PUBLISHED FOR SISSA BY €) SPRINGER

=
=

RECEIVED: September 27, 2011
REVISED: February 9, 2012
ACCEPTED: March 9, 2012

PUBLISHED: April 4, 2012

On brane back-reaction and de Sitter solutions in
higher-dimensional supergravity

C.P. Burgess,’ Anshuman Maharana,® L. van Nierop,” A.A. Nizami® and

F. Quevedo®?

@ Department of Physics € Astronomy, McMaster University,
1280 Main Street West, Hamilton ON, Canada

b Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo ON, Canada
¢ DAMTP/CMS, University of Cambridge, Cambridge CB3 0WA, U.K.

4 Abdus Salam ICTP, Strada Costiera 11, Trieste 34014, Italy
FE-mail: cburgess@perimeterinstitute.ca, am794Qcam. ac.uk,
leo.van.nierop@gmail.com, A.A.Nizami@damtp.cam.ac.uk,
f.quevedo@damtp.cam.ac.uk

ABSTRACT: We argue that the problem of finding lower-dimensional de Sitter solutions to
the classical field equations of higher-dimensional supergravity necessarily requires under-
standing the back-reaction of whatever localized objects source the bulk fields. However,
we also find that most of the details of the back-reacted solutions are not important for
determining the lower-dimensional curvature. We find, in particular, a classically exact
expression that, for a broad class of geometries, directly relates the curvature of the lower-
dimensional geometry to asymptotic properties of various bulk fields near the sources. Spe-
cializing to codimension-two sources, we find that the contribution involving the asymptotic
behaviour of the warp factor (which has a definite sign for most supergravities and so is
usually used to infer a preference for anti-de Sitter geometries) is precisely canceled by
the contribution of the sources themselves (that are left out in earlier treatments). We
identify which combination of bulk fields survives this cancelation, and so controls the sign
of the lower-dimensional geometry, for several supergravities in 6, 10 and 11 dimensions.
Our results show precisely why explicit 4D de Sitter solutions to 6D supergravity evade
general no-go theorems. As an application we show that all classical compactifications of
Type IIB supergravity (and F-theory) to 8 dimensions are 8D-flat if they involve only the
metric and the axio-dilaton sourced by codimension-two sources, extending earlier results

to include warped solutions and more general source properties.
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1 Introduction

De Sitter space, or slow-roll geometries close to de Sitter space, appear to play an important
role in cosmology. For those who believe that extra dimensions exist this has motivated
searching for explicit solutions to the higher-dimensional field equations for which the large
four dimensions we see are de Sitter or de Sitter-like. Although a few such solutions are
known [1-4], more and more general no-go results [5-8] show that such solutions are difficult
to find.! Why should this be so?

In this paper we argue that part of the problem is that we are not yet using all of the
ingredients that de Sitter solutions require. In particular, contributions are being neglected
that are the same size as some of the contributions that are usually kept when searching
for (or ruling out) de Sitter-like solutions.

The neglected contributions come from the actions of any localized sources that may
be present in the extra-dimensional configurations of interest. In particular, we argue here

!Four-dimensional effective field theories of string theory including non-perturbative effects and anti

branes or D-terms [9-12] can give rise to de Sitter solutions. But at the moment there is no full understanding
from the microscopic higher-dimensional theory. For other recent attempts for de Sitter solutions see [13-18].



that for codimension-two sources these actions contribute to the curvature an amount that
is competitive with the contribution of the bulk fields, including their back-reaction. In
particular, the source action acts to systematically cancel the contribution from the warp-
ing of the noncompact geometry across the extra dimensions. This is important because
the sign of the warping contribution is usually definite, and because it is opposite to what
is required for a de Sitter noncompact geometry it plays a role in the various extant de
Sitter no-go results.

1.1 No-go results and the 6D loophole

Our interest is in D-dimensional metrics of the form
ds? = Gy n dzMda = 2W ) G () dztda” + Gy (v) dy™dy™, (1.1)

where D = d + n; the d-dimensional metric, g,,, is maximally symmetric (i.e. flat, de
Sitter or anti-de Sitter); and the warp factor, W, can depend on position in the n compact
directions (whose metric, G, is so far arbitrary).

In particular, for cosmological applications there is much interest in identifying solu-
tions to higher-dimensional field equations for which g, is a de Sitter metric (which in our
curvature conventions® satisfies R = g"” R,,, < 0). The search for such solutions has been
fairly barren, and this is partly explained by refs. [5-7] and [8], who identify increasingly
general obstacles to finding this type of de Sitter solution to sensible, higher-dimensional,
second-derivative field equations.

On the other hand, a handful of explicit solutions of this type do exist, including 4D
de Sitter solutions [1-3] for six-dimensional Maxwell-Einstein systems,

. 1 nas 1
Sy = _/d6x\/_g {2/12 gMNRMN + 4 FunFMN + A} > (1-2)
with positive 6D cosmological constant, A. Similar solutions [4] also exist for six-
dimensional gauged, chiral supergravity [21, 22], whose relevant bosonic action is

2
Sbulk:_/d6x\/_g {2}{2 QMN (7%JMN + 8M¢ 8N¢> + le eid)]:MN]:MN + 2/5?‘ Bd)} . (1-3)
For both of these actions R v~ denotes the Ricci tensor for the 6D metric, gy, and F = dA
is the field strength for a 6D gauge potential, A,;. The quantity x> = 87G¢ denotes the 6D
gravitational coupling, while for the supersymmetric case g denotes the gauge coupling of
a specific Ug(1) gauge group that does not commute with 6D supersymmetry.
These examples do not contradict the various no-go theorems because they arise in
systems which do not satisfy one of the assumptions of each. For instance, the no-go result
of [6] assumes that any extra-dimensional scalar potential must be negative® (as it tends

*We use a ‘mostly plus’ metric and Weinberg’s curvature conventions [19], which differ from those of
MTW [20] only in the overall sign of the definition of the Riemann tensor.

3When this assumption is relaxed, in some cases a no-go result can still be proven, as the authors of this
reference show in the case of massive type ITA supergravity. It is this assumption, however, that is violated
by the 6d de Sitter solutions.



to be for higher-dimensional supergravities, but is not so for egs. (1.2) and (1.3)). They
evade the less restrictive assumptions of [7] and [8], some of which exclude [8] having only
two extra dimensions, n = 2. More importantly, for this paper, they do not satisfy the
average ‘boundedness’ assumptions [7] that exclude solutions that are too singular.

1.2 The potential relevance of back-reaction

There are two ways to view the possibility that singular behaviour can suffice to evade
the no-go results. One view is to regard solutions with such singularities as unacceptable,
and so draws the conclusion that de Sitter solutions may be impossible to find. And for
some types of singularity (like negative-mass black holes) this is probably right, since the
alternative requires admitting energies that are unbounded from below.

But some (apparent) singularities are known to be perfectly sensible, such as those
seen in Coulomb’s law at the position of a source charge. In the case of Coulomb’s law, the
singularity doesn’t preclude taking the solution seriously because we don’t intend to trust
the solution in any case right down to zero size. The existence of apparent singularities
might similarly be expected to arise in the gravitational theories relevant to cosmology,
provided these are regarded as effective descriptions of some more-microscopic degrees of
freedom. One can hope to get a handle on deciding whether a singularity might be rea-
sonable for an effective description, by seeing what kinds of apparent singularities actually
can emerge from localized sources governed by physically reasonable actions.

