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enhanced to SU(3), and the quantum liquid enters a novel phase, neither ferromagnetic nor

nematic. Our results can serve as a starting point for investigations of the phase dynamics

of deuteron liquids, as well as exploration of the stability and dynamics of the rich variety

of topological objects that may occur in phases of the deuteron quantum liquid, which

range from Alice strings to spin skyrmions to Z2 vortices.
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1 Introduction

It was recently pointed out [1] that deuterium, when compressed between atomic and nu-

clear densities, becomes a quantum liquid over a large range of temperatures. (For some ear-

lier work, see refs. [2–5].) This comes about through the confluence of a number of factors.

First, when the interparticle distance l is smaller than twice the Bohr radius a0, deuterium

atoms overlap and are ionized. One then has two separate fluids, one composed of electrons

and another composed of deuterons. Due to the Coulomb repulsion between deuterons,

which is screened by the electrons only over distances much larger than l, the deuterons at

zero temperature will crystallize into a lattice. The temperature at which the crystal melts

scales as a0Tcrys ∼ 1/180 × α(a0/l), where α is the electromagnetic coupling constant. On

the other hand, the deuterons Bose-condense at temperatures below a0Tcond ∼ 4π2/3 ×
(Ma0)

−1(a0/l)
2, where M is the deuteron mass [6]. (We work with units where kB =

~ = c = 1.) Therefore, at high enough densities (l . a0), there is a range of temperatures,

Tcrys < T < Tcond, where a quantum liquid of deuterons should form. Of course, it must also

be the case that the relevant densities are still far from nuclear ones, and ref. [1] pointed out

that this is indeed the case for deuterium. Since deuterons are charged bosons, the quantum

liquid will be a superconducting superfluid. This is the regime we address in this paper.

There are two motivations for studying this system. First, this kind of matter is ex-

pected to exist in a layer inside brown dwarfs that are light enough not to ignite deuteron

fusion [1]. Second, it may be created in terrestrial laboratories through shock compres-

sion [7, 8], experiments using inertial confinement or other techniques [9, 10]. To get

an estimate of the pressures required, suppose that the pressure is dominated by the

electron degeneracy pressure. This should be reasonable once the deuterium is ionized,

which one would expect to take place once l ∼ 2a0. The pressure P is then given by

P ≈ 1.8 × 103
(

2a0

l

)5
GPa, where we define the interparticle distance as l ≡ n1/3, and n is

the particle density. Since Tcond exceeds Tcryst once 2a0/l ∼ 1, deuterium should become a
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quantum liquid of deuterons once the pressure reaches P0 & 1.8 × 103 GPa. P0 sensitively

depends on the estimates for the ionization density and Tcond, Tcryst, so that P0 should

be viewed as only a rough estimate. For instance, recent quantum molecular dynamics

simulations suggest that deuterium may already be ionized at densities of ∼ 400GPa [11],

an order of magnitude less than naively setting l = 2a0 above would suggest.

Current diamond anvil cells reach a pressure of a few hundred GPa, as do inertial

confinement experiments [12–16]. Both are a factor of 10 − 100 shy from our estimate

of the pressures necessary for the appearance of the phases which we will be discussing.

However due to the importance of the subject for energy production and other applications,

one can hope that this gap will be closed in the future. Our goal is to explore some of the

unusual properties of this kind of matter as a guide to these experiments.

Since we are interested in phenomena occurring at length scales much larger than the

size of the deuterons, the system can be described by a Lagrangian with point-like deuterons

and electrons interacting via electromagnetism. In the regime of interest, the momenta of

the deuterons are very small compared to their mass M ∼ 2GeV, so the deuterons are

non-relativistic. Since the deuterons are charged spin-1 bosons, they can be described by

a complex 3-vector field d. The non-relativistic Lagrangian governing this system is

L + µN =d†

(

iD0 + µ+
~D2

2M

)

d + ψ̄(i /D +m+ µeγ
0)ψ

− 1

4
FµνF

µν +
eg

2M
B · (d† × d) + · · · , (1.1)

where Dµ = ∂µ + ieAµ, and ψ and Aµ are, respectively, the electron and photon fields, B is

the magnetic field, g ≈ 0.857 the magnetic moment of the deuteron in Bohr magnetons, m

is the electron mass, and µ, µe are the chemical potentials of the deuterons and electrons;

d† × d = ǫijkd∗jdk in a slight abuse of notation. The Lagrangian has an O(3) global rota-

tion symmetry, and a U(1) electromagnetic gauge symmetry.1 Not shown explicitly in the

Lagrangian are the deuteron interaction terms, and terms with more derivatives, the form

of which is constrained by the requirement of Galilean invariance. The inclusion of interac-

tions among deuterons is complicated, since two deuterons at rest lie above the threshold

for 3He+ n, 3H + p production, so that all of these different nuclei need to be included in

an effective field theory. This can be done following the approach to such effective theories

described, for instance, in refs. [17, 18]. These contributions are subleading but will, in

fact, play a decisive role below. We postpone a further discussion of the deuteron-deuteron

interactions until section 3.

