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1 Introduction

The usual perturbative approach of covariant quantum gravity on flat space starts with

the Einstein-Hilbert theory and expands the Riemannian metric gij around a constant

background, gij = δij + hij . The diffeomorphism invariance then translates into a gauge

symmetry of the fluctuation hij , which to lowest order reads δhij = ∂iξj + ∂jξi. From

this point of view, the problem of formulating the corresponding quantum field theory

is conceptually not much different from Yang-Mills theory. Technically, however, gravity

appears to be much more complicated than Yang-Mills theory in that the Einstein-Hilbert

action is non-polynomial in the fluctuation hij (and, of course, physically it is also very

different in that it is non-renormalizable).

In recent years it has become clear, however, that the amplitudes reveal a hidden

simplicity that is obscured at the level of the Lagrangian and the corresponding Feynman

rules; see [1–3] and references therein. For instance, string theory exhibits the so-called KLT

relations which imply a factorization of closed string or graviton amplitudes into open string

or gauge theory amplitudes [4]. It turns out that similar KLT relations also hold in the

corresponding (low-energy) field theories, i.e., in Einstein gravity and its supersymmetric

extensions. These relations have been instrumental in the recent UV-finiteness proofs for

N = 8 supergravity at higher loops; see [5] for a review.

Given these intriguing simplifications, it is natural to ask whether there is a way to

make these properties, at least to some extent, manifest at the level of the Lagrangian.

Specifically, one has the freedom to perform field redefinitions of hij , and one may expect

that there is a field-basis that is better adapted to the features inherited from string the-

ory. In fact, in closed string field theory, for instance, a non-linear and non-polynomial

field redefinition is required in order to connect the ‘string variables’ to the ‘Einstein vari-

ables’ hij [6].
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Early attempts to render the KLT relations manifest upon field redefinitions (and

non-linear generalizations of the de Donder gauge-fixing condition) are due to Bern and

Grant [7]; see [8, 9] for more recent results. The idea is to factorize the metric fluctuation

into two ‘gauge vectors’,

hij → Ai Āj , (1.1)

and then to require that the Feynman rules factorize into ‘left-handed’ parts depending

only on A and ‘right-handed’ parts depending only on Ā. Put differently, one can think of

the first index of hij as left-handed or unbarred and the second index as right-handed or

barred, and then demand that the Lagrangian contains only like-wise index contractions.

This requires a field redefinition which reads to lowest order [7]

hij → hij +
1

2
hi

khkj + · · · . (1.2)

Of course, since hij is actually symmetric, this assignment of left and right indices may

sound somewhat obscure, in particular, this requirement is not very strong. One purpose of

this note is to introduce field redefinitions that establish consistent left-right factorization

to all orders in perturbation theory for the low-energy theory of the bosonic string, i.e.,

for Einstein gravity coupled to a 2-form and a dilaton. The relevant formulation allows

to combine the metric and 2-form fluctuations into a non-symmetric field eij , which is

the natural variable in string theory and which leads to an unambiguous assignment of

left-right indices.

To this end, we use the recently formulated ‘double field theory’ and its T-duality

invariance [10–13] (see also [14, 15] and [16] for a review). Specifically, in this theory the

space-time coordinates are doubled in such a way that the T-duality group O(D,D) (with D

denoting the space-time dimension) acts naturally, and it is equivalent to the standard low-

energy action when the dependence on the new coordinates is dropped. The theory requires

a constraint that eliminates half of the coordinates, and for the purposes of this paper we

may thus think of the new coordinates as purely auxiliary objects; in particular, we do

not require the coordinates to be compact. We introduce this formulation in section 2 and

review how the O(D,D) invariance of the full non-linear background independent action

is, in fact, equivalent to consistent left-right index contractions (in a sense to be made

precise below). When expanded around a constant background, however, this left-right

factorization is no longer manifest in the sense required above, but the field redefinition

that relates to the basis in string field theory and that should therefore restore this property

is known to all orders [6, 11]. Here, we prove that in this field basis the O(D,D) invariance

indeed implies left-right factorization to all orders in perturbation theory, thereby solving

the problem stated above.

Apart from the last technical step, this result is already largely contained in the ex-

isting literature on double field theory, but it can actually be cast into a somewhat more

geometrical language, using a powerful formalism based on enlarged frame fields introduced

by Siegel [17, 18]. The frame field eA
M is subject to global O(D,D) transformations, acting

in the fundamental representation indicated by indices M,N, . . . = 1, . . . , 2D, and to local
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GL(D)×GL(D) tangent space transformations, corresponding to the flat index A = (a, ā).1

Siegel also introduces a perturbative expansion, in which the fluctuation h carries only flat

indices,

eA
M = 〈eA

M 〉 − hA
B〈eB

M 〉 , (1.3)

where 〈eA
M 〉 denotes the constant background. The tangent space symmetry can be gauge-

fixed such that the only independent variable is the off-diagonal component hab̄ [17].

