
J
H
E
P
0
4
(
2
0
1
1
)
1
2
4

Published for SISSA by Springer

Received: March 8, 2011

Accepted: April 18, 2011

Published: April 28, 2011

Heavy flavour kinetic equilibration in the

confined phase

M. Laine

Faculty of Physics, University of Bielefeld,

D-33501 Bielefeld, Germany

E-mail: laine@physik.uni-bielefeld.de

Abstract: By making use of a non-perturbative definition of a momentum diffusion co-

efficient as well as Heavy Meson Chiral Perturbation Theory, we investigate the Brownian

motion and kinetic equilibration of heavy quark flavours deep in the confined phase. It

appears that the momentum diffusion coefficient can be expressed in terms of known low-

energy constants; it increases rapidly at temperatures above 50 MeV, behaving as ∼ T 7/F 4
π

for mπ

π
≪ T ≪ Fπ, where mπ and Fπ are the pion mass and decay constant, respectively.

The early increase may suggest a broad peak in κ/T 3 around the QCD crossover. For a

more detailed understanding the computation could be generalized in a number of ways.

Keywords: Thermal Field Theory, Heavy Quark Physics, Chiral Lagrangians

ArXiv ePrint: 1103.0372

c© SISSA 2011 doi:10.1007/JHEP04(2011)124

mailto:laine@physik.uni-bielefeld.de
http://arxiv.org/abs/1103.0372
http://dx.doi.org/10.1007/JHEP04(2011)124


J
H
E
P
0
4
(
2
0
1
1
)
1
2
4

Contents

1 Introduction 1

2 Basic physics of momentum diffusion 2

3 Heavy meson chiral perturbation theory 4

4 Main computation 7

4.1 Force operator 7

4.2 Euclidean formulation 9

4.3 Leading order 10

4.4 Next-to-leading order 12

5 Conclusions and outlook 13

1 Introduction

An ideal scenario for what could happen in a heavy ion collision is that light quarks and

gluons form a rapidly expanding thermalized medium, and that there are some “probes”

available, whose properties are affected by the medium in a significant yet tractable way.

Among the most attractive probe candidates are heavy quarks (charm and bottom quarks

as well as their antiparticles), which can be copiously produced in an initial hard process.

After a while the heavy quarks decay, but modifications on their behaviour caused by the

thermal medium could conceivably be deduced from the experimentally observed transverse

momentum distributions and azimuthal anisotropies of the leptonic decay products [1, 2].

With such motivations in mind, a significant body of work has been carried out dur-

ing the last 20 years or so, concerning the effects that a thermal medium can have on

the propagation of heavy quarks [3, 4]. Roughly, the initial stages are characterized by

radiative energy loss (bremsstrahlung), which may slow down the heavy quarks; the final

stages are characterized by elastic scatterings, which cause collisional energy loss but also

produce random kicks corresponding to Brownian motion. Assuming, idealistically, that

the thermal system is spatially large enough for all of these processes to take place, they

have been described by a number of related physical concepts and observables, such as

energy loss (dE/dx), stopping distance, jet quenching, (momentum) diffusion, drag, or

kinetic equilibration.

In the present paper, we focus on a late stage of the above scenario, in which the

heavy quarks are practically at rest with respect to the thermal medium but also undergo

Brownian motion. (Possible extensions to more general kinematics are outlined in the con-

clusions.) More specifically, we are interested in an observable called the momentum diffu-

sion coefficient, κ, which characterizes the random force acting on the heavy quarks and,

through a fluctuation-dissipation relation, also determines their kinetic equilibration rate.
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Recently, a number of theoretical works have addressed the same problem. For in-

stance, κ has been computed to leading [5] and next-to-leading [6] order in the weak-

coupling expansion. It has also been given a non-perturbative definition [7] in the frame-

work of Heavy Quark Effective Theory [8]–[12]; this was partly inspired by computations

through AdS/CFT techniques in the large-Nc limit of strongly coupled N = 4 Super-

Yang-Mills theory, which suggest a larger κ than in leading-order QCD [13–15]. (Similar

conclusions have also been reached for AdS models resembling QCD; see e.g. ref. [16] and

references therein.) Numerical simulations have been carried out within so-called classical

lattice gauge theory, suggesting again a value larger than indicated by the weak-coupling

expansion [17]. All of this makes a strong case for attacking the problem with lattice

simulations, a challenge that may be less daunting that the determination of many other

“transport coefficients”, such as viscosities, because of the simpler structure of the pertinent

spectral function [18]; indeed the very first numerical attempts look rather promising [19].

The inherent uncertainties related to analytic continuation from Euclidean numerical data

have also been looked into, and it appears that it might be feasible to carry through the

program at least on the qualitative level [20]. Once a value of κ is available, it can be

incorporated in hydrodynamical simulations to yield results relevant for experiment (cf.

e.g. ref. [5]); there is a growing body of such works under way.

The purpose of the present paper is to make use of the non-perturbative definition of

κ introduced in ref. [7], and to evaluate it deep in the confined phase. This is possible in

QCD because, due to chiral symmetry breaking,1 the infrared dynamics of the confined

phase can be parametrized with a small number of “low-energy constants”. In fact, in a

certain limit, we find that κ is fully determined in terms of the pion decay constant and the

pion mass. There is, of course, a long history to applying Chiral Perturbation Theory (not

to mention hadronic models) for the computation of various thermodynamic properties of

the pion gas, see e.g. ref. [21]; past developments and the non-trivial theoretical challenges

that are related particularly to transport coefficients have recently been discussed in the

context of the bulk viscosity of strongly interacting matter in ref. [22].

