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1 Introduction

An instanton in gauge theories is a topologically nontrivial solution described by a self-dual

or anti-self-dual connection with a finite action. Such instantons play an important role in

the nonperturbative dynamics of gauge theories, in particular, to understand the vacuum

structure of quantum field theories [1]. One of the most powerful uses of instantons in

recent years is in the analysis of strongly coupled gauge dynamics where they play a key

role in unraveling the plexus of entangled dualities that relates different theories. One

of the highlights is the remarkable theory of Seiberg and Witten [2, 3] which determines

the low-energy behavior of N = 2 supersymmetric gauge theories exactly. In N = 2

supersymmetric gauge theories, the instantons lead to quantum corrections for the metric

on the moduli space of vacua.

A semi-classical evaluation of the path integral requires us to find the complete set

of finite-action configurations which minimize the Euclidean action. In pure Yang-Mills

theory, the complete set of self-dual gauge fields of arbitrary topological charge k can

be obtained by solving some quadratic matrix equations, known as the Atiyah-Drinfeld-

Hitchin-Manin (ADHM) equations [4], which are a set of nonlinear algebraic equations

– 1 –



J
H
E
P
0
4
(
2
0
1
1
)
0
8
7

constraining a matrix of moduli parameters. It can be shown [5] that the functional integral

in the semi-classical approximation reduces to an integral over the instanton moduli space

in each instanton sector. In principle the low-energy effective action can also be calculated

from first principles via conventional semi-classical methods using instantons.

It is known that the instanton calculus in supersymmetric theories is fully controllable

when the theories are weakly coupled. This leads to the idea of testing the Seiberg-Witten

theory by calculating the instanton effects and comparing these expressions with those

extracted from the Seiberg-Witten curve. For reviews, see, for example, [5, 6]. Since the

integral over a generic instanton moduli space is too complicated to be done directly, it

was fully accomplished only recently by using the localization technique and considering

the resolution of the instanton moduli space via the ADHM construction relevant to a

noncommutative gauge theory [7]. It has been checked [8] that the results computed using

the method of localization perfectly agree with the Seiberg-Witten solution for N = 2

supersymmetric gauge theories.

On the mathematical side, instantons lie at the heart of the recent works on the

topology of four-manifolds [9]. In particular, Donaldson used the moduli space of instantons

over a differentiable four-manifold to construct topological invariants of the four-manifold

and showed that the moduli spaces of instantons often carry nontrivial and surprising

information about the background manifold.

One would like to extend the path integral approach to include gravitation. Although

the Euclidean gravitational action is not positive-definite even for real positive-definite

metrics, one can evaluate the functional integral by first looking for non-singular stationary

points of the action functional and expand about them. Such critical points are finite action

solutions to the classical field equations called “gravitational instantons”, the gravitational

analogue of Yang-Mills instantons [10]. These are defined as complete, non-singular, and

positive-definite metrics which are self-dual or anti-self-dual metrics of vacuum Einstein

equations [11]. One can show [12] that the self-dual or anti-self-dual metrics are local

minima of the action among metrics with zero scalar curvature.

In general relativity, the Lorentz group appears as the structure group acting on or-

thonormal frames in the tangent space of a Riemannian manifold M [13]. Under a local

Lorentz transformation which is the orthogonal rotation group O(4), a matrix-valued spin

connection ωAB = ωM
A
Bdx

M plays a role of gauge fields in O(4) gauge theory. From the

O(4) gauge theory point of view, the Riemann curvature tensors precisely correspond to

the field strengths of the O(4) gauge fields ωM
A
B . (More details will be explained in section

3.) Since the group O(4) is a direct product of normal subgroups SU(2)L and SU(2)R, i.e.

O(4) = SU(2)L × SU(2)R, the four-dimensional Euclidean gravity, when formulated as the

O(4) gauge theory, will basically be two copies of SU(2) gauge theories.

As we summarized above, Yang-Mills instantons are important to determine the vac-

uum structure of quantum field theories and the ADHM construction provides a description

of all instantons on R4 in terms of algebraic data. One would expect that gravitational

instantons play a similar substantial role in quantum gravity although the quantum as-

pect of general relativity has encountered long-standing difficulties because there is hardly

any common ground between general relativity and quantum mechanics. The well-known
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divergences in a quantum theory of gravity suggest that a field theory of gravity like as

Einstein’s general relativity is a purely low-energy or large-distance approximation to some

more fundamental theory. Therefore, the gauge theory formulation of gravity may be help-

ful to glimpse some basic structures of such a fundamental theory because nonperturbative

and quantum aspects about gauge theories are relatively well-known.

Whereas gravity is different from gauge theory in several marked ways, underlying

mathematical structures are very similar to each other in many ways [11]. See, for example,

the table 1 in [14]. It was shown [15–18] that certain classes of gravitational instantons

such as the asymptotically locally Euclidean (ALE) and the asymptotically locally flat

(ALF) hyper-Kähler four-manifolds can be constructed as a hyper-Kähler quotient of a

finite-dimensional Euclidean space.1 This construction is actually akin to the ADHM

construction of Yang-Mills instantons on R4 [4] and has a natural interpretation in terms

of D-branes in string theory. Moreover, the hyper-Kähler quotient construction of Yang-

Mills instantons on an ALE or ALF space [20–24] is a natural generalization of the original

ADHM construction of instantons on flat space. The study of Yang-Mills theories on a

curved manifold has recently received renewed attention because they are involved with

effective field theories of D-brane and NS5-brane configurations [25, 26].

Now our motivation of this paper has surfaced. In this paper and its sequels, we wish

to go beyond a mere formal analogy between gravity and gauge theory and try to answer

to the following questions:

A. What is the precise relation between gravity and gauge theory variables?

B. How much are they parallel?

C. How is the topology of a Riemannian manifold M encoded into gauge fields?

D. What are crucial differences?

E. Can it be applied to examine a quantum nature of gravity?

The paper is organized as follows. In section 2, we will summarize Yang-Mills instan-

tons on a curved four-manifold to set our notation and explain why Yang-Mills instantons

on a Ricci-flat manifold is a solution of the coupled equations in Einstein-Yang-Mills theory.

In section 3, we will employ the decomposition in [27] to explicitly realize that the

Lorentz group O(4) is a direct product of normal subgroups SU(2)L and SU(2)R, i.e.

