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Abstract: We argue that the problem of finding lower-dimensional de Sitter solutions to

the classical field equations of higher-dimensional supergravity necessarily requires under-

standing the back-reaction of whatever localized objects source the bulk fields. However,

we also find that most of the details of the back-reacted solutions are not important for

determining the lower-dimensional curvature. We find, in particular, a classically exact

expression that, for a broad class of geometries, directly relates the curvature of the lower-

dimensional geometry to asymptotic properties of various bulk fields near the sources. Spe-

cializing to codimension-two sources, we find that the contribution involving the asymptotic

behaviour of the warp factor (which has a definite sign for most supergravities and so is

usually used to infer a preference for anti-de Sitter geometries) is precisely canceled by

the contribution of the sources themselves (that are left out in earlier treatments). We

identify which combination of bulk fields survives this cancelation, and so controls the sign

of the lower-dimensional geometry, for several supergravities in 6, 10 and 11 dimensions.

Our results show precisely why explicit 4D de Sitter solutions to 6D supergravity evade

general no-go theorems. As an application we show that all classical compactifications of

Type IIB supergravity (and F-theory) to 8 dimensions are 8D-flat if they involve only the

metric and the axio-dilaton sourced by codimension-two sources, extending earlier results

to include warped solutions and more general source properties.
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1 Introduction

De Sitter space, or slow-roll geometries close to de Sitter space, appear to play an important

role in cosmology. For those who believe that extra dimensions exist this has motivated

searching for explicit solutions to the higher-dimensional field equations for which the large

four dimensions we see are de Sitter or de Sitter-like. Although a few such solutions are

known [1–4], more and more general no-go results [5–8] show that such solutions are difficult

to find.1 Why should this be so?

In this paper we argue that part of the problem is that we are not yet using all of the

ingredients that de Sitter solutions require. In particular, contributions are being neglected

that are the same size as some of the contributions that are usually kept when searching

for (or ruling out) de Sitter-like solutions.

The neglected contributions come from the actions of any localized sources that may

be present in the extra-dimensional configurations of interest. In particular, we argue here

1Four-dimensional effective field theories of string theory including non-perturbative effects and anti

branes or D-terms [9–12] can give rise to de Sitter solutions. But at the moment there is no full understanding

from the microscopic higher-dimensional theory. For other recent attempts for de Sitter solutions see [13–18].
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that for codimension-two sources these actions contribute to the curvature an amount that

is competitive with the contribution of the bulk fields, including their back-reaction. In

particular, the source action acts to systematically cancel the contribution from the warp-

ing of the noncompact geometry across the extra dimensions. This is important because

the sign of the warping contribution is usually definite, and because it is opposite to what

is required for a de Sitter noncompact geometry it plays a role in the various extant de

Sitter no-go results.

1.1 No-go results and the 6D loophole

Our interest is in D-dimensional metrics of the form

ds2 = ĝMN dxMdxN = e2W (y) gµν(x) dxµdxν + g̃mn(y) dymdyn , (1.1)

where D = d + n; the d-dimensional metric, gµν , is maximally symmetric (i.e. flat, de

Sitter or anti-de Sitter); and the warp factor, W , can depend on position in the n compact

directions (whose metric, g̃mn, is so far arbitrary).

In particular, for cosmological applications there is much interest in identifying solu-

tions to higher-dimensional field equations for which gµν is a de Sitter metric (which in our

curvature conventions2 satisfies R = gµνRµν < 0). The search for such solutions has been

fairly barren, and this is partly explained by refs. [5–7] and [8], who identify increasingly

general obstacles to finding this type of de Sitter solution to sensible, higher-dimensional,

second-derivative field equations.

On the other hand, a handful of explicit solutions of this type do exist, including 4D

de Sitter solutions [1–3] for six-dimensional Maxwell-Einstein systems,

SME = −
∫

d6x
√

−ĝ
{

1

2κ2
ĝMNR̂MN +

1

4
FMNFMN + Λ

}
, (1.2)

with positive 6D cosmological constant, Λ. Similar solutions [4] also exist for six-

dimensional gauged, chiral supergravity [21, 22], whose relevant bosonic action is

Sbulk =−
∫

d6x
√
−ĝ

{
1

2κ2
ĝMN

(
R̂MN + ∂Mφ∂Nφ

)
+

1

4
e−φFMNFMN +

2 g2
R

κ4
eφ
}
. (1.3)

For both of these actions R̂MN denotes the Ricci tensor for the 6D metric, ĝMN , and F = dA
is the field strength for a 6D gauge potential, AM . The quantity κ2 = 8πG6 denotes the 6D

gravitational coupling, while for the supersymmetric case gR denotes the gauge coupling of

a specific UR(1) gauge group that does not commute with 6D supersymmetry.

These examples do not contradict the various no-go theorems because they arise in

systems which do not satisfy one of the assumptions of each. For instance, the no-go result

of [6] assumes that any extra-dimensional scalar potential must be negative3 (as it tends

2We use a ‘mostly plus’ metric and Weinberg’s curvature conventions [19], which differ from those of

MTW [20] only in the overall sign of the definition of the Riemann tensor.
3When this assumption is relaxed, in some cases a no-go result can still be proven, as the authors of this

reference show in the case of massive type IIA supergravity. It is this assumption, however, that is violated

by the 6d de Sitter solutions.
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to be for higher-dimensional supergravities, but is not so for eqs. (1.2) and (1.3)). They

evade the less restrictive assumptions of [7] and [8], some of which exclude [8] having only

two extra dimensions, n = 2. More importantly, for this paper, they do not satisfy the

average ‘boundedness’ assumptions [7] that exclude solutions that are too singular.

1.2 The potential relevance of back-reaction

There are two ways to view the possibility that singular behaviour can suffice to evade

the no-go results. One view is to regard solutions with such singularities as unacceptable,

and so draws the conclusion that de Sitter solutions may be impossible to find. And for

some types of singularity (like negative-mass black holes) this is probably right, since the

alternative requires admitting energies that are unbounded from below.

But some (apparent) singularities are known to be perfectly sensible, such as those

seen in Coulomb’s law at the position of a source charge. In the case of Coulomb’s law, the

singularity doesn’t preclude taking the solution seriously because we don’t intend to trust

the solution in any case right down to zero size. The existence of apparent singularities

might similarly be expected to arise in the gravitational theories relevant to cosmology,

provided these are regarded as effective descriptions of some more-microscopic degrees of

freedom. One can hope to get a handle on deciding whether a singularity might be rea-

sonable for an effective description, by seeing what kinds of apparent singularities actually

can emerge from localized sources governed by physically reasonable actions.

These considerations suggest that understanding the back-reaction of localized sources

could be a crucial part of obtaining de Sitter solutions, or ruling them out. In particular

the asymptotics, and apparent divergence, of bulk fields near a source is likely to be

important, and is ultimately controlled by the action that describes the dynamics of

that source. Notice for these purposes ‘source’ need not mean a fundamental object, like

a D-brane. Rather, it could describe something more complicated, like a soliton or a

higher-dimensional brane wrapping internal dimensions, a localized but strongly warped

region, or a more complicated object (like a nucleus or a star). All we need know is that

the sources are much smaller than the extra dimensions within which they sit.

How the properties of a source affect the properties of bulk fields is best understood at

present for codimension-one and codimension-two sources. For codimension-one sources,

the back-reaction is described by the Israel junction conditions [23–26], as is familiar from

Randall-Sundrum models [27, 28]. But bulk fields with codimension-one sources also tend

not to diverge at the source positions, and so shed little light on how such singularities

influence the low-energy curvature. It is only for higher-codimension sources that it is

generic that bulk fields diverge at the source positions, and so where the relation between

bulk singularity and source properties can be explored.

Of course, these bulk singularities make matching bulk solutions to source properties

more complicated, usually requiring a renormalization of the source [29–32]. The tools

for detailed bulk-source matching and renormalization are most explicitly known for

codimension-two objects [33–53]. In particular, these tools have recently been used

to identify [54] explicit objects that can source the de Sitter solutions [4] of the 6D

supergravity action, eq. (1.3). Since the required source properties seem physically
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reasonable,4 they show that the singularities in the corresponding bulk solutions need not

be regarded as grounds for their rejection.

1.3 Summary of results

In the rest of this paper we examine how source back-reaction constrains the existence of

de Sitter solutions in more general higher-dimensional theories than the six-dimensional

ones already explored.