2 Phases and the effective potential

At low temperatures (T < Tcond ≈ 106K for l ≈ 10a0), the deuterons condense, leading to

a ground state expectation value for the d field. We assume that the condensate is spatially

homogeneous, and leave the analysis of non-homogeneous phases for a later publication.

1The system of course also has a global deuteron-number symmetry, but this symmetry is included in

U(1)EM.
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The expectation value of d can be split into real and imaginary parts as 〈d〉 = a + ib,

so that a and b are real 3-vectors. Depending on the relative orientation of a and b, one

finds two different phases, sometimes named ‘ferromagnetic’ and ‘nematic’ phases in the

condensed matter/cold atoms literature. If the condensate is such that a and b are parallel,

we have the nematic phase

〈d〉 = a eiα. (2.1)

In the nematic phase, a rotation of a by π can be undone by sending α → α + π, so the

order parameter is a ‘director’ rather than a vector. If instead a and b point in different

directions, we have the ferromagnetic phase

〈d〉 = a + ib, a × b 6= 0, (2.2)

where the spin S = −i
2
d† × d = a × b of the condensate is non-vanishing.

Our first task will be to decide which of these two phases is actually realized in the

deuteron liquid. To do this, one must evaluate the effective potential V (d†,d) and minimize

it. (V (d†,d) should be seen as a function of the expectation values 〈d〉 and 〈d†〉; to simplify

notation we will drop the brackets except where this could cause confusion, but it is im-

portant to keep in mind that the arguments of V (d†,d) are classical, not quantum, fields.)

The effective potential V (d†,d) is given by the sum of all one-deuteron irreducible

diagrams with d,d† external legs and zero external momentum [19]. Due to rotation and

U(1)EM gauge symmetry it can only depend on the combinations (d† · d) = a2 + b2 and

(d† · d†)(d · d) = (a2 − b2)2 + 4(a · b)2. If we retain only the terms up to quartic order in

the effective potential we have:

V (d†,d) = −µd†d + c1(d
†d)2 + c2d

†2d2. (2.3)

For c2 > 0, V (d†,d) is minimized by a = b,a · b = 0, that is, we have the ferromagnetic

phase. In the opposite case, c2 < 0, V (d†,d) is minimized by a parallel to b, which yields

the nematic phase. Taking into account terms of higher order in d†,d other intermediate

angles between a and b may be favored.

We will now argue that, at leading order in the expansion parameter l/a0 (a0 = 1/αme

is the Bohr radius), the effective potential is given by an infinite series of one-loop diagrams

containing only screened Coulomb photons. Since the dominant Coulomb interaction is

spin-independent, this amounts to the claim that c1 ≫ c2 in eq. (2.3). To show this we

have to argue that all other diagrams are suppressed by powers of l/a0 or by the deuteron

mass M . What complicates this argument is that the estimate of any diagram we neglect

depends on the value of the chemical potential µ. However, recall that µ serves to enforce

charge neutrality, since it is is the chemical potential necessary for the existence of the same

density of deuterons and electrons. This means that one can only compute µ after V (d†,d)

is known. We break this impasse by positing a certain estimate for µ, and then making sure

it is self-consistent. Specifically, we suppose that µ ∼ α/l, and compute V (d†,d) assuming

this estimate of µ. We then use the calculated V (d†,d) to compute µ by demanding that

charge neutrality be enforced, which is the condition that

∂V (d†,d)

∂(d†d)

∣

∣

∣

∣

d†d=n

= 0, (2.4)
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Figure 1. Example of two graphs whose derivatives evaluated at d†d = n cancel in the effective

potential. The dotted lines are electrons, the solid lines deuterons and the wavy line an electron-

dressed Coulomb photon line.

where n = 1/l3 is the electron density, and check for self-consistency.

Our first step is to integrate out the Coulomb photons A0 (ignoring the magnetic

photons for the moment). The result is

L + µN =d†

(

i∂0 + µ+
~∇2

2M

)

d (2.5)

+

∫

d3r′(d†d(r) − ψ̄γ0ψ(r))Vc(r − r′)(d†d(r′) − ψ̄γ0ψ(r′))

+ · · · ,

where Vc is the Coulomb potential screened by the presence of the electron Fermi sea; the

Fourier transform of Vc(q) at small momenta (q ≪ 1/l) is

Vc(q) =
α

q2 +m2
s

(2.6)

with the Debye screening massm2
s ∼ αme/l = 1/a0l [20]. We do not include magnetic inter-

actions at this stage since they are suppressed by powers of 1/M , and thus one would expect

their contribution to the effective potential to be suppressed. Of course, this needs to be

checked self-consistently, and the effects of magnetic interactions are discussed in section 3.