O(4) = SU(2)L × SU(2)R.2 It is then easy to show [29, 30] that the four-dimensional

Euclidean gravity, when formulated as the O(4) gauge theory, will basically be two copies

of SU(2) gauge theories. In particular, it can be shown that one of SU(2)’s decouples

from the theory when considering self-dual or anti-self-dual metrics called gravitational

instantons. As a result, one can show that gravitational instantons satisfy exactly the same

1A general construction of essentially all known deformation classes of gravitational instantons was

recently reported in [19].
2See also [28] for geometric aspects of the decomposition according to the group structure O(4) =

SU(2)L × SU(2)R.
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self-duality equation of SU(2) Yang-Mills instantons on the Ricci-flat manifold determined

by the gravitational instantons themselves. Therefore, every gravitational instantons can

be interpreted as self-gravitating SU(2) Yang-Mills instantons although the reverse is not

necessarily true. This provides a powerful method to find a particular class of Yang-Mills

instantons on a general self-dual four manifold.

In section 4, we will elucidate with explicit examples how it is always possible to

find Yang-Mills instantons on a Ricci-flat manifold M using the prescription in section

3 whenever a gravitational instanton solution is given. Our method vividly realizes the

Charap-Duff prescription [29, 30] for SU(2) Yang-Mills instantons on a Ricci-flat manifold

(see also [31]). We will easily reproduce already known solutions in literatures [32–35] in

this way and also find new Yang-Mills instantons as a byproduct.

In section 5, some issues about topological invariants for Riemannian manifolds will be

discussed. In the gravity side, there are two topological invariants [11] known as the Euler

characteristic χ(M) and the Hirzebruch signature τ(M), while, in the gauge theory side,

there is a unique topological invariant up to a boundary term given by the Chern class of

gauge bundle. The correspondence between gravitational and Yang-Mills instantons then

implies that the two topological invariants for gravitational instantons should be related

to each other. We conjecture a possible relation between χ(M) and τ(M) by inspecting

several known results in literatures [36–38].

In section 6, we draw our conclusions and discuss open issues for future works.

Finally, we set up our index notation which is especially useful for the explicit calcula-

tion in section 4; otherwise diverse spaces we are considering would lead to some confusions.

Index notation. We employ the following index convention throughout the paper:

• M,N,P,Q, · · · = 1, · · · , 4 : world (curved space) indices,

• A,B,C,D, · · · = 1̂, · · · , 4̂ : frame (tangent space) indices,

• i, j, k, l, · · · = 1, 2, 3 : three-dimensional world indices,

• î, ĵ, k̂, l̂, · · · = 1̂, 2̂, 3̂ : three-dimensional frame indices,

• a, b, c, d, · · · = 1̇, 2̇, 3̇ : SU(2) Lie algebra indices.

2 Yang-Mills instantons on riemannian manifold

Consider a curved four-manifold M whose metric is given by

ds2 = gMN (x)dxMdxN . (2.1)

Let π : E →M be an SU(2) bundle over M whose curvature is defined by

F = dA+A ∧A =
1

2
FMN (x)dxM ∧ dxN

=
1

2

(
∂MAN − ∂NAM + [AM , AN ]

)
dxM ∧ dxN (2.2)
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where A = AaM (x)T adxM is a connection one-form of the vector bundle E. The generators

T a of SU(2) Lie algebra satisfy the relation

[T a, T b] = −2εabcT c (2.3)

where we choose an unconventional normalization TrT aT b = −4δab for later purpose.

Let us introduce at each spacetime point in M a local frame of reference in the form

of four linearly independent vectors (vierbeins or tetrads) EA = EMA ∂M ∈ Γ(TM) which

are chosen to be orthonormal, i.e., EA · EB = δAB . The frame basis {EA} defines a dual

basis EA = EAMdx
M ∈ Γ(T ∗M) by a natural pairing

〈EA, EB〉 = δAB . (2.4)

The above pairing leads to the relation EAME
M
B = δAB . In terms of the non-coordinate

(anholonomic) basis in Γ(TM) or Γ(T ∗M), the metric (2.1) can be written as

ds2 = δABE
A ⊗ EB = δABE

A
ME

B
N dxM ⊗ dxN

≡ gMN (x) dxM ⊗ dxN (2.5)

or
(
∂

∂s

)2

= δABEA ⊗ EB = δABEMA E
N
B ∂M ⊗ ∂N

≡ gMN (x) ∂M ⊗ ∂N . (2.6)

Using the form language where d = dxM∂M = EAEA and A = AMdx
M = AAE

A, the

field strength (2.2) of SU(2) gauge fields in the non-coordinate basis takes the form

F = dA+A ∧A =
1

2
FABE

A ∧EB

=
1

2

(
EAAB − EBAA + [AA, AB ] + fAB

CAC

)
EA ∧EB (2.7)

where we used the structure equation

dEA =
1

2
fBC

AEB ∧ EC . (2.8)

The frame basis EA = EMA ∂M ∈ Γ(TM) satisfies the Lie algebra under the Lie bracket

[EA, EB ] = −fABCEC (2.9)

where

fABC = EMA E
N
B (∂MENC − ∂NEMC) (2.10)

are the structure functions in (2.8).

Consider SU(2) Yang-Mills theory defined on the Riemannnian manifold (2.1) whose

action is given by

SYM = − 1

16g2
Y M

∫

M

d4x
√
ggMP gNQTrFMNFPQ. (2.11)
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The self-duality equation for the action (2.11) can be derived by observing the follow-

ing identity

SYM = − 1

32g2
YM

∫

M

d4x
√
gTr

(
FMN ∓ 1

2

εRSPQ√
g

gMRgNSFPQ

)2

∓ 1

32g2
YM

∫

M

d4xεMNPQTrFMNFPQ, (2.12)

where εMNPQ is the metric independent Levi-Civita symbol with ε1234 = 1. Note that the

second term in eq. (2.12) is a topological term (total derivative) and so does not affect the

equations of motion. Because the first term in eq. (2.12) is positive-definite, the minimum

of the action (2.11) can be achieved by the self-dual gauge fields (instantons) satisfying

FMN = ±1

2

εRSPQ√
g

gMRgNSFPQ. (2.13)

In the non-coordinate basis, the self-duality equation (2.13) can be written as the form

FAB = ±1

2
εAB

CDFCD (2.14)

with the field strength FAB = EMA E
N
B FMN in (2.7).

It is easy to check that the SU(2) instantons defined by (2.13) automatically satisfy

the equations of motion

gMNDMFNP = 0 (2.15)

because we have the following relation from the self-duality (2.13)

gMNDMFNP = ∓1

2
gPQ

εQMNR

√
g

DMFNR = 0 (2.16)

where we used the Bianchi identity for the SU(2) curvature (2.2), i.e.