Recently, this frame formalism has been related in detail to the double field theory and

thereby to the conventional variables in Einstein gravity [13, 15]. Based on this, we present

in section 3 as the main results of this note the precise relation between the perturbations

in Einstein gravity and string field theory on the one hand and the perturbations in Siegel’s

frame formalism on the other. Remarkably, we find that the string field theory variable,

here denoted by eij , can be identified with the frame-like variable hab̄ to all orders,

eij = 〈ei
a〉 〈ej

b̄〉hab̄ . (1.4)

Here, the two (independent) background vielbeins can be rotated into Kronecker symbols by

means of background GL(D)×GL(D) transformations. This formulation provides therefore

a significant technical simplification in that the field redefinition that establishes the left-

right factorization need not be carried out explicitly, but rather is implicitly incorporated by

use of the frame-like variable. It has already been pointed out by Siegel that this formalism

allows us to make certain features inherited from string theory manifest in conventional

field theory [17]. Here, this will be investigated explicitly, in particular we discuss the

Lagrangian formulation that makes the left-right factorization manifest, as displayed in

eq. (3.44) below.

2 T-duality and redefinition of Einstein variables

In this section we review the double field theory and its O(D,D) invariance. Next, using

this duality invariance, we prove that in the field-basis suggested by string field theory

left-right factorization is realized to all orders.

2.1 Double field theory and Einstein variables

We start from the standard low-energy action for bosonic string theory, i.e., with Einstein

gravity coupled to a 2-form bij and a scalar dilaton φ,

S =

∫

dx
√

ge−2φ

[

R + 4(∂φ)2 − 1

12
H2

]

, (2.1)

where Hijk = 3∂[ibjk]. The double field theory extension of this action is written in terms of

a variable that combines the metric and b-field into a ‘non-symmetric metric’, Eij = gij+bij ,

and a dilaton d, which is a density rather than a scalar and defined by
√

ge−2φ = e−2d [12],

S =

∫

dxdx̃ e−2d

[

− 1

4
gikgjl DpEkl DpEij +

1

4
gkl
(

DjEikDiEjl + D̄jEki D̄iElj

)

+
(

Did D̄jEij + D̄id DjEji

)

+ 4DidDid

]

,

(2.2)

1For an alternative formulation with local GL(D) symmetry see [19].
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where all indices are raised with gij , which is the inverse of gij = E(ij). Here, all fields

depend on the ‘doubled’ coordinates X ≡ (x, x̃), with derivatives defined by

Di =
∂

∂xi
− Eik

∂

∂x̃k

, D̄i =
∂

∂xi
+ Eki

∂

∂x̃k

. (2.3)

The consistency of the action requires the constraint

DiADiB − D̄iA D̄iB = 0 (2.4)

for arbitrary fields and parameters A,B, which implies that locally the fields depend only

on half of the coordiantes. When the fields are assumed to be independent of x̃, i.e.,

∂̃ = 0, (2.2) is equivalent to (2.1) [12].

The crucial property of the double field theory action (2.2) that will be used below is

its global O(D,D) invariance under

E ′(X ′) = (aE(X) + b)(cE(X) + d)−1 , d′(X ′) = d(X) , (2.5)

where the coordinates transform in the fundamental representation of O(D,D),

X ′ =

(

x̃′

x′

)

=

(

a b

c d

)(

x̃

x

)

,

(

a b

c d

)

∈ O(D,D) . (2.6)

This invariance is not manifest, but can be reduced to consistent index contractions as

follows [12]. The transformation behavior of the metric g and the calligraphic derivatives

of E and d is governed by the matrices M and M̄ defined by

M(X) = dt − E(X)ct , M̄(X) = dt + E t(X)ct . (2.7)

More precisely, the (inverse) metric transforms as

gij = (M̄−1)p
i g′ pq (M̄−1)q

j , gij = (M−1)p
i g′ pq (M−1)q

j , (2.8)

and the calligraphic derivatives as

Di = Mi
k D′

k , D̄i = M̄i
k D̄′

k . (2.9)

Moreover, despite the non-linear form of (2.5), it can be checked that E , acted on by a

calligraphic derivative, transforms as

DiEjk = M q
i M p

j M̄ ℓ
k D′

qE ′
pℓ , D̄iEjk = M̄ q

i M p
j M̄k

ℓ D̄′
qE ′

pℓ . (2.10)

Therefore, in this formalism there are two types of indices, unbarred and barred, corre-

sponding to a transformation with M or M̄ under O(D,D). In particular, Eij acted on by

a calligraphic derivative can be viewed as an object for which the first index is unbarred

and the second index is barred, while the index of an (un-)barred calligraphic derivative

is (un-)barred. Finally, from (2.8) we infer that the indices of the (inverse) metric can be

thought of as either both unbarred or both barred. The O(D,D) invariance of (2.2) then
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follows from the fact that the action has only like-wise index contractions, which one may

easily confirm by inspection.

Thus, the double field theory formulation of the low-energy action exhibits already a

left-right factorization that it reminiscent to the requirement stated in the introduction.

However, once we consider the fluctuations around a flat background, this factorization

does not translate into a corresponding factorization in terms of the fluctuation. To see

this, we decompose E according to

Eij = Eij + ěij , (2.11)

where we denoted the fluctuation by ěij (which is the sum of the usual metric fluctuation hij

and the fluctuation of the 2-form) in order to distinguish it from the string field theory vari-

able eij to be discussed below. Moreover, Eij = Gij +Bij encodes the constant background

metric and B-field. If one computes, for instance, the inverse metric gij , it will contain

arbitrary higher powers of ě(ij) that generally mix left- and right-indices. Next, we discuss

the field redefinition to eij and show that it restores the required left-right factorization.

