somewhat

below the GUT scale. Since the choice of fluxes in table 8 eliminates light colour triplet

statesDh in the low energy spectrum, arising from 5Hu
, there is no reason to expect any KK

modes with the quantum numbers of Dh below the string scale since there is no ground

state with the colour triplet quantum numbers of Dh below the string scale. Similarly

the choice of fluxes in table 8 eliminates light colour triplet states Dh
′′ in the low energy

spectrum, arising from 54, so there is no reason to expect any KK modes with the quantum

numbers of Dh
′′ below the string scale.

If string states with the quantum numbers of Dh, D
′′
h exist they are expected to have

string scale masses, of O(MS). In this case the diagram of figure 1 gives the proton decay

operator QQQL with coefficient 1/Λeff given by

1

Λeff
= λ5

(〈θ31〉
MS

)2 1

〈θ34〉
(5.21)

In (5.21), λ5 represents the the product of the five Yukawa couplings in the relevant diagram

and according to ref [33] it is expected to be

λ5 = λ10·10·5λ10·5̄·5̄λ
3
5·5̄·1 ≈ 10−3.
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Figure 1. The proton decay diagram generating dim. 5 operator QQQL.

We can further determine the mass ratios taking into account the solution eq. (5.13)

to flatness conditions to estimate the effective scale

Λeff ≈ 103
(

MS

〈θ31〉

)2 〈θ34〉
MS

MS ≈ 8
√
6π

37gs
× 103MS & 103MS .

This, multiplied by the appropriate loop-factor due to higgsino/gaugino dressing and

other theoretical factors [73–77], should be compared to experimental bounds on nucleon

decay. This bound, relevant to the case that the operator QQQL involves quarks from the

two lighter generations only, requires Λlighteff > (108 − 109)MS . Given the large discrepancy

between Λlighteff and Λeff it is clearly important to determine whether, in the absence of flux,

this light quark operator is generated by the diagram of figure 1.

Consider first trilinear couplings involving light fields only. They are given by an

integral over the coordinates about the point of intersection, zi, of the surface on which the

matter curves reside. For the case there areN multiple fields associated with a matter curve

the orthogonal wave functions may be chosen proportional to powers of the coordinates,

(zi)
j , j = 1, . . . , N . On integration only the coupling involving the fields with j = 0 are

non-zero, corresponding to a U(1)i invariance, zi → zie
iαi . For the case the three families

live on the same matter curve this means the mass matrices are rank 1 in the absence of

flux. Switching on the flux gives a rank 3 mass matrix and generates the mixing between

the generations.

Now consider the case that there are vertices involving both light and heavy fields.

In this case, because the heavy field wave function can involve powers of z̄i [49], there

can be couplings involving light states with j 6= 0. However, as the U(1)i invariance is

intact, higher order operators with only external light fields are generated only if all the

external fields have j = 0. In the absence of flux and assuming that the θ fields that

acquire large vevs are also light fields this means that the operator generated by Fig 1

does not involve the light quarks. Thus its contribution to nucleon decay vanishes in the

absence of flux and hence is significantly suppressed. To estimate this suppression we use

the fact that the same flux effects generate the masses and mixings of the light quarks.

Using these mixing angles we can convert the heavy quark operator to one involving light

quarks. For the least suppressed case involving two down quarks and an up quark, this

gives Λlighteff ≈
√

mt

mu

mb

md
Λeff ≈ 109MS , consistent with the experimental bound. A similar

result applies to the operator involving right handed quarks.
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5.6 The µ term

From table 8 it is clear that the U(1) symmetries discussed above forbid a µ term. We

expect these local symmetries to be anomalous and the associated gauge bosons to become

massive due to the Stueckelberg mechanism, leaving three global U(1) symmetries which

act as selection rules in determining the allowed Yukawa couplings [37]. However these

global symmetries are only approximate and are spontaneously broken by the VEVs in

eq. (5.13). The U(1) symmetries are also explicitly broken by non-perturbative effects [78]

with breaking characterised by the Kähler moduli, τi, components of the complex fields

Ti, whose complex components provide the longitudinal components of the U(1) gauge

bosons. These non-perturbative effects will generate an explicit µHuHd term with the

µ = O(Mse
−t/Ms) where t is the VEV of the appropriate combination of τi moduli, and

Ms represents the string scale. Due to the exponential dependence on t this term can be

of the electroweak scale as required. Of course it is important that such breaking effects

do not re-introduce nucleon decay terms at an unacceptable level. Provided the breaking

of all the U(1) symmetries are of the same order this will be the case because each of the

dangerous operators will be suppressed by the factor e−t/M = O(µ/Ms). Thus the nucleon

decay amplitude due to these terms will be suppressed by two powers of the string scale

and be negligible.