In particular, we explore some of these issues in eleven-dimensional supergravity, and

in ten-dimensional Type IIB and Type IIA supergravity. Because our best-developed tools

apply to codimension-two objects, it is these we largely explore in detail. If only D-branes

were allowed as sources, this would restrict us to D7-branes in Type IIB systems. But

we also explore the other supergravities for two reasons: because some of our results

apply equally well to higher-codimension sources; and because our sources might not be

D-branes — or (p, q) branes for that matter — but instead be more complicated localized

codimension-two quantities (like very small warped throats).

We find the following results:

• First, for geometries of the form of eq. (1.1), we find a very general classical relation-

ship that gives the curvature in the non-compact dimensions parallel to the sources

as the sum of four terms: R ∝ I + II + III + IV , where IV vanishes for maximally

symmetric geometries in the absence of space-filling fluxes.

• Second, we show that contribution I — which is proportional to the bulk action

evaluated at the classical back-reacted solution — is very generally given as the inte-

gral of a total derivative, and so is controlled by the boundary values of a particular

combination of bulk fields. This property relies only on the existence of a classical

scale invariance that is shared by most higher-dimensional supergravities (and holds

in particular for 11D and 10D Type IIA and IIB supergravity).

• Third, we show that for codimension-two sources the contributions II and III

cancel one another. Here contribution II is an integral over a total derivative of

the warp factor, W , whose definite sign plays an important role in the derivation of

the general no-go results. Contribution III comes from the action of the localized

source, which is left out of most no-go analyses.

• Finally, we explicitly identify the total derivative that appears in I for several

examples of interest, including commonly used supergravities in 6, 10 and 11

dimensions. This identifies the combination of fields whose near-brane asymptotics

is relevant to the low-energy curvature. As a simple application we show that

the noncompact dimensions are always flat for all F-theory compactifications that

involve only the metric and axio-dilaton with codimension-two sources.

4As discussed in more detail below, their worst feature appears to be a requirement that the dilaton,

φ, grows as one asymptotically approaches the sources, and so care must be taken to avoid leaving the

weak-coupling regime before reaching the source.
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These results carry two important messages. First, since the direct contributions from

the source action cancel important contributions in the no-go theorems, the bad news is

that back-reaction cannot be neglected when determining the curvature of the noncompact

dimensions. But second, because the nonzero contributions are total derivatives, the good

news is that most of the details of the back-reacted solutions are not important. All that

counts is the near-source asymptotics of a specific combination of back-reacted bulk fields.

Our explanation of these results is organized as follows. The next section, section 2,

develops general expressions for how the curvature of non-compact, maximally symmetric

directions depends on the properties of the extra-dimensional bulk fields. Much of this

section is similar in spirit to the arguments made when deriving no-go results [5–8],

and our main new contribution is to cleanly identify how the curvature is controlled by

asymptotic forms near the sources, and to see how assumptions about source dynamics

modifies this asymptotics. Section 2 also explicitly identifies for 11D and 10D supergravity

the precise combination of bulk fields whose asymptotic forms are relevant to the

low-energy curvature. Section 3 then applies these general arguments to the special case

of metric/axio-dilaton configurations in 10D Type IIB supergravity with codimension-two

sources, showing in this case how all solutions are flat in the noncompact directions in the

absence of bulk fluxes. We summarize our conclusions in section 4, and several appendices

provide details of calculations used in the main text.

2 Low energy curvature and near-source asymptotics

The purpose of this section is to derive a general expression for the curvature of the

noncompact directions that is our main result. We do so by paralleling arguments made

elsewhere for six-dimensional supergravities [4, 33, 34, 51].

We make the connection between on-source curvatures and near-source asymptotics in

three steps. First, in section 2.1 we show — at the classical level for maximally symmetric

source geometries — that the integral of the low-energy curvature can be computed as the

sum of four terms: I + II + III + IV . Of these, I is the higher-dimensional bulk action,

evaluated at the compactified solution. II is the integral over a total derivative, which

Gauss’ theorem directly relates to the boundary values of the warp factor, at infinity

and near any potential singularities. III is a direct contribution from the action of any

sources, and IV is a term which vanishes in the absence of any space-filling fluxes.

Next, the second step is taken in section 2.2, which shows that for all of the super-

gravities of interest the higher-dimensional bulk lagrangian density is itself also always

a total derivative when evaluated at an arbitrary classical solution. Combining this with

step one then shows that, in the absence of space-filling fluxes, the integrated low-energy

curvature is completely controlled by source and boundary effects.

Finally, section 2.3 demonstrates step three. By treating carefully the singular

behaviour near any codimension-two sources, it is shown that contributions II and III

precisely cancel one another. Taken together, these three steps show that only contribution

I plays any role in a broad class of theories.

– 5 –
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2.1 Step 1: integrating out the bulk

We first focus on step one: we use the higher dimensional equations of motion to derive a

relationship between the lower dimensional curvature and the on-shell higher-dimensional

action. For definiteness, we consider solutions to the field equations of a D-dimensional

(super)gravity theory, with action5

S =
1

2κ2
D

∫
dDz

√
−ĝD

(
− R̂ + LD

matter

)
+ Ssource , (2.1)

where Lmatter depends on a generic set of other D-dimensional fields (but not on the

derivatives of the metric), denoted collectively by ψ. Ssource denotes the action of any

sources, which differs from the term explicitly written by only involving an integration

over d dimensions, rather than D.

Now imagine we have a solution to the field equations for this action describing a

compactification down to 0 < d = D − n dimensions, of the form of eq. (1.1). We wish to

derive a general expression for R = gµνRµν in terms of properties of the warp-factor, W ,

the compact metric, g̃mn, and the bulk- and source-matter actions.

To this end consider the µν component of Einstein’s equation,

√
−ĝD

[
R̂µν +

1

2
ĝµν
(
−R̂ + LD

matter

)
+
∂LD

matter

∂ĝµν

]
+ 2κ2

D

(
δSsource

δĝµν

)
= 0 , (2.2)

which we contract with ĝµν , making use of

ĝµνR̂µν = e−2WR+ d ∇̃2W + d2 g̃mn∂mW∂nW

= e−2WR+ e−dW ∇̃2edW , (2.3)

where ∇̃2 = g̃mn∇̃m∇̃n. Dividing the result by 2κ2
D, using

√
−ĝD = edW√−gd

√
g̃n, and

integrating over all D dimensions then gives

− 1

2κ2
d

∫
ddx

√−gd R =
d

2
Son−shell +

1

2κ2
D

∫
ddx

√−gd

∫
dny

√
g̃n ∇̃2edW (2.4)

+

∫
ddx ĝµν

(
δSsource

δĝµν

)
+

1

2κ2
D

∫
dDx

√
−ĝD ĝµν

∂LD
matter

∂ĝµν

:= I + II + III + IV ,

where Son−shell means the bulk part of the action appearing in eq. (2.1), evaluated at a

solution to the field equations, and the last term uses that the source terms are localized

within the extra dimensions. κ2
d denotes the d-dimensional gravitational coupling given by

κ2
d = κ2

D/VW , with the warped volume defined by

VW :=

∫
dny

√
g̃n e

(d−2)W . (2.5)

5An aside on notation: indices M, N = 0, 1, . . . , D−1 run over all dimensions; greek indices denote lower-

dimensional coordinates µ, ν = 0, 1, . . . , d − 1; and indices m,n = 1, . . . , n = D − d denote compactified

coordinates. We use R̂MN to denote the D-dimensional Ricci curvature of the full D-dimensional metric,

ĝMN ; and R̂µν to denote the d-dimensional Ricci curvature computed from the d-dimensional metric, ĝµν =

e2W gµν . Finally, ĝD = det ĝMN while ĝd = det ĝµν etc.
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Maximal symmetry and space-filling fluxes

Eq. (2.4) is the key equation, and so far it has been derived on very general grounds. We

now specialize to the situation where the solution does not break the maximal symmetry

of the d-dimensional metric gµν .

Maximal symmetry is a very constraining condition. First, it implies R is a constant,

so the left-hand-side of eq. (2.4) is proportional to the (divergent) volume of the non-

compact dimensions. Furthermore, the left-hand-side vanishes only for flat d-dimensional

space, and its sign is controlled by the sign of R.