2.2 Left-right factorization and string theory variables

The full non-linear field redefinition that relates the fluctuation ěij to eij can be written

in closed form as [6, 11, 12],

ěij = Fi
k(e) ekj , F =

(

1 − 1

2
eG−1

)−1

, (2.12)

where we used matrix notation. If the b-field is set to zero, this agrees to lowest order

with (1.2), but we note that the non-linear extension differs from the field redefinition

proposed in [7].

Expanding the double field theory action (2.2) to cubic order in terms of eij, one arrives

at the action that has been derived in [10] from closed string field theory [12], and whose

quadratic piece we display,

S(2) =

∫

dxdx̃

[

1

4
eij�eij +

1

4
(D̄jeij)

2 +
1

4
(Dieij)

2 − 2 dDiD̄jeij − 4 d� d

]

. (2.13)

This action exhibits only consistent left-right index contractions and a corresponding T-

duality property in the following sense. Instead of the matrices (2.7), the transformation

rules are governed in this background-dependent formulation by [10, 20]

M = dt − E ct , M̄ = dt + Et ct , (2.14)

where the constant background Eij rather than Eij enters. Similarly, the calligraphic

derivatives (2.3) are replaced by Di and D̄i depending only on E, while index contractions

are done with Gij . We now require that the background transforms under O(D,D) as

E′ = (aE + b)(cE + d)−1 , (2.15)
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which implies for the background metric

G′−1 = M̄ t G−1 M̄ = M t G−1 M . (2.16)

This is the analogue of (2.8) and thus the indices on G−1 can again be thought of as being

either both unbarred or both barred. (Here, we have written the primed variables in terms

of the unprimed ones, because it is this form that will be used below.) Moreover, we require

that d is invariant, and we prove below that eij transforms according to

eij = Mi
k M̄j

l e′kl . (2.17)

Thus, the left index transforms with M and the right index with M̄ , and since the action

has only consistent left-right index contractions, it follows that the action has the T-duality

property

S[E′, e′, d′] = S[E, e, d] . (2.18)

The logic can now be turned around in order to find a prescription that guarantees left-

right factorization to arbitrary orders. If we start from the full non-linear action (2.2) and

use the non-linear field redefinition (2.12), we can in principle expand the action in terms of

eij to any desired order. The original action is O(D,D) invariant and, therefore, the result-

ing action has the T-duality property (2.18). Since the action is then written only in terms

of objects that transform ‘covariantly’ with M or M̄ , it follows that all terms with inconsis-

tent left-right index contractions cancel out, leaving an action with left-right factorization.2

In order to complete the above proof we have to show that eij transforms according

to (2.17) to all orders. In [10] this has been verified to lowest order, while the validity of the

non-linear field redefinition (2.12) has been confirmed by inspection of the gauge symmetries

in [11, 12]. Here we complete the existing literature by showing that the original O(D,D)

transformation (2.5), together with the form of the field redefinition (2.12), indeed implies

the simple transformation rule (2.17) to all orders.

We first determine the transformation behavior of ě from (2.5),

E + ě → (aE + b + aě)(cE + d + cě)−1

= (aE + b + aě)(cE + d)−1
(

1 − cě(cE + d)−1 + (cě(cE + d)−1)2 ∓ · · ·
)

= E′ + (a − E′c)ě(M̄ t)−1
(

1 − cě(M̄ t)−1 + (cě(M̄ t)−1)2 ∓ · · ·
)

= E′ + (a − E′c)ě(M̄ t)−1
(

1 + cě(M̄ t)−1
)−1

= E′ + (a − E′c)ě
(

M̄ t + cě
)−1

.

(2.19)

Here we have used the following matrix identity for general X and Y ,

(X + Y )−1 = X−1
(

1 − Y X−1 + (Y X−1)2 ∓ · · ·
)

, (2.20)

2This is to be contrasted with expressions that contain both covariant and non-covariant objects, as

eq. (2.27) to be discussed below. In this case, the non-covariant transformation of one term can cancel

against the non-covariant transformation of another term.
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together with (2.14). Moreover, we have used (2.15) in order to identify the transformed

background. The final expression in (2.19) can be further simplified using eq. (4.13)

from [10], which implies

E′ = −M−1(bt − Eat) . (2.21)

We also have to use the group properties of O(D,D), which require in particular

btc + dta = 1 , atc + cta = 0 . (2.22)

We then find

a − E′c = a + M−1(bt − Eat)c

= a + M−1(1 − dta + Ecta)

= a + M−1(1 − Ma)

= M−1 .

(2.23)

Using this in (2.19) we can read off the transformation behavior of ě,

ě′ = M−1 ě
(

M̄ t + cě
)−1

= M−1 ě (M̄t)−1 , (2.24)

where we used in the last equation

M̄ t + cě = cE + d + cě = cE + d ≡ M̄t . (2.25)

Thus, curiously, the left index of ěij transforms with M , but the right index with the

background-independent M̄ defined in (2.7).