5.7 Quark and charged lepton masses

Up to SM singlets the surviving low energy spectrum is that of the MSSM given by:

[

53 → 3dc + 3L, 10M → 3Q+ 3uc + 3ec
]

,
[

52 → Hd

]

10t1
,

[5Hu
→ Hu]10t3

. (5.22)

The allowed low energy couplings in the superpotential originate from:

27t127t127t3 → 16t116t110t3

→ 10M10M5Hu
+ 53θ155Hu

+ 5310252

→ (3Q)(3uc)Hu + (3L)(3νc)Hu. (5.23)

A 3 × 3 up-type and Dirac neutrino mass matrix is allowed at dimension three. In

the absence of flux these matrices are rank one. However, as recently shown by Aparicio,

Font, Ibanez and Marchesano [49], nonperturbative flux effects can generate an acceptable

pattern for the light up quarks.

The down quark and charged leptons acquire mass through the non-renormalisable

Yukawa couplings:

θ3127t127t127t1/M → θ3116t116t110t1/M

→ θ315310M52/M

→ (θ31(3d
c)(3Q) + θ31(3L)(3e

c))Hd/M. (5.24)
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Figure 2. Tree-level diagram contributing to the bottom mass.

Note that, from table 8, the relevant graph 2 is generated by the exchange of a mas-

sive vectorlike pair that is given a mass by 〈θ31〉. We already saw that θ31 must have a

large VEV to give mass to exotics so this term can lead to down quark and charged lep-

ton Yukawa couplings that are only mildly suppressed relative to the up quark couplings

(〈θ31〉/M ≥ mb/mt). This suppression provides an origin for the relative magnitude of the

top quark to the bottom quark. Although the mass matrices for the down quarks and

charged leptons coming from eq. (5.24) are rank one, non-perturbative flux effects will

generate the remaining terms and can lead to an acceptable mass structure [49].

5.8 Neutrino masses

As discussed in [46] models with a monodromy have states with Majorana mass. In this

case, due to the monodromy, θ12 and θ21 are identified so, in the covering theory, the

superpotential term MMθ12θ21, that is allowed by all the symmetries, is a Majorana mass

in the quotient theory. In what follows we shall use the notation Θ51 ≡ θ53θ31/M . The

RH neutrinos, θi15 couple to θj12 via λijΘ51θ
i
12θ

j
15 where we have allowed for several states

on the θ12 matter curve. In the absence of flux the mass mixing matrix λij〈Θ51〉θi12θ
j
15 has

rank one and we work in a basis in which only λ11 is non-zero. With flux the remaining θ15
fields mix but this can be considerably suppressed. In the case of the up quark mass matrix

such flux effects can explain th! e up quark mass hierarchy mc/mt = 10−2, mu/mt = 10−4

so we may expect similar hierarchies in the mass mixing parameters λij .

Since Θ51 has a VEV the fields θj15 acquire a Majorana mass, M15, through the see-saw

mechanism giving

M15 =
λ2〈Θ†

51〉2MM

(|λ〈Θ51〉|2 + |MM |2) . (5.25)

where we have suppressed the family indices for clarity. In the absence of flux only θ115
acquires a mass. With flux the remaining fields also get a Majorana mass but this can

be significantly suppressed due to the expectation of smaller λs. Since the light neutrinos

couple to θ15 via the term λ′LHuθ15
4 they, in turn, acquire Majorana masses given by

Mν =
λ′2〈Hu〉2M15

(|κ〈Θ53〉|2 + |M15|2)
(5.26)

where the states θ15 also get mass from the coupling κθ15θ31θ53.

4
λ
′ is a matrix of couplings. In the absence of flux it is also rank 1.
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What is the range of neutrino masses to be expected? From eqs. (5.25) and (5.26)

we have

Mν <
λ′2〈Hu〉2
λ〈Θ51〉

(5.27)

For λ, λ′ = O(1), to get a mass of O(10−1)eV requires 〈Θ51〉 ∼ 1014GeV which is too low

given that (c.f. eq. (5.13)) 〈Θ51〉/M ∼ θ31/M ≥ mb/mt and we expect M ∼ MS .