Second, maximal symmetry strongly restricts the form of ∂LD
matter/∂ĝµν for the field

content usually found in higher-dimensional supergravity. In particular, the only fields

that can be nonzero (classically) for maximally symmetric solutions are: the metric, gµν ;

space-filling fluxes of the form

F (p)
µ1...µdm1...mp−d

= ǫµ1...µd
Gm1...mp−d

; (2.6)

and any number of d-dimensional scalar fields (like components of g̃mn, etc.).

Because LD is defined with an overall factor of
√
−ĝD factored out, and because the

Einstein term is also treated separately, in the absence of higher-derivative interactions

∂LD
matter/∂ĝµν = 0 if only scalar fields and the metric are present. For the supergravities

of interest here the only nonvanishing contributions to ∂LD
matter/∂ĝµν arise from p-form

fields (with p ≥ d), having nonzero space filling components.

For instance, for a p-form field with kinetic term

LD

p−form = − 1

2 p!
F 2

(p) , (2.7)

and non-vanishing space filling components we have

ĝµν
∂LD

matter

∂ĝµν
=− d

2(p−d)! Gm1...mp−d
Gn1...np−d

g̃m1n1 g̃m2n2 · · · ĝmp−dnp−d =− dG2

2(p−d)! , (2.8)

which contributes to the right-hand-side of eq. (2.4) the amount

− d

2κ2
D(p− d)!

∫
ddx

√−gd

∫
dny
√
g̃n e

dW G2 . (2.9)

We note that this is negative definite, which (in our conventions) contributes to R with

an anti-de Sitter-like sign.

Of course, space-filling fluxes need not contribute to eq. (2.4) only through their

kinetic term. The quantity ∂LD
matter/∂ĝµν can also receive contributions from Chern-

Simons terms. In this case, because LD

CS matter = LCS/
√−gD, the contribution is simply

proportional to the Chern-Simons term itself:

ĝµν
∂LD

CS matter

∂ĝµν
= −d

2

∫
LCS . (2.10)

Unlike for the kinetic term, this contribution can have indefinite sign.
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We see that in the absence of space-filling flux, the last term in equation (2.4) vanishes.

When this is so, eq. (2.4) relates the d-dimensional curvature, R, to a total derivative,

a derivative of the source action, and the bulk action evaluated on shell (which we show

below is often also a total derivative).

The restriction to no space-filling fluxes is also not very restrictive, because one can

usually (Hodge) dualize a flux to get rid of any space filling components. But there can

be some situations where this cannot be done, such as when the flux in question is the

self-dual five form of Type IIB supergravity. In this case the self-duality condition relates

the flux components in the internal and space-time directions. Appendix A uses several

well-known examples to illustrate how eq. (2.4) works in practice (in the absence of source

terms), with and without space-filling flux.

2.2 Step 2: a general expression for Son−shell

This section now proves that Son−shell can generally also be expressed as the integral of a

total derivative for the bulk supergravities of general interest.

This is actually a special case of a more general result [55] that states that any scale-

invariant system has this property, as we review here. It is generic to higher-dimensional

supergravities because these typically all have a classical scale invariance [56, 57].

Consider therefore a generic collection of fields, ϕi, described by a lagrangian density

that scales as L → sp L when the fields scale as ϕi → sai ϕi, for some constants s, p and ai:

L
(
saiϕi, sai∂µϕ

i
)
≡ sp L

(
ϕi, ∂µϕ

i
)
. (2.11)

This scaling property of the action ensures the invariance of the field equations.

Eq. (2.11) should be read as being an identity for all s and for all fields ϕi. Differen-

tiating with respect to s and evaluating the result at s = 1 then gives the identity

∑

i

ai

[(
∂L

∂ [∂µϕi]

)
∂µϕ

i +

(
∂L
∂ϕi

)
ϕi

]
= pL , (2.12)

for all ϕi. But solutions to the field equations satisfy

(
∂L
∂ϕi

)
− ∂µ

(
∂L

∂ [∂µϕi]

)
= 0 , (2.13)

and so using this in eq. (2.12) implies

Lon−shell =
∑

i

ai

p
∂µ

[(
∂L

∂ [∂µϕi]

)
ϕi

]
. (2.14)

That is, the lagrangian evaluates to a total derivative at any classical solution.

We next pause to record the explicit form for the total derivative for the 6D supergrav-

ity for which de Sitter solutions are known to exist, and for the 11D and 10D supergravities

of more general interest here. The details of these evaluations are given in appendix B.
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6D supergravity

As a point of reference, we restate here the on-shell action as computed [55] for chiral,

gauged supergravity [21, 22] in six dimensions. The relevant bosonic action, S6, is given

in eq. (1.3) and scales as S6 → s2 S6 when ĝMN → sĝMN and e−φ → s e−φ. The on-shell

lagrangian is therefore a total derivative, and is seen by explicit evaluation to be

S6
on−shell =

1

2κ2
6

∫
d6x

√
−ĝ6 �φ . (2.15)

In our conventions, when used in eq. (2.4), this shows that an AdS sign corresponds to φ

decreasing near the source, while a de Sitter sign arises when φ increases towards the source

(a property that may also be directly verified of the explicit de Sitter solutions [4, 54]). Since

e2φ counts loops in this system, consistency of the classical approximation requires that one

encounters the physics that regulates the source before leaving the weak-coupling regime

eφ ≪ 1. Although this sounds worrisome, similar considerations apply to the gravitational

field of a macroscopic source like the Earth. The large curvatures encountered if this field

were extrapolated to zero size would also eventually invalidate a semiclassical approxima-

tion; but are not a problem in practice due to the prior intervention of the Earth’s surface.

11D supergravity

For 11D supergravity the bosonic action is

S11 = − 1

2κ2
11

∫
d11x

√
−ĝ11

[
R̂ +

1

2(4!)
G2

4

]
− 1

12κ2
11

∫
G4 ∧G4 ∧ C3 . (2.16)

This scales as S11 → s9/2S11 when ĝMN → sĝMN and CMNP → s3/2CMNP .

As argued above, this scaling behaviour implies that the on-shell lagrangian is a total

derivative. Using the field equations gives the following total derivative expression for the

on-shell 11D action:

S11
on−shell = − 1

6κ2
11

∫
d
(
C3 ∧ ∗G4

)
. (2.17)

We note that the expression has explicit dependence on the potential C3, thus one can

get non-trivial contributions from the patching of gauge charts. We hope to explore such

contributions in the future.

10D Type IIA supergravity

The story for the 10D Type IIA supergravity action is similar. The Einstein-frame action

for the bosonic sector is

SIIA =− 1

2κ2
10

∫
d10x

√
−ĝ10

[
R̂+

1

2
(∂φ)2+

e−φ

2(3!)
H2

3 +
e3φ/2

2(2!)
F 2

2 +
eφ/2

2(4!)
F̃ 2

4

]
+SCS (2.18)

with Chern-Simons term given by

SCS = − 1

4κ2
10

∫
dC ∧ dC ∧B . (2.19)
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This action scales as SIIA → s2 SIIA under the transformations e−φ → s e−φ,

ĝMN → √
s ĝMN , Ck → sCk and B2 → B2. This ensures the action can be written as a

total derivative using the form-field equations of motion; explicitly

SIIA
on−shell = − 1

8κ2
10

∫
d

(
−e−φB2 ∧ ∗H3 +

e3φ/2

2
C1 ∧ ∗F2 +

3eφ/2

2
C3 ∧ ∗F̃4 (2.20)

−eφ/2B2 ∧ C1 ∧ ∗F̃4 +
3

2
C3 ∧ F4 ∧B2

)
.

For later purposes we note that in type IIA supergravity there are no self-dual fluxes, so

it would be very generally possible to go to a frame where there are no space filling fluxes.

