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1 Introduction

There have been intensive efforts to use methods of gauge/gravity correspondence [1–3] in

studying strongly interacting systems at finite temperature and/or chemical potential. One

of the motivations for such efforts is to understand the state of strongly interacting quark-

gluon plasma created at RHIC, which is known to have a shear viscosity to entropy density

ratio not too far from the AdS/CFT value [4]. The hydrodynamic limit of AdS/CFT has

attracted much attention in recent years. The emerging picture out of these investigations

is that the dynamics of perturbations of a black-brane background is governed, in the long-

wavelength limit, by the same hydrodynamic equations which describe relativistic fluids [5].

Phenomenologically, the hydrodynamic equations are written down based on general

principles like symmetries and the second law of thermodynamics as well as the kinetic

approach based on the Boltzmann equation. While the hydrodynamic equations have

been known for a long time, the ability to derive them from holography provides fresh

perspectives, complementary to those of the phenomenological approach. In particular,

holography was instrumental in the discovery of new hydrodynamic effects in systems with

triangle anomalies [5, 6]. It has been directly observed that in these systems, there exist

additional terms in the currents of conserved charges, proportional to the vorticity of the

fluid flow. It was further discovered that such contributions are required by the triangle

anomalies and the second law of thermodynamics, and hence are not restricted to theories

with a gravitational dual [7]. There have been some attempts to rederive these terms in

the kinetic approach [8].

In this paper, we investigate parity-odd effects in (2+1)-dimensional relativistic hy-

drodynamics. In contrast to (3+1)-dimensions, there are no triangle anomalies. However
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parity may be broken explicitly or spontaneously. One can ask whether there are new

hydrodynamic effects which are disallowed in parity-invariant fluids.

It is easy to observe that indeed such an effect does exist, and is the relativistic gener-

alization of what is called the “Hall viscosity” in the condensed matter literature [9, 10]. In

condensed matter, there are variety of models where the Hall viscosity phenomenon is in-

vestigated [11]. One may ask whether Hall viscosity appears more generally in a relativistic

context. Consider the stress tensor of a relativistic fluid

τµν = (E + p)uµuν + pgµν − ηPµαP νβVαβ , Vαβ ≡ ∇αuβ +∇βuα − gαβ∇ · u, (1.1)

where uµ is the fluid velocity and Pµν = gµν + uµuν is the projection to the directions

perpendicular to uµ.1 On general grounds, there exists a Hall viscosity contribution to the

stress tensor

τµνH = −1

2
ηA(ǫ

µαβuαVβ
ν + ǫναβuαVβ

µ), (1.2)

which by construction, is only allowed in (2+1)-dimensions. It is worth mentioning that the

Hall viscosity term does not contribute to entropy production and hence is dissipationless.

In the comoving frame, where the fluid velocity at a given point is uµ = (1,~0), the Hall

viscosity contribution to the stress tensor τ ij has the same form (up to a sign) as the one

discussed in [9]

τ ijH =
1

2
ηijklA Vkl, ηijklA = −1

2
ηA(δ

ikǫjl + δjkǫil + δilǫjk + δjlǫik). (1.3)

In this paper we write down a holographic theory which realizes the phenomenon of

Hall viscosity. Our bulk theory is Anti de Sitter gravity coupled to a gravitational Chern-

Simons term. It is similar to the model considered in [12]. We find that the corresponding

boundary theory exhibits “Hall viscosity.” Moreover, we discover that the Hall viscosity is

completely determined by the near horizon region of the black-brane.

The paper is organized as follows. In section two, we present our holographic setup

in detail. In section three, the Hall viscosity contribution to the stress tensor is computed

using fluid/gravity correspondence. Section four is where a Kubo’s formula is proposed and

is further used to calculate the Hall viscosity coefficient. We conclude the presentation by

the outlook section. Some details of the holographic renormalization of our model appears

in the appendix.