εMNPQDNFPQ = 0. (2.17)

The covariant derivative in (2.15) is with respect to both the Yang-Mills and gravitational

connections, i.e.

DMFNP = ∂MFNP − ΓMN
QFQP − ΓMP

QFNQ + [AM , FNP ], (2.18)

where ΓMN
P is the Levi-Civita connection.

Now the problem we pose here is how to construct instanton solutions satisfying (2.13).

Several questions immediately arise. Is it possible to find an instanton solution satis-

fying (2.13) on an arbitrary Riemannian manifold ? Or is there any constraint on the

background manifold for the existence of Yang-Mills instantons ? What is the moduli

space of SU(2) instantons defined on a given four-manifold M ?

We think the above questions are still open. Nevertheless, there are several examples

on Yang-Mills instantons defined on a curved four-manifold. For example, the famous
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ADHM construction on S4 [4], Yang-Mills instantons on CP 2 [39], H × S2 (H = Poincaré

half-plane) [40], ALE [20, 21] and ALF spaces [22–24]. Also many other solutions have been

constructed so far [41–47]. See, for example, [48–50] for a review and references therein. In

particular, Taubes proved [51] that all compact oriented four-manifolds admit nontrivial

instantons. But recently it was shown [52] that there exists a noncompact four-manifold

having no nontrivial instanton. So far, we do not have a general description à la ADHM

of all instantons satisfying the self-duality (2.13).

We will show that a large class of Yang-Mills instantons satisfying (2.13) or (2.14) can

be solved by gravitational instantons. To be precise, we will show that every gravitational

instantons satisfy the self-duality equation (2.13) for SU(2) gauge fields on a Riemannian

manifold defined by the gravitational instanton itself. To prepare our setup, let us consider

the case when SU(2) Yang-Mills and gravitational fields are both dynamically active. The

total action is defined by

S = SYM + SG (2.19)

where the Yang-Mills action SYM is given by (2.11) and the gravitational action is given by

SG =
1

16πG

∫

M

d4x
√
gR+ surface terms. (2.20)

The gravitational field equations read as

RMN − 1

2
gMNR = 8πGTMN (2.21)

with

TMN =
1

4g2
YM

Tr

(
gPQFMPFNQ − 1

4
gMNFPQF

PQ

)
. (2.22)

For an instanton solution satisfying eq.(2.13), the energy-momentum tensor (2.22) iden-

tically vanishes, i.e. TMN = 0 and then eq.(2.21) enforces the vacuum Einstein equations

RMN = 0. (2.23)

Conversely, the reason that (anti-)self-dual Yang-Mills fields do not spoil Ricci-flatness

of a manifold is due to the vanishing of the Euclidean energy-momentum tensor (2.22).

Our interest is to solve the coupled equations (2.13) and (2.21) simultaneously. Therefore,

the four-manifold M in eq.(2.13) should be Ricci-flat, i.e., satisfying the vacuum Einstein

equations (2.23).

3 Gravitational instantons

Under local frame rotations in O(4), the vectors transform according to

EA(x) → E′
A(x) = EB(x)ΛBA(x),

EA(x) → EA
′
(x) = ΛAB(x)EB(x) (3.1)

– 7 –
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where ΛAB(x) ∈ O(4). The spin connections ωM(x) then constitute gauge fields with

respect to the local O(4) rotations

ωM → ΛωMΛ−1 + Λ∂MΛ−1 (3.2)

and the covariant derivative is defined by

DMEA = ∂MEA − ωM
B
AEB ,

DME
A = ∂ME

A + ωM
A
BE

B . (3.3)

The connection one-forms ωAB = ωM
A
Bdx

M satisfy the Cartan’s structure equa-

tions [13],

TA = dEA + ωAB ∧ EB , (3.4)

RAB = dωAB + ωAC ∧ ωCB, (3.5)

where TA are the torsion two-forms and RAB are the curvature two-forms. In terms of

local coordinates, they are given by

TMN
A = ∂ME

A
N − ∂NE

A
M + ωM

A
BE

B
N − ωN

A
BE

B
M , (3.6)

RMN
A
B = ∂MωN

A
B − ∂NωM

A
B + ωM

A
CωN

C
B − ωN

A
CωM

C
B. (3.7)

Now we impose the torsion free condition, TMN
A = DME

A
N −DNE

A
M = 0, to recover the

standard content of general relativity, which eliminates ωM as an independent variable, i.e.,

ωABC = EMA ωMBC =
1

2
(fABC − fBCA + fCAB)

= −ωACB (3.8)

where fABC are the structure functions given by (2.10). The spin connection (3.8) is related

to the Levi-Civita connection as follows

ΓMN
P = ωM

A
BE

P
AE

B
N + EPA∂ME

A
N . (3.9)

Since the spin connection ωMAB and the curvature tensor RMNAB are antisymmetric

on the AB index pair, one can decompose them into a self-dual part and an anti-self-dual

part as follows [27, 28]

ωMAB ≡ A
(+)a
M ηaAB +A

(−)a
M η̄aAB , (3.10)

RMNAB ≡ F
(+)a
MN ηaAB + F

(−)a
MN η̄aAB , (3.11)

where the 4 × 4 matrices ηaAB and η̄aAB for a = 1̇, 2̇, 3̇ are ’t Hooft symbols defined by

η̄a
îĵ

= ηa
îĵ

= εâiĵ , î, ĵ ∈ {1̂, 2̂, 3̂},
η̄a
4̂̂i

= ηa
î4̂

= δ
âi
. (3.12)
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Note that the ’t Hooft matrices intertwine the group structure of the index a with the

spacetime structure of the indices A,B. We list some useful identities of the ’t Hooft

tensors [27, 28]

η
(±)a
AB = ±1

2
εAB

CDη
(±)a
CD , (3.13)

η
(±)a
AB η

(±)a
CD = δACδBD − δADδBC ± εABCD, (3.14)

εABCDη
(±)a
DE = ∓(δECη

(±)a
AB + δEAη

(±)a
BC − δEBη

(±)a
AC ), (3.15)

η
(±)a
AB η

(∓)b
AB = 0, (3.16)

η
(±)a
AC η

(±)b
BC = δabδAB + εabcη

(±)c
AB , (3.17)

η
(±)a
AC η

(∓)b
BC = η

(∓)b
AC η

(±)a
BC , (3.18)

εabcη
(±)b
AB η

(±)c
CD = δACη

(±)a
BD − δADη

(±)a
BC − δBCη

(±)a
AD + δBDη

(±)a
AC (3.19)

where η
(+)a
AB ≡ ηaAB and η

(−)a
AB ≡ η̄aAB .