10D Type IIB supergravity

The Ramond-Ramond gauge potentials appearing in Type IIB supergravity are C, CMN

and CMNPQ, and the Einstein-frame lagrangian density for the bosonic sector of the theory

is given by

L = − 1

2κ2
10

√
−ĝ10

[
ĝMN

(
R̂MN +

∂Mτ∂Nτ

2 (Im τ)2

)
+

1

12 Im τ
GMPRG

MPR

+
1

480
F̃MPRTV F̃

MPRT V

]
− i

8κ2
10

C(4) ∧G(3) ∧G(3)

Im τ
. (2.21)

Here the complex fields τ and G(3) are defined by

τ := C + i e−φ and G(3) := F(3) − τ H(3) , (2.22)

where F(k+1) := dC(k), H(3) := dB(2), and the F̃ ’s are defined by

F̃(3) := F(3) − CH(3) and F̃(5) = ∗F̃(5) := F(5) −
1

2
C(2) ∧H(3) +

1

2
B(2) ∧ F(3) . (2.23)

This lagrangian scales as LIIB → s2 LIIB if the fields are scaled as follows

e−φ → s e−φ , ĝMN →
√
s ĝMN , C(k) → sC(k) , B(2) → B(2) , (2.24)

and so becomes a total derivative when evaluated on shell. As computed in appendix B,

the total derivative turns out to be

SIIB
on−shell = − 1

8κ2
10

∫
d

[
C2 ∧ eφ ∗ F̃3 +B2 ∧

(
e−φ ∗H3 − C0e

φ ∗ F̃3

)

+C4 ∧ C2 ∧H3 − C4 ∧ F3 ∧B2

]
. (2.25)

Why should we care when the bulk contribution on the right-hand-side of eq. (2.4)

is a total derivative? We care precisely because the bulk fields are generically singular

at the specific points in the n compact dimensions where the sources are located. To

deal with this singularity, as well as any singularities coming from Ssource, we imagine

surrounding these objects in the transverse dimensions by a ‘Gaussian pillbox’ at a small
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proper distance from the source. This removes the singularity at the source at the expense

of introducing a new boundary on the Gaussian pillbox.

When the bulk contribution to the right-hand-side of eq. (2.4) is a total derivative,

its integral depends only on the near-source limit of the back-reacted bulk fields at the

pillbox. And these boundary conditions, in turn, are related to the physical properties of

the source at ym
c allowing them to be combined with the Ssource terms in a general way,

as the next section discusses in more detail.

The upshot is that although explicitly finding the back-reacted bulk solution for a

given source is very difficult, when the curvature depends only on a total derivative most

of the details of these solutions are not important. It is only their near-brane boundary

conditions that play any role in fixing the on-source curvature, R.

2.3 Step 3: sources and singularities

The final step is to relate more precisely the boundary contributions to the bulk integrals

encountered above to the properties of the source action, Ssource. As we now see, this

allows contribution II to be related to contribution III in eq. (2.4), with the result that

they cancel for codimension-two sources.

The trick when doing so is to deal properly with the singularity of the bulk configu-

rations near the sources. We follow a strategy familiar from experience with the Coulomb

singularity of electrostatics: we surround the sources with small ‘Gaussian pillboxes,’ and

replace the singular extrapolation into the pillbox interior with an appropriate set of bound-

ary conditions on the surface of the box. In this way the singular physics of a point charge

is finessed into a finite flux through an arbitrary, but small, surface enclosing the charge.

Of course, this is only a useful construction if the size of the charge distribution is

much smaller than the distances of interest for predicting the resulting electric field. If the

box is too small compared with the charge distribution inside, the real charge distribution

inside cannot be approximated by a point source with the same total charge. A similar

problem arises if the box is too large compared with the scales over which the electric

fields are to be computed. The construction is useful if a sufficiently large hierarchy exists

between the size of the source and the distances of interest for the resulting electric fields.

The same is possible for gravitating systems, provided the physical size of the source

is much smaller than the distance over which the gravitational field extends (like the size

of any extra dimensions). To accomplish this in the present context [33, 34, 51], we excise

a small D-dimensional spacetime volume from around each source, and instead specify

the boundary conditions on boundary to this small volume.

In the spirit of replacing a real charge distribution by an equivalent point charge,

the boundary conditions are specified by doing so for a simple source distribution that

shares the same energy. This is most simply done by imagining the source energy density

to be distributed on the boundary of the pillbox itself, with the pillbox interior filled in

with a smooth field configuration. Such a simple-minded procedure suffices to capture the

long-distance physics of a generic real distribution if the pillbox is sufficiently small, with

the size of the actual source of interest being much smaller still.
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Formally this is done by specifying a (D − 1)-dimensional codimension-one boundary

action, S̃bdy, on the pillbox surface, together with a smooth solution describing the pillbox

interior. This construction allows boundary conditions to be inferred using standard

methods involving the Israel junction conditions [23–26], which relate S̃bdy to the jump in

bulk-field derivatives between inside and outside of the pillbox.

Once these junction conditions are found, a new point of view is possible for which the

pillbox is regarded as an honest-to-God boundary of the bulk geometry, without reference

to the pillbox interior. In this case one defines a new boundary action for the pillbox, Sbdy,

which is defined by the condition that its derivatives determine the near-source radial

derivatives of the fields exterior to the pillbox. In general Sbdy differs from S̃bdy because

it must now also include any effects that used to be generated by the now non-existent

interior geometry. Sbdy also includes the Gibbons-Hawking action [63] for gravity on the

boundary, both of the interior and exterior regions:

Sbdy := S̃bdy + SGH+ + SGH− + Sint , (2.26)

with

SGH =
1

κ2
D

∫
dD−1x

√−γ K , (2.27)

and K = gijKij , where Kij is the extrinsic curvature of the boundary and γij the induced

metric. The subscript ± for SGH± indicates whether the extrinsic curvature is to be

computed just inside or just outside of the codimension-one pillbox boundary. The

Gibbons-Hawking action is required in the presence of boundaries to make the variation

of the Einstein action well-posed. Finally, Sint describes the ‘bulk’ action describing the

interior geometry, whose details are not important in what follows when the pillbox is

sufficiently small.

In the limit of a vanishingly small pillbox, these codimension-one actions can be

compactified into corresponding higher-codimension actions. We define S̃source to be the

result obtained from S̃bdy in this way, but it is the dimensional reduction of Sbdy that

compactifies to the d-dimensional source action, Ssource, used in previous sections.

This procedure has been worked through in detail for scalar-tensor-Maxwell theories

with codimension-two sources in D = d+2 dimensions [33, 34], to which we now specialize.

The resulting boundary conditions were then checked for D7-brane sources in Type IIB

supergravity in 10 dimensions, for which the bulk and source actions are explicitly known,

as are a broad class of solutions to the bulk field equations [58]. In all cases the solutions

and actions satisfy the boundary conditions inferred using this simple-minded pillbox

construction [51].

For the present purposes it turns out that we need only the boundary conditions for

the metric. Using the Israel junction conditions to relate an assumed smooth interior ge-

ometry for the pillbox to the geometry outside, one finds the following junction conditions,
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expressed in terms of the codimension-one action, S̃bdy, of the codimension-one source:6

1

2κ2
D

√
−ĝD

(
Kij −Kgij

)
− (int)ij =

δS̃bdy

δĝij
. (2.28)

This expression adopts coordinates near the pillbox for which ρ denotes radial proper dis-

tance away from the source, which is located at ρ = 0. The pillbox boundary lies on a sur-

face of fixed, small ρ, for whichKij is the extrinsic curvature of the fixed-ρ surface, for which

the local coordinates are {xi} = {xµ, θ}, with i = 0, 1, · · · , d where d = D−2 and θ is an an-

gular coordinate that runs from 0 to 2π as one encircles the source. Finally, ‘(int)ij ’ denotes

the same result evaluated for the smooth interior geometry, for which ρ = 0 is nonsingular.

As mentioned earlier, there are two equivalent ways to read eq. (2.28). The first is the

way it was initially derived: where S̃bdy represents only the action of the boundary, and

the interior region of the brane is matched onto the exterior one through eq. (2.28). The

other viewpoint is that the pillbox is considered the actual boundary of spacetime, and

the ‘interior’ of the branes is excised entirely. In this point of view, the properties of the

interior solutions are encoded in the boundary action, Sbdy:

1

2κ2
D

√
−ĝD

(
Kij −Kgij

)
=
δS̃bdy

δĝij
+ (int)ij =

δSbdy

δĝij
. (2.29)

In the limit of a very small pillbox, these conditions dimensionally reduce to conditions

that only refer to the codimension-two action.

lim
ρ→0

∮

xb

dθ

[
1

2κ2
D

√
−ĝ

(
Kij −Kĝij

)
− (int)ij

]
=

δS̃source

δĝij
, (2.30)

where the integration is about a small circle of proper radius ρ encircling the brane position

at ρ = 0, and NM is the unit normal pointing towards the brane (NMdxM = −dρ).