2 The setup

It is interesting to construct gravity backgrounds dual to isotropic hydrodynamic flows

with a non-vanishing Hall viscosity term. This is only possible in (2+1)-dimensions and

in the presence of a broken time-reversal or parity. Here we propose a gravity dual which

realizes this goal. We do not insist on deriving the gravity dual from string theory in a

top-down approach. Rather we take a more phenomenological attitude. We introduce a

parity-breaking interaction by turning on a gravitational θ-term in the bulk action. Parity

1We assume the fluid is conformal so the bulk viscosity is zero.
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breaking alternative gravity theories have been studied in the past [12] with phenomenology

in mind. We consider a generalization of this class of models which includes a negative

cosmological constant.

Let us begin by describing the setup. Throughout the main text, we use the uppercase

Latin letters for the four spacetime coordinates. Lower case letters i, j are reserved for the

spatial boundary field theory directions. Greek letters refer to the boundary coordinates

both temporal and spatial. The convention we follow for the ǫ-tensor is ǫvxy = 1, where v

is null and x and y are space-like. .

Our bulk theory lives in four spacetime dimensions. The Lagrangian density is

L = R− 2Λ− 1

2
(∂θ)2 − V (θ)− λ

4
θ ∗RR, (2.1)

where

∗RR = ∗RM PQ
N RN

MPQ,

∗RM PQ
N =

1

2
ǫPQABRM

NAB,
(2.2)

and ǫABCD is the four dimensional Levi-Civita tensor and λ is a coupling constant. We set

Λ = −3 from now on. Note that in order for the gravitational θ-term to have a nontrivial

effect on the field equations, the field θ must be spacetime-dependent.

Varying the action (2.1) with respect to θ and the metric leads to the following field

equations

GMN + ΛgMN − λCMN = TMN (θ),

∇2θ =
dV

dθ
+

λ

4
∗RR,

(2.3)

where

CMN = mAǫ
ABP (M∇PR

N)
B +mAB

∗RB(MN)A ,

TMN =
1

2
∂Mθ∂Nθ − 1

4
gMN (∂θ)2 − 1

2
gMNV (θ),

(2.4)

and mM = ∇Mθ,mMN = ∇M∇Nθ = ∇(M∇N)θ. In the above the symmetric-traceless

C-tensor is the analog of the Cotton tensor in three-dimensions. Similar equations of

motion (2.3) were also derived in for example [12, 13]. Details of variation of the action

and holographic renormalization are gathered and briefly discussed in the appendix A.

To write down a black-brane background solution of the equations of motion (2.3), we

take the following ansatz

ds2 = g
(b)
MNdxMdxN = 2H(r)dvdr − r2f(r)dv2 + r2dx · dx,

θ = θ(b)(r).
(2.5)

We note that [13] for any ansatz of the above form, the Pontryagin form ∗RR is identically

zero. In addition to this, for the ansatz (2.5), the C-tensor vanishes identically. These two

– 3 –



J
H
E
P
0
4
(
2
0
1
2
)
0
9
1

observations imply that any solution of the form (2.5) to the following system

GMN + ΛgMN = TMN (θ),

∇2θ =
dV

dθ
,

(2.6)

will give rise to a solution of our system (2.3).2 We also write a general formula for the

Hall viscosity in terms of a general background solution (2.5), so one is not required to be

more specific about the background solution.

3 Fluid dynamics/gravity correspondence

In this section, we perform the fluid/gravity procedure as appears in [5] (see also [14]).

Before proceeding to the computation, let us outline briefly the algorithm.3 The idea is

to systematically find the gravity background describing the boundary hydrodynamics in

a derivative expansion. The background geometry

ds2 = −2H(r, b)uµdx
µdr − r2f(r, b)uµuνdx

µdxν + r2(ηµν + uµuν)dx
µdxν , (3.1)

θ = θ(r, b),

describes the boundary hydrodynamics in (2+1)-dimensions at thermal equilibrium, where

b is the black-brane’s Hawking temperature and uµ = (1−~β2)−1/2(1, ~β). If one promotes uµ

and b to slowly varying functions of the boundary coordinates, the resulting inhomogeneous

background (expanded up to first derivative) will cease to be a solution

ds2(1) = 2H(r)dvdr − r2f(r)dv2 + r2dx · dx+ ǫ
[

−r2δb ∂bfdv
2 + 2δb ∂bH dvdr

− 2r2(1− f(r))xµ∂µβ
(0)
i dvdxi − 2H(r)xµ∂µβ

(0)
i drdxi

]

