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1 Introduction

Heterotic model building is one of the possibilities to connect string theory with particle
phenomenology. The requirement of a light chiral spectrum in four space-time dimensions
(4D) together with stability arguments suggests to consider string backgrounds with N =
1 supersymmetry in 4D. This in turn singles out Calabi-Yau threefolds [1], appropriate Z,,
orbifolds [2] or more generally two-dimensional (0,2) superconformal field theories [3, 4]
as backgrounds.

The revival of Grand Unified Theories (GUTs) in recent years resulted in renewed
attempts to embed these field theories also in the heterotic string. In particular field
theoretic models where a GUT-group is only unbroken in a higher-dimensional space-time



background seem attractive due the simplicity of the Higgs-sector [5-8]. This led to the
study of anisotropic orbifold compactification with an intermediate 5D or 6D effective
theory [9-12].

One of the problems of orbifold compactifications is the vast number of massless mod-
uli fields. However, it is well known that some of them gain mass when one considers the
theory away from the orbifold point, i.e. in blown-up orbifolds or more generally in smooth
Calabi-Yau backgrounds. The relation between orbifold and smooth Calabi-Yau compact-
ifications is addressed in [13-20]. In this paper we focus instead on the 6D intermediate
theory and derive the effective action for smooth K3 compactifications from a Kaluza-Klein
reduction. The resulting 6D effective theory has the minimal amount of eight supercharges
corresponding to N/ = 2 in 4D. The scalar fields appear in tensor- and hypermultiplets but
not in vector multiplets. In perturbative heterotic compactifications there is exactly one
tensor multiplet containing the dilaton while all other scalars are members of hypermul-
tiplets. In this case supersymmetry constrains the action to depend on a gauge coupling
function given by the dilaton, a quaternionic-K&éhler metric of the hypermultiplet scalars
and a D-term potential [21-23].

A consistent heterotic string background has to satisfy the Bianchi identity which
in turn requires a nontrivial gauge bundle on K3. As a consequence the resulting light
scalar Kaluza-Klein (KK) spectrum consists of the moduli of K3, the moduli of the gauge
bundle and a set of matter fields charged under the unbroken gauge group. For these fields
we systematically compute their couplings in the effective action, extending the analysis
in [24-30]. However, since the effective action sensitively depends on the choice of the gauge
bundle we cannot give a model-independent answer. Instead we focus on two prominent
subclasses of gauge bundles embedded in Fg x Eg: we discuss the well known standard
embedding of the gauge bundle into the tangent bundle in section 3 and backgrounds with
U(1) line bundles in section 4.

In the derivation of the 6D effective action we focus on the bundle moduli and the
matter fields and compute their couplings as a function of the K3 moduli. While low
energy supersymmetry restricts the compactification manifold to be Calabi-Yau, it also re-
stricts the gauge bundle to be a solution of the hermitean Yang-Mills equations (HYM) [1].
These solutions are generally constructed from a stability condition using algebraic geome-
try [31-36]. However, on K3 the HYM equations take a simple form, stating that the back-
ground field strength is anti-selfdual (ASD) [37, 38]. Its massless deformations determine
the light 6D particle spectrum and lead to ASD-preserving bundle moduli which deform
the holomorphic bundle structure and charged matter fields which deform the structure
group embedding.

This paper is organized as follows. In section 2 we set the stage for the later analysis and
briefly recall the multiplets and effective action of 6D minimal supergravity (in section 2.1),
and some basic facts about K3 (in section 2.2). In section 3 we then turn to the standard
embedding and derive the effective action. We determine the couplings of the matter fields
and the bundle moduli as a function of the K3 moduli. Unfortunately for the bundle
moduli these couplings can only be given in terms of moduli-dependent integrals on K3
but they are not explicitly evaluated. As a consequence we cannot show in general that



the final metric is quaternionic-Kéhler as required by supersymmetry [21]. However, in an
appropriate orbifold limit we show that the couplings of the matter fields in the untwisted
sector are quaternionic-Kéahler and agree with the results of [39]. We further compute the
scalar potential and show that it consistently descends from a D-term.

In section 4 we consider backgrounds with line bundles [13, 24, 30, 36, 40-44]. In
this case the Bianchi identity is satisfied by Abelian Yang-Mills fluxes on internal K3
two-cycles. The fluxes are characterized by their group theoretical embedding inside the
Cartan subalgebra of Eg x Eg and the localization inside the second cohomology lattice of
K3. Using a vanishing theorem we show that the resulting effective action is consistent
with 6D supergravity in that the scalar potential descends from a D-term. We determine
the couplings of the matter fields in terms of K 3-moduli dependent integrals. The Abelian
factors of the gauge bundle are also part of the unbroken gauge group and the fluxes affect
the effective action in two ways. First of all, the scalars descending from the heterotic
B-field get affinely gauged under the Abelian factors. Due to the Stiickelberg mechanism
this is equivalent to the Abelian gauge bosons becoming massive. Second of all, in the
scalar potential the (selfdual components of the) fluxes appear as Fayet-Iliopoulos D-terms,
leading to a stabilization of s subset of the K3 moduli. Together, for every independent
gauge flux a vector multiplet and a hypermultiplet gain a non-zero mass, consistent with
the 6D anomaly constraint.

In appendix A we describe in detail the local deformation theory of gauge connections,
which is essential for the Kaluza-Klein reduction in the main text. In particular we establish
the connection of massless internal deformations and Dolbeault cohomology which, to our
knowledge, is not discussed in detail in the literature. Finally, appendix B provides further
details about the metric in the untwisted sector of the previously considered orbifold limit.

2 Preliminaries

In this paper we consider Kaluza-Klein reductions of the heterotic string in space-time
backgrounds of the form
MY x K3, (2.1)

where M1® is the six-dimensional Minkowski space-time with Lorentzian signature and K3
is the unique compact four-dimensional Calabi-Yau manifold.
The starting point of the analysis is the ten-dimensional heterotic supergravity char-

acterized by the bosonic Lagrangian®

1 .
E:26_2¢(R*1+4d<1>/\>kd<1>—;H/\*H+o/(trF/\*F—trR/\*R)>. (2.2)

® is the ten-dimensional dilaton, F' is the Yang-Mills field strength in the adjoint repre-
sentation of Eg x Fg and H is the field strength of the Kalb-Ramond field B defined as

H =dB + o/ (w* —w¥M), (2.3)

Throughout this paper we use the space-time metric signature (=, +,+,+,...) and antihermitean gen-
erators for the gauge group.



where w’,w¥M are the gravitational and Yang-Mills Chern-Simons 3-forms, respectively.

As a consequence H satisfies the Bianchi identity
dH =d/(tt RAR—tr FAF), (2.4)

where R is the Riemann curvature 2-form.? Finally, the last term in (2.2) is the Gauss-
Bonnet form [45]

trR A %R = RMNPQRMNPQ — 4RMNRMN + R? . (2.5)

The Bianchi identity (2.4) requires a nontrivial gauge bundle over K3. As a conse-
quence the original Eg x Fg gauge group breaks to GG according to

EgXEg—)GX<H>. (26)

Here (H) is the structure group of the nontrivial bundle and G is the unbroken maximal
commutant.

Before compactification, i.e. in flat ten-dimensional Minkowski space-time M9 the
theory has 16 supercharges corresponding to an N = 1 supergravity in D = 10. In a
background of the form (2.1) half of the supersymmetries are broken due to the properties
of K3. Unbroken supersymmetry also constrains the gauge bundle to satisfy the hermitean
Yang-Mills equations [1]

Fe HY(K3,h), FAJ=0, (2.7)

where H!(K3, ) denotes the (1, 1) Dolbeault cohomology group with values in the adjoint
bundle b of H and J is the Kéhler-form of K3.2 On K3 the hermitean Yang-Mills equations
are equivalent to the anti-selfduality condition [37, 38]

F e A2 (K3,1), (2.8)

where A2 (K3,h) denotes the —1 eigenspace of the Hodge-x operator acting on 2-forms.
The resulting low energy effective theory is an A/ = 1 supergravity in D = 6, which we
shall briefly review.

2.1 N =1 supergravity in D = 6

The supercharges of the 6D, N' = 1 supergravity form a doublet of two Weyl spinors with
the same chirality, satisfying a symplectic Majorana condition. They are rotated into
each other under the R symmetry group Sp(1)r = SU(2)g. The massless supermultiplets
are [46]
gravity multiplet 1 {g,., %, , Bljy} ,
tensor multiplet :  {B,,, AT o},

(2.9)
vector multiplet :  {V,,A7},

hypermultiplet :  {x,4q},

2The trace trR A R is evaluated in the vector representation 10 of SO(1,9) and trF A F := = TrF A F
is % of the trace in the adjoint representation of Fg x Eg.
*Note that a solution of (2.7) also solves the full Yang-Mills equations.



where g, is the graviton of the six-dimensional space-time, 1, the negative chirality
gravitino and BIJ[V is an antisymmetric tensor with selfdual field strength. The tensor
multiplet contains a tensor B, with anti-selfdual field strength, the dilatino A~ and the
6D dilaton ¢. The vector multiplet contains a gauge boson V,, and the gaugino A*. Finally
the hypermultiplet features the hyperino x* together with four real scalars q. Note that all
scalars, except the dilaton, are in hypermultiplets. The massless spectrum is intrinsically
chiral, since the fermions of each supermultiplet have definite chirality.

The doublet structure of the 6D supercharges has further consequences for possible
gauge representations. Especially, the four scalars in a hypermultiplet form a complex
doublet of the R-symmetry group.? A hypermultiplet in a complex representation R cannot
be CPT-selfconjugate, so hypermultiplets always occur in vector-like representations RGR
in the spectrum. The four scalars correspondingly group into two complex scalars in R
and R, respectively.

The absence of local anomalies does not constrain the gauge group as in 10D, but
rather the massless spectrum to obey [47, 48]

29n7 +ng —ny = 273, (2.10)

where np denotes the number of tensor multiplets, ny the number of hypermultiplets
and ny the number of vector multiplets. This condition is automatically satisfied in any
K3 compactifications with supersymmetric bundle (2.7). In this paper we only consider
perturbative K 3-compactifications where np = 1, such that nyg — ny = 244 holds.

For gauge groups of the form

G=]]GCax[[UMm, (2.11)

where G, denotes any simple factor and U(1),, any Abelian factor, the bosonic Lagrangian
is given by [22, 23]
1

1 1
L = ZR* 1— 56_2¢H/\*H—|— Zd(bA *dg

1
+ §(ca6_¢ + Co€®)trF9 A xF% — G, B AtrF% A e

h (2.12)
+ 5 (Cmn e 4+ Gn €2)F™ A *F™ — Gy BAF™ A FT

1
- quv(Q)un A *qu -Vl )

where the non-Abelian Yang-Mills field strengths are labeled as F'9 and the Abelian field
strengths as F"". Due to supersymmetry, the gauge kinetic functions only depend on the
6D dilaton ¢, with numerical factors cq, €a, Cmn, émn.> For the Abelian factors kinetic
mixing, parametrized by the off-diagonal part of ¢, Gy is possible [50]. B is the sum of

4A half-hypermultiplet, which is the smallest CPT self-conjugate multiplet, can only exist, if it is in
a pseudoreal gauge representation. If it is a gauge singlet, the two real scalars are both their own CPT-

conjugate but cannot build a SU(2)g-doublet [4].
®It was shown recently that these numerical factors are constrained to take values in a selfdual lattice [49].