The upshot is that source-bulk matching relates the asymptotic, near-source radial

derivatives of the bulk fields to the properties of the source action. In what follows,

an important role is played by the function, Usource, that controls the codimension-two

boundary condition for the warp factor, W ,

d

κ2
D

lim
ρ→0

∮
dθ
√
−ĝD NM∂MW = 2

∂

∂gθθ

[√−gd L̃source

]

:= d
√−gd Usource , (2.31)

where the last equality defines Usource, and L̃source is the codimension-two lagrange density

S̃source =

∫
ddx
√

−ĝd L̃source . (2.32)

The function Usource is important7 for other reasons, besides its above role in

controlling the asymptotic behaviour of the warp factor. As we show below, for

6The difference in signs compared to [51] arises from the choice of unit normal. Here, K is defined with

respected to the outward pointing normal, to agree with the convention for the Gibbons-Hawking term.
7Although determination of Usource appears to require knowing how Ssource depends on gθθ, this is

actually not necessary because the it is related [51] by an identity — the ‘Hamiltonian’ constraint for

evolution in the ρ direction, since this relates the first derivatives of bulk fields with respect to ρ — to the

easily computed derivatives δSsource/δφa and δSsource/δgµν .
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codimension-two sources Usource turns out also to be the Lagrange density of the full

action, Ssource [33, 34, 51]. It turns out that Usource is generically non-negative, and this

is related to the general property (described below) that the bulk field equations dictate

that W does not increase as one approaches a codimension-two source.

Implications for the on-source curvature

We now show how the above matching conditions imply a dramatic cancelation in our

key formula, eq. (2.4). In particular, after using Gauss’ law to rewrite total derivatives in

terms of surface terms at the position of the Gaussian pillboxes surrounding the sources,

followed by eq. (2.31), one of the terms on the right-hand-side of eq. (2.4) can be written:

1

2κ2
D

∫
ddx

√−gd

∫
d2y
√
g̃2 ∇̃2edW =

d

2κ2
D

∫
ddx

√−gd

∮
dθ
√
g̃2 (N · ∇̃W )edW

=
d

2

∫
ddx

√−gd Usource . (2.33)

We wish to compare this with another term on the right-hand-side of eq. (2.4),

∫
ddx ĝµν

(
δSsource

δĝµν

)
= lim

ρ→0

∫
dd+1x ĝµν

(
δSbdy

δĝµν

)
. (2.34)

To evaluate this we use the matching condition, eq. (2.28), which implies

∫
dd+1x ĝij

δS̃bdy

δĝij
= − d

2κ2
D

∫
dd+1x

√
−ĝD

[
K − (int)

]
= −d

2

(
SGH+ + SGH−

)
, (2.35)

to rewrite Sbdy as follows:

Sbdy = S̃bdy + SGH+ + SGH−

= S̃bdy − 2

d

∫
dd+1x ĝij

δS̃bdy

δĝij

= S̃bdy − 2

d

∫
dd+1x

(
ĝµν

δS̃bdy

δĝµν
+ ĝθθ

δS̃bdy

δĝθθ

)
, (2.36)

Now, our interest is in maximally symmetric configurations with no space-filling fluxes,

for which

S̃bdy =

∫
dd+1x

√
−ĝD L̃bdy , (2.37)

and L̃bdy does not depend on curvatures. In this case δS̃bdy/δĝµν = 1
2

√−ĝD L̃bdy ĝ
µν .

Using this in eq. (2.36) gives

Ssource = lim
ρ→0

Sbdy = −2

d
lim
ρ→0

∫
dd+1x ĝθθ

δS̃bdy

δĝθθ
= −

∫
ddx

√−gd Usource , (2.38)

where the last equality uses eq. (2.31). This leads finally to our desired expression:

∫
ddx ĝµν

(
δSsource

δĝµν

)
= −d

2

∫
ddx

√−gd Usource . (2.39)
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As claimed, from eqs. (2.33) and (2.39) we see that the codimension-two matching

conditions ensure the cancelation of two of the terms on the right-hand-side of eq. (2.4),

1

2κ2
D

∫
ddx

√−gd

∫
d2y
√
g̃2 ∇̃2edW +

∫
ddx ĝµν

(
δSsource

δĝµν

)
= 0 , (2.40)

leaving

− 1

2κ2
d

∫
ddx

√−gd R =
d

2
Son−shell +

1

2κ2
D

∫
dDx

√
−ĝD ĝµν

∂LD
matter

∂ĝµν

=
d

2
Son−shell , (2.41)

with the second line following because we already assumed there to be no space-filling

fluxes. This, together with the earlier expressions that give Son−shell as a total derivative,

are our main results.

3 Example: the axio-dilaton and 10D Type IIB supergravity

Our goal in this section is to illustrate the generality of the result, eq. (2.41), obtained

at the end of the last section. We use eq. (2.41) to show that the on-source curvature

vanishes for F-theory axio-dilaton compactifications of 10D Type IIB supergravity with

arbitrary codimension-two sources, generalizing a known result when the sources are

supersymmetric [59–62]. Although this example corresponds to the choices d = 8 and

n = 2, — with only the metric, gMN , and the axio-dilaton, τ = C + i eφ, (and no other

fluxes) in play, in what follows we work instead with general d.

This choice is made for three reasons. First, because it includes a broad class of

explicitly known solutions [58] with explicit sources: D7- and O7-planes, as well as

various kinds of (p, q)-branes. Second, because the absence of bulk fluxes ensures that

the right-hand-side of eq. (2.4) is particularly simple (and is a total derivative). Third,

the d-dimensional sources in this case have codimension two, which is one of the few

situations for which matching conditions relating near-source asymptotics to physical

properties of the source are explicitly worked out [33, 34]. In particular, they have been

tested explicitly [51] for the solutions of ref. [58] with D7-brane sources — and implicitly,

using SL(2, R) invariance, for (p, q)-brane sources as well.

3.1 Bulk equations

The Einstein frame action for the Einstein-axio-dilaton system in 10D Type IIB supergrav-

ity is S = SB + Ssource, where

SB = − 1

2κ2

∫
d10x

√
−ĝ ĝMN

[
R̂MN +

∂Mτ ∂Nτ

2 (Im τ)2

]
. (3.1)

This is invariant under PSL(2,R) transformations

τ → aτ + b

cτ + d
, (3.2)
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with the real parameters a through d satisfying a d− b c = 1. The scaling symmetry boils

down in this case to τ → s τ and ĝMN → √
s ĝMN , under which SB → s2 SB.

The Einstein field equations for this action are

R̂MN +
1

4(Im τ)2
(∂M τ̄ ∂Nτ + ∂N τ̄ ∂Mτ) = (source terms) , (3.3)

whose trace with ĝMN ensures that Son−shell = 0 (for all D). The axio-dilaton equation is,

similarly

− i∇̂2τ +
∂Mτ∂Mτ

Im τ
= (source terms) . (3.4)

As ever, the solutions of interest have geometry

dŝ2 = ĝMN dxMdxN = e2W gµν dxµdxν + g̃mn dymdyn , (3.5)

where gµν(x) is a d-dimensional maximally symmetric Minkowski-signature metric, and

W (y), τ(y) and g̃mn(y) depend only on the other n compact directions. We temporarily

keep the variables d and n general, although at the end we specialize to our real interest

in this section: n = 2 (and D = 10 and d = 8, though this is less crucial).

For general d and n the Ricci tensors satisfy

R̂µν = Rµν +
(
∇̃2W + d g̃mn∂mW ∂nW

)
e2W gµν

= Rµν +
1

d
e(2−d)W

(
∇̃2edW

)
gµν

and ĝmnR̂mn = R̃+ d
(
∇̃2W + g̃mn∂mW∂nW

)
= R̃+ d e−W ∇̃2eW , (3.6)

and so the (µν) Einstein equations, R̂µν = 0, boil down to

Re−2W + e−dW ∇̃2edW = (source terms) , (3.7)

while the n-dimensional trace of the remaining Einstein equations becomes

R̃+ d e−W ∇̃2eW +
g̃mn∂mτ∂nτ̄

2(Im τ)2
= (source terms) . (3.8)

A broad class of unwarped solutions to these equations are known [58], and reviewed in

appendix C.

Codimension-two sources

Because source-bulk matching is best understood for codimension-two, we specialize now

to the case n = 2, in which case several things simplify.