,

θ(1) = θ(b)(r) + ǫ[uµ
∂θ

∂uµ
+ δb ∂bθ],

(3.2)

where derivatives are evaluated on the background. In the above ǫ counts the number

of derivatives along the boundary. The procedure is to correct the resulting geometry by

adding an extra piece of order ǫ. We parametrize the correction as

ds2corr = ǫ
[k(r)

r2
dv2 + 2h(r)dvdr − r2h(r)dx · dx+

2

r
ai(r)dvdxi + r2αij(r)dx

idxj
]

,

θcorr = ǫΘ(r),

(3.3)

where αij is taken to be symmetric and traceless. The trace-reversed form of the Einstein

equation is more appropriate for the fluid/gravity correspondence

EMN = RMN + 3gMN − λCMN − dMN = 0,

∇2θ =
dV

dθ
+

1

4
∗RR,

(3.4)

2The field θ is taken to be a relevant deformation by appropriately choosing the potential.
3We only need first order hydrodynamics to compute the Hall viscosity.
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where

dMN =
1

2
(∂Mθ∂Nθ + gMNV (θ)). (3.5)

Before proceeding, the following simplifying observation will prove helpful. It turns out

that the general structure of the perturbation theory is as follows

FMN [ǫh, g
(b)
MN ] = ǫλC

(1)
MN (θ(b), g

(b)
MN ) + ǫd

(1)
MN , (3.6)

where FMN is a linear differential operator (containing only radial derivatives) acting on h,

where h collectively refers to first order gravity fluctuations. The superscript “(1)” denotes

first order (in ǫ) quantities. Also note that the C-tensor vanishes on the background as

previously mentioned. Evidently, the Hall viscosity term can only originate from C
(1)
MN .

Here we are only interested in computing the coefficient of Hall viscosity. Corrections

(proportional to ǫ) to θ(b) will generate higher order terms in ǫ on the right-hand side

of (3.6). Similarly, corrections (proportional to ǫ) to g
(b)
MN on the left hand side produce

terms which are irrelevant to the Hall viscosity computation. Therefore, as long as first

order hydrodynamics is concerned, we can only use the background solution for θ and gMN .

As in [5, 14], various components of the equations of motion correspond to the constitu-

tive relations and/or the hydrodynamic equations of motion. The Hall viscosity coefficient

can be computed from Txy (and/or Txx − Tyy) component(s) of the stress tensor. For this,

studying the tensor sector will suffice. Along the way, we observe that

C(1)
xy =

1

4H

d

dr

(r4f ′θ′

H2

)

(∂xβx − ∂yβy), C(1)
xx − C(1)

yy =
1

2H

d

dr

(r4f ′θ′

H2

)

(−∂xβy − ∂yβx).

(3.7)

From E
(1)
xy = 0

1

H

d

dr

[

−1

2

r4f(r)

H(r)

d

dr
αxy(r)

]

− 2
r

H
σxy

+

[

r3H ′f

H3
− r3

f ′

H2
− 3r2

f

H2
+ 3r2 − r2

2
V (θ)

]

αxy(r) =
λ

4H

d

dr

(r4f ′θ′

H2

)

(∂xβx − ∂yβy).

(3.8)

Background equations of motion imply

E(b)
xx = 0 =

r3H ′f

H3
− r3

f ′

H2
− 3r2

f

H2
+ 3r2 − r2

2
V (θ). (3.9)

Putting eqs. (3.8) and (3.9) together, for a general background solution (2.5), one obtains

1

H

d

dr

[

−1

2

r4f(r)

H(r)

d

dr
αxy(r)

]

= 2
r

H
σxy +

λ

4H

d

dr

(r4f ′θ′

H2

)

(∂xβx − ∂yβy), (3.10)

where

σij =
1

2
(∂iβj + ∂jβi)−

1

2
δij∂kβk. (3.11)