These considerations suggest that understanding the back-reaction of localized sources
could be a crucial part of obtaining de Sitter solutions, or ruling them out. In particular
the asymptotics, and apparent divergence, of bulk fields near a source is likely to be
important, and is ultimately controlled by the action that describes the dynamics of
that source. Notice for these purposes ‘source’ need not mean a fundamental object, like
a D-brane. Rather, it could describe something more complicated, like a soliton or a
higher-dimensional brane wrapping internal dimensions, a localized but strongly warped
region, or a more complicated object (like a nucleus or a star). All we need know is that
the sources are much smaller than the extra dimensions within which they sit.

How the properties of a source affect the properties of bulk fields is best understood at
present for codimension-one and codimension-two sources. For codimension-one sources,
the back-reaction is described by the Israel junction conditions [23-26], as is familiar from
Randall-Sundrum models [27, 28]. But bulk fields with codimension-one sources also tend
not to diverge at the source positions, and so shed little light on how such singularities
influence the low-energy curvature. It is only for higher-codimension sources that it is
generic that bulk fields diverge at the source positions, and so where the relation between
bulk singularity and source properties can be explored.

Of course, these bulk singularities make matching bulk solutions to source properties
more complicated, usually requiring a renormalization of the source [29-32]. The tools
for detailed bulk-source matching and renormalization are most explicitly known for
codimension-two objects [33-53]. In particular, these tools have recently been used
to identify [54] explicit objects that can source the de Sitter solutions [4] of the 6D
supergravity action, eq. (1.3). Since the required source properties seem physically



reasonable,? they show that the singularities in the corresponding bulk solutions need not
be regarded as grounds for their rejection.

1.3 Summary of results

In the rest of this paper we examine how source back-reaction constrains the existence of
de Sitter solutions in more general higher-dimensional theories than the six-dimensional
ones already explored.

In particular, we explore some of these issues in eleven-dimensional supergravity, and
in ten-dimensional Type IIB and Type IIA supergravity. Because our best-developed tools
apply to codimension-two objects, it is these we largely explore in detail. If only D-branes
were allowed as sources, this would restrict us to D7-branes in Type IIB systems. But
we also explore the other supergravities for two reasons: because some of our results
apply equally well to higher-codimension sources; and because our sources might not be
D-branes — or (p, q) branes for that matter — but instead be more complicated localized
codimension-two quantities (like very small warped throats).

We find the following results:

e First, for geometries of the form of eq. (1.1), we find a very general classical relation-
ship that gives the curvature in the non-compact dimensions parallel to the sources
as the sum of four terms: R o< I + I + I11 + IV, where IV vanishes for maximally
symmetric geometries in the absence of space-filling fluxes.

e Second, we show that contribution I — which is proportional to the bulk action
evaluated at the classical back-reacted solution — is very generally given as the inte-
gral of a total derivative, and so is controlled by the boundary values of a particular
combination of bulk fields. This property relies only on the existence of a classical
scale invariance that is shared by most higher-dimensional supergravities (and holds
in particular for 11D and 10D Type IIA and IIB supergravity).

e Third, we show that for codimension-two sources the contributions I/ and [I1]
cancel one another. Here contribution I7 is an integral over a total derivative of
the warp factor, W, whose definite sign plays an important role in the derivation of
the general no-go results. Contribution /71 comes from the action of the localized
source, which is left out of most no-go analyses.

e Finally, we explicitly identify the total derivative that appears in I for several
examples of interest, including commonly used supergravities in 6, 10 and 11
dimensions. This identifies the combination of fields whose near-brane asymptotics
is relevant to the low-energy curvature. As a simple application we show that
the noncompact dimensions are always flat for all F-theory compactifications that
involve only the metric and axio-dilaton with codimension-two sources.

4As discussed in more detail below, their worst feature appears to be a requirement that the dilaton,
¢, grows as one asymptotically approaches the sources, and so care must be taken to avoid leaving the
weak-coupling regime before reaching the source.



These results carry two important messages. First, since the direct contributions from
the source action cancel important contributions in the no-go theorems, the bad news is
that back-reaction cannot be neglected when determining the curvature of the noncompact
dimensions. But second, because the nonzero contributions are total derivatives, the good
news is that most of the details of the back-reacted solutions are not important. All that
counts is the near-source asymptotics of a specific combination of back-reacted bulk fields.

Our explanation of these results is organized as follows. The next section, section 2,
develops general expressions for how the curvature of non-compact, maximally symmetric
directions depends on the properties of the extra-dimensional bulk fields. Much of this
section is similar in spirit to the arguments made when deriving no-go results [5-8],
and our main new contribution is to cleanly identify how the curvature is controlled by
asymptotic forms near the sources, and to see how assumptions about source dynamics
modifies this asymptotics. Section 2 also explicitly identifies for 11D and 10D supergravity
the precise combination of bulk fields whose asymptotic forms are relevant to the
low-energy curvature. Section 3 then applies these general arguments to the special case
of metric/axio-dilaton configurations in 10D Type IIB supergravity with codimension-two
sources, showing in this case how all solutions are flat in the noncompact directions in the
absence of bulk fluxes. We summarize our conclusions in section 4, and several appendices

provide details of calculations used in the main text.

2 Low energy curvature and near-source asymptotics

The purpose of this section is to derive a general expression for the curvature of the
noncompact directions that is our main result. We do so by paralleling arguments made
elsewhere for six-dimensional supergravities [4, 33, 34, 51].

We make the connection between on-source curvatures and near-source asymptotics in
three steps. First, in section 2.1 we show — at the classical level for maximally symmetric
source geometries — that the integral of the low-energy curvature can be computed as the
sum of four terms: [ + I1 + I[11 4+ IV. Of these, I is the higher-dimensional bulk action,
evaluated at the compactified solution. I is the integral over a total derivative, which
Gauss’ theorem directly relates to the boundary values of the warp factor, at infinity
and near any potential singularities. III is a direct contribution from the action of any
sources, and IV is a term which vanishes in the absence of any space-filling fluxes.

Next, the second step is taken in section 2.2, which shows that for all of the super-
gravities of interest the higher-dimensional bulk lagrangian density is itself also always
a total derivative when evaluated at an arbitrary classical solution. Combining this with
step one then shows that, in the absence of space-filling fluxes, the integrated low-energy
curvature is completely controlled by source and boundary effects.

Finally, section 2.3 demonstrates step three. By treating carefully the singular
behaviour near any codimension-two sources, it is shown that contributions I1 and I11
precisely cancel one another. Taken together, these three steps show that only contribution
I plays any role in a broad class of theories.



2.1 Step 1: integrating out the bulk

We first focus on step one: we use the higher dimensional equations of motion to derive a
relationship between the lower dimensional curvature and the on-shell higher-dimensional
action. For definiteness, we consider solutions to the field equations of a D-dimensional
(super)gravity theory, with action®

1 ~
S /dDz\/—gD< - R+ Lgatter> + Ssource ; (2.1)

~ 9,2
2K%

where Lpatter depends on a generic set of other D-dimensional fields (but not on the
derivatives of the metric), denoted collectively by 1. Ssource denotes the action of any
sources, which differs from the term explicitly written by only involving an integration
over d dimensions, rather than D.

Now imagine we have a solution to the field equations for this action describing a
compactification down to 0 < d = D — n dimensions, of the form of eq. (1.1). We wish to
derive a general expression for R = g"”R,,, in terms of properties of the warp-factor, W,
the compact metric, Gy, and the bulk- and source-matter actions.