BT and B, and it is coupled to the vector multiplets via Chern-Simons forms appearing
in its field strength H = dB + w’ — cawgya M cpnwr M where w” and ws;M are standard

Chern-Simons forms while the “mixed” Abelian Chern-Simons form is given by
whM — qum AV, (2.13)

The real hypermultiplet scalars ¢*,u = 1,...,4ny constitute a quaternionic Kéhler
target manifold M with metric g,,(q) which only depends on the hyperscalars [21]. The
gauge group can be any isometry group of M, with Killing vectors K“* appearing in the
gauge covariant derivatives:

Dq" =dg¢" — V*K"(q), (2.14)
where a denotes the adjoint index of the gauge group.
Finally, there only exists a D-term potential given by

1 De A De B 1 Dm A D B
V:_fz( )B(~)A_7Z( )B(~)A7 (215)
4 o™+ Gue? 4 Crn€~? + Emne®

m,n

where
(D™ =TypK"™,  A,B=1.2, (2.16)

with T'2; being a composite su(2) p-valued connection on M [22, 23]. Our main interest in
the following will be to derive the 6D couplings, i.e. the hyperscalar metric g,,(q) and the
explicit form of the D-term.

2.2 K3 compactification

Before we proceed let us collect a few facts about the (unique) Calabi-Yau two-fold K3
(for a review see [52]). It has a reduced holonomy group SU(2)y,, so its frame bundle
splits as SO(4) — SU(2)g x SU(2)y,) into an SU(2)r bundle which is flat over K3 and the
nontrivial SU(2)pe bundle. A covariantly constant spinor on K3 transforms as a doublet
under SU(2)g, so this generates the R-symmetry in 6D. Moreover, the K3 surface is hyper-
Kéhler and its curvature 2-form is anti-selfdual [37]. Its Hodge numbers are

ho:0 1
hl,O hO,l 0 0
p%20  pbL o p%2 =1 20 1 . (2.17)
h2’1 h1,2 0 0
h??2 1

The nontrivial part is the second cohomology group H?(K3,R). It is a vector space of
signature (3,19) with respect to the scalar product

(v,w>:/v/\w, v,w e H*(K3,R) . (2.18)
In a basis of 2-forms n; € H?(K3,R) the scalar product is given by the matrix®

pIJ:/n]/\nJ, I,J=1,...,22. (2.19)

®For integral 2-forms this is the intersection matrix of the Poincaré dual 2-cycles [52].



A Riemannian metric on K3 is defined by a positive definite three-dimensional subspace

¥ := H?(K3,R) C H?(K3,R) and the overall volume V. Then we have the orthogonal

splitting H*(K3) = H? (K3)&H? (K 3) and the two subspaces are eigenspaces of the Hodge

*-operator. The corresponding elements are called selfdual and anti-selfdual, respectively.
Locally the moduli space of Ricci-flat metrics takes the form [53]

0(3,19)

Mis = 55y 0(19)

x RT, (2.20)

which has dimension 58. A complex structure is defined by the choice of an orthonormal
dreibein {Js}s=123 € H2(K3,R) such that

J=V2VJ3, Q=J1+i)s (2.21)

are the Kahler form and the holomorphic 2-form, respectively. They are normalized as

_ 1 — 2
/J/\J—QV, /Q/\Q—Z, HQH?:QQQBQW:V (2.22)
The metric moduli combine with the 22 scalars b, arising from zero modes of the Kalb-
Ramond field on K3 to form 20 hypermultiplets in 6D. Including the b’ the geometrical
moduli space given in (2.20) locally turns into the quaternionic-Kéhler manifold [54]

0(4,20)

M= 5@ x 0(20) °

(2.23)

3 Standard embedding on K3

In the previous section we recalled that heterotic theories have to satisfy the Bianchi
identity (2.4). For compactifications on K3 the integrated version yields

1 1
— [tr(FAF)=—= [ tr(RAR) = x(K3) =24, (3.1)
207

where x(K3) is the Euler characteristic of K3. In order to preserve 6D Poincaré invariance
all background fields have to be tangent to K3. Then (3.1) implies that the second Chern
characters of the tangent- and Yang-Mills bundle must coincide. In the following we denote
the Kaluza-Klein expansion around these backgrounds as

A=A+a, F=F+f, f:dA(lJr%[CL,a]. (3.2)

(We denote background fields by calligraphic symbols such as A, F, H, R.) Since (3.1) is a
topological equation, continuous fluctuations cannot contribute to (3.1).

The standard embedding is defined as the solution of (3.1) with the integrands iden-
tified, i.e. F = R and H = 0 in (2.4) [1]. In this case the nontrivial gauge bundle is an
SU(2)-bundle embedded inside one Eg, which is identified with the SU(2) structure-bundle



associated with the holomorphic tangent bundle 7k3. The standard embedding breaks one
FEs to the maximal commutant E7, i.e.

FEg x Eg — FEg X E7 X <SU(2)>, (33)

where (H) denotes the broken group factor. For the standard embedding the hermitean
Yang-Mills equations (2.7) take the form

F € H"Y(End Tk3), FAJ=0, (3.4)

where End Tks3 is the bundle of linear transition functions on 7xks, i.e. locally su(2) valued
matrix functions. Note that F is automatically anti-selfdual since the K3-curvature is.

3.1 Reduction of the Yang-Mills sector

All bosonic charged matter multiplets arise from zero modes of the 10D vector fields A
of the broken Eg. The massless fields are determined by deformations of the background
gauge connection A = A+a. Group theoretically a transforms in the 10-dimensional repre-
sentation of the Lorentz group SO(9,1) and in the 248-dimensional adjoint representation
of Eg. Decomposing the 248 under Fs — FE; x SU(2) we have

248 — (133,1) & (1,3) @ (56,2) , (3.5)
while decomposing the 10 under SO(9,1) — SO(5,1) x SO(4) yields
10 — (6,1) @ (1,4) . (3.6)

In terms of the gauge potential we denote the latter split by a = a1 + a7 where a; denotes
a one-form on M'® while ag is an ‘internal’ one-form on K3.

The non-linearity of the free 10D Yang-Mills equation complicates the determination
of the massless modes in the Kaluza-Klein procedure. In appendix A we perform the
Kaluza-Klein reduction in detail and show that generically the scalar zero modes are in
the cohomology H%!(K3, E), where E is a bundle associated with the right entries in the
decomposition (3.5).” The result is

~56_13 -
a1 =V a; =CPWw + C7wT + &af + §a (3.7)

where V133 is the 6D gauge potential of the unbroken E7. The C’;’G are complex charged
scalars and & are complex singlet scalars, called bundle moduli. The latter are deforma-
tions that preserve the ASD condition of the background. Their multiplicities are given by
the cohomology groups of their corresponding zero modes

wjz = (Wj)gdza € HO,I(TK3)a ] = 1a cee 720,

~ 3.8
of = (ap)id=® € HO (End Tig),  k=1....,90 . (38)

"This result is usually derived counting zero modes of the Dirac operator and then using supersymmetry.
In appendix A we rederive this result directly from the deformation of the gauge connection.



The w]z and oz‘,:' are one-forms which take values in the vector bundles Fo = Tks and
E3 =~ su(2) C End Tks, respectively. This is denoted by the indices f = 1,2 and s = 1,2,3
in (3.8). Note that the 3 = su(2) is a real representation while 56 and 2 are both pseudoreal.
Therefore the 20 complex scalars Cj56 align in 20 half-hypermultiplets, or equivalently
10 hypermultiplets. The 90 complex bundle moduli align in 45 hypermultiplets and 20
additional hypermultiplets arise from the 58 geometrical moduli combined with the 22 Kalb-
Ramond axions. The second Eg remains unbroken and yields a 6D pure Yang-Mills hidden
sector with one vector multiplet in the 248. The constraint for anomaly freedom (2.10) is

fulfilled as follows:
ny =133 +248 =381, nyg =10-56+ 45+ 20 = 625 . (3.9)

From (3.7) we derive the Kaluza-Klein expansion of the Yang-Mills field strength,

(133,1)

f= g5t p Yy 50 f 1) gl (3.10)

Here and in the following, we write fp g for an (R + S)-form with R external (6D space-
time) and S internal (K3) indices. The different terms are orthogonal with respect to the
scalar product (F,G) = trF' A #*G. The first term in (3.10) is the 6D field strength of the
unbroken FE7

1
2(133,1) _ qy1ss 5[‘/1337‘/133] ' (3.11)

The next two terms in (3.10) are given by

F5Y = dé A of + dj, Aa,

o (3.12)
(56,2) _ B L A =B

where we label the 56 by the index « = 1,...,56. In this notation the FEr-covariant
derivative reads DCY = dCT + V“(T“)yxC’f with 7% being the E7 generator. Finally, let us
derive the last two terms f5 in (3.10). Using the zero-mode property d4a; = 0 (derived in
appendix A) we obtain

. 1 565 _56_3
fr = [Gat, G| + 5|07} +CF°F], OF%u} + 077 (3.13)

The first commutator transforms in the (1,3) representation. Furthermore we show in
appendix A that it preserves the hermitean Yang-Mills equations (3.4) and therefore can be
viewed as a flat deformation of the background field strength §F. The second commutator
results in two representations

(56,2) @4 (56,2) = (14,3s5) ® (1335, 14), (3.14)
which in terms of generators amounts to

[Txa, Tyg] = Ea:yo'gﬂTs + TgyfagTa s

= (3.15)
Tra, T@B] = EmﬂJZBTS + TgyhaBTa )



ey and e, are the invariant antisymmetric tensors of E7 and SU(2) respectively. Oop
are the Pauli matrices and 7, the E7-generators in the 56-representation. Since we have
the complex conjugated fields in (3.7) we also need the second commutator with differ-

a,

ent invariant tensors: For the 77, to be again antihermitean, 77; = —7,z, the tensor h

y Yz
must satisfy

haB = hga - (3.16)

However, since the commutator in (3.13) is a product of global 1-forms, the result is a
global 2-form on K 3. Therefore the invariant tensors o 3 €af and h,g must be extended
to global tensors on K3. In fact, (3.16) is the property of a Kéhler metric and g,4 is a
local expression of the holomorphic 2-form. Hence, we set

1
h,3— —g.3,
af \/ﬁgaﬂ
€aB - Qaﬂ7 (317)
Oop — Oap € A*(End Tx3) -

Since the 56 is pseudoreal we will omit the bar on the indices z,y in the following. With

this we get
13 1331
s = 6F + f{0% 4 p{1ee ), (3.18)
where
3 S0 A 5P
s _ (C Tapti AWy Oap Wi AW (O] (3.19)
= X 9 N
2 ce s wi AW ot wi nw] )\
—\NT [ 1 —a,. B @ _—ar-PB y
(1s31) _ (C] VayJas Wit N Qap W7 A W; | (7% G . (3.20)
2 o Qug W A Tgos Wl AD A\
i af W b VayJas Wi j J

We included the factor \/%T/ in (3.17) such that all matrix elements of the final expression

are independent of the K 3-volume.