The paper is organized as follows. The non-perturbative definition of the momentum

diffusion coefficient is reviewed in section 2; the chiral effective theory relevant for handling

heavy-light mesons in the confined phase is described in section 3; and the computation of

the momentum diffusion coefficient is presented in section 4. Some conclusions comprise

section 5.

2 Basic physics of momentum diffusion

Considering time scales short compared with the life-time of the heavy quarks (or heavy-

light mesons) but long compared with those of microscopic processes involving gluons

and light quarks (or light mesons), which have a momentum p ∼ T ∼ 100 MeV, where

T denotes the temperature, the dynamics of the heavy degrees of freedom, with a mass

1The number of light flavours is assumed non-zero, Nf > 0; it is unclear whether κ can be given a

sensible meaning in the confined phase for Nf = 0 [7] even if the related Euclidean correlator appears to

exist [18].
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M ≫ T , presumably resembles Brownian motion. If so, it can be described by the Langevin

equation, with the role of the stochastic noise being played by a force induced by QCD-

mediated collisions with gluons and light quarks (or light mesons), which are present with

an abundant number density n ∼ T 3. The corresponding equations of motion have the form

ṗk(t) = −ηD pk(t) + ξk(t) , (2.1)

〈〈 ξk(t) ξl(t
′) 〉〉 = κ δkl δ(t− t′) , 〈〈ξk(t)〉〉 = 0 , (2.2)

where pk is the momentum of the heavy objects (k = 1, 2, 3); ξk is a Gaussian stochastic

noise; and 〈〈. . .〉〉 denotes an average over the noise. According to eq. (2.2) the momentum

diffusion coefficient, κ, characterizes the auto-correlator of the force,

κ =
1

3

∫ ∞

−∞

dt
∑

k

〈〈 ξk(t) ξk(0) 〉〉 , (2.3)

whereas the coefficient ηD appearing in eq. (2.1) is referred to as the “kinetic equilibration

rate” or the “drag coefficient”. As is well-known, in classical statistical physics the two

can be fluctuation-dissipation related to each other: ηD ≃ κ/(2TM), where we interpret

M as a specific mass definition (more precisely the heavy quark “kinetic” mass; we assume

a regularization scheme respecting Lorentz symmetry, and then M is equal to the “rest”

or “pole” mass; it should be fixed non-perturbatively).

Now, it was argued in ref. [7] that the classical definition of κ as an autocorrelator of

forces, eq. (2.3), can “naturally” be extended to QCD. Suppose that we know the heavy

quark Hamiltonian, Ĥ, as well as the Noether current associated with the U(1) flavour

symmetry, Ĵ µ. More specifically, Ĥ and Ĵ 0 are needed up to O(M0) in an expansion in a

large M , whereas the Ĵ k are needed up to O(1/M). With these operators we can define a

“susceptibility” related to the conserved charge,

χ00 ≡ β

∫

x

〈

Ĵ 0(t,x) Ĵ 0(t,0)
〉

T
, β ≡ 1

T
,

∫

x

≡
∫

d3x , (2.4)

and the “acceleration” associated with the spatial components,

dĴ k

dt
= i

[

Ĥ, Ĵ k
]

+
∂Ĵ k

∂t
, (2.5)

where the partial derivative acts on possible background fields. Consequently,

κ ≡ β

3

3
∑

k=1

lim
ω→0

[

lim
M→∞

M2

χ00

∫ ∞

−∞

dt eiω(t−t′)

∫

x

〈

1

2

{

dĴ k(t,x)

dt
,
dĴ k(t′,0)

dt′

}〉

T

]

. (2.6)

Since M
∫

x
dĴ k/dt represents, according to Newton’s law, a force, this definition is indeed

a generalization of eq. (2.3). The ordering of the various limits requires, however, a careful

analysis [7]; the situation simplifies only if a dependence dĴ k/dt ∼ 1/M can be factored

out and cancelled. We also note that, as dictated by standard relations between various

time orderings at finite temperatures [23],

κ = lim
ω→0

2TρE(ω)

ω
, (2.7)

where the spectral function ρE is defined as in eq. (2.6) but with a commutator replacing

the anticommutator. (The notation 〈. . .〉T refers to the usual thermal average.)
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3 Heavy meson chiral perturbation theory

The goal now would be to evaluate eq. (2.6) at low temperatures. This can be achieved

by making use of an effective field theory that is valid in the regime considered and al-

lows us to define the operators entering the definition. Given that the framework may

be unfamiliar within the finite-temperature community, we give a few ingredients in the

following, although no attempt is made at a comprehensive review (see refs. [24–26] for

introductions).

The “usual” chiral Lagrangian describing the pseudo Nambu-Goldstone bosons of chiral

symmetry breaking has the form [27]

LχPT =
F 2

4
Tr (∂µU∂µU †) +

Σ

2
Tr (M†U + U †M) + . . . , (3.1)

where F is the pion decay constant in the chiral limit (naively F ≃ 93 MeV), Σ is the

chiral condensate, M is the quark mass matrix, and U ∈ SU(Nf) is the Goldstone field.

For simplicity we take the mass matrix to be of the form M = m1 in the following,

with m ∈ R; then the pion mass squared is m2
π = 2mΣ/F 2 + O(1/F 4). Parametrizing

U = exp(2iξ
F

), the tree-level propagator is

〈 ξab(x) ξcd(y) 〉(0) =
1

2

(

δadδbc −
1

Nf
δabδcd

)

∆(x− y;m2
π) , (3.2)

where ∆ is a scalar propagator. It is important to keep in mind that for the M chosen,

eq. (3.1) contains no terms cubic in ξ, i.e. no three-pion interactions. (Interactions among

odd numbers of pions are contained in the Wess-Zumino-Witten term, but it is suppressed

by a large number of derivatives.)