To this end consider the pur component of Einstein’s equation,

. 1 - oLP 05,
_A v v D matter ) 2 source _ 2.9
\/ 9o |:R + 2) g ( R + ‘Cmatter) + a?],ul/ :| + Kp < 5?]#1/ ) 0’ ( )

which we contract with g,,, making use of

"Ry = e W R+ dV2W + d* "0, WO, W
= e WR4 e Wy2edW (2.3)

where V2 = §™"V,,V,,. Dividing the result by 2x2, using v/—gp = ¢™V'/=g4 v/Gn, and
integrating over all D dimensions then gives

1 d 1 .=
- 92 2 /ddx\/_ng - Sonfshell"i_ 9 /ddx\/_gd /dny\/gn VQQdW (24)
Ky 2 2K,
oS 1 oLk
dd ~ . source /dD A s 5 matter
e fta (T ) o fa0n-an g
= [+ 1T+ 1IT+1V,

where Sy, _shenn means the bulk part of the action appearing in eq. (2.1), evaluated at a
solution to the field equations, and the last term uses that the source terms are localized
within the extra dimensions. K?l denotes the d-dimensional gravitational coupling given by
/@3 = k2 /Vy, with the warped volume defined by

Vi 1= /d"y\/gn eld=2W (2.5)
5An aside on notation: indices M, N =0, 1,..., D—1 run over all dimensions; greek indices denote lower-
dimensional coordinates pu,v = 0,1,...,d — 1; and indices m,n = 1,...,n = D — d denote compactified

coordinates. We use Ran to denote the D-dimensional Ricci curvature of the full D-dimensional metric,
gumn; and R, to denote the d-dimensional Ricci curvature computed from the d-dimensional metric, g, =
eV g,.. Finally, gp = det an while gq = det §,.. etc.



Maximal symmetry and space-filling fluxes

Eq. (2.4) is the key equation, and so far it has been derived on very general grounds. We
now specialize to the situation where the solution does not break the maximal symmetry
of the d-dimensional metric g, .

Maximal symmetry is a very constraining condition. First, it implies R is a constant,
so the left-hand-side of eq. (2.4) is proportional to the (divergent) volume of the non-
compact dimensions. Furthermore, the left-hand-side vanishes only for flat d-dimensional
space, and its sign is controlled by the sign of R.

Second, maximal symmetry strongly restricts the form of L% e, /0G,. for the field
content usually found in higher-dimensional supergravity. In particular, the only fields
that can be nonzero (classically) for maximally symmetric solutions are: the metric, g,.;
space-filling fluxes of the form

F!E??--Hdml---mpfd - 6#1---MdGm1...mp_d ; (2.6)

and any number of d-dimensional scalar fields (like components of gy, etc.).
Because LP is defined with an overall factor of v/—gp factored out, and because the
Einstein term is also treated separately, in the absence of higher-derivative interactions

OLY iter/ 09w = 0 if only scalar fields and the metric are present. For the supergravities
D

of interest here the only nonvanishing contributions to 0L} e

/0§, arise from p-form
fields (with p > d), having nonzero space filling components.
For instance, for a p-form field with kinetic term
Lo
D - — F(p) 5 (27)

p—form

and non-vanishing space filling components we have

a‘CDaLtte d ~ ~ dG2
N m r__ G G miny =mona | sMp_dNp—d — _ 2.8
g,u,l/ 8'@#1/ 2(p—d)' mi..Mp_gq n1...np,dg g g 2(p_d)| Y ( )

which contributes to the right-hand-side of eq. (2.4) the amount

d d n ~ aw ~2

We note that this is negative definite, which (in our conventions) contributes to R with
an anti-de Sitter-like sign.

Of course, space-filling fluxes need not contribute to eq. (2.4) only through their
kinetic term. The quantity OL],er/0Gu can also receive contributions from Chern-
Simons terms. In this case, because L, .iter = £Cs/v/—9p, the contribution is simply
proportional to the Chern-Simons term itself:

aE(DJS tt d
G, matter: — __ Log. 2.10
Ju i 5 / cs (2.10)

Unlike for the kinetic term, this contribution can have indefinite sign.



We see that in the absence of space-filling flux, the last term in equation (2.4) vanishes.
When this is so, eq. (2.4) relates the d-dimensional curvature, R, to a total derivative,
a derivative of the source action, and the bulk action evaluated on shell (which we show
below is often also a total derivative).

The restriction to no space-filling fluxes is also not very restrictive, because one can
usually (Hodge) dualize a flux to get rid of any space filling components. But there can
be some situations where this cannot be done, such as when the flux in question is the
self-dual five form of Type IIB supergravity. In this case the self-duality condition relates
the flux components in the internal and space-time directions. Appendix A uses several
well-known examples to illustrate how eq. (2.4) works in practice (in the absence of source

terms), with and without space-filling flux.

2.2 Step 2: a general expression for Sg,_ghen

This section now proves that So,_shenl can generally also be expressed as the integral of a
total derivative for the bulk supergravities of general interest.

This is actually a special case of a more general result [55] that states that any scale-
invariant system has this property, as we review here. It is generic to higher-dimensional
supergravities because these typically all have a classical scale invariance [56, 57].

Consider therefore a generic collection of fields, ¢?, described by a lagrangian density
that scales as £ — sP £ when the fields scale as ¢! — 5% ¢!, for some constants s, p and a;:

L (s“"gpi, s‘“auapi) =sL (api, 8M<pi) . (2.11)

This scaling property of the action ensures the invariance of the field equations.
Eq. (2.11) should be read as being an identity for all s and for all fields ¢*. Differen-
tiating with respect to s and evaluating the result at s = 1 then gives the identity

Sol(o e ()] e e

)

for all ¢'. But solutions to the field equations satisfy

<gg§> O <8[gfapi]> =0, (2.13)

and so using this in eq. (2.12) implies

Lon—shell = Z C; Oy, [(5 [g;iﬂlo W} : (2.14)

i

That is, the lagrangian evaluates to a total derivative at any classical solution.

We next pause to record the explicit form for the total derivative for the 6D supergrav-
ity for which de Sitter solutions are known to exist, and for the 11D and 10D supergravities
of more general interest here. The details of these evaluations are given in appendix B.



6D supergravity

As a point of reference, we restate here the on-shell action as computed [55] for chiral,
gauged supergravity [21, 22] in six dimensions. The relevant bosonic action, S, is given
in eq. (1.3) and scales as S% — s2.5% when g,y — sdun and e ? — se~?. The on-shell
lagrangian is therefore a total derivative, and is seen by explicit evaluation to be

1 .
S shell = 92 /dﬁx V=6 0. (2.15)
6

In our conventions, when used in eq. (2.4), this shows that an AdS sign corresponds to ¢
decreasing near the source, while a de Sitter sign arises when ¢ increases towards the source
(a property that may also be directly verified of the explicit de Sitter solutions [4, 54]). Since
e?? counts loops in this system, consistency of the classical approximation requires that one
encounters the physics that regulates the source before leaving the weak-coupling regime
e? <« 1. Although this sounds worrisome, similar considerations apply to the gravitational
field of a macroscopic source like the Earth. The large curvatures encountered if this field
were extrapolated to zero size would also eventually invalidate a semiclassical approxima-
tion; but are not a problem in practice due to the prior intervention of the Earth’s surface.

11D supergravity

For 11D supergravity the bosonic action is

1 A 1
n_ 1. /
S =y, [ @y [7”2(4!)

This scales as S — 928 when Jun — Sguy and Cyyp — 53/QCMNP.

1
2 - . 2.1
G4:| 121%%1 /G4 ANGa N Cy ( 6)

As argued above, this scaling behaviour implies that the on-shell lagrangian is a total
derivative. Using the field equations gives the following total derivative expression for the
on-shell 11D action:

1
Son—shell = T 6r2, /d(cs A *G4) - (2.17)

We note that the expression has explicit dependence on the potential C3, thus one can
get non-trivial contributions from the patching of gauge charts. We hope to explore such
contributions in the future.