3.2 Reduction of the Kalb-Ramond sector

We now turn to the reduction of the H A *H-term in the 10D Lagrangian (2.2) where
H = dB + o/ (w" — w¥M) is a gauge invariant and thus globally defined 3-form. In the
KK-reduction H splits into two pieces

H— Hy + Hys, (3.21)

where Hj is the standard 6D Kalb-Ramond term with all indices in the space-time direction.
This term reduces straightforwardly yielding the second term in (2.12). For H; 3 on the
other hand we need to perform the KK-reduction with more care.

Let us start by considering the Yang-Mills Chern-Simons form which in 10D is defined
by w'M = tr(F A A) — Ltr(AA A A A). For the w; 5 component we then have

wféw = tr(flj NA7) +tr(F5ANay) —tr(A; A A Aaq) . (3.22)

,10,



Inserting the Kaluza-Klein expansions (3.7) and (3.10), including the background fields
A; = A+ ag, F5 = F + 0F + f3, the nonvanishing terms are

wgw _ tr( 1(7516,2) A a§56,2)> n tr(f1(,li’3) AA+ a%l,?)))) _ (3.23)

Similar to the commutators (3.14), the traces of antihermitean generators yield invariant
tensors that are extended to global tensors on K3

_tr(TsTt) =05t — hgt s
—tr(TxaTyg) = Exy€af — EmyQaﬁ , (3.24)

— 1
_tr(TxaTyB) = 633yh048 — ﬁéxygag .

Here hg is a hermitean metric on the adjoint End Tks-bundle. Inserting (3.24) and (3.12)
into (3.23) we arrive at

. T _~ = & . —
yM o (DC?) \/%T}éxyg@@w? A wf ExylaW; N w? (Cf)

= _3 —Y
DCY ExySlapwi N wf ﬁ&x(ygaéwf‘ A wf Cj

_ T
dfk hstaz VAN Oé;t hstaz A &f fl t = _ t
_ 2 —d&g (hgad, A — d&;, (hstag, A :
(d&) <h5tai ANaj  hgaj ATy )\ & S (Rure 1 A = e (har 1 )
(3.25)

In (A.56) and (A.57) we show that the zero modes of the first two terms can be written in
terms of harmonic 2-forms and thus are globally defined. The last two terms on the other

)

hand contain the gauge connection A explicitly and therefore are gauge-variant and globally
not well defined. However, they are a total derivative in 6D and thus can be absorbed into

dB; 3 by redefining Bs. This has the additional benefit that after the redefinition B; 5 is

Y M
1,2
in (3.25) are gauge invariant. Therefore the internal redefined Bs-field can be expanded

also gauge invariant which follows from the fact that H and the first two terms of w

globally as
B; = bIm . 3.26
2

Finally let us note that the Lorentz Chern-Simons form Wfi also is a total space-time

derivative in 6D and can similarly be absorbed into a redefinition of Bs. Thus altogether
we have

Hy3=dB; + o'w5

—o\ T = = _5 . _f
Ay o DC; —\/éfvcicyg@gwia A wf Exy$lapWi A wf 7 ng
= _ =Y
DCY ExyQapwit A wf —%V 5xyga5w? A wf C; (3.27)

T _
o d§k hsios Nal hgad Aab\ (& .
dé,, hsay Aol hgay Aol ]\ g
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3.3 6D effective action

Using the results from the previous sections we now derive the 6D effective action, first
focusing on the kinetic terms. The effective action of the gravity-dilaton sector has been
determined in ref. [55] and we include their result in the following. In the Einstein frame
the 6D dilaton ¢ has to be defined as

=0 — %mv, (3.28)

where @ is the 10D dilaton and V is the K3 volume. The Einstein-frame metric is given

by g = e*‘i’gl(}l,o). From this redefinition one gets a factor of V~! in front of all terms in

the Lagrangian with nontrivial K3 integral. Altogether we get
1 L 9 o —¢,.. 133 133, Y
[,6:§R*1 — 66 HAxH + ¢ tr o0 A« +§d¢/\*d¢
© G, A xd Yhpgdit nwde! — Lo av axdy (3.29)
—Vklik *§l+4u5*8—8v2 * :

— 1
— /Gij6,DC; N ¥DCY — i Db A Db —V %1,

where the t! are the K3 moduli which, together with the volume, span the moduli space (2.20)
with the metric denoted by hr;.® The charged scalars are gauged under the unbroken F7
via the covariant derivative

DCY =dCY + V“(T“)quy . (3.30)
For the b-scalars we have
7$H
Db’ = db' — 0/6,yM;C; D CY — oey (N;CFDCY + c.)

= (3.31)
- aIMilfkvfl - CY,(./\/'kIl{kd& +cec.).

s _ _
Here &, d & = &,d&;—&dE;, is the skew-symmetric derivative and we use the same definition
for the E7-covariant derivative D . The scalar couplings in (3.29) depend on the K3 moduli
and are given by

_ Vi
G = /hstaz /\*Oé;, GZ] = 217 ,;—ng) grj = /77[ AR/ (332)
The coupling Gj; of the charged scalars (no summation over 4, j implied) is proportional

to b-scalar coupling gy, restricted to H'(K3,R). Moreover, it contains the moduli de-
pendent functions

NI

1%

(fJ Am)
We find that these are necessary in the charged zero mode isomorphy (A.36), in order to
match with the orbifold limit known from [39]. Gy, is the metric on the space of ASD
connections. All couplings are derived in more detail in the appendices A.2 and A.3.

i (3.33)

8For an explicit expression of hr; see, for example, [55]. Note that from the classical 10D supergravity
we cannot deduce the 6D Green-Schwarz term and the full dilaton couplings of (2.12).
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The coupling functions appearing in (3.31) read

1 .
N} = /Qagwf‘ N Al = 3 1%piP" ((Jrsng) = i(Jana))

1 _

%%"YjPIJ (Pij<J3777J> = (Js.mi)pjs — <J3777j>PiJ> ,
(3.34)
(no summation over 4, j implied) and are derived in (A.53) and (A.56). Here (-,-) is the
scalar product on H?(K3,R) and p;; is the K3 intersection matrix restricted to H ' (K3, R).
Since the definition of H%!(K 3, R) depends on a choice of the complex structure pi; depends

on the K3 moduli. For the couplings of the & in (3.31) we find

I I —. I i
M =p J/hstai Naf A= p" piscy,

(3.35)
Ny = U/hstai ANag Ay = e((ng, Ji) —i(ng, J2)),
where we defined c};l, e, as the (antisymmetric) “intersection” matrices
het@ly, A o = chymi s hsiai A af = ep€) . (3.36)

The scalar target manifold is a fibration of the bundle moduli £ and the charged scalars
C over the K3 moduli space M given in (2.23). Supersymmetry imposes that this scalar
manifold is quaternionic-Kéahler which, however, we did not verify explicitly. In appendix B
we show that our results are consistent with the orbifold limit 7%/Z3 (with standard em-
bedding). The scalars of the truncated spectrum corresponding to the untwisted sector
span the quaternionic-Kéhler (and simultaneously Kéhler) manifold

SU(2,2 + 56)
U(1) x SU(2) x SU(2 + 56)

(3.37)

We now turn to the scalar potential which consists of all terms descending from (2.2)
with space-time indices tangent to K3. Since K3 is Ricci-flat the Gauss-Bonnet term (2.5)
reduces to the square of the curvature 2-form. Moreover, since the curvature is anti-selfdual
for all metric deformations, the term gives a constant topological contribution equal to the
Euler number of K3

1 - - 1
3 /tr(R AR = /tr(T\’, AR) =24 . (3.38)
K3 K3

Together with the contribution from the Yang-Mills field strength we obtain

/
V= _2%&’ </ trFy AF + 48) . (3.39)

Dividing into background and fluctuations F5 = F + f5 we arrive at

V= —‘j}ab(—; JuEnrrass [l *f§>> . (3.40)
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The first two terms vanish due to the tadpole condition (3.1) while the third can be decom-
posed into selfdual and anti-selfdual parts. The tadpole condition additionally constrains

0= /tl‘(fz/\fz) = /tr(f2+/\f2+)+/tr(f2 A fa), (3.41)

since continuous fluctuations cannot change a topological invariant. Therefore we can
express the potential entirely in terms of the selfdual part f5, to obtain

V= _;}ed)/tr(fz /\*fﬁ)

_76 /tr Joagr N fag — fao A fo_ ) (3.42)

- _(;e‘ﬁ/tf(f% A fae) -

This is positive definite since for antihermitean generators the trace gives a negative Killing
form.

One thus has to compute the selfdual components f2 n f(133 Y of the terms given

2+
in (3.19) and (3.20). In appendix A.3 we show that fi(ilf) vanishes, due to the nontriviality
of the adjoint End Tks-bundle. This is crucial for consistency with 6D supergravity, since
D-terms necessarily are valued in the adjoint of the unbroken gauge group. On the other
hand, the selfdual part of (3.20) reads

— N\ T
F880) _ o _ Ci\ (—ivV2VGyds 359 () Y (3.43)
2 T\ or 159 iV2VGijJ3 cY '

J

(see (A.71)). Here p;j = ~iyjpij is the rescaled K3-intersection matrix (2.19), restricted
to HM(K3,R) and Gj; is the same coupling as in (3.32). The D-term is identified by

expanding
5 = ( / fo A Js) J.. (3.44)

Inserting this into (3.42) we arrive at

vz—a/e¢/JsAJt</fg+AJ5> </f§+/\Jt)

(3.45)
:_ﬁe%r (/f2+/\J></f2+/\Jt>.
Comparing with the generic scalar potential (2.15) yields
a 1 S a
(DA, = \/?T)(J( ))AB/f2+ A Js . (3.46)

Hence, the standard embedding on K3 leads to a quartic D-term potential for the charged
scalars in consistency with the generic 6D supergravity. If there exist D-flat directions the
moduli space of vacua has a Higgs branch, where the gauge group is broken further.
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Finally, we identify the su(2)g-valued connection 1-form I'" on the charged scalar
field space, defined in (2.16). Separating the Killing vectors K7* = (Ta)yxCiy in the D-
term (3.46) yields

s~ AT A L 5 .00.C% A
(1) = Zij e C) gms0C (3.47)
J ﬁplj(cf7 O) ZGij (Cz s *sz)

The corresponding curvature tensor is nonvanishing.