Of course all these separations are due to the fact, O(4) = SU(2)L × SU(2)R, stating

that any O(4) rotations can be decomposed into self-dual and anti-self-dual rotations. To

be explicit, for an infinitesimal O(4) transformation, i.e., ΛAB(x) ≈ δAB +λAB(x), we can

take the following decomposition

λAB(x) = λa(+)(x)η
a
AB + λa(−)(x)η̄

a
AB (3.20)

where λa(+)(x) and λa(−)(x) are local gauge parameters in SU(2)L and SU(2)R, respectively.

To be specific, let us introduce two families of 4 × 4 matrices defined by

[T a+]AB ≡ ηaAB , [T a−]AB ≡ η̄aAB . (3.21)

According to the definition (3.12), the matrix representation of the generators in (3.21) is

given by

T 1̇
+ =




0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0


 , T 2̇

+ =




0 0 −1 0

0 0 0 1

1 0 0 0

0 −1 0 0


 , T 3̇

+ =




0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0


 , (3.22)

T 1̇
− =




0 0 0 −1

0 0 1 0

0 −1 0 0

1 0 0 0


 , T 2̇

− =




0 0 −1 0

0 0 0 −1

1 0 0 0

0 1 0 0


 , T 3̇

− =




0 1 0 0

−1 0 0 0

0 0 0 −1

0 0 1 0


 . (3.23)

Then eqs. (3.17) and (3.18) immediately show that T a± satisfy SU(2) Lie algebras, i.e.,

[T a±, T
b
±] = −2εabcT c±, [T a±, T

b
∓] = 0. (3.24)
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According to the definition (3.21), the self-duality (3.13) leads to the important relation

[T a±]AB = ±1

2
εAB

CD[T a±]CD. (3.25)

The ’t Hooft matrices in (3.21) are two independent spin s = 3
2 representations of

SU(2) Lie algebra. A deep geometrical meaning of the ’t Hooft symbols is to specify the

triple (I, J,K) of complex structures of R4 ∼= C2 as the simplest hyper-Kähler manifold for

a given orientation. The triple complex structures (I, J,K) form a quaternion which can

be identified with the SU(2) generators T a± in (3.21) [28].

Now we introduce an O(4)-valued gauge field defined by A = A(+)aT a++A(−)aT a− where

A(±)a = A
(±)a
M dxM (a = 1, 2, 3) are connection one-forms on M and T a± are Lie algebra

generators of SU(2)L and SU(2)R satisfying (3.24). The identification we want to make is

then given by

ω =
1

2
ωABJ

AB ≡ A = A(+)aT a+ +A(−)aT a−. (3.26)

Since the group SO(4) is a direct product of normal subgroups SU(2)L and SU(2)R, i.e.

SO(4) = SU(2)L×SU(2)R, we take the 4-dimensional defining representation of the Lorentz

generators as follows

[JAB ]CD =
1

2

(
ηaAB[T a+]CD + η̄aAB [T a−]CD

)

=
1

2

(
ηaABη

a
CD + η̄aAB η̄

a
CD

)
, (3.27)

where T a+ and T a− are the SU(2)L and SU(2)R generators given by eq. (3.21). It is then

easy to check using eqs. (3.24) and (3.19) or eq. (3.14) that the generators in eq. (3.27)

satisfy the Lorentz algebra. According to the identification (3.26), SU(2) gauge fields can

be defined from the spin connections

[ωM ]CD =
1

2
ωMAB[JAB ]CD

=
(1

2
ωMABη

a
AB

)
[T a+]CD +

(1

2
ωMAB η̄

a
AB

)
[T a−]CD

≡ A
(+)a
M [T a+]CD +A

(−)a
M [T a−]CD = [AM ]CD. (3.28)

That is, we get the decomposition (3.10) for spin connections.

Using the definition (3.21), the spin connection (3.10) and the curvature tensor (3.11)

can be written as follows:

ωMAB = A
(+)a
M [T a+]AB +A

(−)a
M [T a−]AB , (3.29)

RMNAB = F
(+)a
MN [T a+]AB + F

(−)a
MN [T a−]AB , (3.30)

where

F
(±)
MN = ∂MA

(±)
N − ∂NA

(±)
M + [A

(±)
M , A

(±)
N ]. (3.31)

Using the Lie algebra (3.24), one can write the field strength (3.31) as the component form

F
(±)a
MN = ∂MA

(±)a
N − ∂NA

(±)a
M − 2εabcA

(±)b
M A

(±)c
N , (3.32)
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which is precisely the same as eq. (2.2). Therefore, we see that A
(±)
M = A

(±)a
M T a± can

be identified with SU(2)L,R gauge fields and F
(±)
MN = F

(±)a
MN T a± with their field strengths.

Indeed one can also show that the local O(4) rotations in (3.2) can be represented as the

gauge transformations of the SU(2) gauge fields A
(±)
M :

A
(±)
M → Λ(±)A

(±)
M Λ−1

(±) + Λ(±)∂MΛ−1
(±) (3.33)

where Λ(±)(x) ≡ exp(λa(±)(x)T
a
±) ∈ SU(2)L,R are group elements defined by eq. (3.20).

Let us recall the symmetry property of curvature tensors determined by the properties

about the torsion and the tangent-space group

RABCD = −RABDC = −RBACD (3.34)

where RABCD = EMA E
N
BRMNCD. Also note that the curvature tensors satisfy the first

Bianchi identity

RA[BCD] ≡ RABCD +RADBC +RACDB = 0 (3.35)

which is an integrability condition originated by the fact that the spin connections (3.8) are

determined by potential fields, i.e., vierbeins. It is easy to see that the following symmetry

can be derived by using eqs. (3.34) and (3.35)

RABCD = RCDAB . (3.36)

The gravitational instantons are defined by the self-dual solution to the

Einstein equation

RMNAB = ±1

2
εAB

CDRMNCD. (3.37)

Note that a metric satisfying the self-duality equation (3.37) is necessarily Ricci-flat because

RMN ≡ RMAN
A = ±1

6εN
ABCRM [ABC] = 0 and so automatically satisfies the vacuum

Einstein equations (2.23). Using the decomposition (3.30) and the relation (3.25), eq.(3.37)

can be written as

F
(+)a
MN [T a+]AB + F

(−)a
MN [T a−]AB = ±1

2
εAB

CD(F
(+)a
MN [T a+]CD + F

(−)a
MN [T a−]CD)

= ±(F
(+)a
MN [T a+]AB − F

(−)a
MN [T a−]AB). (3.38)

Therefore we should have F
(−)a
MN = 0 for the self-dual case with + sign in eq. (3.37) while

F
(+)a
MN = 0 for the anti-self-dual case with − sign and so imposing the self-duality equa-

tion (3.37) is equivalent to the half-flat equation F (±)a = 0.