10D Type ITA supergravity

The story for the 10D Type ITA supergravity action is similar. The Einstein-frame action
for the bosonic sector is

1 | e—® e30/2 e®/2
TTA 10 - 2 2 2 2
=— d — H F. F 2.1
with Chern-Simons term given by
1
Scs = T2 /dC ANdC N B. (2.19)
10
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This action scales as — s under the transformations e ¢ — se™?,
dun — V'S Gun, Cx — sCj and By — By. This ensures the action can be written as a
total derivative using the form-field equations of motion; explicitly
1 e3¢/2 3e?/2 ~
SUA = — g2 /d <—e¢ By AxHs+, CiAxFy+ 7 CyAsFy  (220)
k1o

~ 3
—6¢/2BQ/\C1/\*F4+2C3/\F4/\BQ> .

For later purposes we note that in type ITA supergravity there are no self-dual fluxes, so
it would be very generally possible to go to a frame where there are no space filling fluxes.
10D Type IIB supergravity

The Ramond-Ramond gauge potentials appearing in Type 1IB supergravity are C, Cyn
and Cynpg, and the Einstein-frame lagrangian density for the bosonic sector of the theory

is given by
o 1 R AMN A 8A178NT 1 MPR
L= 2/{%0 \/ g10 |:g (RJVIN + 9 (Im7‘)2 19Tm + GurrG
1 =~ ~ ) C(4) A G(g) N G(g)
F FMPRTV] . 2.21
+480 MRy ] 82, Im~ (2:21)
Here the complex fields 7 and G(3) are defined by
7:=C+ie?® and Gy = Fz) — T H), (2.22)

where Fy 1) := dCy,), H(z) := dB(9), and the F’s are defined by

1

F(3) = F(3) — CH(3) and F(5) = *F(5) = F(5) — 9

1
C(2) A H(g) + 9 B(2) A F(3) . (2.23)
This lagrangian scales as £"® — s2 £1B if the fields are scaled as follows
e ?—se?, guv—Vsiun, Cuy—sCu, B — Ba, (2.24)

and so becomes a total derivative when evaluated on shell. As computed in appendix B,
the total derivative turns out to be

1 " ~
slB T g2 /d|:02/\6¢*F3—|—B2/\(6¢*H3—COB¢*F3>

on—shell
S K/]O

Why should we care when the bulk contribution on the right-hand-side of eq. (2.4)
is a total derivative? We care precisely because the bulk fields are generically singular
at the specific points in the n compact dimensions where the sources are located. To
deal with this singularity, as well as any singularities coming from Sgource, We imagine
surrounding these objects in the transverse dimensions by a ‘Gaussian pillbox’ at a small

,10,



proper distance from the source. This removes the singularity at the source at the expense
of introducing a new boundary on the Gaussian pillbox.

When the bulk contribution to the right-hand-side of eq. (2.4) is a total derivative,
its integral depends only on the near-source limit of the back-reacted bulk fields at the
pillbox. And these boundary conditions, in turn, are related to the physical properties of
the source at y.* allowing them to be combined with the Sgource terms in a general way,
as the next section discusses in more detail.

The upshot is that although explicitly finding the back-reacted bulk solution for a
given source is very difficult, when the curvature depends only on a total derivative most
of the details of these solutions are not important. It is only their near-brane boundary
conditions that play any role in fixing the on-source curvature, R.

2.3 Step 3: sources and singularities

The final step is to relate more precisely the boundary contributions to the bulk integrals
encountered above to the properties of the source action, Sgource- AS we now see, this
allows contribution IT to be related to contribution 77 in eq. (2.4), with the result that
they cancel for codimension-two sources.

The trick when doing so is to deal properly with the singularity of the bulk configu-
rations near the sources. We follow a strategy familiar from experience with the Coulomb
singularity of electrostatics: we surround the sources with small ‘Gaussian pillboxes,” and
replace the singular extrapolation into the pillbox interior with an appropriate set of bound-
ary conditions on the surface of the box. In this way the singular physics of a point charge
is finessed into a finite flux through an arbitrary, but small, surface enclosing the charge.

Of course, this is only a useful construction if the size of the charge distribution is
much smaller than the distances of interest for predicting the resulting electric field. If the
box is too small compared with the charge distribution inside, the real charge distribution
inside cannot be approximated by a point source with the same total charge. A similar
problem arises if the box is too large compared with the scales over which the electric
fields are to be computed. The construction is useful if a sufficiently large hierarchy exists
between the size of the source and the distances of interest for the resulting electric fields.

The same is possible for gravitating systems, provided the physical size of the source
is much smaller than the distance over which the gravitational field extends (like the size
of any extra dimensions). To accomplish this in the present context [33, 34, 51], we excise
a small D-dimensional spacetime volume from around each source, and instead specify
the boundary conditions on boundary to this small volume.

In the spirit of replacing a real charge distribution by an equivalent point charge,
the boundary conditions are specified by doing so for a simple source distribution that
shares the same energy. This is most simply done by imagining the source energy density
to be distributed on the boundary of the pillbox itself, with the pillbox interior filled in
with a smooth field configuration. Such a simple-minded procedure suffices to capture the
long-distance physics of a generic real distribution if the pillbox is sufficiently small, with
the size of the actual source of interest being much smaller still.

— 11 —



Formally this is done by specifying a (D — 1)-dimensional codimension-one boundary
action, gbdy, on the pillbox surface, together with a smooth solution describing the pillbox
interior. This construction allows boundary conditions to be inferred using standard
methods involving the Israel junction conditions [23—26], which relate §bdy to the jump in
bulk-field derivatives between inside and outside of the pillbox.

Once these junction conditions are found, a new point of view is possible for which the
pillbox is regarded as an honest-to-God boundary of the bulk geometry, without reference
to the pillbox interior. In this case one defines a new boundary action for the pillbox, Syqy,
which is defined by the condition that its derivatives determine the near-source radial
derivatives of the fields exterior to the pillbox. In general Syqy differs from gbdy because
it must now also include any effects that used to be generated by the now non-existent
interior geometry. Shqy also includes the Gibbons-Hawking action [63] for gravity on the
boundary, both of the interior and exterior regions:

dey = §bdy + Scu+ + Seu— + Sint (2-26)
with
1
SGH = K/2 /dD_l,I\/—’}/ K, (227)
D

and K = ¢" K;;, where K;; is the extrinsic curvature of the boundary and +;; the induced
metric. The subscript £+ for Sip+ indicates whether the extrinsic curvature is to be
computed just inside or just outside of the codimension-one pillbox boundary. The
Gibbons-Hawking action is required in the presence of boundaries to make the variation
of the Einstein action well-posed. Finally, Siyt describes the ‘bulk’ action describing the
interior geometry, whose details are not important in what follows when the pillbox is

sufficiently small.

In the limit of a vanishingly small pillbox, these codimension-one actions can be
compactified into corresponding higher-codimension actions. We define Sgource to be the
result obtained from Syg, in this way, but it is the dimensional reduction of Spq, that

compactifies to the d-dimensional source action, Sgource, used in previous sections.

This procedure has been worked through in detail for scalar-tensor-Maxwell theories
with codimension-two sources in D = d+2 dimensions [33, 34, to which we now specialize.
The resulting boundary conditions were then checked for D7-brane sources in Type IIB
supergravity in 10 dimensions, for which the bulk and source actions are explicitly known,
as are a broad class of solutions to the bulk field equations [58]. In all cases the solutions
and actions satisfy the boundary conditions inferred using this simple-minded pillbox

construction [51].