3.4 Deviation from the standard embedding

Before we continue let us briefly discuss the scalar potential for deviations from the standard
embedding. A first generalization is to drop the condition F = R but keep the anti-
selfduality of F. This is automatically satisfied for any instanton configuration. In this
class the scalar potential for the K3 moduli is trivially zero. The second generalization is to
consider an arbitrary Yang-Mills bundle. Under metric deformations the curvature 2-form
of K3 stays anti-selfdual, but the Yang-Mills curvature generically loses this property. In
this case the selfdual part contributes an additional term to the scalar potential given by

%N—;/tr(f/\*f)‘i-;/tr(n/\n)
:—;/tr(}"/\*}")—;/tr(}"/\}") (3.48)
= —/tr(]ﬁr N*Fy) .

This term is positive definite, because the Killing form is negative on antihermitean gen-
erators. There are two ways how the system can go back to the minimum of the potential.
Either F is dynamically driven to a new ASD ground state or the K3 metric deforms in
such a way that F becomes anti-selfdual again. It follows that for a fixed F only metric
deformations which preserve the ASD condition are true moduli, while the others generate
a potential like (3.48). In the next section we will consider Yang-Mills fluxes which are rigid
backgrounds, fixed by a quantization condition. In particular they cannot deform dynam-
ically to different ASD ground states. This will stabilize some of the K3 metric moduli.

4 Line bundles on K3

In this section we look for solutions of the tadpole condition different from the standard
embedding, i.e. backgrounds which only satisfy the integrated equation (2.4) in terms of
characteristic classes. Strictly speaking, this is not possible with H = 0 in this background.
One has to include torsion into the internal geometry and the proper back reaction is given
by the Strominger equations. For six internal dimensions one loses the Calabi-Yau property
or even more structure, but for K3 the torsion can be completely absorbed in a conformal
factor of the metric [56].

In the following we consider K3 compactifications with line bundles, where the tadpole
condition is solved by assigning F to be the curvature of one (or several) principal U(1)

,15,



bundle(s) [13, 24, 29, 30, 36, 40-44]. For one line bundle L inside one Eg factor we then have
Es — G x (U(1)), (4.1)
which implies the following decomposition of the adjoint representation

248 — (3,10) © (1,10) P (Ri1g) & (Ris1-y) (4.2)
i
where g is the adjoint representation of G while the second term includes 1g as the adjoint
representation of U(1). The R,; are model dependent representations of G and 1, are
representations of U(1) with charge ¢;. The right entries define associated vector bundles
FE1, which are tensor products of the line bundle L with charge ¢:

E1,=L'=L®...®L. (4.3)

Negative charges correspond to the dual bundle, L™' = L* and L° = O is the
trivial bundle.

Applying the deformation theory of gauge connections to this setup (for more details
see appendix A.4) yields the multiplicities of the corresponding massless fields. Specifically
one finds

RO (L) = —2 — ¢®chy(L), (4.4)

where chy(L) = —% trF A F is the second Chern-character. Moreover, no bundle moduli
exist, as End L is the trivial line bundle with H%!(End L?) = 0. Since the only nonva-
nishing Chern class is ¢;(L) = itrF € HV'(K3,7), nontrivial line bundles are equivalent
to integral, Abelian Yang-Mills fluxes.” Therefore, to specify a line bundle, one chooses
a vector X in the Cartan subalgebra Eg x Eg and an integral linear combination of the
2-cycles of K3.19 X determines the group theoretical embedding and the unbroken gauge
group while the 2-cycles determine the location of the flux

iF=Xomln, I=1,...,22, (4.5)

with 7; being an integral basis of H?(K3,7). The flux satisfies the quantization condition

i/tr}': —|X|| m! ez, (4.6)
!
for all integral 2-cycles I'y € Ho(K3,7Z). Here || X is the Euclidean norm in the Cartan
subalgebra of Eg. For a given K3-metric a supersymmetry preserving background must

in addition satisfy the ASD condition F € H>'(K3,7), which is a restriction on the K3
metric as we already said in section 3.4.

9There exist no Abelian local instantons on K3 because in 4D these are characterized by the winding
number of the mapping S® + U(1), however 73(U(1)) = 0.

0T he specific choice of 2-cycles can be motivated by making contact with heterotic orbifold models which
arise as singular limits of K3 with shrinking 2-cycles [13, 14].
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We can extend the construction to several line bundles, each with field strength
iF' = X" @ mi"y . (4.7)

Since Fg X Eg has rank 16, there are at most 16 independent line bundles available. For
the tadpole condition we must have

1
24 = Q/tr(]-"/\]-') = (X" X™y mI"mI™pp; (4.8)

1

2
Here - is the Euclidean scalar product in the Cartan subalgebra and pr; is the 2-cycle
intersection matrix (2.19) of K3.

4.1 Reduction of the Yang-Mills sector

Using the results from appendix A.4, the Kaluza-Klein expansion of the gauge poten-
tial reads

. R o, L
o =Vi4+Vh, e = > (Cwl + Cw ") + (D, + D) . (4.9)
%

Here V8 is the 6D gauge potential in the adjoint representation of G. For one line bundle,
we have additionally the Abelian gauge potential V1. For ¢; # 0 the representations
in (4.2) are complex and always occur pairwise, with corresponding charged scalars Cj,
and Dy, respectively. Their four real degrees of freedom align in one hypermultiplet in the
representation R; @ R;. The zero modes belong to

wh e HYN(L®) . @ e HYO(L™%),

_ _ (4.10)
@it e HWO(LY) , @, % e HYN(L™%),

with multiplicities k; = 1,..., h%!(L%). For notational simplicity we define doublets of the
charged scalars as
R, _ (~Ri pR;
Pt = (C, D) (4.11)

From (4.9) we derive the Kaluza-Klein expansion of the field strength
. —=R;
F=f+B+> (G +n+f (4.12)
i

Here f§ = dV?! and f§ = dV9 + %[VQ,VQ] are the 6D field strengths. The terms with
one external and one internal tangent index give rise to gauge covariant derivatives of the
charged scalars,

1I,{Ti =DOY AW, DR = ddRi — VR — v (7, @)R (4.13)

Using the zero mode property d Awgi =d Awgi = 0, the internal fluctuation is given by the

f= g X Jaf ] (4.14)

commutator
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Depending on the surviving gauge group G, several representations can arise in (4.14).
For ¢ = j the commutator generates the adjoint representations of the unbroken gauge
group G x U(1)

(Ri1,) ® (Ris1y) = (8,10) & (1,10) & ... . (4.15)
It results in field strength fluctuations of the form

—\ T

c™ Wl AWl G N ol CRi
9 _ a
fﬁ N ZZ: ﬁﬁi (qu‘ Awl T % /\w(h) (T ) (DRz) ’ (4'16)
R T
6 i w Nt w4 N ol CRi
1 — M
fQ - ;% Eﬁi (w%‘ ANwl T ¢ /\qu') (]l) <DRZ> ’ (4'17)

where we suppressed the multiplicity indices. 7% are the g-generators in the appropriate
representation R;. The products of zero modes belong to H?(L% ® L™%) = H%*(K3,R).
Other representations can occur if the adjoint decomposition allows for other tensor prod-
ucts. Let us illustrate this with an explicit example: There exists a Cartan generator for
the line bundle [13, 24] that breaks

Es — SO(14) x U(1) :

_ - 4.18
248 — 919D 1o D (64; B 64_1) ® (142 d 14_»), ( )

where 64 is the Weyl-spinor of SO(14). Then the commutator (4.14) realizes the tensor
products
64; © 64, = 145D ...,
64 1®64_ 1=14 5O ...,

_ _ (4.19)
64, 14 o =64_1 ...,
641014y =64, D ... .
The first two tensor products generate a field strength fluctuation of the form
T
14,014,  (C* whAaw! WAzt cv
2 -\ D o' Al wlAw! (0 uw DY
(4.20)

where we again suppressed the multiplicity indices. The products of zero modes belong

to HY'(L? @ L=2). The latter two tensor products in (4.19) yield an analogous term
641564 _1

5 . Together we have for this example

fp = fN0 4 flo 4 gl | oSS (121)
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4.2 Reduction of the Kalb-Ramond sector

The reduction is essentially the same as in section 3.2, so we only present the new features.

Y M
1,2

component of the Chern-Simons 3-form. But due to the Abelian character of the flux the

The coupling between the b-scalars and the charged scalars again arises from the w

nonvanishing terms are
wra' = Ztr(f“ Rila; >+t <f1Aa1) : (4.22)

Compared to (3.23) we see that the second term in (4.22) vanishes in the standard em-
bedding (as well as for any non-Abelian gauge bundle) since in that case there cannot
be a 6D vector in the same representation as the background field strength F. The first
term in (4.22) generates the skew-symmetric ® D ® couplings and the second term affinely
gauges the b-scalars under the unbroken U(1). Using the expansion F = —iXm!n; we get

_ R
ABy g+ o'W}y = (@b — o' VX|Pm) oy + oY e (T DR, (4.23)
7

where
—R,; . ) R ) )
PR DR — 1O @AW WA DC};’
— 9 | =R; ——qi i ——q i i
2 Dki =% A wy, Wy, A @, DDli

~Ri _— S : :

1 [ DCy, AWl W A C’lf_{’
) iﬁl i_ZQ’L Zi f_lqz Zi ﬁ. ‘

2 D‘Dkz wki /\ wli wk‘i /\ wli Dli '

4.3 6D effective action

(4.24)

Let us now turn to the effective action combining the previous results
1 1 / /
L = §R x1 — 66_2¢H ANxH + Oée_‘i’tng AxF9 — %6_¢||X”2F1 A s Ft
9 1
+ qus A xdd + thdtg A sdt! — de A xdV (4.25)
—R; R, 1 I J
— GRi D@,/\*D@l — —g1gDb" ANx¥Db” —V x1 .
O‘Z ki 0 (D, L) Gy 917
F% is the Yang-Mills field strength of the semi-simple part of the unbroken gauge group
and F! is the field strength of the unbroken U(1) corresponding to the line bundle. The
derivatives of the scalars read
DR = R — ¢,V eRi — Vi(r,p)Ri
_ T PG (4.26)
DY = db! — o/ VY| X|Pm! + a’pI‘]tr(@gl(Ng}ﬁli) D @5@) .
We see that the scalars ®®i are linearly gauged under the entire unbroken gauge group.

The b-scalars are affinely gauged under the unbroken U (1) due to the flux of the line bundle,
with charges given by the flux vector m!. The 2 x 2 coupling matrix (Ngj,C I, ) is given by

——q; i ——q; i
Wy, VAN ) w A w,

N% / A oi ki i 4.27
( Tkil; )= [ (wkiql A wif 51%% Al ( )
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The scalar metrics read

gIJ—/UI/\*UJa

qi ——4i

W, N *w 0

GRi :V1/ ks I _ N
(Chi.) 0 @l Axz,

so the latter is diagonal in the C®i and DR fields.