The next step is to supplement the chiral Lagrangian with a piece describing heavy-

light mesons. The resulting effective description is called Heavy Meson Chiral Perturbation

Theory (HMχPT) [28–30].

To start with we note that, unlike Heavy Quark Effective Theory (HQET) [8]–[12],

which describes all states containing a single heavy quark or antiquark (provided that the

associated gluons and light quarks are soft), the mesonic HMχPT only contains a specific

subset of such states, namely parity-odd pseudoscalar and vector mesons (D and D∗ for

charm, B and B∗ for bottom), with total spin 0 or 1. The standard convention is to denote

the scalar by Pa and the vector by P ∗µ
a , where a is a light flavour index (a = 1, . . . , Nf); to

streamline the notation we define Qµ
a ≡ P ∗µ

a in the following. Although Qµ
a is written as a

four-vector, it only contains three independent components, cf. eq. (3.10) below.

The form of HMχPT is dictated by symmetries, of which there are many. First of all

there is a U(1) symmetry related to the conserved heavy quark number; this yields the

Noether current J µ alluded to above. Second, HQET at O(M0) displays a heavy quark

spin symmetry, since Pauli matrices first appear at O(1/M); this implies a relation be-

tween the fields Pa and Qµ
a (cf. eq. (4.2) below). Third, the light-quark index a enjoys a

specific transformation property under the SU(Nf)L×SU(Nf)R chiral symmetry. Fourth,

even though the effective Lagrangian is non-relativistic, its origin in relativistic QCD im-

plies that it also remembers something about proper Lorentz symmetry, provided that this
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has not been broken through regularization. This is usually implemented by introducing

an arbitrary parameter, a four-velocity vµ, and an associated “velocity reparametrization

invariance” [31]. Finally, there are the usual discrete C, P, and T symmetries of QCD.

It turns out to be non-trivial to implement all the symmetries in a convenient way.

In fact, in order to define a simple parity transformation it is not practical to use the

Goldstone field U in the part of the Lagrangian involving the heavy mesons, but rather

a “coset field”
√

U .2 (General formal considerations can be found in refs. [33, 34].) If U

transforms in SU(Nf)L×SU(Nf)R as

U → LUR† , (3.3)

then the field
√

U can be assigned the transformation

√
U → L

√
UW † and

√
U →W

√
UR† , (3.4)

where the complicated (space-time dependent) field W is defined through eqs. (3.4). We

can subsequently introduce the traceless and Hermitean fields

Vµ ≡
i

2

[√
U

†
∂µ

√
U +

√
U∂µ

√
U

†
]

, (3.5)

Aµ ≡
i

2

[√
U

†
∂µ

√
U −

√
U∂µ

√
U

†
]

, (3.6)

which transform as

Vµ → WVµW † + iW∂µW † , Aµ → WAµW † . (3.7)

Note that in the chiral expansion, inserting
√

U = exp( iξ
F

), we get

Vµ =
i

2F 2

(

ξ ∂µξ − ∂µξ ξ
)

+O
(

ξ4

F 4

)

, Aµ = − 1

F
∂µξ +O

(

ξ3

F 3

)

, (3.8)

i.e. Vµ couples to an even number of pions and Aµ to an odd number.

The heavy meson fields Pa and Qµ
a are normally assembled into a 4× 4 matrix Ha and

its conjugate H̄a ≡ γ0H†
aγ0:

Ha ≡
1 + /v

2

(

/Qa + iγ5Pa

)

, H̄a =
(

/Q †
a + iγ5P

†
a

)1 + /v

2
, (3.9)

where, following a frequent convention, (. . .)† denotes complex conjugation acting on Pa,

Qµ
a . Here vµ is a four-velocity with v · v = 1. The vector meson field is constrained by

v ·Qa = 0 , (3.10)

which implies for instance that /v /Qa = − /Qa/v . The chiral transformation can be as-

signed as

H → H W † , H̄ →W H̄ . (3.11)

2We follow the notation of e.g. ref. [32], where HMχPT was used in connection with a lattice investigation.
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Defining

Dµ
ba ≡ ∂µ δba + iVµ

ba , (3.12)

the effective Lagrangian at O(M0) has the form

L(0)
HMχPT = −iTr (H̄a v · Dba Hb) + MP Tr (H̄aHa) + gπ Tr (H̄aHb /Abaγ5)

+ σ1 Tr (H̄aHb)(
√

UM†
√

U +
√

U
†M
√

U
†
)ba

+ σ′
1 Tr (H̄aHa)(

√
UM†

√
U +

√
U

†M
√

U
†
)bb + . . . , (3.13)

where the trace is over Dirac matrices, and “. . .” denotes terms of higher order in the

chiral expansion. The coefficient gπ is a new dimensionless low-energy constant, estimated

from e.g. D∗ → Dπ decays [26] or lattice determinations (e.g. refs. [35, 36]) to be around

gπ ≃ 0.5.

The mass term on the first row of eq. (3.13), proportional to MP , is often not shown,

because it can be shifted away by a time-dependent phase transformation. However, for

the finite-temperature application that will be discussed in the next section, it is useful to

keep MP explicit. The terms proportional to the low-energy constants σ1, σ
′
1 play a role,

at leading order, for the mass spectrum: σ′
1 shifts MP by a flavour-independent amount,

whereas σ1 would break the flavour symmetry ifM were non-degenerate. In our case both

of these effects can be accounted for through MP , so we omit σ1, σ
′
1 in the following. The

spin symmetry between Pa and Qµ
a is only broken at O(1/M); although we presently turn

to such effects, the “trivial” mass splitting that they induce will be considered to already

be accounted for by the present remarks, and we denote the vector meson mass by MQ.