A solution of the half-flat equation F (±) = 0 is given by A(±) = Λ±dΛ
−1
± and then

eq.(3.33) shows that it is always possible to choose a self-dual gauge A(±)a = 0. Therefore,

one can see the following important property. If the spin connection is, for example, self-

dual, i.e. A
(−)
M = 0, the curvature tensor is also self-dual, i.e. F

(−)
MN = 0. Conversely, if the

curvature is self-dual, i.e. F
(−)
MN = 0, one can always choose a self-dual spin connection by

a suitable gauge choice since F
(−)
MN = 0 requires that A

(−)
M is a pure gauge. In other words,

– 11 –
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in this self-dual gauge, the problem of finding gravitational instantons is equivalent to one

of finding self-dual spin connections [14]

ωMAB = ±1

2
εAB

CDωMCD (3.39)

which is equivalent to the (anti-)self-dual gauge condition A
(±)a
M = 0 according to the

decomposition (3.29). The gravitational instantons defined by eq. (3.37) are then obtained

by solving the first-order differential equations defined by (3.39).

The self-duality equations (3.37) are imposed on the second group indices [CD] of the

curvature tensor RABCD and they do not touch the first group indices [AB]. But note that

the first Bianchi identity (3.35) reshuffles three indices in RABCD and the symmetry (3.36)

is consequently deduced. Thereby the self-duality condition for the second group should

necessarily be correlated to the one for the first group [29, 30]. In other words, because

the Riemann curvature tensors satisfy the symmetry property (3.36), the gravitational

instanton (3.37) is equivalent to the self-duality equation

RABEF = ±1

2
εAB

CDRCDEF . (3.40)

Then, using the decomposition (3.30) again, one can similarly show that the gravitational

instanton (3.40) can be understood as an SU(2) Yang-Mills instanton defined by (2.14), i.e.

F
(±)
AB = ±1

2
εAB

CDF
(±)
CD (3.41)

where F
(±)
AB = F

(±)a
AB T a± = EMA E

N
B F

(±)
MN are defined by eq. (2.7). In a coordinate basis, the

self-duality equation (3.41) can be written as the form (2.13) because one can deduce that

EMA E
N
B F

(±)
MN = ±1

2
εAB

CDEPCE
Q
DF

(±)
PQ

⇒ F
(±)
MN = ±1

2
εAB

CDEAME
B
NE

P
CE

Q
DF

(±)
PQ

= ±1

2
gMRgNS ε

ABCDERAE
S
BE

P
CE

Q
DF

(±)
PQ

= ±1

2

εRSPQ√
g

gMRgNSF
(±)
PQ (3.42)

where
√
g = detEAM .

Therefore, we see that gravitational instantons defined by eq. (3.37) are solutions of

both (2.13) and (2.23) and so they can be regarded as Yang-Mills instantons in the sense

that the self-duality equation of gravitational instantons can always be recast into exactly

the same self-duality equation as the SU(2) Yang-Mills instantons on a Ricci-flat manifold.

But note that the Yang-Mills instantons as well as the four-dimensional metric used to

define eq. (3.42) are simultaneously determined by gravitational instantons. Therefore, the

self-duality in eq. (3.42) cannot be interpreted as SU(2) instantons in a fixed background.

Although every gravitational instantons satisfy the self-duality equation (2.13) for Yang-

Mills instantons on a Ricci-flat manifold, the converse is not necessarily true: An SU(2)
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instanton on a Ricci-flat manifold is not always a gravitational instanton. For example,

Yang-Mills instantons on ALE spaces in [20, 21] and ALF spaces in [22–24] consist of a more

general class of solutions than those obtained from ALE and ALF gravitational instantons.

As was pointed out above, the self-duality in eq. (3.42) should not be interpreted as

SU(2) instantons in a fixed background because we are solving the coupled equations (2.13)

and (2.23). We are not solving eq. (2.13) on a non-dynamical background manifold. Note

that the Yang-Mills action (2.11) is invariant under the conformal transformation

gMN 7→ g̃MN = Ω2(x)gMN , (3.43)

assuming that FMN are metric-independent. As a result, the self-duality equations (2.13)

are also invariant under the transformation (3.43). However the conformal transforma-

tion (3.43) is no longer a symmetry of the coupled system defined by the action (2.19) be-

cause the gravitational action (2.20) is not invariant under the transformation (3.43) and

so breaks the conformal symmetry. Furthermore the assumption that FMN are metric-

independent is no longer valid when gravity is coupled to Yang-Mills fields. Therefore,

eq. (3.42) does not have to be invariant under the conformal transformation (3.43). Of

course, this feature is consistent with the fact that the Yang-Mills instantons satisfying

eq. (3.42) are defined by the Einstein-Yang-Mills action (2.19).

We will finally check the claim that the gravitational instantons can be regarded as

Yang-Mills instantons by showing that the former satisfies the same equations as the latter.

First, we show that the second Bianchi identity for curvature tensors is reduced to the

Bianchi identity for SU(2) gauge fields:

∇[MRNP ]AB = 0 ⇔ D
(±)
[M F

(±)
NP ] = 0, (3.44)

where the bracket [MNP ] ≡ MNP + NPM + PMN denotes the cyclic permutation of

indices. The covariant derivative on the left-hand side of eq. (3.44) is defined by

∇MRNPAB = ∂MRNPAB−ΓMN
QRQPAB−ΓMP

QRNQAB−ωMC
ARNPCB−ωMC

BRNPAC
(3.45)

and, on the right-hand side, it is given by eq. (2.18). Rewrite the covariant derivative (3.45)

as the form

∇MRNPAB = ∂MRNPAB−ΓMN
QRQPAB−ΓMP

QRNQAB+ωMACRNPCB−RNPACωMCB.