We now turn to the scalar potential. By the same argument as given in (3.42) for
the standard embedding, only the selfdual parts of the field strength fluctuations (4.21)
contribute to the potential. It is shown in appendix A.4 that the selfdual parts vanish for

(4.28)

all terms which are not in the adjoint representation of the unbroken gauge group
fueRi=o. (4.29)

On the other hand the selfdual parts of (4.16) and (4.17) take the form

—R; a ; —R; ;
where o .
lG ] J 7Ck¢l¢Q
Uk, = (21“ S ) . (4.31)
§CkiliQ inzlzJ

Note that a is used for the adjoint g index and that the matrix U depends on the repre-
sentation R;. As in the standard embedding we find on the diagonal the scalar metrics
chili and Gﬁ ;,» which are the two matrix elements of (4.28). In the off-diagonal elements
we find a generalized “intersection matrix”

Ck;l, — /wkiqi A wl; AQY. (432)
Identifying the Killing vectors
Kf = (r"® )R, Kb =qo, K™= X|Pm!, (4.33)

we see that the terms (4.30), (4.31) generate D-terms in the 6D potential. The third
Killing vector corresponds to the gauge flux, whose selfdual component appears as a Fayet-
Iliopoulos term in the Abelian D-term

xf:—$p¢/}r«f++ﬁh>Aﬂf4+ﬁL»-—%éf/H(ELA*ﬁh)- (4:34)

Similar to the analysis in (3.45) and (3.46), the individual D-terms can be extracted
from (4.34) by the (K3 metric dependent) expansion

(D)5

/A+AJ®(“U

1A_ () (4.35)
(DY)4, = \f/f++f2+)AJ®( Yy
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The generalization of the above results to several line bundles is straightforward. The
b-scalars are then gauged under all Abelian factors U(1),, with charges proportional to the
flux vectors m!™. For line bundles which are not orthogonal, X™ - X™ # 0, kinetic mixing
of the different F1m field strengths occurs

/
L?"AJ—%f—¢§:pxm-xmyFLnA*FL». (4.36)
m,n

Also the 6D H-field may contain mixed Abelian Chern-Simons couplings (see (2.13)). The
scalar potential takes the form

V= Set(xn xXm) /(f_’; + F3) ARFE+ ) - ?,e‘b/tf IS CE

Here félﬁ is the direct generalization of (4.17) containing all charged matter fields charged
under U(1),. The explicit form of the scalar potential reads

o/e?

n m n nRi R; m maERi R;
V: v (X - X )/<f++zi:qi (I)ki (Ukili)@li > /\*(.F+ +Zi:qi (I)ki (Ukili)q)li )

= 2 / (Z B U)W ) *(Z e,

_l’_

(4.38)
where ¢ is the charge of the field ®®¢ under the group U(1),.

Recalling the general argument in section 3.4, the rigid fluxes of the line bundle back-
ground stabilize some of the K3 moduli. The Fayet-Iliopoulos term F, in (4.34) is gen-
erated by those K3 metric deformations that violate the ASD condition of the Yang-Mills
background. Hence, their mass is lifted to a nonzero value. Since we have an Abelian
gauge flux in the case of line bundles, i.e. F € H?(K3,7), we get an intuitive picture of
the moduli stabilization in terms of the 3-plane ¥ € H?(K3,R), introduced in section 2.2.
The ASD condition (3.4) can be written as

FLly, (4.39)

where orthogonality is defined with respect to the intersection matrix p. Hence, massless
deformations of the K3 metric are given by all motions of 3, preserving (4.39). For N line
bundles the massless metric deformations are constrained to the subspace orthogonal to
the flux vectors {m?,...,m™}. If all N flux vector are linearly independent, the remaining
moduli space is described by the Grassmannian manifold
Ncs = 5 0O(3,19 - N)
(3) x O(19 — N)

x R, (4.40)

so there are 3N moduli stabilized and dim MKg = b58—3N. For Fgx Eg we have Ny = 16,
which stabilizes all but 10 moduli and leaves U(1)® unbroken. For a GUT group to survive
in 6D a larger number of moduli has to stay unfixed.

Finally, let us mention that there exists also a moduli space for the charged scalars
which consists of all D-flat directions C’E,D}; #£ 0, satisfying D* = D! = 0. The corre-
sponding Higgs branch has a smaller gauge group with less massless hypermultiplets [57].
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4.4 Stiickelberg mechanism and massive U(1)s

We close this paper by analyzing the effect of the affinely gauged scalars b’ (cf. (4.26)).
Let us first focus on one line bundle for simplicity. In this case the U(1) gauge symmetry
acts according to

Vi — Vvt 4ady, ol — bl +a/mly . (4.41)

This implies that one combination of b’ can be gauged to zero with V! becoming massive
which is known as the Stiickelberg mechanism.!! The mass term (in the Einstein frame)
is found from (4.26) to be

2 12
%y;x;ﬁvl A V1 /tr(]-"/\*]-") = —%qu‘*vl AsVEppmIm? (4.42)

where we used the ASD condition xF = —F. To identify the physical mass we need to
absorb a factor Vo/||[V|| into V! in order to get a canonical kinetic term as can be seen
from (3.29). Using the tadpole condition (4.8) the physical mass reads

m = 4\/€ . (4.43)

Note that the physical mass only depends on the K3 volume.

If there are N line bundles with flux parameters m/™ = (ml Lo miN ), the b are
coupled to all of them and generically all “fluxed” U(1)’s become massive. However, if some
flux vectors are linearly dependent, dim span{m!,..., m"N} = K < N, the rank of the mass
matrix is reduced and there remain N — K massless U(1)’s in the spectrum. Let us show
which combination of br-scalars is eaten by which combination of U(1)’s. In an integral
basis of H?(K3,7) we define ¢!™ = |[V"|jm!"™ € Z and look for the orthogonalization

Lo ~ gry(db —¢""V})? = grs(db" — NV (4.44)

For K linear independent flux vectors the 22 x N matrix ¢/™ has rank K and hence can
be be brought to the following form (e.g. N =3, K = 2)

Aooo0 ...
"= O mU, =N =10 N 0 L], (4.45)
0 0 0

where O € O(22) and U € O(N). This determines the preferred basis
vVi=urvt, =00, (4.46)

in which the first K b scalars are the Goldstone bosons of the first K gauge potentials. More
precisely, one goes to a basis of H?(K3,7) where the flux hyperplane span(m!,...,m") is
spanned by the first K harmonic 2-forms 7, . .. fix. The special form of A’ however does

"Tn 6D this effect is independent of possible Abelian anomalies [30].
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not tell us if this basis is orthogonal with respect to the intersection matrix (2.19). Since
we have xF"" = —F" for each gauge flux, the mass terms read

7‘/1 N / FUAXF™ = —fvvl A VI mATm (4.47)

where pr; = OIK O JLpKL. In general pr; will not be diagonal and hence the mass term
will not be diagonal in n,m. Therefore, the mass eigenbasis is generically different from
the “Goldstone eigenbasis”. Note that again the mass matrix only depends on the volume
modulus and that the trace of the (squared) mass matrix is fixed by the tadpole condition

EESY O e (4.48)
r = - =—= =16 — . .
E 3 VPIJ v

5 Conclusion

In this paper we derived the six-dimensional low energy effective action of the heterotic
string compactified on K3. Consistency requires a nontrivial gauge bundle on K3 and
for concreteness we chose to consider first the standard embedding and second a flux
background with U(1) line bundles. In both cases we performed a Kaluza-Klein reduction
starting from the ten-dimensional action. Specifically we focused on the gauge sector
where charged and neutral scalars (bundle moduli) arise as massless deformations of the
internal gauge bundle. We carefully performed a KK-reduction and computed the sigma-
model metric and the scalar potential of the six-dimensional action as a functions of the
geometrical K3 moduli and the axionic scalars arising from the NS B-field. For the scalar
potential we showed the consistency with the generic 6D, N' = 1 supergravity in that it
arises solely from a D-term. The sigma-model metric is constrained to be a quaternionic-
Kahler metric which, however, we could only show in an appropriate orbifold limit. The
proof that the full metric computed in this paper is indeed quaternionic-Kéhler is left for
a future project.

The line bundle backgrounds are realized by Abelian Yang-Mills fluxes on K3. They
affect the 6D theories in that the scalars arising from the B-field become affinely gauged un-
der the unbroken U(1)’s. This in turn gives a mass to the U(1) gauge fields via a Stiickelberg
mechanism. For several line bundles which are linearly dependent in H?(K3,7), massless
U(1) gauge fields remain in the 6D theory. At the same time the fluxes stabilize those K3
moduli which violate the anti-selfduality of the Yang-Mills field strength. In the effective
potential this is realized as a Fayet-Iliopoulos term proportional to the flux vector. To-
gether, one line bundle eliminates four scalars (one B scalar and three K3 moduli) from
the effective theory, which are absorbed into a massive vector multiplet.

Recently [58] derived the 6D effective action of F-theory compactified on a Calabi-
Yau three-fold X. When X is a K3 fibration, this background is dual to the heterotic
theory compactified on K3 studied in this paper. It would be interesting to compare the
two effective actions. On the F-theory side one may use our results to get information on
the couplings of the charged matter (in [58] the action was derived on a generic point in
the Coulomb branch, where these fields are massive, but eventually one has to go away
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from this branch in the F-theory limit). On the heterotic side one may use the results
of [58] to understand the couplings of non-perturbative tensors (that in F-theory appear
at perturbative level).
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A Detalils of the Kaluza-Klein reduction

A.1 Deformations of gauge connections

In this appendix we give a detailed derivation of the Kaluza-Klein reduction of the gauge
potential, from which all bosonic matter fields descend. The low energy spectrum is deter-
mined by the gauge background consisting of a nontrivial holomorphic H-bundle over K3
and a flat G-bundle over M9

EgXEg—)GX(H>, (Al)

where G is the maximal commutant of H. The H-bundle satisfies the Bianchi identity (3.1)
and its nonzero field strength F satisfies the hermitean Yang-Mills equations (HYM)

F e HYYK3,h), FAJ=0. (A.2)

Here we write h for the adjoint H-bundle. (A.2) is equivalent to the anti-selfduality (ASD)
of the field strength, xF = —F [37, 38]. We denote the background connection, valued
in b, as A and its deformations give rise to massless 6D fields.'? These deformations are
grouped into multiplets according to the decomposition

496 — EB (Ri,S;) @ (g,1) @ (1,h), (A.3)

where g and § denote the adjoint representations of G and H, respectively. The 1 is the
trivial representation and (R;,S;) are group specific representations. It is known from
supersymmetry that massless 6D hypermultiplets in representations R; occur with multi-
plicities given by the chiral index [24]

x(Es,) = h*°(K3, Es,) — > (K3, Es,) + h>*(K3, Es,) (A.4)

where Es. denotes the vector bundle associated with S;.'3 In fact, h%°(K3, E) and
h%2(K3, E) vanish for a HYM background. This can be seen as follows: H*Y(K3, E) is

12Since we insist on six-dimensional Lorentz invariance we do not include the possibility of a background
value for the 6D gauge field.