Also from E
(1)
xx − E

(1)
yy = 0

1

H

d

dr

[

−1

2

r4f(r)

H(r)

d

dr
αxx(r)

]

= 2
r

H
σxx +

λ

4H

d

dr

(r4f ′θ′

H2

)

(−∂xβy − ∂yβx). (3.12)
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Having solved for αxx from the above, using the traceless condition we have

αyy(r) = −αxx(r). (3.13)

3.1 Tensor perturbations

Let us concentrate on equations (3.10) and (3.12). One can integrate (3.10) and solve for

αxy

αxy(r) =

∫ ∞

r

2H(s)ds

s4f(s)

∫ s

rH

dwSxy(w), (3.14)

where

Sxy(r) = 2rσxy +
λ

4

d

dr

(r4f ′θ′

H2

)

(∂xβx − ∂yβy), (3.15)

where the source free solution is discarded since it is not normalizable. The following

formula is useful when we compute the stress tensor

rnαxy(r) → −rn+1

n

dαxy(r)

dr
,

r → ∞.

(3.16)

In order to write a general formula we further assume

f(r) = 1−O(rH
3/r3), H(r) = 1−O(rH

3/r3). (3.17)

These assumptions are not necessarily the minimal requirements enabling one to write a

general formula for the Hall viscosity. The xy-component of the holographic stress tensor

is given by

Txy = − 1

8πG4

r3
√
f

2H

dαxy

dr
+ · · · . (3.18)

where dots represent contributions which vanish near the boundary, therefore they are

discarded. With these assumptions and the above formula, one can write the contribution

of the Hall term to the stress tensor

THall
xy = − λ

8πG4

r4f ′(r)θ′(r)

4H2(r)

∣

∣

∣

∣

r=rH

(∂xβx − ∂yβy). (3.19)

Similarly, integrating (3.12), one obtains

αxx(r) =

∫ ∞

r

2H(s)ds

s4f(s)

∫ s

rH

dwSxx(w), (3.20)

where

Sxx(r) = 2rσxx +
λ

4

d

dr

(r4f ′θ′

H2

)

(−∂xβy − ∂yβx). (3.21)

The gravity stress tensor will give the Hall contribution

THall
xx − THall

yy =
λ

8πG4

r4f ′(r)θ′(r)

2H2(r)

∣

∣

∣

∣

r=rH

(∂xβy + ∂yβx). (3.22)
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Comparing the definition of the Hall viscosity (1.2) and our results (3.22) and (3.19), we

obtain

ηA = − λ

8πG4

r4f ′(r)θ′(r)

4H2(r)

∣

∣

∣

∣

r=rH

. (3.23)

This is a general membrane-paradigm-type formula [18] for the Hall viscosity coefficient,

in the sense that the Hall viscosity is entirely determined by the near horizon region of the

black-brane geometry.

4 A Kubo’s formula for ηA

Hall viscosity can also be computed at zero spatial momentum. Generally speaking, a

transport coefficient could be viewed as parametrizing the response of a fluid to hy-

drodynamic perturbations. One way to induce these disturbances is by perturbing the

non-dynamical boundary metric gµν = ηµν + hµν + O(h2). We work in the local rest

frame of the fluid uµ = (1,~0) and at zero spatial momentum. The minimal set of back-

ground metric perturbations which needs to be switched on to compute the Hall viscosity

is h = {hxy(t), hxx(t), hyy(t)}. One gets

T xy = −Phxy − η
∂hxy
∂t

+
ηA
2

∂

∂t
(hxx − hyy), (4.1)

where P is the pressure. A similar formula for the shear viscosity has been written down

before; see for example [16]. Here we have the extra term proportional to the Hall viscosity.

One could write this in terms of the following retarded Green’s function

ηA = − i

2
∂ω[G

xy,xx(ω, k)−Gxy,yy(ω, k)]|ω=k=0. (4.2)

For detailed definitions used in writing this Kubo formula see [17].