For the present purposes it turns out that we need only the boundary conditions for
the metric. Using the Israel junction conditions to relate an assumed smooth interior ge-
ometry for the pillbox to the geometry outside, one finds the following junction conditions,
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expressed in terms of the codimension-one action, Sy,qy, of the codimension-one source:5

5Shay
5?]@']’

This expression adopts coordinates near the pillbox for which p denotes radial proper dis-

2,12 V=ip (K7 — Kg") — (int)" = (2.28)
D

tance away from the source, which is located at p = 0. The pillbox boundary lies on a sur-
face of fixed, small p, for which Kj; is the extrinsic curvature of the fixed-p surface, for which
the local coordinates are {z'} = {z#,0}, withi = 0,1, - ,d where d = D—2 and 6 is an an-
gular coordinate that runs from 0 to 27 as one encircles the source. Finally, ‘(int)”’ denotes
the same result evaluated for the smooth interior geometry, for which p = 0 is nonsingular.

As mentioned earlier, there are two equivalent ways to read eq. (2.28). The first is the
way it was initially derived: where §bdy represents only the action of the boundary, and
the interior region of the brane is matched onto the exterior one through eq. (2.28). The
other viewpoint is that the pillbox is considered the actual boundary of spacetime, and
the ‘interior’ of the branes is excised entirely. In this point of view, the properties of the
interior solutions are encoded in the boundary action, Spqy:

1
2K2,

. i ” 5§bdy . nij 0Shdy
_g KZ] _ Kg” — . + nt J — R . 229
In the limit of a very small pillbox, these conditions dimensionally reduce to conditions
that only refer to the codimension-two action.

dé —§ (KY —Kg¥Y) — (int)V | = 20" 2.30

where the integration is about a small circle of proper radius p encircling the brane position

lim
=0 Joy

at p =0, and N,, is the unit normal pointing towards the brane (N, dz" = —dp).

The upshot is that source-bulk matching relates the asymptotic, near-source radial
derivatives of the bulk fields to the properties of the source action. In what follows,
an important role is played by the function, Ugource, that controls the codimension-two
boundary condition for the warp factor, W,

4 i do\/—gp NMo,W = 2 0 [\/—gd Zsoume]
6

/€2D p—0 ng
= d\/_gd Usource, (231)
where the last equality defines Ugource, and Esource is the codimension-two lagrange density
S;source - /ddx\/_gd z:Vsource . (232)

The function Usource is important” for other reasons, besides its above role in
controlling the asymptotic behaviour of the warp factor. As we show below, for

®The difference in signs compared to [51] arises from the choice of unit normal. Here, K is defined with
respected to the outward pointing normal, to agree with the convention for the Gibbons-Hawking term.

7Although determination of Usource appears to require knowing how Ssource depends on ggg, this is
actually not necessary because the it is related [51] by an identity — the ‘Hamiltonian’ constraint for
evolution in the p direction, since this relates the first derivatives of bulk fields with respect to p — to the
easily computed derivatives §Ssource /I and 0Ssource/0Guv -
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codimension-two sources Ugguce turns out also to be the Lagrange density of the full
action, Ssource [33, 34, 51]. It turns out that Uspyurce iS generically non-negative, and this
is related to the general property (described below) that the bulk field equations dictate
that W does not increase as one approaches a codimension-two source.

Implications for the on-source curvature

We now show how the above matching conditions imply a dramatic cancelation in our
key formula, eq. (2.4). In particular, after using Gauss’ law to rewrite total derivatives in
terms of surface terms at the position of the Gaussian pillboxes surrounding the sources,
followed by eq. (2.31), one of the terms on the right-hand-side of eq. (2.4) can be written:

1 - 5
/ddx\/—gd /d?y\/g2 2w = 4 /ddx\/—gd fda\/QQ (N - VW )ed"

2K2 2Kk2
d

= 2 /ddx\/_gd Usource - (233)

We wish to compare this with another term on the right-hand-side of eq. (2.4),

) 05
/ A% Gy ( szur°e> = lim / 4%y g,w< Abdy> . (2.34)
6g;w p—0 6g;w
To evaluate this we use the matching condition, eq. (2.28), which implies
_ 05ha d . . d
e, 5o ey o] = (s ).

to rewrite Syqy as follows:

Sbay = §bdy + Seut + San—

~ 2 R 5§bd

~ 2 . 5§bd . 5§bd
= Spay — /dd“m LY 4 Y 2.36
bdy d ' 59;w 966 Séno ( )

Now, our interest is in maximally symmetric configurations with no space-filling fluxes,

for which
Shdy = /ddﬂw\/—% Ly , (2.37)

and Ebdy does not depend on curvatures. In this case 5§bdy/5§uu = ;\/—QD Ebdy gt
Using this in eq. (2.36) gives

2 05
lim derlx Joe V= /dd-’ﬂ\/—gd Usource » (2-38)

S, = lim Spqy = —
source p—0 bdy d p—0 6969

where the last equality uses eq. (2.31). This leads finally to our desired expression:

dSsource d
/ddm guy ( 5 ) = - /ddﬂU\/—gd Usource - (239)

0G v 2
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As claimed, from egs. (2.33) and (2.39) we see that the codimension-two matching
conditions ensure the cancelation of two of the terms on the right-hand-side of eq. (2.4),

1 ~ = ~ 6SSOUrCe
02 /ddx\/—gd /d2y\/gg V2edW —i—/ddac G < ) =0, (2.40)

D 5guu
leaving
1 d 1 oLy
_ dd —g, R = Son dr A A matter
2/{3 / z\/—ga o on—shell + 22 / CU\/ 9p Guv i
d
- 9 Sonfshella (241)

with the second line following because we already assumed there to be no space-filling
fluxes. This, together with the earlier expressions that give Sy, _shenn as a total derivative,
are our main results.

3 Example: the axio-dilaton and 10D Type IIB supergravity

Our goal in this section is to illustrate the generality of the result, eq. (2.41), obtained
at the end of the last section. We use eq. (2.41) to show that the on-source curvature
vanishes for F-theory axio-dilaton compactifications of 10D Type IIB supergravity with
arbitrary codimension-two sources, generalizing a known result when the sources are
supersymmetric [59-62]. Although this example corresponds to the choices d = 8 and
n = 2, — with only the metric, g/, and the axio-dilaton, 7 = C + ie?, (and no other
fluxes) in play, in what follows we work instead with general d.

This choice is made for three reasons. First, because it includes a broad class of
explicitly known solutions [58] with explicit sources: D7- and O7-planes, as well as
various kinds of (p,q)-branes. Second, because the absence of bulk fluxes ensures that
the right-hand-side of eq. (2.4) is particularly simple (and is a total derivative). Third,
the d-dimensional sources in this case have codimension two, which is one of the few
situations for which matching conditions relating near-source asymptotics to physical
properties of the source are explicitly worked out [33, 34]. In particular, they have been
tested explicitly [51] for the solutions of ref. [58] with D7-brane sources — and implicitly,
using SL(2, R) invariance, for (p, ¢)-brane sources as well.

3.1 Bulk equations

The Einstein frame action for the Einstein-axio-dilaton system in 10D Type IIB supergrav-
ity is ' = Sg 4+ Ssource, Where

1 - Oy T ONT
Sp=— d¥z\/—g 3N R MEENCL 3.1
b 2k2 / V=49 [ mun + 2 (Im )2 (3.1)

This is invariant under PSL(2,R) transformations

ar +b
cr+d’

T —
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with the real parameters a through d satisfying ad — bc = 1. The scaling symmetry boils
down in this case to 7 — s7 and Gy n — /S Gun, under which Sz — s2Sy.
The Einstein field equations for this action are

A 1
Raun + 4(Im 7)? (O TONT 4+ OnTOyT) = (SOurce terms), (3.3)
whose trace with g™V ensures that Sy, _shen = 0 (for all D). The axio-dilaton equation is,
similarly
N aJVI 6
— V24 C TOMT (source terms) . (3.4)
Im7

As ever, the solutions of interest have geometry
d§2 - gMN d.%'Md.%'N = €2W Guv dz*da” + gmn dymdyn ’ (35)

where g, (z) is a d-dimensional maximally symmetric Minkowski-signature metric, and
W(y), 7(y) and Gmn(y) depend only on the other n compact directions. We temporarily
keep the variables d and n general, although at the end we specialize to our real interest
in this section: n =2 (and D = 10 and d = 8, though this is less crucial).