13y is called chiral index due to the equivalent definition x(E) = ng — ng, where ni count the chiral
zero modes of the Dirac operator. On K3 one has x(F) = x(E*), so complex conjugate representations
always occur with equal multiplicities. Due to the definite chiralities in the vector- and hypermultiplets,
X(E) counts the difference of them.
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the space of global sections of F, which are closed with respect to the covariant Dolbeault
operator 04 on K3. But for sections of a HYM-bundle we have the identity'*

diyda =20%04, (A.5)

where d4 = 04 + 04. Therefore any such section is also covariantly constant. When F is
nontrivial and irreducible, no constant sections exist. The vanishing of H%?(K3, E) then
follows by Serre duality [60].

For the Kaluza-Klein reduction of the bosonic action it is not enough to know this
multiplicity. One has to know which internal differential equation the zero modes sat-
isfy. Therefore we analyze the deformations of the gauge connection without referring to
supersymmetry. Starting from the 10D Yang-Mills Lagrangian

LYM (F F) = tr(F A+F), (A.6)

we parametrize the deformations by A = A+ a with a € A'(eg). For simplicity we assume
that the background H-bundle is inside one Eg and consider only deformations inside this
Eg. We restrict a to be compatible with the metric on the adjoint Fg bundle.'® The field
strength deforms as

F=F+f, f=dua+ o, (A7)

As in the main text we decompose a = a; + aj into 1-forms on M'® and on K3. They
deform the flat G- and the curved H-connection, respectively. Their 6D effective mass
terms are given by

L£Ie5[q,] ~ /tr(dAal A*daa1), (A.8)
K3

LE*5[ag] ~ /tr(dAal A *d qa1) + /tr(a1 A*[F,a]) . (A.9)
K3 K3

From (A.8) it follows that massless 6D vectors V; arise from deformations with da; = 0.
Therefore the Kaluza-Klein expansion reads

ap =V -1, dayp =0, (AlO)

with internal covariantly constant functions (sections) 1. Since there exist no globally
constant sections on nontrivial vector bundles, massless 6D vectors can only occur from the
term (g, 1) in (A.3). From the identity (A.5) (on sections) it follows that ker(d_4) = ker(9,4).
Hence the multiplicity is given by Dolbeault cohomology

hOY(K3,Eqy) = hO9(K3) =1. (A.11)

1A proof can be found, for example, in appendix E of [59].

'5This amounts to the condition that the deformed connection A = A + a satisfies d(h(1,v2)) =
h(da1,v2) + h(1,darb2), where h is the adjoint metric, i.e. locally the Killing form of the Lie algebra,
and 1,12 are sections of the adjoint bundle.
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The mass operator for 6D scalars is identified from (A.9) as
Ay prag = dyd ga1 + *[Fa, a7 - (A.12)

Since this is not a proper Laplacian, the connection to Dolbeault cohomology is obscure at
first sight. We now show that 1-form zero modes of Ay s are in one-to-one correspondence
with zerofmodes of Ay, = 5:"45,4 + 5A5j‘4. Using the Kéhler identities 0% = i[04, J-] and
0% = —i[04, J+] [61], we find the following operator identity on 1-forms

dyd a1 = 2A5Aai —dadyat +iJ - [F,aq] . (A.13)

Here J- is the contraction with the Kéhler form. (There is an equivalent identity with Ag,
instead of Ag,.) We prove (A.13) at the end of this section. The second term on the r.h.s.
vanishes in the Lorenz gauge d’a; = 0. Moreover, on a complex Kahler surface with a
HYM-bundle (i.e. anti-selfdual field strength) one can show that

x [F,ai] = —iJ - [F,aq] . (A.14)

Inserting (A.13) and (A.14) into the mass operator (A.12), we are left with the (gauge
fixed) identity on 1-forms
Ayy =205, =20y, . (A.15)

Since on holomorphic bundles the Dolbeault operator satisfies 3?4 = 0, the harmonic
I-forms of Ay, are unique representatives of H O1(K3,F). From (A.15) it also follows
that the massless modes are zero modes of d 4. This is obvious from (A.12) as a sufficient
condition, but here we have shown that it is also necessary. Another way of seeing this
is the following: Whereas the first term in (A.12) is a positive, symmetric operator, the
second is in fact antisymmetric with respect to the YM-scalar product on K3

<a17*[}—7 ai]> = _<*[]:7 ai]vai> : (A'lﬁ)

Hence, the two terms correspond to real and imaginary part of the squared mass eigenvalues
and have to vanish separately. Hence, we derived the supersymmetric result from pure
bosonic Yang-Mills deformation theory.

Returning to the different terms in (A.3), no 6D scalars in the adjoint representa-
tion g can occur, because HY!'(K3,E1) = H%'(K3) = 0. Generically one gets scalars
from representations (R, S) with some multiplicity h%! (K3, Es). Here two cases can arise:
First, if (R, S) is a real representation and R is pseudoreal and we are left with R-half-
hypermultiplets in 6D. To have complex fields in 6D one decomposes the deformation as
a; = a®! 4+ a0, using a complex structure on K3. Since a is restricted to preserve the
hermitean structure of the eg bundle, the two terms satisfy [61]

(at0)T = —a%t . (A.17)
Hence, the Kaluza-Klein expansion reads

ai = C,?wk + 6kak . (A.18)
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Second, if there are complex representations occuring in conjugated pairs, (R, S) @ (R, S),
two sets of independent 6D scalars arise

ai = C,f{wk + 55@ + D,?wk + Egﬁk . (A.lg)
The zero modes of both cases are given by

wy € HYY(K3, Eg), W € HYO(K3, Eg),

A.20
wy, € HYO(K3, Eg), @, € H"' (K3, Eg) . 420

Here Eg = (Eg)* is the dual vector bundle. On K3 all multiplicities are the same due to
Serre duality

HOL(K3,Es) = H*' (K3, Fg) (A.21)
and can be computed via the chiral index (A.4).16 Thus, in 6D one has hypermultiplets
with scalar components @kR@R = (C,?,E?).

Let us now show that the 6D singlet scalars coming from the term (1,h) in (A.3)
are special in that they are not only massless but exact flat directions of the potential.
They are termed bundle moduli. Applying the previous analysis it follows that there
exist massless deformations with multiplicity h%!(K3,h). In fact, any such deformation
preserves (A.2) and hence the ASD condition of the background F. It is known that
the moduli space of ASD connections modulo gauge transformations is equivalent to the
moduli space of holomorphic structures (see for example [38]). A holomorphic structure is
defined by a Dolbeault operator satisfying 5?4 = F02 = 0. A deformation A = A+ a, with
a € A (K3,bh) defines another holomorphic structure if ]-'21’2 =0, i.e.

_ 1
40" + 5[a(),l,ao,l] —0. (A.22)

Infinitesimally this yields a®! € ker(04). However a € ker(d4) contains directions which
lead to gauge-equivalent holomorphic structures which have to be modded out. Their
Dolbeault operators are related by conjugation in H

5&\ = h~'Oah ~ D4 + Oadh, (A.23)

where h € A°(K3,H) and h ~ 1 + §h, dh € A°(K3,h). Modding out the term
040k € Im(dy4), infinitesimal deformations of the holomorphic structure are given by
a®!' ¢ H%'(K3,5), in agreement with the result from the mass operator. But since the
effective scalar potential from the background takes the form

Vi~ — / te(Fo AxFL)., (A.24)

(see (3.48)) all deformations preserving the ASD condition are moduli, i.e. flat directions
of the scalar potential. Finally, the Kaluza-Klein expansion of the (1, h)-scalars reads

ai = G + §a,  ap € H'(K3,h) . (A.25)

160n a Calabi Yau 3-fold the C® and D'* occur with different multiplicities, yielding the 4D chiral
spectrum.
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The complex 6D scalars & are called bundle moduli. In the following sections the above
results are applied to the standard embedding and the line bundle background.
We finally give a proof of the formula (A.13) for a € A}Y(K3, E):

didaa = (5?4&4 + 0304)a + (5}8,4 + 8;5,4)(1 (A.26)

The first term can be written as
(02404 + 0404)a = i([04, T 104 — [0, T 10 4)a
=i(O4d - 04 — OuJ - 04)a —iJ - (04040 — D40 40) (A.27)
= (0407 + 5A5f4)a+ iJ - [F,a] —2iJ - (040.40) .
Here we used the Kéhler identities 9% = —i[04, J-], 0% = i[04, J-], J-Oaa = [J-, D 4]a since
J-a =0, and we identified F = 9494 + 0404. We now write the last term in (A.27) as

2iJ - (0404a) = 2i([J-,04] + OuJ)0a

= —20%04a + 2i04[J-,04)a (A.28)
= —25}5,4@ + 20400 .
With this we get
(5:25,4 + 0%04)a = (5,45j4 —0A0)a+iJ - [F,a] + 25:25,4& . (A.29)

Now we consider the second term in (A.26)
(0404 + 0%404)a = (0404 + 0484 )a = dadya — (0404 + 0ad4)a, (A.30)

where we used {94,0%} = 0 (which follows from the Kéhler identities). Together we end
up with the claimed result (A.13)

d'ydaa = —dad’a + 20504 + 0405 )a +iJ - [F,a] . (A.31)

A.2 Zero modes in the standard embedding

For the standard embedding the nontrivial SU(2) bundle is inside one Eg factor, yielding
the breaking
Eg — E7 x (SU(2)) . (A.32)

Focusing on this g factor we have the decomposition
248 — (56,2) @ (133,1) @ (1,3) . (A.33)

The vector bundles F corresponding to the right entries are identified as Fo = Tk3, which
is the holomorphic tangent bundle, F3 = su(2) = End Tks, which is the adjoint bundle
and Fq = O, which is the trivial bundle over K3. Since (56, 2) is a real representation, its
massless Kaluza-Klein components are given by

%02 — %6, + TP, j=1,...,20. (A.34)
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Here the zero modes are

w; € H"'(Tks) = HY(K3),
wj € HY(Tks) = HYY(K3) .
From the Hodge diamond (2.17) we see that the multiplicity is 20. We realize the isomorphy

(A.35)

to HY1(K3) with the holomorphic 2-form  and a particular prefactor, i.e. in components
(no summation over j implied)!7

Vi aab
(Wj)ozﬁ = QJ QQ (nj)aa »
3 ||,yjH 33 (A.36)
(w‘)a = Q*(nj)aa »
! 192112 ’
where 7); are the harmonic (1, 1) forms on K3 and ~; is the real function
1
Vi
V= - (A.37)
(ST ~nj)?