First, the trace leading to the last equation carries no loss of information, and so the

full set of Einstein equations become completely equivalent to eqs. (3.7) and (3.8). Second,

it becomes convenient to use complex coordinates, z := x8 + ix9 = y1 + iy2, and write the

compact metric in conformally flat form

g̃mn dxmdxn = e2C dz dz̄ = dρ2 + e2B dθ2 . (3.9)
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With these choices ∇̃2f = e−2C δmn∂m∂nf = 4 e−2C ∂∂̄f , for any scalar field f , and the

scalar curvature becomes R̃ = 2 ∇̃2C.

The Einstein equations simplify to

1

4
Re2C + e−dW∂∂̄edW = 0

2 ∂∂̄C + d e−W∂∂̄eW − (∂τ ∂̄τ̄ + ∂τ̄ ∂̄τ)

(τ − τ̄)2
= 0 , (3.10)

while the axio-dilaton equation of motion becomes independent of C:

∂∂̄ τ +
d

2
(∂W∂̄τ + ∂̄W∂τ) +

2 ∂τ ∂̄τ

τ̄ − τ
= 0 . (3.11)

Finally, we identify the contributions on the right-hand-side of eq. (2.4) for this exam-

ple. Since there are no space-filling fluxes and the on-shell action vanishes, eq. (2.41) for

this example reduces to

R =
d

2
Son−shell = 0 . (3.12)

Since R = 0, eq. (3.10) implies that edW is the real part of a holomorphic function.

Notice that if we had not included the source term, our conventions are such that

the warping term contributes an AdS sign if N · ∂W < 0; i.e. W decreases towards the

boundary. As we show below, the explicit asymptotic form for the bulk solution near

the sources can be found in general, and for a codimension-two source situated at ρ = 0

(where ρ denotes proper radius) has the form eW ∝ ρω with ω ≥ 0, in agreement with the

AdS sign found in the no-go results [5–8].

3.2 Near-source Kasner solutions

To find asymptotic solutions in the vicinity of a source it is convenient to use an orthogonal

coordinate system including proper distance ρ. We therefore take the following ansatz for

the metric and dilaton

d̂s
2

= dρ2 + Aρ2αdθ2 + Bρ2ω gµνdxµdxν

τ = kθ + iFρ−q , (3.13)

where A = a0 + a1 ln ρ, B = b0 + b1 ln ρ and F = f0 + f1 ln ρ. This form captures, in

particular, the asymptotic form of the known unwarped solutions described in appendix C.

Since the quantity b1 first arises in the field equations at subdominant order as ρ→ 0, we

initially neglect it here.

Given this choice, and keeping only the most singular part as ρ → 0, the dilaton

equation becomes

ρ−q−2

[
(α+ dω − 1)(f1 − qf0 − qf1 ln ρ) − f2

1

f0 + f1 ln ρ

]

+ρ−q−2

[
a1

2

f1 − qf0 − qf1 ln ρ

a0 + a1 ln ρ
+

k2ρ2q+2−2α

(a0 + a1 ln ρ)(f0 + f1 ln ρ)

]
= 0 . (3.14)
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We keep the variable d general here, although our Type IIB application is to d = 8. The

(ρρ) Einstein equation similarly is

0 =
1

ρ2

[
α(α− 1) + dω(ω − 1) +

1

2
q2
]

+
1

ρ2

[
a1(2α − 1)

2(a0 + a1 ln ρ)
− qf1

f0 + f1 ln ρ

]

+
1

ρ2

[
f2
1

2(fo + f1 ln ρ)2
− a2

1

4(a0 + a1 ln ρ)2

]
, (3.15)

while the (θθ) equation gives

gθθ

ρ2

[
α(α+dω−1)+

a1(2α+dω−1)

2(a0+a1 ln ρ)
− 1

4

a2
1

(a0+a1 ln ρ)2
+

k2ρ2q+2−2α

4(a0+a1 ln ρ)(f0+f1 ln ρ)2

]
=0 .

(3.16)

To leading approximation the most singular part of these equations as ρ→ 0 is solved

— up to terms of relative order 1/ ln ρ or more — if the powers satisfy the two ‘Kasner’

conditions,

α+ dω − 1 = 0

α(α − 1) + dω(ω − 1) +
q2

2
= 0 . (3.17)

Using the first of these to simplify the latter allows it to be written

α2 + dω2 +
q2

2
= 1 . (3.18)

This result holds if terms that depend on k are suppressed, which is true if the condition

q + 1 > α is satisfied. In the case of interest, with d = 8, α can be eliminated from the

Kasner conditions to give

72ω2 − 16ω +
q2

2
= 0 , (3.19)

with solutions

ω =
1

9

(
1 ±

√
1 − 9q2

16

)
. (3.20)

This shows that the only real solutions have ω ≥ 0, and consequently α ≤ 1. The limiting

case with q = ω = 0 and α = 1 corresponds to a conical singularity at the brane position.

Hence positive q is sufficient to have the Kasner condition satisfy the leading terms in the

field equations near ρ = 0, with additional contributions of order 1/ ln ρ and smaller.

Notice in particular that because ω ≥ 0, the warp factor always either goes to zero or

to a finite value when approaching a source. This ensures that the warping contribution

to eq. (2.4) is never of the de Sitter sign.

We can now consider what happens if we do not neglect the logarithm, b1 ln ρ, in the

warping. In this case

ĝµν = ρ2ω(W0 +W1 ln ρ)gµν . (3.21)

In the dilaton equation, we get the additional (suppressed) terms

. . .+ ρ−q−2

[
W1

2

f1 − qf0 − qf1 ln ρ

W0 +W1 ln ρ
= 0

]
. (3.22)
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In the (ρρ) Einstein equation this gives

. . .+
1

ρ2

[
ω

W0 +W1 ln ρ
− 1

2

W1

W0 +W1 ln ρ
− 1

4

W 2
1

(W0 +W1 ln ρ)2

]
, (3.23)

and finally for (θθ)

. . .− gθθ

ρ2

[
d

2

αW1

W0 +W1 ln ρ
− d

4

a1W1

(a0 + a1 ln ρ)(W0 +W1 ln ρ)

]
. (3.24)

From this we see that a log-term in W only modifies the field equations at a suppressed

1/ ln ρ level.

4 Conclusions

In summary, in this paper we examine solutions to extra-dimensional field equations

for geometries of the form of eq. (1.1), with maximal symmetry in the noncompact

dimensions. We ask what features of a solution control the curvature in the maximally

symmetric, noncompact dimensions.

Our main result is given by eq. (2.4), which gives the noncompact curvature scalar

as a sum of four terms: R ∝ I + II + III + IV . Here I corresponds to the bulk action

evaluated at the appropriate back-reacted solution; II denotes an integral over a total

derivative involving the warp factor (whose sign is usually definite, and not de Sitter-like);

III denotes the direct contribution of the actions of any localized sources; and IV denotes

a term which vanishes for solutions that are maximally symmetric in the noncompact

dimensions, in the absence of space-filling fluxes.

Our main new result is to show, for codimension-two sources, that the boundary

conditions that must be satisfied near the sources relate the near-source asymptotics of

the bulk fields in such a way that the contributions II and III precisely cancel.

In these circumstances eq. (2.4) degenerates down to eq. (2.41), which relates the

curvature completely to the on-shell bulk action. Remarkably, it is very often true that

this on-shell action is also a total derivative. A sufficient condition for this turns out to be

the existence of a rigid scale invariance of the classical equations of motion [55], which in

particular is present for most higher-dimensional supergravity theories of general interest.

When Son−shell is the integral of a total derivative, the curvature of the noncompact

dimensions is completely determined by the asymptotic form of a particular combination

of bulk fields near any sources that are distributed around the extra dimensions.

These arguments have two main implications. First, they show (at least for

codimension-two sources) that source back-reaction and the source actions cannot be

neglected when seeking de Sitter solutions. But they also show that all of the details of the

complete back-reacted solution are not required; it often suffices to know the asymptotic

behaviour of the bulk fields in the near-source limit.

We explicitly derive which bulk fields play this role for 11D supergravity and 10D Type

IIA and Type IIB supergravity, and we hope soon to have results to report on new kinds of

explicit extra-dimensional de Sitter solutions that can exploit the results we present here.
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A Curvature and fluxes for simple Freund-Rubin examples

In this appendix we review several familiar Freund-Rubin AdSd × Sp solutions to higher-

dimensional supergravity, where d+ p = D. We do so in order to explore how space-filling

fluxes show up in eq. (2.4) of the main text.