Now, we turn to terms of O(1/M). Some of these can be deduced from eq. (3.13)

through reparametrization invariance [31]. This is a transformation which leaves invariant

the “original” momentum operator Pµ ≡ Mvµ + iDµ as well as scalar products such as

v ·v = 1. Writing vµ → vµ + ǫµ/M with v · ǫ = 0, which implies iDµ → iDµ− ǫµ, we observe

in particular that the combination

Oba = iv · Dba −
a1

2M
(D · D)ba (3.14)

is invariant only for a1 = 1. This is clearly a reflection of Lorentz symmetry, and means

that the coefficient of a particular O(1/M)-operator is fixed in terms of that of iv · Dba at

O(M0). (Whether it is M or MP that appears in the denominator of eq. (3.14) plays no

role, because their difference amounts to an effect of O(1/M2).) So,

L(1)
HMχPT =

1

2M
Tr [H̄a (D · D)ba Hb] + . . . . (3.15)

The term proportional to gπ in eq. (3.13) also implies the existence of terms of O(gπ/M)

with specific coefficients, but the argument is not quite as transparent as that with eq. (3.14);

we postpone a discussion to after eq. (4.2). Analyses of all terms of O(1/M), also those

not fixed by reparametrization invariance, have been carried out in refs. [37, 38].

– 6 –



J
H
E
P
0
4
(
2
0
1
1
)
1
2
4

4 Main computation

We now apply the theory defined by eqs. (3.13), (3.15) to estimate the momentum diffusion

coefficient as defined by eq. (2.6). The computation carried out is rather straightforward

and simple-minded, but the result is interesting so we present the steps in some detail.

4.1 Force operator

We start by rewriting the sum of eqs. (3.13), (3.15) after carrying out the Dirac traces,

setting v → (1,0), and adding terms of O(gπ/M) through an argument to be discussed

presently (the indices k, l,m are spatial; indices are raised and lowered with the metric

(+−−−); repeated indices are summed over; and “. . .” indicates terms of higher order in

the chiral expansion):

LHMχPT = 2
[

P †
a iD0

baPb −MP P †
aPa

]

+ 2
[

Q†
ak iD0

baQbk −MQ Q†
akQak

]

+2igπ

[

P †
aQbl −Q†

alPb + ǫklmQ†
akQbm

]

Al
ba

+
1

M

[

P †
a (DlDl)baPb + Q†

ak(DlDl)baQbk

]

+
gπ

M

[

2P †
aDk

cbQck + 2Q†
ck

←−D k
acPb + ǫklm

(

Q†
akDl

cbQcm −Q†
ck

←−D l
acQbm

)]

A0
ba

+O
(

1

M

)

+ . . . . (4.1)

In the part of O(1/M) only terms with spatial derivatives acting on P and Q have been

shown, because these are the only ones contributing to J k. Also, Q†
c
←−Dk

ac ≡ (Dk
caQc)

†.

The heavy quark spin symmetry amounts to the transformations

δPa = −αl Qal , δQak = αk Pa + ǫklmαl Qam , αk ∈ R , k, l,m ∈ {1, 2, 3} . (4.2)

Terms of O(M0) in eq. (4.1) are easily seen to be invariant under this transformation; the

mass terms are invariant only if MQ = MP , i.e. the difference MQ−MP must be of O(1/M),

as mentioned above. Even though this is not the case in general, the terms of O(1/M)

shown explicitly in eq. (4.1) are also invariant under eq. (4.2) (the term on the fourth row

is invariant only up to total derivatives and terms containing covariant derivatives acting

on A0
ba, which have been omitted because they do not contribute to J k). The invariance

exists because these terms are related to invariant terms of O(M0).

The fourth row of eq. (4.1), with a coefficient gπ/M , is new with respect to eq. (3.15).

It is connected to the second row of eq. (4.1) through reparametrization invariance; to be

concrete, one could imagine that the vector field of an original relativistic theory, let us

denote it with Q̃, satisfy a transversality constraint of the type PµQ̃µ = 0 rather than

eq. (3.10). So, recalling that Pµ ≡ Mvµ + iDµ, every appearance of Qµ can be replaced

with Q̃µ ≡ Qµ − vµiD · Q/M , where Qµ does satisfy eq. (3.10) [31]. This yields terms of

O(gπ/M) with fixed coefficients. The O(1/M) structures shown in eq. (4.1) that have been

determined through reparametrization invariance are the only ones from the full list [38]

that contain spatial derivatives acting on Pa, Qal, and therefore contribute to J k. (An

– 7 –
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P

π

P ∗

gπ

F

(a)

P

π

P

π

1

F 2

(b)

P

π

P

πgπ

F

gπ

F

P ∗

(c)

Figure 1. Some of the scatterings experienced by P -mesons almost at rest with respect to a pion

gas (P and P ∗ could represent B and B∗-mesons, respectively). The process (a) is kinematically

allowed for D-mesons, but not for B-mesons. There is no t-channel scattering on thermal pions,

because the Lagrangian in eq. (3.1) contains no three-pion vertex and that in eq. (4.1) contains

no PPπ-vertex. Electromagnetic interactions, such as scatterings on blackbody photons, have

been omitted.

explicit crosscheck on the logic presented could be obtained by starting from a genuinely

relativistic formulation, such as the ones in refs. [37, 39], and taking the non-relativistic

limit only in the end, because then all consequences of Lorentz symmetry are automatically

respected. In the following the terms of O(gπ/M) are included for illustration but are

omitted from the final result.)