This function is motivated by matching with the orbifold limit of the standard embedding
which we discuss in appendix B. In fact, the zero modes of the charged scalars depend on
the complex structure of K3 by the very definition of Ti3. For a fixed complex structure
the prefactor v; depends on the remaining Kahler moduli in such a way that the full zero
mode is independent of them.

The term (133,1) gives rise to one 6D vector A'33 as stated in (A.11). The term
(1, 3) corresponds to the bundle moduli as specified in (A.25)

a§1’3) = oy + ik, o € H*'(End Tx3) . (A.38)

The multiplicity cannot be related to the Hodge numbers but can be computed with the
chiral index (A.4). Here h®*(End Tk3) = 0, since a covariantly constant section g €
I'(K3,End Tks) must take values in the centralizer of the holonomy group, which is empty
for hol(K3) = su(2) [37]. Thus, one obtains

x(End Tx3) = —h%! (End Tks) . (A.39)

x can be computed via the Hirzebruch-Riemann-Roch theorem'® which states

(Es) = / TA(K3) A ch(Bs) = 20k(Es) + cha(Es) . (A.40)
K3

where Td(K3) is the Todd-class of K3, rk(F) is the rank of the vector bundle and
cho(Es) = —3 [trgF A F is the second Chern-character. Using rk(End Tk3) = 3 we get

1 4
h%1(End Tks3) = —6+2/tr3(]—"/\]—") = —6+2/tr2(fAf) =—6+4-24=90,
(A.41)

7 There exists an alternative isomorphism, wg o gﬁﬁ(t(a,—y) +tas]) = gﬁﬁ(ﬁé(@w,—yﬁ + Qa), which maps

H*(Tk3) to the anti-holomorphic 2-form Q plus all (1,1)-forms except the Kihler form. We always use
the simpler one (A.36).
!8See for example chapter 5.1 of [61].
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where in the last step we used the integrated tadpole condition (3.1)
;/trg(]:/\}") =x(K3)=24. (A.42)
Summarizing, the Kaluza-Klein expansion of the gauge potential reads
ay = V183, ai = C'j56wj @ 635»765j + &y + €0 (A.43)
with j=1,...,20and k= 1,...,90.

A.3 Coupling functions in the standard embedding

In this section we derive the coupling functions of the effective action. First we con-
sider the kinetic terms in (3.29) and in particular the couplings of the charged scalars.
Due to the correspondence of their zero-modes to harmonic (1, 1)-forms (A.36) these func-
tions exhibit a characteristic dependence on the K3 moduli.'® To express this depen-
dence in the following, let us review the parametrization of the K3 moduli space (2.20)
from [55]. A Riemannian metric is given by a positive definite three-dimensional subspace
¥ := H%(K3,R) C H?(K3,R), which is spanned by an orthonormal dreibein (.J1, J2, J3).
The K3 moduli ¢! are defined by the expansion

Js =thny, I=1,...,22. (A.44)
They are constrained to be (positive) orthonormal
protit] = 6q, (A.45)
and subject to an equivalence relation which identifies equivalent metrics
th~tl =R, ReSO®3). (A.46)

R rotates the dreibein inside ¥ and corresponds to an S? of possible complex structures
per metric.

In the following we want to relate the moduli space of the charged scalars to the
moduli space of K3 metrics. Due to the very definition of 7k3 in the standard embedding,
the charged scalar zero modes are defined with respect to a chosen complex structure.
Hence, the discussion of their couplings implicitly requires the breaking of the Hyperkéhler
structure of K3. Defining the complex structure via the 2-form Q) = J; +iJs, the harmonic
(1,1) forms in the charged scalars zero modes (A.36) are given the projection

1,1
ny= (P1’1)1J77J7 (Pl’l)f] = 5}7 - Z PItht;]a (A.47)
s=1,2

where pr; is the intersection form (2.19). They depend on the complex structure moduli
tI,tL. In the following we fix the complex structure and discuss the dependence of the

19Recall that on K3 the embedding H*(K3,R) C H?*(K3,R) is a moduli dependent subspace.
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charged scalar couplings on the remaining Kéhler moduli. As in (A.36) n;,j = 3,...22
denotes a basis of H''(K3,R) with respect to the fixed complex structure.

Let us illustrate this by a first example. The KK reduction of (3.12) yields the kinetic
term of the charged scalars in (3.29)

o
V2

where gag is the Kahler metric on K3. We show now that the charged scalar metric

j )

DC; A +DCY V2 / 9ap@E A wh (A.48)

Gi; is indeed related to the b-scalar metric gr; given in (3.32). Using the zero mode
isomorphism (A.36) and the identities

— _l 67
0% = f()gl "7, P =11Q0PV9 (A.49)
as well as the normalization [|Q[|? = & we obtain

1 —a B
Gij = \/M/gaﬁwi /\*wj

- Vi7Yj / 581 £12 . a5 By =2
= ——5—— [ 9apg”° |fI7e™7 " ()36 (n;)5l9| 2d 2
vavijaje ) " B

I 7, / Sy 58 _ 4
= ———— [ 979" 0i)53s(1;),5v9 A"
Vavi Q]2 e

ViV
— A KD
22y i 75

From the last line in (A.50) (no summation over 7,j implied) one recognizes that this

(A.50)

function is proportional to the projection of the b-scalar metric gy
Gij = /Th' Ay = (PYY (PN g1, g1y = /771 Axny . (A.51)

While P! depends on the fixed complex structure, gij also depends on the remaining
Kihler moduli via the action of the Hodge % operator on H%'(K3,R) [55]

* 1 = (‘55 + 2Pikt’§t§> nj - (A.52)

For the coupling function NZ-Ij in (3.34) which is obtained from a KK reduction of (3.27)
we first use the same manipulations as above to get

Y = o~ Voivs
Nij = Qap Wit A wf = NJZQ (i Nmy) = %%2 pii€) - vol = 15 pii ) .
12 12 2\/9

Here - denotes the contraction of forms and vol is the volume form, normalized to 1. In

(A.53)

the second step we used 7; An; = p;jvol and in the third step we used Q-vol = g_%ﬁ. The
coupling p;; is defined as the projection

pij = /77i Anj = (PMD(PYY (A.54)
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where pr; is the moduli independent intersection matrix. Hence, the expansion into n; has

coefficients

N} = pIJ/Nij Ang = %%”Vjpijle /QA ns = %%%’PUPU((JM?J) —i(Ja,m1)),
(A.55)
where (-, -) is the scalar product on H?(K3,R).
For the coupling function Ml-Ij in (3.34) which also arise from (3.27) we proceed similarly

to get

1 o =B _ VYW 5 5. r1a
Identifying the components of the Kahler form as g,5 = —iJ,5 and gap = iJap we can
express M;; as the special contraction

Vv
My ==—="% (J-(mAm)—(J-m) i — (- ;) m)
VvV < V2V V2V >
== i (J - vol) — ~=(J3,mi)nj — ——=(J3,m;)n;i (A.57)
o pij( ) \/§<377>m \/§<3m>77
_ i, . .
RPN (psz (J3,mi)n; <J3,77]>m) :
Here we used the following identities
1 2V 1
J-mi)vol = —J An; = | —(J3,m;)vol, J-vol=—J. (A.58)
( ) 7 \/ ; (J3,mi) 7
Hence, the expansion into 77 has coefficients
iV
M}y = pIJ/Mij Ang = 1TJPU(Pz‘j<J3,?7J> —(J3,mi)pjs — <J3>77j>PiJ) : (A.59)

Both couplings M and N depend on the K3 moduli but for a fixed complex structure
we have the following simplification. In a basis (n1,m2,7;) of H?(K3,R), where 7, 2 span
the complex structure 2-plane, we have (Jy 2,m7) = 0 for I = ¢ and (J3,nr) = 0for I =1,2.
This implies

N #0 onlyfor I =1,2,

7 (A.60)
M;; #0 only for I =3,...,22.

In this basis the couplings (3.31) between the charged scalars and the b-scalars reduce to

ooyl (- a’sxy(Ngﬁchgy +tee)—... (A.61)
o db' — /8, M},CyDCY — ... ’ ‘

where the dots stand for the £d¢ terms. Moreover, for the b-scalar combination b'n; = t4n;
proportional to the Kéhler form of K3, the coupling function reduces to

My = _Z’L’;j Gij » (A.62)
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with g;; known from (A.51). In appendix B we will use the second row in (A.61) to
identify a quaternionic Kéahler moduli subspace, containing complexified Ké&hler moduli
and charged scalars.

Let us now turn to the scalar potential which contains quartic terms of the charged
scalars. These arise from the squares of the expressions (3.19) and (3.20). The term
in (3.20), which is in the adjoint representation of the surviving gauge group, gives rise to
D-terms in 6D. The term in (3.19) is not allowed by 6D supergravity and we shall prove
here that it vanishes due to properties of K3 and its bundles. First recall from (3.42) that
only the selfdual components dF5, contribute to the scalar potential which will be crucial
to show the consistency with 6D supergravity. Recall (3.19)

o\ T 5 n B 5 AP
(1,3) _ Ci OapWi Nwj g Wi NW; S Q@y (A.63)
? i) Notgwinw] argupng) W \G

where all matrix elements are 2-forms in the group H?(End Txk3) as follows from the group
representation (1,3). We now use a local decomposition of H*(End Tk3) and show that
its global extension does not exist. In fact any 2-form in H?(End 7Tks3) can be locally
trivialized as

fl®w; € T(End Tk3) ® A*(K3), (A.64)
where ¢ = 1,...,6. Since the zero modes in (A.63) are d4-closed also their products are
d g-closed. This implies

0=da(f' ®@w;) = (daf’) Aw; + f'(dw;) . (A.65)

For the scalar potential we restrict this equation to the selfdual 2-forms. Since there exists
on K3 a basis of d-closed selfdual 2-forms, (A.65) reduces in this basis to

dafi=0. (A.66)

Hence, the f? are covariantly constant sections of End 7x3, which have to extend to glob-
ally constant sections. However, since End Tks3 is an irreducible, nontrivial bundle, only
the constant zero section exists. In other words, the deformation (A.63) preserves the
ASD property of the background field strength and therefore does not contribute to the
scalar potential.

Next we calculate the selfdual part of (3.20)

690 T 1 w@/\wﬁ (O /\@B cY
f§(133’1) _ ( z) VayJas Wi J aB i Jo_ (T%) 2y (%) i (A.67)
cy Qop @ Aw)  Asgas we AT C

We recognize that the same coupling functions appear as in (A.53) and (A.56) so that

. T —
o ~Mi; Nij\ o (C}
2(13371) = <Cm> ( N..] M]> (7%)y (C@) ' (A.68)

J

we have
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The off-diagonal elements are already selfdual 2-forms given by (A.53), while the diagonal
elements are generic (1, 1)-forms. We get their selfdual part by projecting onto J3

Mijt = </ Mij A J3> J3 = %;J (Pij<=]3, J3) — 2<J3,77i><<]3,77j>><]3 =iV2VGi; s
(A.69)
Here we identified the kinetic coupling G;; using (A.52), (A.50) and

gij = /m Ay = (=68 + 2pt5t5) pie = —pij (T3, J3) + 2(J3,m:) (J,7;) - (A.70)

Summarizing, we have

T
f(1331 C; —Z‘/ﬁgijj?’ 30192 (%) gjy (A.71)
Cr 3PS iV2VGi; s “A\G)

where we p;; = v;vjpij denotes the rescaled intersection matrix on HY (K3, R).