Eq. (2.4) implies a cancellation between certain diagrams. Consider the two diagrams

in figure 1. The first one contributes to the d†d term in V (d†,d), while the second con-

tributes to the (d†d)2 term. Their derivatives evaluated at d†d = n, however, cancel

against each other:
∂

∂(d†d)

(

−αn
m2

s

d†d +
α

2m2
s

(d†d)2
)

= 0. (2.7)

The same cancellation occurs for any graph containing a “dangling” deuteron line con-

nected to the rest of the diagram by only one photon line, and thus we can disregard them

from now on.

This cancellation has a simple physical interpretation. Each deuteron interacts with

the average charge of the background of other particles. The charge of this background,
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Figure 2. Class of graphs contributing to the leading order effective potential displayed in two

different ways.

however, vanishes as the electron charge cancels that of the deuterons. Any shift in the

energy will come from charge density fluctuations, and these are described by two (or more)

photon exchanges. An example of a contribution of this kind is shown in the first graph

of figure 2. More complicated contributions involving more deuteron and photon lines,

however, contribute equally and need to be resummed.

Fortunately, the resummation involved is fairly standard, and amounts to the compu-

tation of the one-loop effective potential [19]. Physically, it can be seen as the sum of zero-

point energies of the deuteron quasiparticles, including the Coulomb interaction with the

condensate. Alternatively, it can be seen as the sum of the zero-point energies of the photon

quasi-particles dressed by interactions with the electrons and the deuteron condensate. The

one-loop effective potential V1 can be obtained by writing the deuteron field as d = 〈d〉+χ,

keeping only the terms quadratic in the fluctuations χ†, χ and performing the resulting

functional Gaussian integral. The result has the well known “trace log” form that gives

∂V1(d
†,d)

∂(d†d)

∣

∣

∣

∣

d†d=n

= −µ +
2

3

∫

d3q

(2π)3
Vc(q)(nVc(q) + 2ǫq)

Eq
, (2.8)

where ǫq = q2/2M − µ, E2
q = ǫ2q + (4/3)nVc(q)ǫq. The electron density n = 1/l3 appears

here because, up to terms suppressed by higher powers of α, we can make the substitution

ψ̄γ0ψ → n in eq. (2.5). Note that the expansion of V1 in powers of Vc(q) gives the sequence

of diagrams portrayed in figure 2.

The integral appearing in eq. (2.8) would be infrared divergent if not for the electron

screening (the m2
s term) and condensate screening, which appears as the term proportional

to nVc(q) in the denominator. That means that the integral will be dominated by small

values of q, on the order of q ∼ ms. When l ≪ a0 and µ ∼ α/l we have that ǫq ∼ µ ∼
α/l ∼ (l/a0)nα/m

2
s ≪ nVc, and so ǫq can be neglected in the numerator. Similarly, in the

denominator, we use the hierarchy of scales

q2/M ∼ m2
s/M ≪ α/l ∼ µ≪ nα/m2

s ∼ nVc. (2.9)
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This means that the condensate-screening nV (q) term in Eq in the denominator gives the

dominant contribution in the regime of interest. We see then that the infrared divergences

in the potential are partially cutoff by the Debye screening mass ms, and partially by the

effect of the condensate.

Using the results above, we can now estimate the integral in eq. (2.8) and find the

value of the chemical potential necessary to keep the deuteron density equal to the electron

density. This condition turns out to imply that

µ ∼ nα2

√
µ

√

m2
s

nα

1

ms
⇒ µ ∼ α

l
, (2.10)

so that our estimate of µ is self-consistent, as previously advertised.

Notice that each individual diagram that was summed above is parametrically

larger than their sum. In fact, the one-loop diagram with n photon lines is of order

(α/l4)(a0/l)
n−3/2 so they are larger the more photon lines they have. Their sum, how-

ever, is smaller, of order α/l4. This is because the infrared divergences are actually cut off

by the scale set by the deuteron condensate, an effect not included at any finite order in

perturbation theory, instead of the scale µ appearing in individual Feynman diagrams.

What remains to be done now is to argue that other graphs would, in the regime

considered, give contributions smaller than the ones that we kept. As mentioned before,

these estimates hinge on the value of µ ∼ α/l and finding this value was indeed the main

motivation for the effective potential argument above. The suppression of the remaining

diagrams is best argued through some examples. Consider, for instance, adding one photon

line to the one-loop diagrams of figure 2. The effect is to substitute one Vc(q) by a two-

photon ladder with zero incoming (relative) momentum and q ∼ ms outgoing momentum.