For general d and n the Ricci tensors satisfy

7%“1/ — R/,u/ + <@2W + dgmnamW (9nW) €2Wg“l,

1 -
= Ry, + | 2= <v2€dW) v

and G Ropn = R+ d(WW n gm"amwanw) —Rtde WV, (3.6)
and so the (uv) Einstein equations, ﬁuv =0, boil down to
Re™ W 4 e7Wy2edW — (source terms), (3.7)

while the n-dimensional trace of the remaining Einstein equations becomes

G Oy TORT

5 —W&2 W
R+de " Voe" + 2(Tm 7)2

= (source terms) . (3.8)
A broad class of unwarped solutions to these equations are known [58], and reviewed in
appendix C.

Codimension-two sources

Because source-bulk matching is best understood for codimension-two, we specialize now
to the case n = 2, in which case several things simplify.

First, the trace leading to the last equation carries no loss of information, and so the
full set of Einstein equations become completely equivalent to egs. (3.7) and (3.8). Second,
it becomes convenient to use complex coordinates, z := 28 + ix? = y' + iy?, and write the
compact metric in conformally flat form

Gmn dz™dz" = e2¢ dzdz = dp® + P d62. (3.9)
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With these choices V2f = e 2 §m9,,0,f = 4e72¢ 9df, for any scalar field f, and the
scalar curvature becomes R = 2 V2C.

The Einstein equations simplify to

1 _
4 Re2C 4 7MW gedV —

(ot o7 + 07 57’)

200C +de”"V90e" — )

=0, (3.10)

(1 —-7)
while the axio-dilaton equation of motion becomes independent of C":

-~ d . 2070
007+, (IWIT + W r) + T 0. (3.11)

T—T
Finally, we identify the contributions on the right-hand-side of eq. (2.4) for this exam-
ple. Since there are no space-filling fluxes and the on-shell action vanishes, eq. (2.41) for

this example reduces to

d
R =) Son—shen = 0. (3.12)

Since R = 0, eq. (3.10) implies that e?"V is the real part of a holomorphic function.
Notice that if we had not included the source term, our conventions are such that
the warping term contributes an AdS sign if N - 9OW < 0; i.e. W decreases towards the
boundary. As we show below, the explicit asymptotic form for the bulk solution near
the sources can be found in general, and for a codimension-two source situated at p = 0

w

(where p denotes proper radius) has the form e" o« p* with w > 0, in agreement with the

AdS sign found in the no-go results [5-8].

3.2 Near-source Kasner solutions

To find asymptotic solutions in the vicinity of a source it is convenient to use an orthogonal
coordinate system including proper distance p. We therefore take the following ansatz for
the metric and dilaton

ds’ = dp? + Ap**d6? + Bp* Guvdatda”
T=Fk0+iFp 1, (3.13)

where A = ag+a1lnp, B = by+ bilnp and F = fy + filnp. This form captures, in
particular, the asymptotic form of the known unwarped solutions described in appendix C.
Since the quantity b first arises in the field equations at subdominant order as p — 0, we
initially neglect it here.

Given this choice, and keeping only the most singular part as p — 0, the dilaton
equation becomes

2
P12 [(a +dw —1)(f1 — qfo —qfiInp) — fo +f}1 1np}

+p 12 |:a1 Ji—afo—qfilnp k?prateze

=0.(3.14
2 ap + ai;lnp (ao—l—allnp)(fo—kfllnp)} (3.14)
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We keep the variable d general here, although our Type IIB application is to d = 8. The
(pp) Einstein equation similarly is

B 1, 1 a1(2a — 1) af1
VT {O‘<@—1)+dw(“’_1)+ 2 ] T [2(ao+allnp) ) fo+f11np}

+ [ i - gl } (3.15)
p2 2(f0 + filn P)2 4(&0 4+ aqln p)2 ’ ’

while the (66) equation gives

oo

a1 (2a4+dw—1) 1 a? k2 pPat2—2a
p? -

+dw—1)+ - +
[a(a w=1) 2(ap+arlnp) 4 (ap+aylnp)? 4(a0+allnp)(fo+f1lnp)2( )
3.16

To leading approximation the most singular part of these equations as p — 0 is solved
— up to terms of relative order 1/1n p or more — if the powers satisfy the two ‘Kasner’

conditions,
a+dw—1=0
2
a(a—1)+dw(w—1)+q2 = 0. (3.17)
Using the first of these to simplify the latter allows it to be written
e
o +dw® + s =1 (3.18)

This result holds if terms that depend on k are suppressed, which is true if the condition
q + 1 > « is satisfied. In the case of interest, with d = 8, o can be eliminated from the

Kasner conditions to give
2

72w2—16w+q2 ~0, (3.19)

1 9q2
w:9<1i\/1—16>. (3.20)

This shows that the only real solutions have w > 0, and consequently o < 1. The limiting

with solutions

case with ¢ = w = 0 and o = 1 corresponds to a conical singularity at the brane position.
Hence positive ¢ is sufficient to have the Kasner condition satisfy the leading terms in the
field equations near p = 0, with additional contributions of order 1/1In p and smaller.

Notice in particular that because w > 0, the warp factor always either goes to zero or
to a finite value when approaching a source. This ensures that the warping contribution
to eq. (2.4) is never of the de Sitter sign.

We can now consider what happens if we do not neglect the logarithm, by In p, in the
warping. In this case

Guw = P (Wo + Wi lnp)gpu . (3.21)

In the dilaton equation, we get the additional (suppressed) terms

2 (W1 hi—afo—afilnp

S 2 Wo+ Wilnp

(3.22)
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In the (pp) Einstein equation this gives

1 w 1 Wi 1 W
+ - - o (3.23)
p? [ Wo+Wilnp 2Wy+Wilnp 4(W0—|—W11np)
and finally for (00)
909 [d alWy d a Wi } (3.24)
p? |2Wo+Wilnp 4 (ap+arlnp)(Wo+ Wilnp)| '

From this we see that a log-term in W only modifies the field equations at a suppressed
1/1n p level.

4 Conclusions

In summary, in this paper we examine solutions to extra-dimensional field equations
for geometries of the form of eq. (1.1), with maximal symmetry in the noncompact
dimensions. We ask what features of a solution control the curvature in the maximally
symmetric, noncompact dimensions.

Our main result is given by eq. (2.4), which gives the noncompact curvature scalar
as a sum of four terms: R oc [ + II + I11 + IV. Here I corresponds to the bulk action
evaluated at the appropriate back-reacted solution; II denotes an integral over a total
derivative involving the warp factor (whose sign is usually definite, and not de Sitter-like);
117 denotes the direct contribution of the actions of any localized sources; and IV denotes
a term which vanishes for solutions that are maximally symmetric in the noncompact
dimensions, in the absence of space-filling fluxes.

Our main new result is to show, for codimension-two sources, that the boundary
conditions that must be satisfied near the sources relate the near-source asymptotics of
the bulk fields in such a way that the contributions 11 and I11 precisely cancel.