Using the decompositions (3.29) and (3.30) and the commutation relations (3.24), we get

∇MRNPAB =
(
∂MF

(+)
NP − ΓMN

QF
(+)
QP − ΓMP

QF
(+)
NQ + [A

(+)
M , F

(+)
NP ]

)
AB

+
(
∂MF

(−)
NP − ΓMN

QF
(−)
QP − ΓMP

QF
(−)
NQ + [A

(−)
M , F

(−)
NP ]

)
AB

=
(
D

(+)
M F

(+)
NP +D

(−)
M F

(−)
NP

)
AB
. (3.46)

Therefore, we arrived at the result (3.44) that the second Bianchi identity for curvature

tensors is equivalent to the Bianchi identity for SU(2) Yang-Mills fields. Note that all the

terms containing the Levi-Civita connection in eq.(3.44) are canceled each other.
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After rewriting the self-duality equation (3.40) as

RMNAB = ±1

2

εRSPQ√
g

gMRgNSRPQAB, (3.47)

the covariant derivative is taken on both sides to yield

gPM∇PRMNAB = ∓1

2

εN
RPQ

√
g

∇RRPQAB = 0,

where the Bianchi identity (3.44) was used. The relation (3.46) then guarantees that the

Yang-Mills equations

gMND
(±)
M F

(±)
NP = 0 (3.48)

will be satisfied accordingly. So remarkably it turns out that gravitational instantons can

actually be identified with Yang-Mills instantons in the sense that the gravitational and

Yang-Mills instantons satisfy mathematically the same self-duality equations. But, as we

discussed before, the self-duality equation (3.42) must be interpreted as self-gravitating

Yang-Mills instantons rather than SU(2) instantons on a rigid background.

4 Yang-Mills instantons from gravitational instantons

We showed in the previous section that every gravitational instantons satisfy the self-duality

equation (2.13) on a Ricci-flat manifold defined by the gravitational instanton itself. We

have constructed SU(2) gauge fields as the projection of the spin connection (3.2) onto the

self-dual part and the anti-self-dual part by using the ’t Hooft symbols. The embedding

to relate gauge and spin connections was suggested long ago by Charap and Duff [29, 30].

(See also [31].) In this section, we will elucidate with explicit examples how Yang-Mills

instantons can be obtained from gravitational instantons.

To be specific, we want to find Yang-Mills instantons satisfying eq. (2.13) where the

background metric gMN is a gravitational instanton obeying eq. (3.40). First, we will cal-

culate the spin connection (3.8) for a given gravitational instanton metric and then identify

SU(2) gauge fields AM according to the identification (3.26). As was shown in (3.42), the

corresponding field strength FMN of the SU(2) gauge fields automatically satisfies the self-

duality equation (2.13) on a curved manifold M whose metric is given by the gravitational

instanton itself.

We will easily reproduce already known solutions in literatures [32–35] in this way.

As a byproduct, we will also find new Yang-Mills instantons on a curved manifold M . It

might be emphasized that it is always possible to find Yang-Mills instantons on a Ricci-flat

manifold M by the same procedure whenever a gravitational instanton M is given, as will

be illustrated with several examples. Here we refer to the index convention in section 1.

4.1 Gibbons-Hawking metric

The Gibbons-Hawking metric [53] is a general class of self-dual, Ricci-flat metrics with the

triholomorphic U(1) symmetry which describes a particular class (A-type) of ALE and ALF
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instantons. The Gibbons-Hawking metric for gravitational multi-instantons is given by

ds2 = V −1(x)(dτ + qidx
i)2 + V (x)dxidxi

≡ e2ψ(dτ + qidx
i)2 + e−2ψdxidxi, (4.1)

where

V (x) = e−2ψ(x) = ǫ+ 2m

k∑

a=1

1

|xi − xia|
(4.2)

with ǫ = 0 for ALE instantons and ǫ = 1 for ALF instantons. Here we use the world

index M = (i, 4 = τ) with i = 1, 2, 3 and the frame index A = (̂i, 4̂) with î = 1̂, 2̂, 3̂.

Note that ψ = ψ(x), qi = qi(x) and the Killing vector ∂/∂τ generates the triholomorphic

U(1) symmetry.

One can easily read off the vierbeins from the metric (4.1) as

E4̂ = eψ(dτ + qidx
i), E î = e−ψdxi (4.3)

and

E4̂ = e−ψ
∂

∂τ
, Eî = eψ

(
∂i − qi

∂

∂τ

)
. (4.4)

Using the torsion-free condition, TA = dEA + ωAB ∧ EB = 0, one can calculate the spin

connections. For example, one can get from eq. (4.3)

dE4̂ = eψ
(
∂iψdx

i ∧ dτ + ∂iψqjdx
i ∧ dxj +

1

2
fijdx

i ∧ dxj
)

= −
(
eψ∂iψE

4̂ +
1

2
e3ψfijE

ĵ

)
∧ E î

= −ω4̂̂i ∧ E î,

where fij = ∂iqj − ∂jqi. Therefore, one can read off

ω4̂̂i = eψ∂iψE
4̂ +

1

2
e3ψfijE

ĵ . (4.5)

Similarly, the spin connections and the structure functions can be obtained as follows

ω4̂î = eψ∂iψE
4̂ +

1

2
e3ψfijE

ĵ ,

ωîĵ = −1

2
e3ψfijE

4̂ + eψ
(
∂iψE

ĵ − ∂jψE
î
)
, (4.6)

f4̂̂i4̂ = −∂ieψ, fîĵ4̂ = e3ψfij,

f4̂̂iĵ = 0, f
ĵk̂î

= ∂ke
ψδî

ĵ
− ∂je

ψδî
k̂
. (4.7)

Note that we are explicitly discriminating the three-dimensional world and frame indices

as (i, j, k, · · · ) and (̂i, ĵ, k̂, · · · ), respectively. It is easy to see that the self-duality equa-

tion (3.39) for the spin connection (4.6) is reduced to the equation

ε̂
iĵk̂
∂kψ =

1

2
e2ψfij ⇔ ∇V + ∇× ~q = 0. (4.8)
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Using the result (4.8), one can now read off the self-dual SU(2) gauge fields defined by

ωAB = AaηaAB:

Aa = e2ψ η̄a
î4̂
∂iψ(dτ + qjdx

j) + η̄a
îĵ
∂iψdx

j

= eψ∂iψη̄
a
îA
EA = Eîψη̄

a
îA
EA. (4.9)

That is, with the notation Eîψ = eψ∂iψ ≡ ∂îψ,

AaA = ∂îψη̄
a
îA

=
1

2
η̄a
Aî
∂î log V. (4.10)

It is easy to derive the following relation from eq. (4.8)

eψ∂i∂ie
ψ − 3∂ie

ψ∂ie
ψ = 0. (4.11)

Using the above results, one can get the field strengths for SU(2) gauge fields (4.9)

F a
4̂î

= E4̂A
a
î
− EîA

a
4̂
− 2εabcAb

4̂
Ac
î
+ f4̂̂i4̂A

a
4̂

= eψ∂i∂ae
ψ + 3∂ie

ψ∂ae
ψ − 2δa

î
∂ke

ψ∂ke
ψ, (4.12)

F a
îĵ

= EîA
a
ĵ
− EĵA

a
î
− 2εabcAb

î
Ac
ĵ
+ fîĵ4̂A

a
4̂

+ f
îĵk̂
Aa
k̂

= eψ∂k

(
ε
ak̂ĵ
∂ie

ψ−ε
ak̂î
∂je

ψ
)
−4ε̂

iĵk̂
∂ke

ψ∂ae
ψ+∂ke

ψ
(
ε
ak̂î
∂je

ψ−ε
ak̂ĵ
∂ie

ψ
)
. (4.13)

Now it is straightforward to check that the above SU(2) field strengths are self-dual, i.e.