This ladder diagram can be estimated as

∫

d3k
α

q2 +m2
s

α

(q − k)2 +m2
s

1

ǫk
∼ α2

µms
∼ α

m2
s

√

l

a0
(2.11)

and, consequently, gives a smaller contribution compared to the leading diagrams by a

factor of
√

l/a0. Graphs including electrons are also suppressed. For instance, let us look

at at graph in figure 3. Its contribution to the effective potential can be estimated as

∫

d3q

(

α

q2 +m2
s

)2 m

l
∼ α

l4

√

l

a0

, (2.12)

where we used the fact that the electron loop, at small momenta q ∼ ms is of order

∼ m/l [20]. This contribution is again suppressed by
√

l/a0 compared to the leading

order. The picture emerging then is very similar to the high density limit of the jellium

model, which is a charged Bose gas with a fixed, non-dynamical background of negative

charges [21, 22], modified by the electron screening of the Coulomb force.

3 Symmetries of the deuteron liquid

The most important consequence of identifying the one-loop Coulomb diagrams as giving

the leading contribution to the effective potential is that the effective potential is a function
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Figure 3. An example of a sub-leading graph. The dotted line represents an electron.

Figure 4. Leading electromagnetic SU(3) breaking effect. The square vertex represents a magnetic

dipole interaction.

of d†d only, not of d†2d2. This can be seen from the fact that all the incoming deuteron

lines are contracted with outgoing deuteron lines on the graphs in figure 2. Physically, this

follows from the spin-independence of the Coulomb forces. This implies that the symmetry

group of our theory, which is O(3) × U(1)EM, is effectively enlarged to SU(3) × U(1)EM.2

We now examine the size of the SU(3) breaking effects. First, one might wonder

whether magnetic couplings between the electrons and deuterons may be responsible for

any explicit SU(3) symmetry breaking. To understand these effects, recall that since we

are interested in the deuteron effective potential, we should only consider diagrams with

deuteron external legs and zero external momentum. The leading dangerous-looking di-

agram involving magnetic deuteron-electron interactions is essentially the one in figure 3

with one of the Coulomb photon lines replaced by a magnetic photon. However, it is easy to

see that this diagram (and more complicated diagrams of this sort involving more photon

lines) does not give rise to any explicit SU(3) breaking, since such diagrams can at most

renormalize the coefficient of the d† · d term in the effective potential. The situation is

unchanged once we consider diagrams with more deuteron external legs due to the fact that

in framework we are using, all of the magnetic and electric interactions of the deuterons

with electrons are encoded in the screened photon propagators. So we do not have to worry

about deuteron-electron interactions giving any explicit SU(3)-symmetry breaking.

2By writting d = a + ib and considering a and b as the components of a real 6-dimensional vector,

one may think that the symmetry group becomes O(6). This is indeed true for terms of the form (d†
d)n,

but it is not true for the kinetic term. O(6) would be a symmetry of the kinetic term for a relativistic

bosonic theory. A familiar example of this occurs in the Higgs sector of the Standard Model, which has the

symmetry SU(2) × SU(2) ≃ SO(4), where the first of the SU(2)’s is gauged and the second is the custodial

SU(2) symmetry. However, a non-Lorentz invariant kinetic term breaks the O(2N) symmetry to SU(N), so

that the symmetry of the deutron liquid is SU(3) × U(1)EM and not O(6) × U(1)EM.

– 7 –
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The story with the explicit breaking of SU(3) symmetry in deuteron-deuteron inter-

actions is more interesting. The leading electromagnetic SU(3) breaking diagram is shown

in figure 4. This diagram can be estimated as

V EM
break ∼

∫

d3q

{

α

q2 +m2
s

α

M2

1

q2/(2M) − µ

× qiqj

q2 + π2

2
m2

s
q0

q

(d∗i djd
2 + did

∗
jd

†2 − 2d∗i djd
† · d)

}

(3.1)

The loop integral above, which would be IR-divergent if not for static and dynamic

screening effects, contains three scales: µ,ms, and the scale associated with the Landau

damping of the magnetic photon, qm ∼ (m2
sµ)1/3. For q ≫ qm, the propagator of the

magnetic photon becomes qiqj/q
2 → δij . For smaller q, qm sets the scale for the momenta

in the magnetic photon propagator. Using the fact that µ ∼ α/l . ms ∼ (a0l)
−1/2, the

estimate of the integral is

V EM
break ∼ 1

M2
q3m

α

m2
s

1

µ

α

m2
sµ
q3m ∼ α2

M2
(3.2)

This contribution would favor the ferromagnetic phase over the nematic phase. Notice

that the integration over q sets qiqj/q2 → δij/3, implying that the only part of the

dipole potential surviving is, in position space, a δ(r) function at the origin. This leads

to the surprising conclusion that contact interactions due to nuclear forces may compete

with dipole-dipole interactions between the deuterons. A very similar situation involving

dipole-dipole interactions occurs in the physics of W boson condensation in the early

Universe [23]. There the W boson contact interactions are fixed by gauge symmetry and

are known to favor the ferromagnetic phase.