Next, we determine from this result the transformation behavior of eij according

to (2.12) in order to verify (2.17), which we write here in matrix notation as

e′ = M−1 e (M̄ t)−1 . (2.26)

To prove this we show that the defining relation (2.12) between e and ě, which we write as

ě − 1

2
eG−1 ě = e , (2.27)

is invariant under (2.16), (2.24) and (2.26). Replacing in (2.27) all objects by primed

objects we get

M−1ě(M̄t)−1 − 1

2
M−1e(M̄ t)−1M tG−1MM−1ě(M̄t)−1 = M−1 e (M̄ t)−1 . (2.28)

Multiplying from the left with M and from the right with M̄t we obtain

ě − 1

2
e(M̄ t)−1M tG−1ě = e(M̄ t)−1M̄t . (2.29)

There are two contributions which are ‘non-invariant’: the terms on the left-hand side

which do not cancel because one matrix is M and the other M̄ ; and the terms on the

– 7 –
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right-hand side which do not cancel because one matrix is the background-dependent M̄

and the other the background-independent M̄. We compute the failure of covariance in

each case. First,

(M̄ t)−1 M t = (M̄ t)−1
(

M̄ t + (M t − M̄ t)
)

= 1 + (M̄ t)−1
(

d − cEt − d − cE
)

= 1 − 2(M̄ t)−1cG .

(2.30)

Second,

(M̄ t)−1M̄t = (cE + d)−1(cE + d + cě) = 1 + (M̄ t)−1cě . (2.31)

Inserting these into (2.29) one infers that the non-invariant terms cancel each other, giving

back (2.27). This completes the proof that e transforms according to (2.26).

3 GL(D) × GL(D) covariant frame formulation

In this section we reformulate the above results using the frame formalism developed by

Siegel. We first briefly review the aspects of this formalism that are relevant for our

subsequent analysis; for a more detailed account we refer to the original literature [17] or

to the recent papers [13, 15]. Then we turn to the perturbative expansion about a constant

background and prove that the natural frame-like variable can be identified with the string

field theory variable eij above.

3.1 Siegels frame formalism

This formalism is based on the frame field eA
M that is a 2D × 2D matrix,

eA
M =

(

eai ea
i

eāi eā
i

)

. (3.1)

Here, the index M is a fundamental O(D,D) index and splits according to M = ( i , i );

A is the GL(D) × GL(D) index and splits according to A = (a, ā). Thus, the frame field

transforms under global O(D,D) and under local GL(D)×GL(D) transformations. More-

over, the frame field transforms under a gauge symmetry with a parameter ξM = (ξ̃i, ξ
i)

that combines the usual diffeomorphism parameter ξi and the b-field gauge parameter ξ̃i

into a fundamental O(D,D) vector,

δξeA
M = ξN∂NeA

M +
(

∂M ξN − ∂NξM
)

eA
N , (3.2)

where ∂M = (∂̃i, ∂i), and indices M,N, . . . are raised and lowered with the O(D,D) invari-

ant metric ηMN .

Next, we define a space-time dependent tangent space metric from ηMN using the

frame field eA
M ,

GAB = eA
M eB

N ηMN . (3.3)

– 8 –
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This metric will be used to raise and lower flat indices. In order for the frame field to

describe the same degrees of freedom as the massless sector of closed string theory, it needs

to satisfy the GL(D) × GL(D) covariant constraint

Gab̄ = 0 ⇔ e(a
i eb̄)i = 0 . (3.4)

There are various ways to identify the conventional Einstein variables Eij = gij + bij

in this formalism. The most direct way is to gauge-fix the GL(D) × GL(D) symmetry by

setting the vielbein components ea
i and eā

i equal to the unit matrix (assuming that these

vielbeins are invertible),

eA
M =

(

−Eai δa
i

Eiā δā
i

)

. (3.5)

In here, the constraint (3.4) is implemented by parametrizing the remaining components

by a single matrix Eij. A GL(D) × GL(D) covariant definition that does not require a

gauge fixing, and which will be more useful below, is to identify [13]

Eij = −ei
a eaj = eāi ej

ā , (3.6)

where ei
a is the inverse of ea

i, and ei
ā is the inverse of eā

i. We stress that the vielbeins

in (3.6) are independent, and the flat indices are not raised or lowered by means of an invari-

ant tensor (‘two-vierbein formalism’ [18]). For the gauge choice (3.5) the definition (3.6)

coincides with the previous definition of Eij, but (3.6) is more general in that it holds

for arbitrary gauge choices. The metric gij can then be obtained from the tangent space

metric (3.3) according to

gij = −1

2
ei

a ej
b Gab =

1

2
ei

ā ej
b̄ Gāb̄ . (3.7)

Next, we mention that one can introduce connections ωA for the GL(D) × GL(D)

tangent space symmetry in order to construct covariant derivatives ∇A = eA + ωA, where

eA = eA
M∂M is the ordinary (but ‘flattened’) derivative. Without repeating details here,

we record that the calligraphic derivatives of E can be identified with GL(D) × GL(D)

covariant derivatives of eA
M as follows [15],

ea
i eb

j ec̄
k DiEjk = eb

M∇aec̄M = −ec̄
M∇aebM ,

eā
i eb

j ec̄
k D̄iEjk = eb

M∇āec̄M = −ec̄
M∇āebM .