However it is clear the result is very sensitive to the couplings λ and λ′ (and κ).

Given the approximate rank 1 form of the matrix of couplings λ, from eq. (5.25), two

of the singlet states θ15 have suppressed mixing to θ12, which we characterise by λ̃, and

consequently smaller Majorana mass. The resulting spectrum of doublet neutrino masses

is one light one satisfying the bound of eq. (5.26) due to the exchange of the heavy θ15
state plus two heavier states with mass satisfying the bound

Mν <
λ′2〈Hu〉2
λ̃〈Θ51〉

(5.28)

due to the exchange of the lighter θ15 states. Note that in this equation we have kept

the leading λ′ = O(1) coupling because we expect the light θ15 mass eigenstates states to

contain a significant component of the state that has the leading λ′ coupling. As discussed

above λ̃ can readily be of O(10−2) or smaller. As a result, if this bound is saturated, two

neutrino masses in the 10−1eV range can readily be generated for 〈Θ51〉/MS ∼ θ31/M ≥
mb/mt. However the saturation can be spoilt by the term involving κ〈Θ53〉 in eq. (5.26)

so a determination of the precise result depends on the relative alignment of the leading

contributions to λ, λ′ and κ. This in turn depends on the relative proximity of the relevant

intersections of the matter curves involved in the three couplings.

5.9 Relation to previous work

In [58] a general analysis was presented of the possible R-symmetries coming from the U(1)⊥
factors in the local analysis of F-theory. Two possibilities were identified but it was shown

that it was not possible to realise them in the semi-local picture. The model presented above

corresponds to the Matter Parity Case 1 of [58] and we have shown that it is consistent

with the semi-local picture. The explanation of the apparent conflict is straightforward.

In [58], seeking to generate viable fermion mass matrices without flux effects, the analysis

considered only the case that the matter coming from the 10 dimensional representation of

SU(5) should come from two matter curves, 10M and 10t4 . As a result, in order to suppress

the dimension 5 nucleon decay operators, a VEV for the field θ31 was forbidden and hence,

c.f. the discussion above, no down-type mass terms could be generated and the Matter

Parity Case 1 was ruled out. However in the case of interest here all three generations are

assigned to 10M . As a result a VEV for θ31 is allowed without generating dimension 5

nucleon decay operators. Hence a down-type mass matrix proportional to 〈θ31〉 is possible
and, allowing for flux effects, the resulting mass matrix can be of rank 3.

In [63] a general discussion was presented of the difficulty in obtaining phenomenolog-

ical viable F-theory models in the semi-local approach. The difficulty of reconciling the

exotic spectrum necessitated by flux breaking with the µ-term, the suppression of nucleon
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decay operators and gauge unification was emphasised and studied in detail for the case of

models with one or two U(1)⊥s. The model constructed here has three U(1)⊥s and demon-

strates that the problems can be ameliorated but not eliminated. In particular we have

shown that the suppression of the dangerous nucleon decay operators is maintained while

generating a µ-term. However the constraints following from anomaly cancellation [29, 51]

are still severe and lead to an extended exotic spectrum that affect gauge coupling running

as discussed in section 5.4.

6 Conclusions

In the present work we have considered semi-local F-theory GUTs arising from a single

E8 point of local enhancement, involving simple GUT gauge groups based on E6, SO(10)

and SU(5) together with SU(3), SU(4) and SU(5) spectral covers, respectively. Assuming

the minimal Z2 monodromy, we determined the homology classes of the spectrum for each

case, and the implications for the resultant spectrum after flux breaking.

Using this, and aided by a dictionary relating the E6, SO(10), SU(5) and singlet rep-

resentations, we constructed a model that leads to the MSSM at low energies. We showed

that D-and F-flatness constraints require VEVs for singlet fields, which spontaneously

break the global U(1) symmetries, and which generate large masses for all the non-MSSM

exotic fields. In the absence of flux, the quark and charged lepton mass matrices are of rank

one. When flux and instanton corrections are included, light quark and lepton masses and

mixings are generated that can be consistent with their observed values. In the absence of

flux, the additional U(1) symmetries descending from E8 ensure that dangerous baryon-

and lepton-number violating terms are absent up to and including dimension 5, even tak-

ing into account the singlet VEVs which break the U(1) symmetries. Including the flux

effects, dimension 5 terms involving light quarks are generated but at an acceptable level.