4.1 Linearized gravity perturbation

In this section we study linearized gravitational perturbations of the background (2.5). We

write down equations of motion (2.3) for the following linearized perturbations

gMN = g
(b)
MN + g

(1)
MN , g(1)xy = r2hxy(r)e

−iωv, g(1)xx = r2hxx(r)e
−iωv, g(1)yy = r2hyy(r)e

−iωv,

(4.3)

where hxx(r) = −hyy(r). Note that in this coordinate system, the horizon is a non-singular

surface. Boundary condition at the horizon is incoming, since we are interested in the

response. At infinity we impose hyy(r) → H0
yy, hxy(r) → H0

xy. The equations of motion are

solved in an expansion in small frequencies. It turns out that one can solve the equations

for a general background. We only care about the first order correction in ω. One obtains

hxx(r) = H0
xx +

ω

2

∫ r

∞

−iλH0
xys

4f ′(s)θ′(s) + 2iH0
xxs

2H2(s) + 2c1H
2(s)

s4f(s)H(s)
ds,

hxy(r) = H0
xy +

ω

2

∫ r

∞

iλH0
xxs

4f ′(s)θ′(s) + 2iH0
xys

2H2(s) + 2c2H
2(s)

s4f(s)H(s)
ds,

(4.4)
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where the integration constants c1 and c2, are determined through demanding regularity

for hxx and hxy at the horizon. This leads to

c1 = −iH0
xxr

2
H + iλH0

xy

s4f ′(s)θ′(s)

2H2(s)

∣

∣

∣

∣

s=rH

, c2 = −iH0
xyr

2
H − iλH0

xx

s4f ′(s)θ′(s)

2H2(s)

∣

∣

∣

∣

s=rH

.

(4.5)

As shown in the appendix, the Chern-Simons term does not contribute to the stress tensor.

Let us focus on the xy-component of the stress tensor. The relevant (to the Hall viscosity

computation) part of hxy(r) is

hxy(r) = H0
xy +

iλω

3r3
WH0

xx + · · · , (4.6)

where

W =
r4f ′(r)θ′(r)

2H2(r)

∣

∣

∣

∣

r=rH

. (4.7)

The gravity stress tensor gives

8πG4Txy =
iλω

2
WH0

xx, (4.8)

Comparing this with the Kubo’s formula (4.2) and equation (4.1), we can read off the Hall

viscosity coefficient as

ηA = − λ

8πG4

r4f ′(r)θ′(r)

4H2(r)

∣

∣

∣

∣

r=rH

. (4.9)

This is exactly equal to what we computed using fluid/gravity duality in the previous

section.

5 Outlook

In this paper, we have constructed a holographic model exhibiting Hall viscosity. Although

a non-zero Hall viscosity coefficient was not unexpected given the choice of interactions in

our model, it is gratifying to find that the rules of gauge/gravity duality indeed lead to a

Hall viscosity. It is interesting to note that the value of the Hall viscosity, in our model,

depends only on the behavior of the scalar field θ at the horizon, which indicates that

there exists a membrane paradigm principle that fixes the value of this kinetic coefficient

at the black-brane horizon. It would be interesting to find out if that is true and how the

Hall viscosity is communicated to the boundary (see, e.g., [19]). It is also interesting to

explore the connection between the holographic approach developed here with the purely

Lagrangian approach to Hall viscosity of [20].
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A Holographic renormalization

In this appendix lower case Latin indices a, b, c, · · · run over all four spacetime coordinates.

The Latin indices i, j, k, · · · refer to the spatial coordinates. We set 16πG4 = 1. To

compute the Hall viscosity contribution to the hydrodynamic flow of the boundary theory,

one has to write down the stress-tensor associated with the theory (2.1). It is also crucial

to make sure that the action principle is well-defined. This is to say, one should only

be required to keep fields (and not their normal derivatives) fixed at the boundary. The

general procedure is to add the analog of a Gibbons-Hawking term to the bulk action (2.1).