Now, all terms proportional to gπ couple to Aµ
ba and thus to an odd number of pions,

whereas terms without gπ couple to an even number of pions (cf. eq. (3.8)). Also, gπ

necessarily mixes the fields P and Q†, or Q and Q†. This makes the terms proportional

to gπ in general the most important ones from the point of view of zero-temperature

phenomenology, such as the decays of the D∗ and B∗ mesons [26]; a relevant amplitude is

illustrated in figure 1(a). However, if all particles are on-shell, this process is kinematically

forbidden for B-mesons, because the mass difference between B and B∗, scaling as 1/M ,

is below the pion mass. Therefore the dominant processes for B-mesons are of the types

shown in figures 1(b) and 1(c), and the scattering amplitude is O(1/F 2).

Next, we obtain from eq. (4.1) the U(1) Noether current:

J 0 = 2P †
aPa + (Pa ↔ Qak) +O

(

1

M

)

, (4.3)

J k =
1

M

[

i(P †
a∂kPa − ∂kP †

a Pa)− 2P †
aVk

baPb

]

+ (Pa ↔ Qal)

+
2igπ

M

[

P †
aQbk −Q†

akPb + ǫlkmQ†
alQbm

]

A0
ba +O

(

1

M2

)

. (4.4)

In order to determine the acceleration from eq. (2.5), we would need the Hamiltonian;

however, equivalent information should be contained in classical equations of motion,

which read

i∂0Pa = MP Pa + V0
ba Pb − igπAl

baQbl +O
(

1

M

)

, (4.5)

i∂0Qak = MQ Qak + V0
ba Qbk + igπ

(

Ak
baPb − ǫklmAl

baQbm

)

+O
(

1

M

)

. (4.6)

Note that when acting on J 0, J k, the terms of O(MP ,MQ) from here cancel out (apart
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from a possible remainder proportional to MQ −MP ∼ 1/M), so that effectively the time

derivatives count as terms of O(M0).

Combining eqs. (4.4)–(4.6), and noting that in eq. (2.6) a spatial average can be taken

over the currents and that therefore partial integrations are allowed with respect to ∂k, we

finally obtain ∂0
∫

x
J k. Terms do proliferate quite a bit: defining

iFµν
ab ≡ [Dµ T ,Dν T ]ab = i

(

∂µVν
ba − ∂νVµ

ba + iVµ
caVν

bc − iVν
caVµ

bc

)

, (4.7)

iGµν
ab ≡ [Dµ T , iAν T ]ab = i

(

∂µAν
ba + iVµ

caAν
bc − iAν

caVµ
bc

)

, (4.8)

iHµν
ab ≡ [iAµ T , iAν T ]ab = i

(

iAµ
caAν

bc − iAν
caAµ

bc

)

, (4.9)

iH̃µν
ab ≡ {iAµ T , iAν T }ab = i

(

iAµ
caAν

bc + iAν
caAµ

bc

)

, (4.10)

where (. . .)T denotes a transpose with respect to flavour indices, we obtain the structure

∂0

∫

x

J k =
2

M

∫

x

{

P †(F k0 − g2
πHk0)P + Q†

l (F
k0 − g2

πHk0)Ql

+igπ

[

P † Glk Ql −Q†
l Glk P + ǫmlnQ†

m Glk Qn

]

+igπ

[

P †(G00 − i∆MA0T )Qk −Q†
k(G

00 + i∆MA0T )P + ǫmknQ†
m G00 Qn

]

+g2
π

[

Q†
k H̃ l0 Ql −Q†

l H̃ l0 Qk + ǫklm

(

Q†
m H̃ l0 P − P † H̃ l0 Qm

)]}

+O
(

1

M2

)

,

(4.11)

where ∆M ≡MQ −MP and flavour indices have been suppressed. For ∆M = 0 each row

is separately invariant under the heavy quark spin symmetry, eq. (4.2). We focus on two

of the operators in the following, namely ∼ P †FP (cf. eq. (4.24)) and ∼ igπP †GQ (cf.

eq. (4.19)).

4.2 Euclidean formulation

Before proceeding with the main line of the computation, we need to confront the specific

time ordering appearing in eq. (2.6). We do this by going through the imaginary-time for-

malism, because this produces an intermediate result which could in principle be compared

with lattice simulations. Denoting by τ = it the Euclidean time coordinate, the propagator

of Pa is then determined by the Euclidean action (corresponding to a weight exp(−SE))

S
(0)
E =

∫ β

0
dτ

∫

x

2P †
a (∂τ + MP )Pa + (Pa ↔ Qak) . (4.12)

Due to charge conservation the susceptibility of eq. (2.4) can be re-expressed as

χ00 =

∫ β

0
dτ

∫

x

〈 [ 2P †
aPa ](τ,x) [ 2P †

b Pb ](0,0) 〉T + (Pa ↔ Qak) +O
(

1

M

)

, (4.13)

and, taking into account the Wick rotation of the time coordinate, the Euclidean correlator

related to eq. (2.6) can be defined as

GE(τ) ≡ β

3
lim

M→∞

M2

χ00

∫

x

〈∂0Ĵ k(τ,x) ∂0Ĵ k(0,0)〉T
∣

∣

∣

it→τ
. (4.14)

– 9 –



J
H
E
P
0
4
(
2
0
1
1
)
1
2
4

P π Q

(a)

P π π P

(b)

P
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π

π
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(c)

Figure 2. Euclidean correlators corresponding to the scattering processes shown in figure 2. The

solid (single or double-lined) circle represents the Euclidean time interval; open squares correspond

to force operators; and P and Q stand for the pseudoscalar and vector fields, respectively (in particle

language the Q-field is denoted by P ∗). The pion lines do not meet in process (c).