A.4 Zero modes in line bundle backgrounds

We now apply the results from appendix A.1 to deformations of a line bundle background.
For one U(1) principal bundle inside one Eg factor we have the breaking

Es — G x (U(1)), (A.72)
and the adjoint decomposition

248—>@ (Ri,14,) ® (Ri,1-y,)) @ (g,10) ® (1, 1), (A.73)

which defines the associated vector bundles. Due to (A.11) we get again one 6D gauge
potential V¢ in the adjoint of G. However, now the (U(1)) is part of the unbroken gauge
group since it commutes with itself. Since here h = 1( corresponds to the trivial line bundle,
there also exists a 6D Abelian gauge potential V1 in the same representation (1, 1g) as the
background connection A. There exist no bundle moduli, since End L¢ = O is the trivial
bundle and

H%'(End L) = H*'(K3,R) =0 . (A.74)

Finally, we get charged scalars in representations R;. Their multiplicity cannot be related
to the Hodge numbers of K3, but we have

RO (L) = —x(L9), (A.75)

by the same argument as in (A.4). The chiral index of a line bundle over a four-dimensional
manifold takes the simplified form (4.4) as we will show now. The total Chern-character
ch(L) = trexp(5=F) factorizes for product bundles,

ch(L?) = ch(L)N...Nch(L), (A.76)
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which implies
1
cho(L?) = q cho(L) + §q(q —1)chi(L)? . (A.77)

For line bundles we have cha(L) = 1chq(L)? such that
cha(LY) = ¢*cha(L) . (A.78)

Using rk(LY) = rk(L) = 1, the chiral index reduces to
X(L7) = 2rk(L9) 4 cho(L?) = 2 4 ¢*cha(L) . (A.79)

Therefore (4.4) is verified.
The Kaluza-Klein expansion of the gauge potential is analogous to (A.19) and reads

a=VieVh e =Y (CRwl+ Opw") + (D + D) . (A80)
)

The zero modes belong to the Dolbeault cohomology groups

AEIY) L @ e 0L, .
wfi e HY(LT) | @ e HYY(L™), '
with multiplicities k; = 1,..., —x(L%).

The scalar potential of the charged scalars contains the selfdual parts of (4.16), (4.17)
and (4.20), i.e.

R;0R;
f§+ ’ filJr 9 fg+@ . (A82)
We show first that any term of the form f;:@ﬁi vanishes. The product of internal zero

modes in (4.20) belong to H?(L% ®L~%) and they are also closed under the gauge covariant
derivative d 4. Locally we can write these 2-forms as

s'@a;, seT(L% oL %), a; € A*(K3), (A.83)
where ¢ = 1,...,6 is the number of locally independent 2-forms. Then we have
0=du(s"®a;) = (das’) Aoy + 5° @ (deyi) (A.84)

If we restrict to the d-closed selfdual 2-forms, (A.84) reduces to

0= (dgs’) A a;r . (A.85)

It follows that fQRJ:@Ri is proportional to covariantly constant sections s/ € I'(L% @ L~%).

However, since L% @ L~ is nontrivial and irreducible, only the constant zero section exists.

We conclude that all fQRfBﬁi vanish.

Next we derive the selfdual part of fg 4 and f§1+. Considering the matrix of internal
2-forms in (4.16) and (4.17),

——4q i ——4q @
O N Pk N (A.86)
T AW m Y Awl

k; l; k; l;
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they take values in the trivial bundle, H?(K3, L% @ L~%) = H?(K3). Hence, covariantly
constant sections exist. Projecting to the selfdual components we get

g , 1 g )
(wkiqz A w?;)+ =5y </ wkiq’ A *wl;> J,
i

@ AT = o </w,;;h' /\*w?j) 7,
. V(e o
@ Awf)e = 2 </(wkf Awl) A Q> Q,

a0 , 1 a0 4
(@R AW )y = 3 ( / (TR Awf) A Q> Q.

(A.87)

The diagonal elements are proportional to the scalar kinetic metric g,gli and g,g ;> that
appeared in (4.28). The off-diagonal elements contain a generalized intersection matrix

Chil, = /(w,;qi ANwl)AQ, (A.88)

where the indices run over the multiplicity of the corresponding charged scalars.

B T%/z3 limit: hypermultiplet moduli space metric

In this appendix we focus on a specific orbifold corresponding to a heterotic compactifica-
tion on a smooth K3 with standard embedding for the gauge bundle. In this case we are
able to give an explicit form of the hypermultiplet field space for the untwisted moduli.
Specifically we consider the Eg x Eg heterotic string compactified on the orbifold 7% /75
with gauge twist given by %(12,06)(08) [48]. In this case the unbroken gauge group is
E7; x U(1) x Eg. In the hypermultiplet sectors we have both untwisted and twisted states

in the following representations:2°

(56, 1)1 @ (1,1)5™™ @ 2(1,1)§™ @ 9(56,1)Y @ 45(1,1)% @ 18(1, 1) . (B.1)
3 3 3

When we blow up the orbifold 7%/7Z5 we get a smooth K3. After a field redefinition,
the orbifold spectrum matches with the spectrum obtained by a smooth compactification
with nontrivial gauge bundle [13]. In particular, the two (1,1)§™" are the two hypermul-
tiplets containing the four geometric moduli and the four B-field moduli surviving the Z3
projection, the (56,1)™" is a charged field, and the (1,1)¥"V is eaten to give mass to
the U(1) gauge boson. Therefore the total orbifold spectrum matches the spectrum of the
smooth compactification considered in section 3, i.e. 20 geometric, 45 bundle moduli and
10 charged hypermultiplets.

The metric on the hypermultiplet scalar field space in the untwisted sector, can be

obtained by considering the 6D heterotic compactification on 7% and performing a suitable

20The untwisted spectrum is obtained by taking the spectrum coming from compactification on 7% and
performing the Z3 projection. The twisted spectrum comes from strings localized around the orbifold
singularities.
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truncation [39, 62]. For the case at hand the truncation is

SO(4,4 + N) SU(2,2 +n)
SO@) xS0+ N) U1 xSU@) xSUR+n) "

(B.2)

The latter space is simultaneously quaternionic-Kéhler and Kahler, with a metric deter-
mined by the Kahler potential

K = —logdet(T +TT — 20W0T) . (B.3)

¥ is a 2 X n complex matrix, which encodes the two complex scalars belonging to the n
hypermultiplets in the untwisted charged spectrum (in our case n = 56.) T is a 2 x 2
complex matrix given by

911 +iBy1 + V19, g12 +iB1a + W10y

(Tij)={ = o= . ). (B.4)
gi2 +1iB12 + W0 g2 + 1Bo3 + WaWs

It contains the real g;1, go5 and the complex g;2 metric elements and the the corresponding
components of the B-field. \I/i@j includes a summation over the n components. For
simplicity let us fix the complex structure such that g;o2 = 0. In this limit, the Kéahler
potential (B.3) yields the kinetic terms

(dledTn + dTQldTQI) )

— 1 _ 1 _
K. = dl;;dTy = —dT11dT11 + —dT52dT 99 +
TigTw = 4 %1 493@ 911922
(B.5)

- 1 WU, WU - 1 WU, UL -
Ky g dU;d0; = <+ e 1)d\111d\111+ <+ — 2>d\112d\112,
B 911 911922 911 923 9119232 953

(B.6)
_ v v v B _
Ky g dT;jdVy = ——dT11dV) — —o-dTyed¥y — ——dT15d¥; — ——dTp;dV, .
R 2917 2955 9119922 911923
(B.7)

Inserting (B.4) we get the kinetic terms in terms of the Kaluza-Klein modes [39, 62]. The
leading term for the charged scalars reads

1 _
> —dvdY; . (B.8)
i—1.2 Yii

The terms for the two complexified Kéhler moduli read

1 ) _ _
Z ﬁ|dgﬁ +idBg + U;dV; — U;d¥;[* . (B.9)
i=1.2 *Jii

The terms for the off-diagonal fields in T read

(|idBis + U1dUs — UodWy[* + [idB1s + Uod¥y — U1dUs)?) . (B.10)
49119923
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We now compare the above kinetic couplings with our results (3.29) coming from the
smooth K3. To make contact with the ones just derived, we have to take the orbifold
limit and identify the K3 moduli related to g;. The T%/Z3 limit of K3 corresponds to
taking the 3-plane X orthogonal to 18 two-cycles with intersection matrix A;ﬁg.m The
orthogonal complement (where 3 lives) must contain the two complex 2-tori (that we call
m,7m2) spanned by the coordinates z*, plus two 2-cycles (called n3,74) with positive self-
intersection and that are not of type (1,1). They have the following intersection matrix:

(B.11)

The chosen complex structure (i.e. g2 = 0) makes the metric hermitean, allowing us
to identify the g; elements with the coefficient of the Kéhler form J along the Poincaré
dual of the two 2-tori. On the K3 side we need to take the two 2-tori of type (1,1). This is
done by making J be a linear combination of (the Poincaré dual of) n; and 72 and Q live
in the positive definite subspace {ns,n4}. Also B will have components along 7; and 7;:

J:t1771+t2172, B:blnl—i-ang—i-..., (B.12)

and we have the identifications g;; <+ t* and B;; <> b'.
First, consider the coupling in front of (B.9). The smooth result reduces in the orbifold

1
1 1 fesavi
VQIJI V/ﬁl/\*nJ — <(t1)2 1 ) ) (B.13)
(#2)?

which matches with (B.9) up to a numerical constant. For the leading charged scalar

limit to

coupling we have

Vi 3 (n >§ 1 (4
G.. — SN\ XN, — —— R = — t , B14
Py ) T T 9 dat) T2E\ ) B

which matches with (B.8). Here we see that for the orbifold match it is necessary to include

the moduli dependent functions ~; = Vi /{J, 771>% in the isomorphy of zero modes (A.36).
In fact, the moduli dependence of the skew-symmetric couplings MZ-IJ- drops out in the
orbifold limit, as expected. The only nonvanishing components are

Miy = M3, = — (B.15)

ek

This matches with (B.10).

217 /73 has nine As-singularities (i.e. locally C?/Z3). One ADE singularity of K3 is generated by
shrinking a set of two-cycles with the intersection matrix given by (minus) the Cartan matrix of the
corresponding ADE group.
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