In our case, the strong nuclear interaction between two deuterons is more uncertain.

In the effective theory we are using, valid at distances larger than the deuteron size

(≈ 5 fm), the s-wave deuteron-deuteron interaction is described, at lowest order in the

momentum expansion by

V nuc
break ∼ 4πA0

3M
d†2d2 +

4πA2

3M

(

3(d† · d)2 − d†2d2
)

. (3.3)

The term proportional to A0 (A2) contributes to the spin channel S = 0 (S = 2)

deuteron-deuteron channel. In fact, in our effective theory, the s-wave scattering lengths

in the spin S = 0, 2 channels would be given by the terms in eq. (3.3) dressed by Coulomb

photons with momenta within the range of validity of the theory (Q . 1/5 fm−1),

which are explicitly included in eq. (1.1). Thus, the coefficients A0, A2 above are the

deuteron-deuteron scattering lengths in the absence of soft Coulomb interactions, but

including the effect of hard photons (Q & 1/5 fm−1).

What complicates the description of deuteron-deuteron scattering is the existence of

channels below the deuteron-deuteron threshold, namely, n+ 3He and p+ 3H. One way of

dealing with these additional channels is to include n, p, 3He and 3H fields explicitly in the

effective theory, together with their respective couplings, and perform a coupled-channels

– 8 –
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calculation in the medium. Most likely this is unnecessary. The presence of these open

channels will make the deuteron-deuteron phase shifts complex, but this can be rigorously

taken into account by taking the parameters A0, A2 to be complex. This technique is

used, for instance, in non-relativistic QCD where a quark-antiquark system can annihilate

into energetic gluons [24].

In any case, one expects A0 and A2 to have very small imaginary parts. To see this,

note that the deuteron-deuteron initial state can have S = 0 or S = 2. First, consider

the S = 2 deuteron-deuteron initial state. The intermediate state can have only S = 0 or

S = 1, so it will have some non-vanishing angular momentum. At small energies, mixing

with higher partial waves is suppressed, so the scattering length in the S = 2 channel should

have only a small imaginary part. Next, consider the S = 0 initial state. This initial state

can mix with the intermediate S = L = 0 state. However, the wave function configuration

of the initial and intermediate states is very different, so this mixing will be very small.

If the deuteron forces were spin-independent, A0 would equal A2, and we would have

an effective potential with the enhanced SU(3) symmetry. Current few-body nuclear

technology is available for a realistic calculation of both of these parameters, but we are

aware of only two published works, both of which include electromagnetic forces. One

model calculation, using a simple Malfliet-Tjon potential [25] gives A0 = 10.2 fm and

A2 = 7.5 fm [26]. These values for the scattering lengths lead to a ferromagnetic phase.

Ref. [27] computes only A0, finding A0 = 4.91 ± 0.02 + i(−0.0115 ± 0.0001) fm; note that

the imaginary part is very small, as advertised.

A. Deltuva was kind enough to use the methodology described in [28, 29] to compute

the required scattering lengths without electromagnetic forces at our request [30]. The

results he finds are A0 = 5.35, 5.13, 4.87 fm and A2 = 3.16, 3.16, 3.18 fm, respectively for

the AV18, CDBonn and INOY04 potentials. The imaginary parts are all, as expected, of

the order of 1%. None of these calculations include the effect of three-body forces, known

to contribute a small (about 5%) to the binding energy of small nuclei or the hard photon

exchange. There is a high degree of universality in low-energy few-nucleon reactions —

understood from the point of view of effective field theories — so the discrepancy of this

result with the one in [26] can hardly be blamed on the difference between models used. In

any case, an estimate of the size of these scattering lengths can be made by just assuming

a scattering length comparable to the “size” of the deuteron itself, namely, a few Fermi.

This means that V nuc
break ∼ A/M with A ≈ 5 fm is actually larger than V EM

break, since

α2

M2
≪ A

M
(3.4)

given that 1/M ∼ 10−1 fm.

It is natural to ask whether the nuclear interactions can favor angles between a and b

that are not 0 or π/2. As noted after eq. (2.3), such an effect would have to come from terms

with more than four powers of the d fields in the effective potential. Of course, the one-loop

effective potential contains terms with all powers of d† ·d, and it is spin-independent. The

leading spin-dependent contribution to the effective potential can be obtained by replacing

one of the Coulomb photons in the diagrams leading to the one-loop effective potential

– 9 –
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Figure 5. Leading nuclear SU(3)-breaking contribution to the effective potential. The contact

term is a spin-dependent nuclear interaction.

with a nuclear contact interaction between the deuterons, as shown in figure 5. However,

it is not hard to see that this merely gives a contribution to the potential of the form

4πA0

3M
f(d† · d)d†2d2 +

4πA2

3M
g(d† · d)

(

3(d† · d)2 − d†2d2
)

, (3.5)

for some functions f and g that depend only on d†d. Thus at this order the effective

potential would pick out a phase with either a × b = 0 or a · b = 0. To get other angles

between a and b, we must have at least two nuclear contact interactions in the effective

potential. This sort of contribution is highly suppressed by powers of 1/M . So to leading

order, the nuclear interactions drive the deuteron liquid into either the nematic phase, or

the ferromagnetic phase with a · b = 0.