The subscript in GE could refer to “electric”. In the subsequent steps we again omit hats,

because eq. (4.14) can be evaluated through normal Euclidean path integrals.

The correlator of eq. (4.14) is periodic across the Euclidean time interval, GE(τ +kβ) =

GE(τ), k ∈ Z, and can be Fourier analyzed in the Matsubara formalism. In particular,

after a Fourier transform,

G̃E(ωn) =

∫ β

0
dτ eiωnτGE(τ) , (4.15)

where ωn = 2πnT , n ∈ Z, the spectral function is obtained from an imaginary part [23]:

ρE(ω) = Im G̃E(ωn → −i[ω + i0+]) . (4.16)

The momentum diffusion coefficient then follows from eq. (2.7).

The Euclidean action in eq. (4.12) implies that, for 0 < |τ − σ| < β, the free propaga-

tor is

〈Pa(τ,x)P †
b (σ,y)〉(0)T

=
1

2
δab δ(3)(x− y)T

∑

ωn

eiωn(τ−σ)

iωn + MP

=
1

2
δab δ(3)(x− y)nB(MP )

[

θ(σ − τ)e(σ−τ)M
P + θ(τ − σ)e(β−τ+σ)M

P

]

, (4.17)

where nB(MP ) ≡ 1/(eβMP − 1) is the Bose distribution. The propagator 〈QakQ†
bl〉

(0)
T has

the same structure, with an additional δkl. The susceptibility of eq. (4.13) then evaluates to

χ00 = βNf δ(3)(0)
(

e−βM
P + 3 e−βMQ

)

+O
(

1

F 2
,

1

M

)

, (4.18)

where we also took the limit MP ,MQ ≫ T , replacing nB(M ) through exp(−βM ).

4.3 Leading order

We now move on to consider the correlator GE, defined by eq. (4.14), with the force inserted

from eq. (4.11) and the susceptibility from eq. (4.18). Some of the relevant Feynman graphs
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are shown in figure 2; we start by considering the process (a). It was already argued in

connection with figure 1 that this should give no contribution to κ but, as a preparation

for the next-to-leading order computation, we recall briefly how the vanishing can be seen.

Making use of eqs. (3.8), (4.8) and the 2nd and 3rd rows of eq. (4.11), the process in

figure 2(a) corresponds to

〈 ∂0Jk(τ,x) ∂0Jk(0,0) 〉T ∼
g2
π

M2F 2

〈

[Q†
a ∂∂ξba Pb ](τ,x) [P †

c ∂∂ξdc Qd ](0,0)

〉

T

, (4.19)

where space-time indices have been omitted. Contracting the heavy-meson fields as in

eq. (4.17), we note that there is one appearance of “forward” and one of “backward”

propagation; in the imaginary-time formalism, these amount to circling the Euclidean time

interval. If we also insert the Goldstone boson propagator from eq. (3.2), the result becomes
∫

x

〈 ∂0Jk(τ,x) ∂0Jk(0,0) 〉T

∼ g2
π(N2

f − 1)

M2F 2
δ(3)(0)nB(MP )nB(MQ) e(β−τ)MP eτM

Q ∂∂∂∂∆(τ,0) , (4.20)

where

∆(τ,0) = T
∑

ωn

∫

p

eiωnτ+ip·0

ω2
n + E2

p

=

∫

p

nB(Ep)

2Ep

[

eτEp + e(β−τ)Ep

]

eip·0 , (4.21)

with Ep ≡
√

m2
π + p2 and

∫

p
≡

∫

d3p/(2π)3. A Fourier transform (cf. eq. (4.15)) can now

be taken:
∫ β

0
dτ eiωnτe(β−τ)M

P eτMQ

[

eτEp ± e(β−τ)Ep

]

=
eβ(M

Q
+Ep) − eβM

P

iωn + MQ −MP + Ep
± eβM

Q − eβ(M
P

+Ep)

iωn + MQ −MP − Ep
. (4.22)

The subsequent discontinuity, eq. (4.16), turns these into energy conservation constraints:

ρE(ω) ∝
∫

p

Im

[

eβ(MQ+Ep) − eβMP

ω + MQ −MP + Ep + i0+
± eβMQ − eβ(MP +Ep)

ω + MQ −MP − Ep + i0+

]

= −π

∫

p

[

δ(ω + MQ −MP + Ep)e
βEp ± δ(ω + MQ −MP − Ep)

]

eβM
Q

(

1− eβω
)

,

(4.23)

where the δ-functions were made use of for rewriting the exponentials. (Using Hermitean

conjugate operators in eq. (4.19) yields the same but with MQ ↔MP .)

It can now be seen that the limit of eq. (2.7) can be non-trivial only if there are pion

momenta with Ep = ±(MQ−MP ) (in fact this is a necessary but not a sufficient condition;

in principle it could happen that the numerator of eq. (4.20), which has been left implicit

here, vanishes at the same point, however this does not appear to be the case). This

corresponds indeed to figure 1(a), and cannot be realized if |MQ −MP | < mπ, as is the

case with B-mesons. Let us end by remarking that the same is expected to be the case also

for many corrections of O(g2
π/F 4), obtained from the topology of figure 2(a) by dressing

either the pion propagator or the force operator by a closed “bubble”, which does not affect

momentum flow.