As a result the nucleon is stable within present limits without requiring super-Planckian

messenger masses. The µ term in the theory is also forbidden by the U(1) symmetries

but can be generated at the SUSY breaking scale, again through non-perturbative effects

which explicitly break the U(1) symmetries. Neutrino masses are generated via the see-

saw mechanism, involving singlet neutrinos that acquire large Majorana masses allowed

by the monodromy.

In conclusion, we have provided an example of a fully viable F-theory GUT, as-

suming flux breaking of all symmetries, satisfying the semi-local constraints, and em-

ploying only the additional (broken) U(1) symmetries descending from the E8 point of

local enhancement.
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A RGEs and extra matter

In this appendix we give a few details on the derivation of the GUT scale and constraints

on other relevant quantities obtained from the renormalisation group analysis. It has been

pointed out [38] that the U(1)Y flux mechanism used to break the SU(5) gauge symmetry

down to the Standard Model one, splits the gauge couplings at the unification scale. The

splitting at MGUT is

1

α3(MG)
=

1

αG
− y ,

1

α2(MG)
=

1

αG
− y + x ,

1

α1(MG)
=

1

αG
− y +

3

5
x .

(A.1)

In the above we introduced the simplified notation x = −1
2ReS

∫

c21(LY ) and y = 1
2ReS

∫

c21(La)
associated with a non-trivial line bundle La and S = e−φ + i C0 the axion-dilaton field as

discussed in [38]. Combining the above, the gauge couplings at MGUT are found to satisfy

the relation

1

αY (MGUT)
=

5

3

1

α1(MGUT)
=

1

α2(MGUT)
+

2

3

1

α3(MGUT)
. (A.2)

To obtain the low energy couplings, we use renormalisation group analysis at one-loop

level, taking into account threshold effects originating from possible existence of exotic

states appear in the spectrum. In general, different exotics decouple at different scales.

In the considered model we have the following vector pairs of exotics, which get large

masses when θ31 gets a VEV according to eq. (5.7): (d+d
c
), (Q+Q), (Hd+Hd), 2(L+L),

2(uc+uc). Below some scale MX < MGUT these exotics decouple. We also have 3(D+D),

2(Hu, Hd) exotics which get masses when θ34 gets a VEV according to to eq. (5.8). Below

a scale MX′ < MX these exotics decouple and only the MSSM spectrum remains massless

for scales µ < MX′ . The low energy values of the gauge couplings are then given by the

evolution equations

1

αa(MZ)
=

1

αa(MGUT)
+

bxa
2π

ln
MGUT

MX
+

bx
′

a

2π
ln

MX

MX′

+
ba
2π

ln
MX′

MZ
, (A.3)

where bxa is the beta-function above the scale MX , b
x′
a is the beta-function below MX and

ba is the beta-function below MX′ . Combining the above equations, we find that the GUT

scale is given by

MGUT = e
2π
βA

ρ
Mρ
ZM

γ−ρ
X′ M1−γ

X , (A.4)

where A is a function of the experimentally known low energy values of the SM gauge

coupling constants

1

A =
5

3

1

α1(MZ)
− 1

α2(MZ)
− 2

3

1

α3(MZ)

=
cos(2θW )

αem
− 2

3

1

α3(MZ)
, (A.5)
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where use has been made of the relations αY = αe/(1− sin2 θW ) and α2 = αe/ sin
2 θW . We

have also introduced the ratios ρ and γ

ρ =
β

βx
γ =

βx′

βx
, (A.6)

where β, βx′ , βx are the beta-function combinations in the regions MZ < µ < MX′ , MX′ <

µ < MX and MX < µ < MGUT respectively

βx = bxY − bx2 −
2

3
bx3 , (A.7)

βx′ = bx
′

Y − bx
′

2 − 2

3
bx

′

3 , (A.8)

β = bY − b2 −
2

3
b3 . (A.9)

Recall now the beta-function coefficients (b1 =
3
5 bY )

b1 = −0 + 2nG +
3

10
(nh + nL) +

1

5
ndc +

1

10
nQ +

4

5
nuc +

3

5
nec , (A.10)

b2 = −6 + 2nG +
1

2
(nh + nL) + 0ndc +

3

2
nQ + 0nuc , (A.11)

b3 = −9 + 2nG + 0 (nh + nL) +
1

2
ndc + nQ +

1

2
nuc , (A.12)

with nG = 3 the number of families and nh,L,... counting Higgses and extraneous matter.