(3.8)

Even though here we have used covariant derivatives in order to make the full tangent

space symmetry manifest, we note that the connections in (3.8) actually drop out as a

consequence of (3.4), which will be used below. The double field theory action is then

equivalent to [15]

S =

∫

dxdx̃ e−2d

[

Gab G c̄d̄

(

− 1

2
ea

M∇cec̄M eb
N∇ced̄N +

1

2
ec̄

M∇aecM ed̄
N∇cebN

− 1

2
ea

M∇āec̄M eb
N∇d̄eāN − ea

M∇c̄ed̄M ∇bd + ec̄
M∇aebM ∇d̄d

)

− 2∇ad∇ad

]

.

(3.9)
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Using the relations (3.7) and (3.8) between ‘tangent space’ and ‘world’ objects, it can be

easily seen, upon converting indices with ea
i and eā

i, that this action is equal to (2.2), up

to an irrelevant overall factor.

3.2 Perturbation theory in terms of frame-like variables

We next discuss the linearization around a constant background [17],

eA
M = 〈eA

M 〉 − hA
B〈eB

M 〉 , (3.10)

where we introduced a fluctuation hAB with flat indices (that are raised and lowered with

the background tangent space metric 〈GAB〉). This expansion is meant to be exact, i.e., all

higher powers in h in the full theory will originate from taking the inverse of this expression.

Let us first examine the GL(D)× GL(D) gauge symmetries, whose infinitesimal form

we define to be δΛeA
M = ΛA

BeB
M , with the only non-trivial parameters Λa

b and Λā
b̄. As

for the field, we expand also the gauge parameter into a background and a first-order part,

ΛA
B = Λ̄A

B − ǫA
B , (3.11)

where Λ̄ is constant and thus represents a global GL(D) × GL(D) symmetry.3 Acting

on (3.10),

δΛ

(

〈eA
M 〉 − hA

B〈eB
M 〉
)

=
(

Λ̄A
B − ǫA

B
)(

〈eB
M 〉 − hB

C〈eC
M 〉
)

, (3.12)

we read off by comparing the orders

δΛ〈eA
M 〉 = Λ̄A

B〈eB
M 〉 ,

δΛhAB = ǫAB − ǫA
ChCB + Λ̄A

ChCB + Λ̄B
ChAC ,

(3.13)

where we used

δΛhAB = δΛhA
C 〈GCB〉 + hA

CδΛ〈GCB〉 , δΛ〈GAB〉 = Λ̄AB + Λ̄BA . (3.14)

We infer that to lowest order the fluctuations are subject to a shift symmetry, δǫhab = ǫab

and δǫhāb̄ = ǫāb̄, and so it is natural to impose the gauge fixing condition

hab = hāb̄ = 0 . (3.15)

This is also meant to be an exact gauge fixing condition. The constraint (3.4) then implies

0 = ea
M eb̄

N ηMN =
(

〈ea
M 〉 − ha

c̄〈ec̄
M 〉
)(

〈eb̄
N 〉 − hb̄

d〈ed
N 〉
)

ηMN

= 〈Gab̄〉 − hab̄ − hb̄a ⇒ hab̄ + hb̄a = 0 .
(3.16)

Here we used that the background tangent space metric satisfies the constraint

0 = 〈Gab̄〉 = 〈ea
M 〉〈eb̄

N 〉ηMN . (3.17)

We infer from (3.15) and (3.16) that hab̄ is the only independent component.

3One may compare this with a similar splitting in the conventional formulation of gravity. Here, after

expansion about a flat background, the diffeomorphism symmetry gives rise to two types of symmetries:

global Poincaré transformations and local gauge transformations δhij = ∂iξj + ∂jξi.
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After having fixed the gauge symmetries spanned by ǫAB, let us briefly turn to the

background GL(D) × GL(D) transformations parametrized by Λ̄A
B . In order to make

contact with the formalism in section 2, we fix this global symmetry, in analogy to (3.5),

by setting the background frame field equal to

〈eA
M 〉 =

(

−Eai δa
i

Eiā δā
i

)

. (3.18)

We stress that the complete gauge fixing of the GL(D) × GL(D) symmetry consisting

of (3.15) and (3.18) is inequivalent to the gauge fixing in (3.5), because here ea
i = δa

i, etc.,

holds only in the background.

Before imposing the condition (3.18), the fluctuations hAB are inert under global

O(D,D) transformations, because they carry only flat indices. After the gauge fixing,

however, compensating background GL(D) × GL(D) transformations are required, which

will lead to non-trivial O(D,D) transformations of hAB . We write the finite form of the

background GL(D) × GL(D) transformations generated by Λ̄ in (3.13) as

〈ea
M ′〉 = (M−1)a

b 〈eb
M 〉 , 〈eā

M ′〉 = (M̄−1)ā
b̄ 〈eb̄

M 〉 , (3.19)

and thus for the independent fluctuation as

h′
ab̄

= (M−1)a
c (M̄−1)b̄

d̄ hcd̄ . (3.20)

If we require now that the matrices M and M̄ are determined in terms of the O(D,D)

matrix in such a way that the form of the background frame field (3.18) be preserved, we

find (in complete analogy to the analysis of section 4.1 in [15])

M = dt − Ect , M̄ = dt + Etct , (3.21)

while Eij transforms according to (2.15). These matrices coincide with (2.14), and thus

we recovered the formalism of section 2, in which unbarred indices transform with M and

barred indices transform with M̄ . More precisely, via the trivial background vielbeins

〈ea
i〉 = δa

i and 〈eā
i〉 = δā

i one can identify indices i, j, . . . with flat unbarred or barred

indices that transform with (3.21). From (3.20) we conclude that hab̄ transforms in the

same way as eij under O(D,D). Indeed, we will prove below that these two variables are

identical for the background choice (3.18). In the following we present all results more

generally, i.e., not assuming that the background takes the specific form (3.18), unless

stated differently. The field eij is then related to hab̄ via

eij = 〈ei
a〉 〈ej

b̄〉hab̄ . (3.22)

In particular, this variable transforms under O(D,D) according to (2.17) in general.