The estimate of the SU(3) breaking nuclear effects was based on the size of tree-

level diagrams. One may wonder whether large corrections to this estimate would arise

from Coulomb interactions, since the strong interaction is short-ranged, and naively the

deuterons are prevented from getting close to each other by Coulomb repulsion. Since

the screening of the Coulomb interaction occurs only at distances larger than a0, one

expects a Gamow-suppression by the Coulomb interaction for densities smaller than the

nuclear scales ∼ fm3. However, in the regime of interest the dynamics of the deuterons

cannot be thought of in terms of collisions between classical particles. The deuterons are

in a quantum condensate, so that their wave-functions overlap, and they are highly off-

shell, making classical intuition about scattering difficult to apply. We can estimate the

densities at which the Coulomb screening of the nuclear interactions becomes unimportant

by considering the diagram in figure 6, which shows a contact interaction in the presence

of Coulomb interaction between the deuterons. The diagram can be estimated as

∼ λ

∫

d3q

{

1

µ+ q2/2M

α

q2 +m2
s

}

∼ λ

(

l

aD
0

)1/2

(3.6)

where λ ∼ A/M is the strength of the bare contact interaction, and aD
0 = (αM)−1 ∼ 14 fm

can be thought of as the Bohr radius of a deuteron-deuteron ‘atom’. Notice that this graph

is less infrared divergent than the leading order diagrams in the effective potential and,

in contrast to the them, is dominated by contributions coming from the scale q ∼ √
mµ.

(The fact that aD
0 ≪ a0 is simply due to the fact that deuterons are very heavy compared
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Figure 6. Nuclear SU(3)-breaking contribution with a single Coulomb photon exchange. Resum-

mation of Coulomb ladder diagrams leads to Gamow suppression of the SU(3)-breaking effects.

to the electrons, M/m ∼ 4 × 103.) When l > ad
0, this diagram is larger than a diagram

with a bare nuclear interaction vertex, indicating that one must resum the Coulomb

photon ladder. This resummation leads to Gamow suppression of the effect of the nuclear

interactions. Thus one sees that nuclear interactions will be Gamow-suppressed until the

density is such that l . 14 fm.

4 Finite temperature effects

Since the size of the SU(3) breaking effects is suppressed by powers of 1/M , as well as being

subject to Gamow suppression until very high densities, one may wonder whether they will

actually have any physical consequence after the small, but finite, temperature effects are

included. One way of estimating this is to compare the energy density Eθ required to move

the a and b fields from parallel to orthogonal directions to the thermal energy density

available in the system ET ,

ET ∼ T

l3
. (4.1)

Neglecting Gamow-suppression to get an upper bound on Eθ, one finds the estimate

Eθ ∼ 4πA

3M

1

l6
cos2 θ, (4.2)

When ET is greater than Eθ, one would expect that SU(3)-breaking effects get washed

out. We then find that

Eθ

ET
∼ 4πA

Ma3
0T

(a0

l

)3

∼ 10−6

a0T

(a0

l

)3

. (4.3)

At the typical temperatures (of order 105K ⇒ a0T ∼ 1) that we are interested in, where T is

larger than the crystallization temperature but smaller than the condensation temperature,

the criterion above splits the interesting range of densities into two regions.

At extremely large densities (1 fm . l . 14 fm) where Coulomb screening does not

shield the nuclear contact interactions, the SU(3)-breaking effects are not washed out by

thermal effects, and determine the phase of the system. With A0 > A2 the ferromagnetic

phase is favored. Once the global SU(3) symmetry is broken, the symmetry of the system

prior to deuteron condensation is O(3) × U(1)EM. In the presence of a ferromagnetic

condensate 〈d〉 = a+ ib, which has a ·b = 0 and a = b, the symmetry breaks to to a global
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Uz−Q(1) subgroup combining a rotation around the a × b ‘z’ axis and an opposite phase

rotation. The vacuum manifold is then (O(3)×U(1)EM)/Uz−Q(1) ≃ O(3). This pattern of

symmetry breaking also occurs in cold atom optical traps of spin-1 atoms [31].