For the Chern-Simons modified gravity (2.1), this term has been computed in [13]. Here

we show that for the particular case of interest in this paper, i.e., when θ is a relevant

deformation (vanishes asymptotically), on any solution to the equations of motion coming

from the action (2.1), the stress-tensor is just that of asymptotically AdS4 spaces. The

only counter-terms needed are those of asymptotically AdS4 spacetimes. Variation of the

Chern-Simons term is straightforward

δSCS = −λ

4
δ

∫

d4x
√−gθ∗RR, (A.1)

= −λ

∫

d4x
√−g∇c(θ

∗Rb cd
a δΓa

bd) + λ

∫

d4x
√−g∇b[δged∇c(θ

∗Rbecd)]− λS1,

S1 =

∫

d4x
√−gδged∇b∇c(θ

∗Rbecd).

On the second line of the above equation, there are two boundary terms which we come back

to later. For the moment let us focus on S1. Using the second Bianchi identity Rbe
[fg;c] = 0,

its contracted form Rbe
fg;b = Re

g;f − Re
f ;g and the fact that δged is symmetric, S1 can be

rewritten as

S1 = −
∫

d4x
√−gδged[∇(b∇c)θ

∗Rc(ed)b+∇cθǫ
cgf(d∇fR

e)
g] = −

∫

d4x
√−gδgedC

ed, (A.2)

where the C-tensor (2.4) definition was utilized. Now let us collect all the boundary terms

on the second line of (A.1)

δSb = −λ

∫

d4x
√−g∇c(θ

∗Rb cd
a δΓa

bd) + λ

∫

d4x
√−g∇b[δged∇c(θ

∗Rbecd)]. (A.3)

We show that the θ dependent boundary terms above will vanish when θ is a relevant

perturbation. We were able to demonstrate this in the Gaussian normal coordinates

ds2 = dr2 + gijdx
idxj , (A.4)

using standard identities (see [15] for example). Let us focus on the first boundary term

in (A.3)

S2 = −λ

∫

d4x
√−g∇c(θ

∗Rb cd
a δΓa

bd) = λ

∫

d3xθ(2εrjkl∇kK
i
lδKij +

√
−h ∗R kri

j δΓj
ki),

(A.5)

– 9 –
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where Codazzi equation in the coordinates (A.4)

∗R brd
a δΓa

bd =∗ R kri
j δΓj

ki + 2 ∗R jri
r δΓr

ji, (A.6)

as well as the following two identities (true in the normal coordinates), Rir
kl =

(3) ∇kK
i
l−(3)

∇lK
i
k and Kij = 1

2
∂gij
∂r were used. Note that the Fefferman-Graham expansion of the

metric and extrinsic curvature are given by gij = e2rg
(0)
ij +g

(2)
ij + · · · , Kij = e2rg

(0)
ij +0+ · · ·

and Ki
j = δij − e−2rgil(2)g

(0)
lj + · · · . Utilizing these, one concludes that S2 vanishes at least

as fast as

S2 ∼
∫

∂
d3x θ → 0. (A.7)

The argument showing that the second θ-dependent boundary term also vanishes proceeds

similarly. The last term in (A.3) can be further simplified (using the second Bianchi

identity)

S3 =
λ

2

∫

d3xεrdfg∂rθR
re
fgδged, (A.8)

= −λ

∫

d3xεrdfg∂rθ∇fK
e
gδged → 0.

In sum, the only terms relevant to the variation of the action (including the conventional

Gibbons-Hawking term) are

δS = −
∫

d4x
√−gδged(G

ed + Λged − λCed)−
∫

d3x
√
h(Ked − hedK)δged. (A.9)

The only counter-term will be a boundary cosmological constant renormalization since our

boundary is flat. The stress tensor is then

δS =
1

2

∫

d3x

√

g
(0)
ij T ijδg

(0)
ij = −

∫

d3x
√
h(Kij − gijK − 2gij)δgij . (A.10)

The background can be written in an ADM form

ds2 = N2dr2 + gαβ(dx
α +Nαdr)(dxβ +Nβdr), (A.11)

= (N2 + gαβN
αNβ)dr2 + 2Nαdx

αdr + gαβdx
αdxβ ,

where Nα = gαβN
β . In our gauge grr = 0 so N2 +NαN

α = 0. The extrinsic curvature is

calculated using the standard formula

Kαβ =
1

2N

(

Nα;β +Nβ;α − ∂gαβ
∂r

)

. (A.12)
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