Let us now turn to the gauge symmetries (3.2) parametrized by ξM . We assume from

now on that the background is inert under gauge transformations, and thus we obtain for

the gauge transformation of the fluctuation

δξhA
B 〈eB

M 〉 = ξN∂NhA
B 〈eB

M 〉 −
(

∂MξN − ∂N ξM
)(

〈eA
N 〉 − hA

B〈eB
N 〉
)

. (3.23)
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Multiplying with 〈eCM 〉, relabeling indices and rearranging terms we find

δξhAB = DAξB − DBξA + ξN∂NhAB +
(

DBξC − DCξB

)

hAC , (3.24)

where we introduced gauge parameters and derivatives whose indices have been flattened

with the background frame field,

DA = 〈eA
M 〉∂M , ξA = 〈eA

M 〉ξM . (3.25)

The derivatives DA are related to the derivatives in section 2 through

Di = 〈ei
a〉Da , D̄i = 〈ei

ā〉Dā , (3.26)

i.e., they agree for the choice (3.18) of the background. Using that the background metric

Gij is related to the tangent space metric via

Gij = −1

2
〈ei

a〉 〈ej
b〉 〈Gab〉 =

1

2
〈ei

ā〉 〈ej
b̄〉 〈Gāb̄〉 , (3.27)

we note that the constraint (2.4) translates into

DaDa + DāDā = 0 , (3.28)

when acting on fields and their products.

Next, we inspect the gauge variation of the gauge-fixed components,

δξhab = Daξb − Dbξa +
(

Dbξ
c̄ − Dc̄ξb

)

hac̄ ,

δξhāb̄ = Dāξb̄ − Db̄ξā +
(

Db̄ξ
c − Dcξb̄

)

hāc ,
(3.29)

where we made use of the gauge fixing condition (3.15). Thus, the gauge condition is not

invariant under ξM transformations. This requires compensating gauge transformations

parametrized by ǫAB. Choosing ǫab to be

ǫab = Dbξa − Daξb −
(

Dbξ
c̄ − Dc̄ξb

)

hac̄ , (3.30)

restores the gauge condition hab = 0. With this form of the compensating gauge transfor-

mation we can compute the complete gauge variation of hab̄ from (3.13) and (3.24),

δξhab̄ = Daξb̄ − Db̄ξa +
(

ξcDc + ξc̄Dc̄

)

hab̄ +
(

Db̄ξ
c̄ − Dc̄ξb̄

)

hac̄ − ǫa
c hcb̄ .

= Daξb̄ − Db̄ξa

+
(

ξcDc + ξc̄Dc̄

)

hab̄ +
(

Db̄ξ
c̄ − Dc̄ξb̄

)

hac̄ +
(

Daξ
c − Dcξa

)

hcb̄

+ had̄

(

Dcξd̄ − Dd̄ξc
)

hcb̄ ,

(3.31)

where we replaced ǫ in the second equation by (3.30).

In order to compare this result with the gauge transformation of the string field theory

variable (3.22) as determined in [11], we introduce gauge parameters according to

λi = −〈ei
a〉 ξa , λ̄i = 〈ei

ā〉 ξā , (3.32)
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and we assume that indices are contracted with the background metric Gij in (3.27). We

then obtain

δλeij =Diλ̄j + D̄jλi

+
1

2

(

λ · D + λ̄ · D̄
)

eij +
1

2

(

D̄j λ̄
k − D̄kλ̄j

)

eik +
1

2

(

Diλ
k − Dkλi

)

ekj

− 1

4
eik

(

Dlλ̄k + D̄kλl
)

elj ,

(3.33)

which agrees precisely with eq. (2.20) in [11].

So far we have seen that hab̄ gives rise, via (3.22), to a variable that transforms under

O(D,D) with the matrices M and M̄ and that transforms under gauge transformations as

required by the exact result (3.33). This shows that hab̄ can be identified with the string

field theory variable eij according to (3.22). In fact, while it is possible to perform field

redefinitions that preserve the left-right index structure, e.g.

hab̄ → hab̄ + α ha
c̄ hdc̄ hd

b̄ + O(h5) , (3.34)

this would induce higher order terms in the gauge transformation (3.31) and thus be in-

consistent with the form (3.33).