If it turns out that A2 > A0, the nematic phase would be favored instead. In this

phase the O(3) × U(1)EM symmetry is broken to O(2) ⋉ Z2. If the condensate points

along the z direction, the O(2) consists of rotations around the z-axis, as well 2D-parity

transformations (x, y) → (−x, y), while the Z2 is realized as a rotation of the condensate

by π around the x or y axes, followed multiplication by eiπ ∈ U(1)EM. Thus the vacuum

manifold is (O(3) × U(1)EM)/(O(2) ⋉ Z2).

At lower densities, l ≫ 14 fm, SU(3)-breaking interactions are subject to Gamow-

suppression, which gives an exponential suppression. Thus in this density regime, which is

the one most easily accessible to experiments and observation, Eθ/ET ≪ 1, and all traces

of the SU(3)-breaking effects are effectively washed out by thermal effects. In that case the

symmetry of the theory is effectively enhanced from SO(3) × U(1)EM to SU(3) × U(1)EM.

Using SU(3)×U(1) transformations it is possible to go from the ferromagnetic phase with

a · b = 0 to the nematic a × b = 0 phase. In this regime, the deuteron liquid is in a novel

phase, which we will refer to as the SU(3) phase; it is neither a ferromagnetic nor nematic

phase. The vacuum manifold can be found by noting that by a choice of coordinates in the

three-complex dimension space we can make 〈d〉 to be real and have only its z-component

non-vanishing. The symmetry breaking pattern is then SU(3) × U(1)EM → U(2), where

U(2) is the subgroup of U(3) that leaves 〈d〉 invariant. The vacuum manifold is then a

five-dimensional sphere (SU(3) × U(1)EM)/U(2) = S5.

5 Topological defects

The vacuum manifolds of theories with charged condensates generally allow for the exis-

tence of topological defects. For the condensation of spin-0 nuclei, this has been examined

in ref. [32], following some foundational work in refs. [6, 33–38]. For some earlier work on

topological excitations in dense hydrogen and its isotopes, see for instance refs. [39–45].

Vortices associated with vector condensation have been previously studied in for instance

ref. [46–49]. The vacuum manifolds of the deuteron liquid, in which spin-1 nuclei are con-

densed, support a rich variety of finite-energy topological defects. We leave a detailed

study of their stability, dynamics, and physical implications to future work, and confine

ourselves here to simply sketching how they appear.

Let us first discuss the situation for the more accessible densities at which Eθ/ET ≪ 1,

so that SU(3)-breaking effects are negligible. The ground state manifold in this case is

simply (SU(3) × U(1)EM)/U(2) = S5, which has trivial homotopy groups πk until k = 5.

Since π5(S
5) = Z, the effective theory of the deuteron liquid should admit a Wess-Zumino-

Witten term with a quantized coefficient [50]. It would be interesting to work the physical

implications of such a term in this context.

It is sometimes assumed that finite-energy topological defects are classified simply by

the homotopy groups of the coset space G/H, where G is the full symmetry group of the

theory and H is the subgroup of G that leaves the condensate unchanged. For instance, one
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might think that if π1(G/H) = 0 the theory would not support vortex strings. However,

the situation is actually more subtle if only a subgroup GL of G is gauged and breaks to

a gauged subgroup HL of H. When this is the case the homotopy groups of the coset

space GL/HL of gauge symmetries become important. When these homotopy groups are

non-trivial, various ‘semilocal’ defects are possible [51–56].

In our case, HL is trivial and GL = U(1)EM, so the coset space is simply U(1), and the

theory supports semilocal vortex strings because π1(U(1)) = Z. To see why a non-trivial

GL/HL can result in vortex strings, note that the action of the U(1)EM on 〈d〉 defines a

circle in the vacuum manifold S5. Motion along this circle costs no energy, and the value

of the deuteron field at spatial infinity can wrap the circle in S5 defined by the gauge

orbit, giving a topologically non-trivial configuration. The semilocal vortex string cannot

unwind even though π1(S
5) = 0, because to do so it would have to leave the gauge orbit

at infinity, which would cost an infinite amount of gradient energy. This discussion makes

clear that the non-trivial embedding of the gauge vacuum manifold GL/HL = U(1) ≃ S1

in the full vacuum manifold S5 gives rise to a fibration of S5 over CP 2 with fiber S1. Since

π2(CP
2) = Z, the SU(3) phase of the deuteron liquid can contain global monopoles; these

monopoles live on the ends of semilocal vortex strings [53, 54]. Semilocal defects are not

always stable, and we leave an investigation of their stability and physical effects using the

power counting developed in this paper to later work.

Let us now consider the two possible phases of the deuteron liquid at higher densities,

l . 10−2a0), when the SU(3)-breaking effects are important and determine the phase of

the system. First, consider the ferromagnetic phase. The symmetry O(3) × U(1)EM is

broken down to a global U(1) symmetry; as noted previously the global U(1) is generated

by a linear combination of generators of the global O(3) symmetry and the local U(1)EM

symmetry. Before discussing semilocal defects, consider the usual kind of topological

defects, which can be classified by the homotopy groups of the full vacuum manifold.