Freund-Rubin solutions

Consider solutions to the field equations for the action

S = − 1

2κ2
D

∫
dDx

√−gD

(
R +

1

2 p!
F 2

)
. (A.1)

For the p-form threading a p-sphere, Fm1......mp = k ǫm1......mp , Einstein’s equations

RMN − 1

2
gMNR +

1

2(p − 1)!

(
FMABC...F

ABC...
N − 1

2p
gMN F

2

)
= 0 , (A.2)

yield the solutions that are product spaces,

ds2 = gMNdxMdxN = gµνdxµdxν + g̃mn dxmdxn , (A.3)

with curvatures

R̃ = −k
2p(D − p− 1)

2(D − 2)
and R =

k2(2p−D)

2(D − 2)
. (A.4)

Here R̃ is the Ricci scalar associated with the p-sphere metric (which is negative in our

conventions), g̃mn, R is the (positive) Ricci scalar of a d-dimensional anti-de Sitter metric,

gµν . RMN is the Ricci tensor for the full D-dimensional metric gMN . (In the absence of

warping we need not distinguish ĝµν from gµν .)

Example: 11D supergravity

In this section we consider several examples from 11D supergravity that illustrate the

equality (2.4) with and without space-filling fluxes.
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Since the Chern-Simons term does not contribute, Freund-Rubin solutions for 11-D su-

pergravity can be obtained using the 4-form field strength, GMNPQ, and the following action

S11 = − 1

2κ2
11

∫
d11x

√−g11
[
R +

1

2(4!)
G2

4

]
. (A.5)

There are two natural choices, depending on whether the 4-form flux threads the anti-de

Sitter or spherical dimensions.

AdS7 × S4

First consider solutions of the form AdS7 × S4, for which the only nonzero components of

G4 are along the 4-sphere directions:

Gmnpq = 3n ǫmnpq and so G2
4 = (9n2)4! . (A.6)

Einstein’s equations are

RMN − 1

2
gMN R +

1

12

(
GMABCG

ABC

N − 1

8
gMN G

2
4

)
= 0 , (A.7)

and so taking the 11-, 7- and 4-dimensional traces of eq. (A.7) one finds

R = −3n2

2
, R = gµνRµν =

21n2

2
and R̃ = g̃mnR̃mn = −12n2 , (A.8)

corresponding to AdS7 × S4.

One can use these to check eq. (2.4):

− 1

2κ2
7

∫
d7x

√−g7 R = −21n2

4κ2
7

∫
d7x

and Son−shell = − 1

2κ2
11

∫
d11√−g11

[
−3n2

2
+

(9n2)4!

2(4!)

]

= − 3n2

2κ2
11

∫
d11√−g11 ,

and so

− 1

2κ2
7

∫
d7x

√−g7 R =
7

2
Son−shell , (A.9)

as required by (2.4) for a unwarped solution of maximal symmetry without space filling flux.

AdS4 × S7

Now consider the solution AdS4×S7, which involves a space-filling flux: Gµνρσ = 3mǫµνρσ .

From Einstein’s equations one finds

R =
3m2

2
, R̃ = g̃mnR̃mn = −21m2

2
and R = gµνRµν = 12m2 . (A.10)

In this case one finds a mismatch between

− 1

2κ2
4

∫
d4x

√−g4 R and
4

2
Son−shell . (A.11)
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This difference is accounted for by including the flux contribution to gµν∂L11/∂gµν , which

gives a term of the form of eq. (2.9), as required by eq. (2.4).

Alternatively, one can work with a dual Lagrangian containing a kinetic term for the

7-form, H, that is dual to G:

Sdualized = − 1

2κ2
11

∫
d11x

√−g11
[
R +

1

2(7!)
H2

7

]
. (A.12)

In this description the seven form threads only internal directions and has no space-filling

components, and the dualized action evaluates to

− 1

2κ2
4

∫
d4x

√−g4R =
4

2
S on-shell (dualized) . (A.13)

Recall for these purposes that although dualization is a symmetry of the equations of

motion, it is not a symmetry of the action.

B On-shell supergravity actions

This appendix explicitly evaluates the total-derivative form for the bosonic sectors of 11D

and 10D Type IIA and Type IIB supergravity.

11D supergravity

For 11D supergravity the bosonic action is

S11 = − 1

2κ2
11

∫
d11x

√
−ĝ11

[
R̂ +

1

2(4!)
G2

4

]
− 1

12κ2
11

∫
G4 ∧G4 ∧ C3 . (B.1)

This scales as S11 → s9/2S11 when ĝMN → sĝMN and CMNP → s3/2CMNP .

As argued above, this scaling behaviour implies that the on-shell lagrangian is a total

derivative. To show this in detail use the trace of Einstein equation,

R̂ = − G2
4

6(4!)
, (B.2)

and the equation of motion for the 3-form potential:

d(∗G4) = −1

2
G4 ∧G4 . (B.3)

Together, these two equations give the following expression for the on-shell 11D action:

S11
on−shell = − 1

6κ2
11

∫
d
(
C3 ∧ ∗G4

)
. (B.4)
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10D Type IIA supergravity

The story for the 10D Type IIA supergravity action is similar. In the string frame this

action is the sum of the Neveu-Schwarz, Ramond-Ramond and Chern-Simons sectors,

SIIA = SNS + SRR + SCS , (B.5)

where

SNS = − 1

2κ2
10

∫
d10x

√
−ĝ10 e−2φ

[
R̂ − 4 ∂Mφ∂

Mφ+
1

2(3!)
H2

3

]

SRR = − 1

2κ2
10

∫
d10x

√
−ĝ10

[
1

2(2!)
F 2

2 +
1

2(4!)
F̃ 2

4

]
(B.6)

SCS = − 1

4κ2
10

∫
B2 ∧ F4 ∧ F4 ,

and

F̃4 = F4 + C1 ∧H3 , H3 = dB2 , F2 = dC1 and F4 = dC3 . (B.7)

The scaling symmetry in this frame has the form SIIA → s2 SIIA if e−φ → s e−φ,

CM → sCM and CMNP → sCMNP , with ĝMN and BMN held fixed. So once again we expect

the on-shell action to evaluate to a boundary term, and ask what this boundary term

is. We identify the boundary term in the Einstein frame, obtained by the Weyl scaling

ĝMN = eφ/2gMN , since the field equations are simpler.

The Einstein-frame action becomes

SIIA = − 1

2κ2
10

∫
d10x

√−g10
[
R +

1

2
(∂φ)2 +

e−φ

2(3!)
H2

3 +
e3φ/2

2(2!)
F 2

2 +
eφ/2

2(4!)
F̃ 2

4

]
+ SCS

= − 1

2κ2
10

∫ [
∗R − 1

2
dφ ∧ ∗dφ− e−φ

2
H3 ∧ ∗H3 +

e3φ/2

2
F2 ∧ ∗F2 (B.8)

+
eφ/2

2
F̃4 ∧ ∗F̃4 +

1

2
B2 ∧ F4 ∧ F4

]
,

leading to the following equations of motion for the form fields

d
(
e−φ ∗H3 + eφ/2 C1 ∧ ∗F̃4

)
= −1

2
F4 ∧ F4 (B.9)

d
(
e3φ/2 ∗ F2

)
= −eφ/2H3 ∧ ∗F̃4 (B.10)

d
(
eφ/2 ∗ F̃4 + F4 ∧B2

)
= 0 . (B.11)

The trace of the Einstein equations similarly gives

−R =
1

2
(∂φ)2 +

e−φ

4(3!)
H2

3 +
3e3φ/2

8(2!)
F 2

2 +
eφ/2

8(4!)
F̃ 2

4 . (B.12)

Substituting eq. (B.12) into the action eliminates the curvature scalar,

SIIA
on−shell =− 1

4κ2
10

∫ (
−e

−φ

2
H3 ∧ ∗H3+

e3φ/2

4
F2 ∧ ∗F2+

3eφ/2

4
F̃4 ∧ ∗F̃4+B2 ∧ F4 ∧ F4

)
,

(B.13)
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which can be written as a total derivative using the form-field equations of motion:

SIIA
on−shell = − 1

8κ2
10

∫
d

(
−e−φB2 ∧ ∗H3 +

e3φ/2

2
C1 ∧ ∗F2 +

3eφ/2

2
C3 ∧ ∗F̃4 (B.14)

−eφ/2B2 ∧ C1 ∧ ∗F̃4 +
3

2
C3 ∧ F4 ∧B2

)
.