– 11 –



J
H
E
P
0
4
(
2
0
1
1
)
1
2
4

4.4 Next-to-leading order

Moving on to next-to-leading order, we need to consider graphs like (b) and (c) in figure 2.

Due to the large number of terms proportional to gπ in eq. (4.11), as well as the possibly

associated uncertainty as discussed below eq. (4.2), we simplify the task here by setting

gπ → 0, omitting thereby contributions of O(g2
π) and O(g4

π) from κ, which would otherwise

be of the same order in the chiral expansion. Recalling that phenomenologically gπ ≃ 0.5,

this cannot change the overall magnitude of the result. In this limit only the process (b) (as

well as the same topology with Pa → Qak) is left over. Apart from “trivial” mass effects,

spin symmetry implies that the terms containing Pa and Qak have identical structures at

O(g0
π). Therefore in the following only the part involving Pa is displayed explicitly.

As a first step we rewrite the relevant term of eq. (4.11):

∂0

∫

x

J k =
2i

M

∫

x

P †
a(D0

caDk
bc −Dk

caD0
bc)Pb +O

(

gπ

M

)

. (4.24)

This can be contrasted with eq. (2.17) of ref. [7]: the colour-electric field strength of HQET

has been replaced by a kind of “chiral-electric” field strength in HMχPT.

Going then over to the Euclidean correlator of eq. (4.14), we obtain

GE(τ) =
β

3
lim

M→∞

4

χ00

∫

x

〈{

P †
a [DT

τ ,DT
k ]abPb

}

(τ,x)
{

P †
c [DT

τ ,DT
k ]cdPd

}

(0,0)
〉

T
+O

(

g2
π

)

.

(4.25)

Inserting the heavy meson propagator from eq. (4.17) and the susceptibility from eq. (4.18),

this can be re-expressed as

GE(τ) =
1

3Nf

〈

[DT
τ ,DT

k ]ab(τ,0) [DT
τ ,DT

k ]ba(0,0)
〉

T
+O

(

g2
π

F 4
,

1

F 6

)

. (4.26)

With the contribution of Qak added as has already been done here, the Boltzmann weights

(cf. eq. (4.18)) have duly cancelled between the numerator and the denominator.

Having obtained eq. (4.26), the problem has reduced to one within normal Chiral

Perturbation Theory, eq. (3.1). Noting from eqs. (3.8), (4.7) that

[DT
τ ,DT

k ]ab = i(∂τVk − ∂kVτ )ba +O
(

1

F 4

)

(4.27)

=
1

F 2
(∂kξ ∂τξ − ∂τ ξ ∂kξ)ba +O

(

1

F 4

)

, (4.28)

and inserting the propagator from eq. (3.2), we obtain after some algebra that

GE(τ) =
N2

f − 1

6F 4

[

∂τ∂k∆(τ,0)∂τ ∂k∆(τ,0)− ∂2
τ ∆(τ,0)∇2∆(τ,0)

]

+O
(

g2
π

F 4
,

1

F 6

)

. (4.29)

Employing ∆(τ,0) from eq. (4.21), the first term of eq. (4.29) is seen not to contribute,

because the p-integrand is odd in p→ −p. The second term of eq. (4.29) does contribute;

the Fourier transform (cf. eq. (4.15)) can be carried out and, apart from a contact term
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∝ δ(τ), yields a sum of four terms, with ωn-dependence in structures of the type ∼
1/(iωn ± Ep ± Eq), in analogy with eq. (4.22). The spectral function (cf. eq. (4.16)) is

obtained by replacing these with −πδ(ω ± Ep ± Eq), in analogy with eq. (4.23). Thereby

we end up with

ρE(ω) =
π(N2

f − 1)

6F 4

∫

p,q

p2Eq

4Ep

×
{[

1 + nB(Ep) + nB(Eq)
][

δ(ω − Ep − Eq)− δ(ω + Ep + Eq)
]

+
[

nB(Ep)− nB(Eq)
][

δ(ω + Ep − Eq)− δ(ω − Ep + Eq)
]}

+O
(

g2
π

F 4
,

1

F 6

)

. (4.30)

The final step is to take the limit defined in eq. (2.7). Due to vanishing phase space,

only the second structure of eq. (4.30) gives a contribution linear in ω at ω → 0; this

corresponds to the process in figure 1(b) in the limit of vanishing energy transfer. The

terms linear in ω can be extracted by using the δ-functions to rewrite the arguments of

the Bose distributions, and by then Taylor-expanding the latter. There are two terms,

amounting to a symmetrization p ↔ q; afterwards we can set Eq → Ep. Given that

n′
B
(E) = −βnB(E)[1 + nB(E)], this yields

κ =
π(N2

f − 1)

3F 4

∫

p,q

p2 + q2

4
nB(Ep)

[

1 + nB(Ep)
]

δ(Ep − Eq) +O
(

g2
π

F 4
,

1

F 6

)

=
(N2

f − 1)T

24π3F 4

∫ ∞

0
dp2 p2 (3p2 + 2m2

π)nB(Ep) +O
(

g2
π

F 4
,

1

F 6

)

, (4.31)

where a partial integration was carried out. In the limit πT ≫ mπ the integral can be

performed explicitly and the result reads

κ
πT≫mπ≈ 2(N2

f − 1)π3T 7

63F 4

[

1− 7m2
π

10π2T 2
+O

(

m4
π

π4T 4

)]

+O
(

g2
πT 7

F 4
,
T 9

F 6

)

. (4.32)

A numerical evaluation is shown in figure 3. This constitutes our final result.