We close this section by verifying that hab̄ is related to the Einstein variable ě according

to the field redefinition (2.12), which provides a direct proof for the above conclusion. In

order to simplify the notation, we assume that the background takes the specific form (3.18),

such that we can identify eij and hab̄ directly. We use matrix notation and denote the

matrix with components Eij by E, the matrix with components eai by e∗, the matrix with

components ea
i by e∗ and the matrix with components ha

b̄ by h. The expansions

eai = −Eai − ha
b̄ Eib̄ , ea

i = δa
i − ha

b̄ δb̄
i , (3.35)

then read

e∗ = −E − hEt , e∗ = 1 − h , (3.36)

while E becomes according to (3.6)

E = − (e∗)−1
e∗ . (3.37)

Inserting here the expansions (3.36), we obtain

E = (1 − h)−1 (E + hEt
)

=
(

1 + h + h2 + h3 + · · ·
) (

E + hEt
)

= E + h
(

E + Et
)

+ h2
(

E + Et
)

+ h3
(

E + Et
)

+ · · ·
= E + 2hG + 2h2G + 2h3G + · · · ,

(3.38)

where we used G = 1
2 (E + Et). Comparison with E = E + ě then implies

ě = 2
(

1 + h + h2 + · · ·
)

hG = 2 (1 − h)−1 hG . (3.39)
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The identification (3.22) relates eij to ha
c̄〈Gc̄b̄〉, which yields with (3.27)

e = 2hG . (3.40)

Inserting this into (3.39) finally implies

ě =

(

1 − 1

2
eG−1

)−1

e , (3.41)

exactly as required by (2.12). Thus, we recovered the field redefinition between Einstein

and string theory variables from the frame formalism.

3.3 The action in terms of frame-like variables

We turn now to the expansion of the action (3.9) in terms of the frame-like variable hab̄.

Moreover, we introduce e−d as a fundamental variable with a corresponding fluctuation,

Φ2 ≡ e−2d Φ = 1 + ϕ . (3.42)

This implies that the new field ϕ is related to d via

ϕ = −d +
1

2
d2 + · · · . (3.43)

The Lagrangian corresponding to (3.9) then reads in terms of Φ,4

L = − 1

2
Φ2 Gab G c̄d̄

(

Gcd ea
M∇cec̄M eb

N∇ded̄N − Gcdec̄
M∇aecM ed̄

N∇debN

+ Gāb̄ea
M∇āec̄M eb

N∇d̄eb̄N

)

+ ΦGab G c̄d̄
(

ea
M∇c̄ed̄M ∇bΦ − ec̄

M∇aebM ∇d̄Φ
)

− 2∇aΦ∇aΦ .

(3.44)

Next, we work out the various expressions in here, using that the connections inside the

covariant derivatives drop out [15]. For instance, we find

ea
M∇bec̄M =

(

〈ea
M 〉 − ha

b̄〈eb̄
M 〉
)(

〈eb
N 〉 − hb

d̄〈ed̄
N 〉
)

∂N

(

− hc̄
d〈edM 〉

)

= Dbhac̄ − hbd̄D
d̄hac̄ ,

(3.45)

where the constraint (3.17) has been used. Similarly,

ec̄
M∇aebM = −Dahbc̄ + had̄D

d̄hbc̄ , ea
M∇b̄ec̄M = Db̄hac̄ + hdb̄D

dhac̄ ,

∇aΦ = Daϕ − hab̄D
b̄ϕ . ∇āΦ = Dāϕ + hbāD

bϕ .
(3.46)

Inserting this into (3.44), we obtain an action which manifestly preserves the left-right

structure. Moreover, the choice of field basis employed here is such that non-polynomial

4Using identities like (3.8) and (3.28) the action could be rewritten in various ways, for instance such

that it becomes manifest, at the cost of extra terms, that the barred and unbarred indices enter on the

same footing.
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couplings originate exclusively from taking the inverses of GAB . This tangent space metric

is given in terms of the fluctuation by

Gab = 〈Gab〉 + ha
c̄ hbc̄ , Gāb̄ = 〈Gāb̄〉 + hc

ā hcb̄ , (3.47)

which are exact relations. Its inverse can be written in closed form using matrix notation

where G is the matrix with components Gab, Ḡ is the matrix with components Gāb̄ and, as

above, h is the matrix with components ha
b̄,

G−1 = 〈G〉−1
∞
∑

n=0

(−1)n
(

h 〈Ḡ〉ht 〈G〉−1
)n

, (3.48)

and similarly for Gāb̄. Restoring explicit index notation, this reads

Gab = 〈Gab〉 − ha
c̄ hbc̄ + ha

c̄ hdc̄ hdē hbē ∓ · · · ,

Gāb̄ = 〈Gāb̄〉 − hcā hc
b̄ + hcā hc

d̄ hed̄ heb̄ ∓ · · · .
(3.49)

Using (3.45), (3.46) and (3.49) it is, in principle, straightforward to read off the n-point

couplings from (3.44) to any desired order. By virtue of using the frame-like variable hab̄,

the left-right factorization is manifest without further field redefinitions.