In these circumstances eq. (2.4) degenerates down to eq. (2.41), which relates the
curvature completely to the on-shell bulk action. Remarkably, it is very often true that
this on-shell action is also a total derivative. A sufficient condition for this turns out to be
the existence of a rigid scale invariance of the classical equations of motion [55], which in
particular is present for most higher-dimensional supergravity theories of general interest.
When S, _shenn is the integral of a total derivative, the curvature of the noncompact
dimensions is completely determined by the asymptotic form of a particular combination
of bulk fields near any sources that are distributed around the extra dimensions.

These arguments have two main implications. First, they show (at least for
codimension-two sources) that source back-reaction and the source actions cannot be
neglected when seeking de Sitter solutions. But they also show that all of the details of the
complete back-reacted solution are not required; it often suffices to know the asymptotic
behaviour of the bulk fields in the near-source limit.

We explicitly derive which bulk fields play this role for 11D supergravity and 10D Type
ITA and Type IIB supergravity, and we hope soon to have results to report on new kinds of
explicit extra-dimensional de Sitter solutions that can exploit the results we present here.
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A Curvature and fluxes for simple Freund-Rubin examples

In this appendix we review several familiar Freund-Rubin AdS,; x S, solutions to higher-
dimensional supergravity, where d +p = D. We do so in order to explore how space-filling

fluxes show up in eq. (2.4) of the main text.

Freund-Rubin solutions

Consider solutions to the field equations for the action

§=—! /de\/—gD <R+ 2;! F2> : (A1)

9,2
2K%

For the p-form threading a p-sphere, £, . mp = K €my.....m,, Einstein’s equations

Ruw =y 0unRt L <FMABC...FN e F2) —0,  (A2)
yield the solutions that are product spaces,
ds? = gyndaMdz™ = Guvdztdz” + Grp dz™da™ (A.3)
with curvatures ) (D p 1) K2(2p - D)
R=— 2D — 2) and R = 2D — 2) (A.4)

Here R is the Ricci scalar associated with the p-sphere metric (which is negative in our
conventions), Gmn, R is the (positive) Ricci scalar of a d-dimensional anti-de Sitter metric,
Guv- R is the Ricci tensor for the full D-dimensional metric gy;x. (In the absence of

warping we need not distinguish g, from g, .)

Example: 11D supergravity

In this section we consider several examples from 11D supergravity that illustrate the
equality (2.4) with and without space-filling fluxes.
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Since the Chern-Simons term does not contribute, Freund-Rubin solutions for 11-D su-

pergravity can be obtained using the 4-form field strength, G5,y g, and the following action

_ 1 11 o 1 2
S = 21%%1 /d 1‘\/ g11 |:R+ 2(4!) G4] . (A5)

There are two natural choices, depending on whether the 4-form flux threads the anti-de

Sitter or spherical dimensions.
AdS7 X S4

First consider solutions of the form AdS7 x Sy, for which the only nonzero components of

G4 are along the 4-sphere directions:
Gnpg = 3N €mnpg  and so G5 = (9n?)4!. (A.6)

Einstein’s equations are

1 1
Run — gun R+

1
9 19 (GMABCGNABC - 3 gunN Gi) =0, (A-7)

and so taking the 11-, 7- and 4-dimensional traces of eq. (A.7) one finds

3n?2 21n2

R=-", ., R=¢"Rup=", and R=§"Ry, = —120?, (A.8)

corresponding to AdS7 x Sy.
One can use these to check eq. (2.4):

1 21 n?
/d7:c\/—g7 R = " /d7x

B 2/{% B 4/@%

1 3n?  (In?)4!
d  Son_shel = — dtty/— -

an on—shell 21%%1/ \/ g11 |: 9 + 2(4') :|

3n?2

_ dll _
2/{%1/ \/ gi1,
and so 1 .
- 21%3 /d79€\/—g7 R = 9 Sonfshelh (AQ)

as required by (2.4) for a unwarped solution of maximal symmetry without space filling flux.
AdS4 X S7

Now consider the solution AdSy x S7, which involves a space-filling flux: G0 = 3m €41 po-
From Einstein’s equations one finds

3m? - . 21m?
R = ;” . R=§"Rpn=-""1_" and R=g"R,, =12m?. (A.10)
In this case one finds a mismatch between
1 4
— /d4x\/—g4 R and Son—shell - (A.11)
2K 2
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This difference is accounted for by including the flux contribution to g"*dL" /dg"”, which
gives a term of the form of eq. (2.9), as required by eq. (2.4).

Alternatively, one can work with a dual Lagrangian containing a kinetic term for the
7-form, H, that is dual to G:

1
2/4%1

1

/dux\/—gu [R—i— 2(7)

Sdualized = H$:| . (Al?)
In this description the seven form threads only internal directions and has no space-filling

components, and the dualized action evaluates to

1

4
- 2/@21 /d456\/—g4 R = 9 S on-shell (dualized) - (A.13)

Recall for these purposes that although dualization is a symmetry of the equations of
motion, it is not a symmetry of the action.

B On-shell supergravity actions

This appendix explicitly evaluates the total-derivative form for the bosonic sectors of 11D
and 10D Type ITA and Type IIB supergravity.

11D supergravity

For 11D supergravity the bosonic action is

1

Sll _
- 2
2657

. 1 1
d"zv/ =g |R Gi| - /G NGy NCs. B.1
/ il [ Toa) T T g, | NGNS (B-1)
This scales as S — $9/25™ when Gy n — sGuny and Caynpe — $2Cynp-
As argued above, this scaling behaviour implies that the on-shell lagrangian is a total
derivative. To show this in detail use the trace of Einstein equation,

. G?
R=— 4 B.2
6(4!) (B.2)
and the equation of motion for the 3-form potential:
1
d(*G4) = — 9 Gy NGy . (B.?))

Together, these two equations give the following expression for the on-shell 11D action:

1
Son—shell = T 6r2, /d(03 A *G4) : (B.4)
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10D Type ITA supergravity

The story for the 10D Type IIA supergravity action is similar. In the string frame this
action is the sum of the Neveu-Schwarz, Ramond-Ramond and Chern-Simons sectors,

SUA = Sns+ Skr+ Scs (B.5)
where
1 A 1
Sns = — A%/ —g10 €72? |R — 40,0 H?
Spr = — 1 /dl%\/—g1 L F2 + L pe (B.6)
2k2, O l2e2n "2 " 24 4 '
1
Scs = T2 /BQ/\F4/\F47
K10
and
F4:F4—|—Cl/\H3, H3=dBy, F,=dC7; and F;=dCs. (B?)
The scaling symmetry in this frame has the form S™ — 2 SUA if ¢=¢ — 579,

Cy — sCy and Cynp — sChyyp, with gy, n and B,y held fixed. So once again we expect
the on-shell action to evaluate to a boundary term, and ask what this boundary term
is. We identify the boundary term in the Einstein frame, obtained by the Weyl scaling
Jun = e‘WQgMN, since the field equations are simpler.

The Einstein-frame action becomes

1 1 e—® e30/2 b2 _
A 10,. /_ 2 2 2 2
! R—Laonsdo— < Hynstz+ ) FyaeE B.8
= — — A — A A .
g [ [R— gdonsdo =, Hynatty+ B nwEy B3)
e?/? . ~ 1
+ 9 F4/\*F4—|—2Bg/\F4/\F4 ,
leading to the following equations of motion for the form fields
~ 1
d<e*¢> « Hy + e?/2Cy A *F4> =, FinFy (B.9)
d(€3¢/2 * F2> = —€¢/2 Hs A *F4 (BlO)
d<e¢/2 *F4+F4/\B2> ~0. (B.11)
The trace of the Einstein equations similarly gives
1 e ® 3e3¢/2 e?/?
~-R=_(0¢)* Hj 2 FY. B.12
o 09+ 4(3)) 3 i 8(2!) 2 i 84 4 (B12)
Substituting eq. (B.12) into the action eliminates the curvature scalar,
1 ef(b 63¢/2 3e¢/2 ~ ~
S&A—shenz—%Q /(- ) Hs A «Hs+ A Fy A «Fy+ A Fy AN«Fy+By NFy N Fy |,
10
(B.13)
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which can be written as a total derivative using the form-field equations of motion:

¢/2

1 3¢/2 3 -
/d <—e¢ By AN xHs + © 9 C1 N xFy + 62 C3 N\ xFy (B.14)

SHA _
on—shell 2
8K

~ 3
—6¢/2BQ/\C1/\*F4+2C3/\F4/\BQ> .