The vacuum manifold in the ferromagnetic phase is just O(3). Since π1(O(3)) = Z2,

the ferromagnetic phase supports topologically stable vortices, but ones that are rather

unusual: rather than one vortex for each integer value of the circulation, there is only

one kind of topologically non-trivial vortex. Furthermore, since π3(O(3)) = Z, the

ferromagnetic phase supports topologically stable ‘spin Skyrmions’. (Adapting the usual

hedgehog ansatz for the ferromagnetic phase, it is easy to see that the spin direction of

the condensate varies in the core of the skyrmion, hence the name.) It is unclear, however,

whether the spin Skyrmions is stable against collapse.

From the discussion of the SU(3) phase above, it is not a big jump to realize that the

ferromagnetic phase also supports semilocal strings classified by π1(S
1) = Z. Furthermore,

since the gauge vacuum manifold, which is an S1, is again embedded non-trivially in the

full vacuum manifold, we find a fibration of SO(3) with fiber S1 and base space O(3)/S1.

Since π2(O(3)/S1) = Z, the ferromagnetic phase supports global monopoles that sit on the

ends of the semilocal strings, as does the SU(3) phase.

Finally, suppose the SU(3)-broken phase is actually a nematic one. The symmetry

O(3) × U(1)EM is broken down to O(2) ⋉ Z2, and the vortices are classified by π1[O(3) ×
U(1)/(O(2) ⋉ Z2)], which is not trivial. The vortex strings in this kind of phase are called
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SU(3)× U(1)EM

U(2)

〈d〉 = a + ib

〈d〉 = a + ib,a · b = 0 〈d〉 = ae
iα

,a × b = 0

O(3)× U(1)EM

U(1)

n

c2 > 0 c2 < 0

Ferromagnetic Nematic

SU(3) Phase

O(3)× U(1)EM

O(2) ⋉ Z2

Figure 7. Table of possible phases, their condensates, and corresponding coset spaces as the density

n ∼ 1/l3 increases at a fixed temperature T ∼ 105K. The parameter c2 is the coefficient of the

d†2d2 term in the effective potential, eq. (2.3), which turns out to be proportional to (A0−A2)/M .

“Alice strings” and are known to have very unusual properties [57–61]. As one travels

around the vortex the direction of the condensate changes by π (not 2π), since the reversed

orientation can be made up by a shift in the phase by π. In the relativistic context, particles

moving adiabatically around the vortex flip their charge. In our context, they flip their spin.

6 Conclusion

As we have seen above, the deuteron liquid first discussed in ref. [1] has a rich phase struc-

ture. To show this, we calculated the one-loop effective potential for the deuteron fields,

and showed that to leading order, the theory enjoys an enhanced SU(3) global symme-

try. We then discussed SU(3)-breaking effects, and showed that somewhat surprisingly,

deuteron-deuteron interactions mediated by the strong force are the dominant source of

SU(3)-breaking. However, as discussed in section 4 the importance of the SU(3)-breaking

effects depends on the density of the system. At lower densities, the system retains the

SU(3) symmetry, while at higher densities the global symmetry of the deuteron liquid is ex-

plicitly broken to O(3). The spontaneous symmetry breaking patterns in these two regimes

are very different, as discussed in sections 3 and 5.

A brief comment on the relation between the effective field theory used here and the

one in ref. [1] is probably useful. Our effective theory, valid at distance scales larger than

the deuteron radius is ‘more microscopic’ than the one in ref. [1], valid at distances larger

than l. As such, coefficients that are phenomenological in ref. [1] can be computed in

our theory. In addition, we considered a more general symmetry breaking pattern (the

ferromagnetic phase) than addressed in ref. [1].

Our results can serve as foundational work for further exploration of these phases.

Let us mention just a few possible future directions. In our analysis we assumed that
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the condensate is spatially homogeneous, but of course it is important to check if a

spatially-inhomogeneous condensate is also possible. Next, a more systematic study of

finite temperature effects on the deuteron liquid is desirable, as is an explicit computation

of the condensation temperature. It is also essential to better understand the nuclear

interactions that break the SU(3) symmetry and drive the deuteron liquid into either the

nematic or ferromagnetic phase.

Particularly for applications to astrophysics, it would be useful to understand the

magnetic properties of the deuteron liquid. As part of such an investigation, one would

need to explore under the conditions under which the deuteron liquid supports stable vortex

strings. More generally, it will be interesting to investigate the stability and dynamics of

the bestiary of topological defects we sketched in section 5.

Clearly, deuterium at extreme densities turns out to be an interesting system deserving

of further study.
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