10D Type IIB supergravity

The starting point is the bosonic part of the Type IIB lagrangian density in 10D, which

again involves the NS-NS fields φ, gMN and BMN ; the Ramond-Ramond gauge potentials

C, CMN and CMNPQ.

The string-frame lagrangian for these fields is [64]

LIIB = − 1

2κ2
10

√
−ĝ
{
e−2φ ĝMN

(
R̂MN + 4 ∂Mφ∂Nφ

)
+

1

2
ĝMNFMFN

+
1

12
ĝMN ĝP QĝRS

[
F̃MPRF̃NQS + e−2φHMPRHNQS

]

+
1

480
ĝMN ĝPQĝRS ĝT U ĝV W F̃MPRT V F̃NQSUW

}

− i

8κ2
eφC(4) ∧

(
F̃(3) ∧ F̃(3) + e−2φH(3)H(3)

)
, (B.15)

where F(k+1) := dC(k) is the field strength for the k-form Ramond-Ramond gauge poten-

tials, C(k), and H(3) := dB(2). The F̃ ’s are defined by

F̃(3) := F(3) − CH(3) and F̃(5) = ∗F̃(5) := F(5) −
1

2
C(2) ∧H(3) +

1

2
B(2) ∧ F(3) . (B.16)

This lagrangian scales as LIIB → s2 LIIB if the fields are scaled as follows

e−φ → s e−φ , ĝMN → ĝMN , C(k) → sC(k) , B(2) → B(2) . (B.17)

This is most easily seen from eq. (B.15) since each term but the last is quadratic either

in e−φ or one of the F̃ ’s, and (2.23) shows that F̃(k) → s F̃(k) under the transformation

(B.17). The last term is cubic in these fields but also has a compensating factor of eφ out

front. We are again guaranteed that the lagrangian becomes a total derivative on shell.

To identify what the derivative is, it is more convenient to use the Einstein frame,

ĝMN := eφ/2gMN , and to group the other fields into the complex quantities that transform

simply under SL(2, R),

τ := C + i e−φ and G(3) := F(3) − τ H(3) . (B.18)

In terms of these the lagrangian density becomes

L = − 1

2κ2
10

√−g
[
gMN

(
RMN +

∂Mτ∂Nτ

2 (Im τ)2

)
+

1

12 Im τ
GMPRG

MPR

+
1

480
F̃MPRT V F̃

MPRT V

]
− i

8κ2
10

C(4) ∧G(3) ∧G(3)

Im τ
, (B.19)
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and the scaling of the complex fields becomes

τ → s τ and G(3) → sG(3) . (B.20)

To identify the on-shell action eliminate the Ricci scalar using the trace of the Einstein

equations8

−R =
∂Mτ∂

Mτ

2 (Im τ)2
+
GMNPG

MNP

24 Im τ
. (B.21)

Used in the action this yields

SIIB
on−shell = − 1

48κ2
10

∫
d10x

√−g10
G3 ·G3

Im τ
− 1

4κ2
10

∫
C4 ∧H3 ∧ F3

= − 1

2κ2
10

∫ (
1

4
eφF̃3 ∧ ∗F̃3 +

1

4
e−φH3 ∧ ∗H3

)
− 1

4κ2
10

∫
C4 ∧H3 ∧ F3 (B.22)

= − 1

2κ2
10

∫ [
1

4
eφF3 ∧ ∗F̃3 +

1

4
H3 ∧

(
e−φ ∗H3 −C0e

φ ∗ F̃3

)
+

1

2
C4 ∧H3 ∧ F3

]
.

Integrating by parts gives

SIIB
on−shell = − 1

2κ2
10

∫ {
1

4
d

(
C2 ∧ eφ ∗ F̃3

)
+

1

4
d

[
B2 ∧

(
e−φ ∗H3 − C0e

φ ∗ F̃3

)]

−1

4
C2 ∧ d

(
eφ ∗ F̃3

)
− 1

4
B2 ∧ d

[(
e−φ ∗H3 − C0e

φ ∗ F̃3

)]

+
1

2
C4 ∧H3 ∧ F3

}
. (B.23)

Next we use the three-form field equations,

d

(
eφ ∗ F̃3

)
= F̃5 ∧H3

d

(
e−φ ∗H3 − C0e

φ ∗ F̃3

)
= F3 ∧ F̃5 , (B.24)

to write

SIIB
on−shell = − 1

2κ2
10

∫ {
1

4
d

(
C2 ∧ eφ ∗ F̃3

)
+

1

4
d

[
B2 ∧

(
e−φ ∗H3 − C0e

φ ∗ F̃3

)]

−1

4
C2 ∧ F̃5 ∧H3 −

1

4
B2 ∧ F3 ∧ F̃5 +

1

2
C4 ∧H3 ∧ F3

}

= − 1

8κ2
10

∫
d

[
C2 ∧ eφ ∗ F̃3 +B2 ∧

(
e−φ ∗H3 − C0e

φ ∗ F̃3

)

+C4 ∧ C2 ∧H3 − C4 ∧ F3 ∧B2

]
. (B.25)

C Solutions to the 10D metric/axio-dilaton equations

We next briefly describe a situation where solutions are known fairly explicitly to the

equations governing the metric and axio-dilaton in Type IIB supergravity. These are the

unwarped, flat solutions of ref. [58].

8F 2
5 vanishes because the five-form is self-dual.
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Flat solutions

When n = 2 a very broad class of explicit solutions to the Einstein equations are known [58]

in the limiting case where the two transverse dimensions are not warped: ∂mW = 0. In this

case the (µν) Einstein equation implies R = 0 and so the solutions are given by τ = τ(z) and

ds2 = ηµν dxµdxν + e2C(z,z) dz dz . (C.1)

A broad class of solutions to eq. (3.11) are immediate when ∂mW = 0 [58]: it is

satisfied by any holomorphic function, τ = τ(z), for which ∂̄τ = 0. The transformation

properties of the axio-dilaton under the PSL(2, Z) subgroup of the PSL(2, R) symmetry

are most easily tracked if τ(z) is written

j(τ(z)) = P (z) , (C.2)

where j(τ), is the standard bijection from the PSL(2, Z) fundamental domain, F , to the

complex sphere, given in terms of Eisenstein modular forms, Ek(τ), [65]. P (z) is a holo-

morphic function whose singularities are chosen by the properties of the source branes.

The singularities of the metric turn out to be just conical at positions, z = zi, where

P (z) has isolated poles. The metric turns out to be compact when P (z) is a ratio of

polynomials of equal degree whose numerator has 24 zeroes, such as for the choice

P (z) =
4(24f)3

27g2 + 4f3
, (C.3)

with f(z) a polynomial of degree 8 and g(z) a polynomial of degree 12. This gives a

compactification of Type IIB supergravity on CP 1, corresponding to an F-theory reduction

on K3 [59–62].

The metric function C(z, z) is found by solving Einstein’s equations, giving

e2C(z,z) = (Im τ)

∣∣∣∣∣η
2(τ)

N∏

i=1

(z − zi)
−1/12

∣∣∣∣∣

2

, (C.4)

where η(τ) = q1/24
∏

k(1 − qk), for q = e2πiτ , denotes the Dedekind η-function [65], and

the product runs over the singularities of P (z).

Notice that because the d-dimensional metric is flat for all of these solutions, eq. (3.12)

shows that any sources must satisfy that ĝµν(δSsource/δĝµν ) vanishes, at least when inte-

grated over the Gaussian pillbox surrounding the source position. This turns out to be

true, in particular, when Ssource is the action of a D7-brane [51] or its image under SL(2, Z).

Finally, the asymptotic form of τ(z) near the singularities may be found using the

known properties of j(τ). In particular, for large Im τ , j(τ) ≃ e−2πiτ + · · · and so where

P (z) ≃ ci/(z − zi) the above solution implies

τ(z) ≃ 1

2πi
ln(z − zi) + · · ·

and e2C(z,z) ≃ k Im τ ≃ − k

2π
ln |z − zi| + · · · , (C.5)

as z → zi, for k a positive constant.
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