5 Conclusions and outlook

The purpose of this paper has been to estimate the overall magnitude of the momentum

diffusion coefficient, κ, of a heavy-light pseudoscalar meson almost at rest with respect to a

heat bath, which has a temperature in the range of some tens of MeV. The result, eq. (4.31)

and figure 3, is given in terms of low-energy constants of two-flavour Chiral Perturbation

Theory.

Although the result obtained is not immediately applicable to heavy ion collision ex-

periments, in which the initial temperature may be in the range of hundreds of MeV and

much of heavy quark energy loss could take place in the deconfined phase, the hope is that

the analysis is nevertheless of theoretical interest. After all, physical QCD is believed to
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κ 
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3

result at O(1/F
4
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high-T expansion

Nf = 2, F = 93 MeV, mπ = 138 MeV, gπ = 0

O( mπ
0
 )

O( mπ
2
 / π2

T
2
 )

Figure 3. An illustration of κ/T 3 as a function of the temperature. The dashed line shows the

result from eq. (4.31); the dotted lines show two orders of the high-temperature expansion from

eq. (4.32). At high temperatures, T & 80MeV, the chiral expansion breaks down because higher

order corrections of relative magnitude O(T 2/F 2) become large; at low temperatures, T . 30MeV,

the high-temperature expansion breaks down because the expansion parameter O(m2

π
/π2T 2) ex-

ceeds unity (the unexpanded result of eq. (4.31) remains valid but is exponentially small). In the

deconfined phase a value κ/T 3 & 2 might be phenomenologically acceptable (see e.g. ref. [15]; an

oft-cited “diffusion coefficient” is D ≃ 2T 2/κ . 1/T ). The weak-coupling expansion suggests in

general values κ/T 3 . 2 [6], and at very high temperatures κ/T 3 decreases like ∼ 1/ ln2(T/T0).

possess a crossover rather than a genuine phase transition between low and high temper-

atures, so that analyses in the former regime may yield qualitative information also for

the latter. More concretely, our analysis combined with existing weak-coupling computa-

tions [6] suggest a picture in which the momentum diffusion coefficient exhibits a broad

peak around the QCD crossover. So, heavy quark jets produced in an initial hard process

may continue to approach kinetic equilibrium all the way until their final decoupling within

the hadronic phase.

Despite the qualitative nature of our study, it seems that a number of potentially

interesting extensions can be envisaged. Most obviously, the result for κ of B-mesons

could be completed with terms of O(g2
π) and O(g4

π). Although no qualitative changes

are expected, the corrections may be numerically important, perhaps in the range of ∼
50%. In addition the analysis appears formally interesting: as discussed in the text, it

should probably be carried out both within the non-relativistic theory as well as within a

relativistic extension thereof, taking the non-relativistic limit only afterwards in the latter

case, in order to have a crosscheck.

Another interesting topic is the “extension” of the study to D-mesons. This immedi-

ately leads to the dramatic effect that resonant contributions, such as the process shown in

figure 1(a), are allowed, whereby the D-mesons can change their identity (a further com-
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plication is that for D∗ decays electromagnetic processes are important). The handling of

the related rich physics may suggest an excursion away from systematic computations, into

the realm of hadronic models; an overview of recent works in this direction can be found

e.g. in ref. [40]. Nevertheless, it can be noted that resonant phenomena could also play a

role in theoretical considerations of the B-sector, if we took the chiral limit mπ → 0 while

keeping the mass difference MB∗ −MB fixed and non-zero.

Yet another line is that whereas only the “intercept”, κ = limω→0 2TρE(ω)/ω, was ad-

dressed here, the full spectral function ρE(ω) (eq. (4.16)), and even the Euclidean correlator

GE(τ) (eq. (4.14)), are also interesting objects. For instance, they may help in the interpre-

tation of the corresponding lattice measurements à la ref. [19] (if these were unquenched); it

is in this spirit that both functions have been computed also in the deconfined phase [18],

and in fact GE(τ) even in the confined phase in the presence of a large lattice spacing,

through the use of the lattice strong-coupling expansion [18]. The terms of O(g2
π/F 2) (cf.

figure 2(a)) do contribute significantly to GE(τ), even if they do not contribute to κ as has

been discussed in the text; it might turn out to be useful to gain understanding on how

hidden the information about κ is in the directly measurable GE(τ).

A further topic is not to consider the spectral function ρE(ω) yielding κ, but rather

the full spectral function ρ(ω,k) ≡
∫

t,x
eiωt−ik·x〈12 [Ĵ µ(t,x), Ĵµ(0,0)]〉T , of which ρE(ω)

is a specific limit [7]. Restricting first to vanishing momentum, k = 0, and to small

frequencies, the analysis can still be carried out within the non-relativistic framework.

This spectral function is expected to show a narrow and prominent “transport peak” at

frequencies |ω| . ηD ∼ κ/(2TM). A direct analysis of such infrared features tends to

be difficult, necessitating complicated resummations (see e.g. ref. [22]), but at least the

theory in question is not a gauge theory, whereby these may be more tractable than in the

deconfined phase.

The most ambitious goal would be to consider ρ(ω,k) also for k 6= 0, perhaps even for

|k| & M , corresponding to heavy mesons moving at a relativistic speed with respect to a

pionic plasma. Although this could take us away from the range of validity of systematic

HMχPT, simple relativistic extensions can be written down (see e.g. refs. [37, 39]). Within

such a framework one might also try to understand phenomena such as radiative energy

loss, perhaps making contact with classic pion gas computations that have recently been

revived through the AdS/CFT setup [41].
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