As an illustration, we display the quadratic and cubic Lagrangians and verify their

equivalence with the results in the literature. The free Lagrangian reads

L(2) = −1

2
Dahbc̄ Dahbc̄+

1

2
Dahbc̄ Dbhac̄−

1

2
Dāhbc̄ Dc̄hbā+2Db̄h

ab̄ Daϕ−2DaϕDaϕ . (3.50)

This is equivalent to (2.13), using the identifications (3.27) and (3.43). The cubic La-

grangian reads

L(3) = hab̄

(

Dahcd̄ Db̄hcd̄ − Dchad̄ Db̄hcd̄ − Dahcd̄ Dd̄hcb̄
)

+ϕ
(

Dahbc̄ Dbhac̄ − Dahbc̄ Dahbc̄ − Dāhbc̄ Dc̄hbā + Db̄h
ab̄ Daϕ + Dah

ab̄ Db̄ϕ
)

+hab̄

(

Dahcb̄ Dcϕ + Dch
cb̄ Daϕ − Dc̄h

ac̄ Db̄ϕ − Db̄hac̄ Dc̄ϕ + 4DaϕDb̄ϕ
)

. (3.51)

Next, we compare this with the cubic action in [10]. The Dϕ terms in the second line can

be rewritten as D(ϕ2) and then partially integrated. Moreover, we partially integrate in

the third line in order to move first derivatives away from ϕ, after which the Lagrangian

is equivalent to

L(3) ′ = hab̄

(

Dahcd̄ Db̄hcd̄ − Dchad̄ Db̄hcd̄ − Dahcd̄ Dd̄hcb̄
)

− ϕ
(

Dahbc̄ Dahbc̄ +
(

Dahab̄

)2 −
(

Db̄hab̄

)2
+ 2hab̄

(

DaDch
cb̄ − Db̄Dc̄h

ac̄
)

)

− ϕ2DaDb̄h
ab̄ + 4hab̄ DaϕDb̄ϕ .

(3.52)

Now we have to rewrite this in terms of d, using the non-linear relation (3.43). Specifically,

performing this field redefinition, the quadratic Lagrangian (3.50) gives a contribution to
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the cubic couplings, which finally read, up to total derivatives,

L(3) ′′ = hab̄

(

Dahcd̄ Db̄hcd̄ − Dchad̄ Db̄hcd̄ − Dahcd̄ Dd̄hcb̄
)

+ d
(

Dahbc̄ Dahbc̄ +
(

Dahab̄

)2 −
(

Db̄hab̄

)2
+ 2hab̄

(

DaDch
cb̄ − Db̄Dc̄h

ac̄
)

)

− 4hab̄ dDaDb̄d − 2d2
�d ,

(3.53)

where � = DaDa = −DāDā. Using the identifications (3.27) and (3.43), this coincides

with the cubic couplings given in eq. (3.25) of [10].

We close this section with a brief discussion of possible gauge-fixing terms to be added

to the action, which is necessary in order to obtain an invertible propagator and thus to

derive the Feynman rules. For the free theory, a natural choice of gauge conditions is given

by [17]

fa := Db̄hab̄ − Daϕ = 0 , fā := −Dbhbā − Dāϕ = 0 , (3.54)

which to lowest order reduces to the usual de Donder gauge-fixing condition if the b-field,

the (scalar) dilaton φ and the tilde derivatives ∂̃ are set to zero. The gauge-fixed quadratic

action then reads [17]

L(2)
g.f. = L(2) +

1

2

(

fafa − f āfā

)

=
1

2
hab̄

�hab̄ + ϕ�ϕ . (3.55)

The gauge conditions (3.54) can be taken to be exact, in which case they translate via

the field redefinition (2.12) into a non-linear extension of the de Donder gauge-fixing con-

dition for the usual metric fluctuation, but any non-linear generalization of (3.54) that is

GL(D)×GL(D) covariant would also be consistent with the required left-right factorization

to all orders.

4 Summary and outlook

In this note we have discussed the perturbative expansion of the double field theory for-

mulation of the low-energy gravity action of closed string theory around a flat background.

When expressed in the field basis natural for string field theory, this Lagrangian exhibits

a left-right factorization to all orders in perturbation theory by virtue of its T-duality in-

variance. Moreover, we established the precise relation between the perturbation theory in

this formulation and in the frame-like formalism of Siegel. In particular, we showed that

the string field theory variable coincides precisely with a frame-like fluctuation in Siegel’s

formalism. This allows for significant technical simplifications when expanding the action

since the field redefinition relating Einstein to string theory variables is already encoded in

the frame-like fluctuation. Finally, this relationship might be useful for a more geometrical

understanding of string field theory.

The manifest left-right factorization at the level of the Lagrangian discussed here el-

evates to a corresponding factorization of the Feynman rules: each Feynman graph con-

tributing to an amplitude will factorize into left- and right-handed parts. This formulation
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exhibits, therefore, properties inherited from string theory and provides the first step to-

wards the goal to render, for instance, the KLT relations more manifest. The accomplish-

ment of this program requires, however, further work because the left- and right-handed

factors of the action in terms of hab̄, which is still non-polynomial, remain to be matched

with Yang-Mills theory. In order to achieve this, one procedure could be, as in [9], to bring

both the gravity and Yang-Mills action to cubic order upon introducing auxiliary fields.

Such a set of auxiliary fields is not unique, but one might hope that the present formulation

will eventually suggest a natural choice. We should stress, however, that the field basis

discussed here may still be redefined in a way consistent with the factorization property, as

in (3.34), and while it is natural to expect that the string field theory basis should exhibit

‘stringy’ features most directly, it remains to be seen which form is more practicable for

applications. We will leave these questions for future research.
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