F aAB =
1

2
εAB

CDF aCD. (4.14)

To be specific, one can explicitly see that

1

2
ε̂
iĵk̂
F a
ĵk̂

= −eψ∂i∂aeψ − 3∂ie
ψ∂ae

ψ + 2δa
î
∂ke

ψ∂ke
ψ

= F a
î4̂
, (4.15)

where the relation (4.11) was used. In terms of the harmonic function in eq. (4.2), the

above field strength can be represented by

F a
î4̂

=
1

2
V −2∂i∂aV − 3

2
V −3∂iV ∂aV +

1

2
δa
î
V −3∂kV ∂kV (4.16)

and eq. (4.11) can be written as

∂i∂i log V + ∂i log V ∂i log V = 0. (4.17)

It would be interesting to compare eq. (4.17) (after the replacement ∂i → ∂M since the

function V (x) does not depend on τ) with the ’t Hooft ansatz Aaµ = η̄aµν∂ν log φ(x) for

SU(2) multi-instantons (see eq. (4.60b) in [1]) satisfying3

∂µ∂µ log φ+ ∂µ log φ∂µ log φ = 0. (4.18)

Our result here recovers the self-dual gauge fields in [33] (for H = V ).

3Note that eq. (4.11) can be represented in terms of frame derivatives as ∂î∂îψ − 3∂îψ∂îψ = 0 which

also reduces to the form (4.18) with the identification ψ = −
1

3
log φ.
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4.2 Taub-NUT metric

The Taub-NUT metric is the simplest ALF space described by the Gibbons-Hawking met-

ric (4.1) with ǫ = 1 and k = 1. Using the spherical coordinates, it is given by

ds2 = c2rdr
2 +

3∑

i=1

c2i (σ
i)2 (4.19)

with the coefficients c1 = c2 6= c3 given by

cr(r) =
1

2

√
r +m

r −m
, c1(r) = c2(r) =

1

2

√
r2 −m2, c3(r) = m

√
r −m

r +m
. (4.20)

The Maurer-Cartan one-forms {σi} satisfy the following exterior algebra [11]

dσi +
1

2
εîĵk̂σj ∧ σk = 0. (4.21)

The vierbein bases are given by

E4̂ = crdr, E î = ciσ
i (NS[i]), (4.22)

and

E4̂ =
1

cr
∂r, Eî =

1

ci
κi (NS[i]), (4.23)

where κi are the basis vectors dual to σi, i.e. 〈σi, κj〉 = δij , satisfying

[κi, κj ] = ε̂
iĵk̂
κk. (4.24)

Here we indicate no summation convention for the index i with the notation (NS[i]). The

spin connections read as

ωî4̂ =
∂rci
cr

σi (NS[i]), ωîĵ = −ε̂
iĵk̂

(c2i + c2j − c2k)

2cicj
σk (NS[ij]). (4.25)

Note that the spin connections in eq. (4.25) are not completely self-dual, but the anti-

self-dual part is simply given by ω
(−)
AB = 1

2

(
ωAB − 1

2εAB
CDωCD

)
= −η̄aAB σa

2 and so their

curvature tensors identically vanish thanks to eq. (4.21). The curvature tensors are so

self-dual, i.e. RAB = F aηaAB , which are given by

R1̂2̂ = R3̂4̂ =
8m

(r +m)3

(
E1̂ ∧ E2̂ + E3̂ ∧ E4̂

)
,

R1̂4̂ = R2̂3̂ = − 4m

(r +m)3

(
E1̂ ∧ E4̂ +E2̂ ∧ E3̂

)
, (4.26)

R2̂4̂ = R3̂1̂ = − 4m

(r +m)3

(
E2̂ ∧ E4̂ +E3̂ ∧ E1̂

)
.

The corresponding SU(2) gauge fields can be identified from (4.25) as

A1̇ ≡ 1

2

(
ω1̂4̂ + ω2̂3̂

)
=
r −m

r +m

σ1

2
,

A2̇ ≡ 1

2

(
ω2̂4̂ + ω3̂1̂

)
=
r −m

r +m

σ2

2
,

A3̇ ≡ 1

2

(
ω1̂2̂ + ω3̂4̂

)
=

(
− 1 +

4m2

(r +m)2

)σ3

2
. (4.27)
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Therefore, the field strength of the SU(2) gauge fields (4.27) can be calculated to be

F = dA+A ∧A
=

1

2
fa(r)ηaABE

A ∧ EB (4.28)

with

f 1̇(r) = − 4m

(r +m)3
= f 2̇(r), f 3̇(r) =

8m

(r +m)3
. (4.29)

Note that the SU(2) field strengths in (4.28) are self-dual, i.e. F = ∗F , which, of course,

coincide with the curvature tensor (4.26).

Our result here agrees with the self-dual gauge fields in [34, 35].

4.3 Eguchi-Hanson metric

The Eguchi-Hanson metric [54] is the simplest ALE space described by the Gibbons-

Hawking metric (4.1) with ǫ = 0 and k = 2. Let us consider the metric given by

ds2 = h−2(r)dr2 +
r2

4
(σ2

1 + σ2
2) +

r2

4
h2(r)σ2

3 (4.30)

with the function h(r) =
√

1 − a4/r4. The Maurer-Cartan one-forms {σi} satisfy the

exterior algebra

dσi − 1

2
εîĵk̂σj ∧ σk = 0. (4.31)

Note that the sign is different from the Taub-NUT case (4.21), with which the metric (4.30)

becomes self-dual. The spin connections are given by eq. (4.25) for cr = h−1(r), c1 = c2 =

r/2, and c3 = rh(r)/2 and their components are

ω1̂2̂ = ω3̂4̂ =
1

2

(
1 +

a4

r4

)
σ3,

ω1̂4̂ = ω2̂3̂ =
1

2

√
1 − a4

r4
σ1, (4.32)

ω2̂4̂ = ω3̂1̂ =
1

2

√
1 − a4

r4
σ2,

which are clearly self-dual. The curvature tensors are straightforwardly computed by

R1̂2̂ = R3̂4̂ =
4a4

r6

(
E1̂ ∧ E2̂ + E3̂ ∧ E4̂

)
,

R1̂4̂ = R2̂3̂ = −2a4

r6

(
E1̂ ∧ E4̂ + E2̂ ∧E3̂

)
, (4.33)

R2̂4̂ = R3̂1̂ = −2a4

r6

(
E2̂ ∧ E4̂ + E3̂ ∧E1̂

)
.