10D Type IIB supergravity

The starting point is the bosonic part of the Type IIB lagrangian density in 10D, which
again involves the NS-NS fields ¢, g,y and B,,y; the Ramond-Ramond gauge potentials
C, Cyn and CMNPQ-

The string-frame lagrangian for these fields is [64]
1 N YA - 1.
Lo = T k2 \/_g {6 20 g <RJVIN +40yu¢0 aNgb) + 9 GV FyFy
10

1 un-rorrsl= = _
+ 12 QMNQPQQRS |:FMPRFNQS +e 2¢HMPRHNQS}
1

AMN ~PQ ~RS ~TU ~AV
+ i @

480 g g g g Wﬁ]MPRTVﬁNQSUW}
= = -2
T 82 e? 0(4) A <F(3) A F(3) +e ¢H(3)H(3)> , (B.15)
where Flj, 1) := dCy) is the field strength for the k-form Ramond-Ramond gauge poten-
tials, Cy,), and H 3y := dB(3). The F’s are defined by

~ ~ ~ 1 1
F(g) = F(3) — CH(3) and F(5) = *F(5) = F(5) T C(Q) A H(g) + 9 B(Q) A F(g) . (B.16)

2 £HB

This lagrangian scales as LB — s if the fields are scaled as follows

e ? — Sei(b, Jun — Gun C(k) — SC(k) , B(2) — B(Q) . (B.17)

This is most easily seen from eq. (B.15) since each term but the last is quadratic either
in e~ or one of the s, and (2.23) shows that ﬁ(k) — Sﬁ(k) under the transformation
(B.17). The last term is cubic in these fields but also has a compensating factor of e? out
front. We are again guaranteed that the lagrangian becomes a total derivative on shell.

To identify what the derivative is, it is more convenient to use the Einstein frame,
Jun = e?/ 2gun, and to group the other fields into the complex quantities that transform
simply under SL(2, R),

7:=C+ie® and G3) = Fiz) — 7 Hs . (B.18)

In terms of these the lagrangian density becomes

1 OyTONT 1 MPR
L=— —g " (R MEEN GirrrG
2%%0 V=g [g < wv 2 (Im 7)2 12Im7 MR
1 =~ ~ 7 0(4) A G(3) A G(3)
F F]MPRTV _ B19
T ygo FrerTy } 8K3, ImT ' (B-19)
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and the scaling of the complex fields becomes

T—s7T and G(g) — SG(3) . (B.QO)
To identify the on-shell action eliminate the Ricci scalar using the trace of the Einstein
equations®
MNP
~R= aMTaMTQ 4 GG (B.21)
2 (Im 7') 24Im T
Used in the action this yields
1 Gs-Gj
SE2 hell = — A"/~ / Cy N Hy A F.
on—shell 48/@%0 / z/=gio Im 7 4/{10 4 3 3
! / LORy A wBy 4 Loy A xH /C ANH3AFy  (B.22)
= — e e — .
21%%0 4 3 3 4 3 3 41%%0 4 3 3
==, 9 e?F3 AN xF3 + H3/\(6 x* Hy — Cpe *F3)+ CyNHs N F3|.
2K7, 4 4 2
Integrating by parts gives
1 1 ~ 1 ~
SUB = — 9 / { d(Cg A e? x F3> + d |:B2 A <e*¢’ % Hy — Cpe? x F3>:|
2k%, 4 4

1 ~ 1 ~
— Oy Nd 6¢*F3 — By Ad (67¢*H3—C()6¢*F3)
4 4
1
+204/\H3/\F3}. (B.23)

Next we use the three-form field equations,

d<e¢*H3—Coe¢*ﬁ3> = F3/\F5, (B24)
to write

Son shell —

1 ~ 1 ~
{ <CQ /\6¢*F3> + d|:B2 A (e*¢*H3 — CQ€¢*F3>:|
2/410 4 4
1
4

~ 1
CQ/\F5/\H3— BQ/\Fg/\F5—|—204/\H3/\F3}
= /d|:02/\6 *F3—|—B2/\< *Hg—C(]e(b*ﬁg)
8/-@10

+C4/\CQ/\H3—C4/\F3/\B2:| . (B.25)

C Solutions to the 10D metric/axio-dilaton equations

We next briefly describe a situation where solutions are known fairly explicitly to the
equations governing the metric and axio-dilaton in Type IIB supergravity. These are the

unwarped, flat solutions of ref. [58].

8 F2 vanishes because the five-form is self-dual.
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Flat solutions

When n = 2 a very broad class of explicit solutions to the Einstein equations are known [58]
in the limiting case where the two transverse dimensions are not warped: 0,, /' = 0. In this
case the (uv) Einstein equation implies R = 0 and so the solutions are given by 7 = 7(z) and

ds? = 1, do*dz” + e?C#2) 4z dz . (C.1)

A broad class of solutions to eq. (3.11) are immediate when 9, W = 0 [58]: it is
satisfied by any holomorphic function, 7 = 7(z), for which 97 = 0. The transformation
properties of the axio-dilaton under the PSL(2, Z) subgroup of the PSL(2, R) symmetry

are most easily tracked if 7(z) is written

j(7(2)) = P(2), (C.2)

where j(7), is the standard bijection from the PSL(2, Z) fundamental domain, F, to the
complex sphere, given in terms of Eisenstein modular forms, Ej(7), [65]. P(z) is a holo-
morphic function whose singularities are chosen by the properties of the source branes.
The singularities of the metric turn out to be just conical at positions, z = z;, where
P(z) has isolated poles. The metric turns out to be compact when P(z) is a ratio of
polynomials of equal degree whose numerator has 24 zeroes, such as for the choice

4(24f)3

() = 2797 4 4f3 (C.3)

with f(z) a polynomial of degree 8 and g(z) a polynomial of degree 12. This gives a
compactification of Type IIB supergravity on C' P!, corresponding to an F-theory reduction
on K3 [59-62].

The metric function C(z, z) is found by solving Einstein’s equations, giving

N 2
) = (Im) |n’(7) [[(z = 2) 7", (C.4)
i=1
where n(1) = ¢"/?*T[.(1 — ¢*), for ¢ = ™7, denotes the Dedekind n-function [65], and
the product runs over the singularities of P(z).

Notice that because the d-dimensional metric is flat for all of these solutions, eq. (3.12)
shows that any sources must satisfy that g, (0Ssource/0Gs) vanishes, at least when inte-
grated over the Gaussian pillbox surrounding the source position. This turns out to be
true, in particular, when Ssource is the action of a D7-brane [51] or its image under SL(2, Z).

Finally, the asymptotic form of 7(z) near the singularities may be found using the
known properties of (7). In particular, for large Im 7, j(7) ~ ¢~ 2™7 + ... and so where
P(z) ~ ¢;/(z — z;) the above solution implies

1
T(2) ~ o In(z —z;) +---
and €202 ~ EIm T ~ _2k In|z—z|+--, (C.5)
T

as z — z;, for k a positive constant.
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