Below MX′ we have only the MSSM spectrum, thus nG = 3, nh = 2 and all extra

matter contributions are zero, ni = 0, thus

{bY , b2, b3} = {11, 1,−3} → β = bY − b2 −
2

3
b3 = 12 .

In our model we have additional matter of 3(D + D), 2(Hu, Hd) above the scale MX′ .

Assuming nQ, ndc and nuc extra Q = (3, 2), dc = (3̄, 1) and uc = (3̄, 1) and nh doublets

while writing βx′ = β + δβx′ we have

δβx′ = βx
′ − β = −2nQ + nuc .

In our model

nQ = 0, nuc = 0, ndc = 6, nL + nh = 4, nec = 0 ,

thus

δβx′ = 0 → βx′ = β = 12,
ρ

γ
= 1 .

Above the scale MX , we have additional matter (d+d
c
), (Q+Q), (Hd+Hd), 2(L+L),

2(uc + uc). As such

nQ = 2, nuc = 4, ndc = 2, nL + nh = 6, nec = 0

and so

δβx = βx − βx
′

= 0 → βx = β = 12, ρ = γ = 1 .

From (A.4) we see that MGUT becomes independent of the MX and MX′ scales and in fact

it is identified with the MSSM unification scale

MU = MGUT ≡ e
2π
βA MZ ≈ 2× 1016GeV . (A.13)
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A.1 A lower bound on the low energy QCD coupling constant

Recall now that the parameter x is given by x = −1
2 ReS

∫

c1(LY )
2, with S = e−φ + i C0

being the axion-dilaton. Notice that elimination of unwanted exotics (3, 2)−5/6 + (3̄, 2)5/6
(arising from the SU(5) adjoint decomposition) impose the condition

∫

c1(LY )
2 = −2.

The low energy values of the gauge couplings are then given by the evolution equations

eq. (A.3). These imply

(

1

α2
− 1

α3

)

MZ

= x+
bx2 − bx3
2π

log

(

MG

MX

)

+
bx

′

2 − bx
′

3

2π
log

(

MX

MX′

)

b2 − b3
2π

log

(

MX′

MZ

)

.

(A.14)

Let us investigate the implications of the parameter x which is found to play the decisive

role in the gauge coupling splitting. We note first that a suitable twisting of La bundle by

a trivial line bundle La → La ×Ra implies the following change [38]
∫

c1(LY )2 →
∫

c1(LY )2 + 2c1(LY ) · c1(La) . (A.15)

Since we have imposed the condition
∫

c1(LY )2 = −2 and we assume that the manifold

is a del Pezzo surface dPn, we conclude that αy = c1(LY ) is a root of the corresponding

Lie Algebra. If now the twisting is chosen so that αa = c1(La) is also a root of the Lie

Algebra, then αY · αa = 1. In this case x = 0 and the splitting effect vanishes since the

remaining parameter y induces only a common shift to all gauge couplings, leading only

to a redefinition α−1
G → α̃−1

G = α−1
G − y. Thus, in this limiting case we get the standard

gauge coupling unification scenario.

We proceed with the analysis for x 6= 0. In our case the required beta functions

combinations are

b2 − b3 = 4 , (A.16)

bx
′

2 − bx
′

3 = 4 , (A.17)

bx2 − bx3 = 3 . (A.18)

Thus

x =
1

α2
− 1

α3
− 2

π
ln

(

MG

MZ

)

− 1

2π
ln

(

MX′

MX

)

. (A.19)

We have 〈θ31〉 =
√
37X and 〈θ34〉 =

√
2X from eq. (5.13), and so

MX′

MX
=

√

2

37
. (A.20)

As such, we have

x =
4

3

1

α2
− 1

3

1

αY
− 7

9

1

α3
− 1

4π
ln

(

2

37

)

. (A.21)

Since x is the dilaton field, e−φ clearly we must have x > 0 which gives a lower bound

in α3

α3 ≥
7

9

1
5 sin2 θW−1

3αe
− 1

4π ln
(

2
37

)

≈ 0.1130 . (A.22)
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breaking in F-theory, arXiv:0808.1286 [INSPIRE].
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