The self-dual curvature tensors for the Eguchi-Hanson metric (4.30) can be determined

by SU(2) gauge fields Aa = 1
4ωABη

a
AB = (f(r)σ1, f(r)σ2, g(r)σ3) where

f(r) =
1

2

√
1 − a4

r4
, g(r) =

1

2

(
1 +

a4

r4

)
. (4.34)
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The corresponding SU(2) field strength coincides with the curvature tensor RAB = F aηaAB
in (4.33) where F a = dAa − εabcAb ∧Ac and they are given by

F =
1

2
fa(r)ηaABE

A ∧ EB (4.35)

with

f 1̇(r) = −2a4

r6
= f 2̇(r), f 3̇(r) =

4a4

r6
. (4.36)

Our result here agrees with the self-dual gauge fields in [32, 35].

4.4 Atiyah-Hitchin metric

The Atiyah-Hitchin metric [55] describes a four-dimensional hyper-Kähler manifold with

SO(3) isometry that was introduced to describe the moduli space of SU(2) BPS monopoles

of magnetic charge 2. Let us consider the Bianchi type IX space [12] which is locally

described by the metric with an SU(2) or SO(3) isometry group

ds2 = a2
τdτ

2 +
3∑

i=1

a2
i (σ

i)2 (4.37)

where aτ = a1a2a3 and ai’s are functions solely of τ . The self-dual conditions for all Bianchi

IX solutions are given by the equations

1

aτ

da1

dτ
=
a2

2 + a2
3 − a2

1

2a2a3
− α1,

1

aτ

da2

dτ
=
a2

3 + a2
1 − a2

2

2a3a1
− α2, (4.38)

1

aτ

da3

dτ
=
a2

1 + a2
2 − a2

3

2a1a2
− α3,

where three constant numbers αi, i = 1, 2, 3, satisfy αiαj = ε̂
iĵk̂
αk. Choosing (α1, α2, α3) =

(1, 1, 1) will lead to the Atiyah-Hitchin metric [55] while (α1, α2, α3) = (0, 0, 0) yields the

Eguchi-Hanson type I or II metric [54].

Identify the vierbein basis from the metric (4.37)

{E î, E4̂} = {aiσi, aτdτ}, {Eî, E4̂} = {a−1
i κi, a

−1
τ

∂

∂τ
} (4.39)

without summation convention for the index i. The left-invariant 1-forms {σi} on S3

satisfy the exterior algebra (4.31) and the dual basis vectors {κi} satisfy the Lie algebra

[κi, κj ] = −ε̂
iĵk̂
κk. Note that the metric (4.37) has the same structure as the Taub-NUT

metric (4.19). Therefore, the spin connections also have the same structure as follows

ωî4̂ =
a′i
aτ
σi (NS[i]), ωîĵ = ε̂

iĵk̂

a2
i + a2

j − a2
k

2aiaj
σk (NS[ij]), (4.40)

where the prime means the derivative with respect to τ . Note that the spin connections

in (4.40) are not self-dual in general. One can check using eq. (4.38) that the spin connec-

tions in eq. (4.40) satisfy the following relation

1

4
η̄aABωAB =

1

2

(
− ωa4̂ +

1

2
ε
aĵk̂
ω
ĵk̂

)
=

1

2
αaσ

a (NS[a]). (4.41)
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Therefore, they become self-dual only when (α1, α2, α3) = (0, 0, 0) which was completely

solved. (See eq. (4.23) in [12] for the exact solution.) But the curvature tensors will be

self-dual, i.e. F
(−)
MN = 0 in eq. (3.30), because the curvature tensor of the anti-self-dual spin

connections in (4.41) identically vanishes due to eq. (4.31).

Let us define SU(2) gauge fields as follows

Aa ≡ 1

4
ηaABωAB = ωa4̂ +

1

2
αaσ

a (NS[a]). (4.42)

Our previous result (3.41) implies that the field strengths F a = dAa − εabcAb ∧Ac defined

by the SU(2) gauge fields in (4.42) are necessarily self-dual. Now we will show that it is

the case. It is straightforward to calculate the SU(2) field strength

F a =

(
a′a
aτ

)′

dτ ∧ σa + εabc
(
a′a
2aτ

− a′ba
′
c

a2
τ

− a′bαc
aτ

)
σb ∧ σc (NS[a])

= ã′adτ ∧ σa + εabc
(
ãa
2

− ãbãc − ãbαc

)
σb ∧ σc (NS[a]), (4.43)

where ãa ≡ a′a/aτ . Using the identity [56] derived from eq. (4.38),

ã′1
a1aτ

= − ã1 − 2ã2ã3 − ã2α3 − ã3α2

a2a3
, etc, (4.44)

we see that the field strength (4.43) has the correct self-dual structure, i.e.

F = dA+A ∧A
=

1

2
fa(τ)ηaABE

A ∧EB

= − ã′a
2aaaτ

ηaABE
A ∧ EB . (4.45)

The self-dual gauge fields in eqs. (4.42) and (4.43) describe a Yang-Mills instanton on

the Atiyah-Hitchin space and it consists of a new solution to the extent of our knowledge.

4.5 Real heaven

The real heaven metric [57] describes four dimensional hyper-Kähler manifolds with a

rotational Killing symmetry which is also completely determined by one real scalar field.

The metric is given by

ds2 = (∂3ψ)−1(dτ + qαdx
α)2 + (∂3ψ)(eψdxαdxα + dx3dx3)

≡ e−2φ4(dτ + qαdx
α)2 + e2φidxidxi (4.46)

where qα = −εαβ∂βψ, (α = 1, 2) and the function ψ(x) is independent of τ and satisfy the

three-dimensional continual Toda equation

(∂2
1 + ∂2

2)ψ + ∂2
3e
ψ = 0. (4.47)

The rotational Killing vector is given by cα∂αψ∂/∂τ with constants cα.
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We identify the vierbein vectors as

E î = eφidxi (NS[i]), E4̂ = e−φ4(dτ + qαdx
α). (4.48)

where

e2φ1 = e2φ2 = ∂3ψe
ψ, e2φ3 = e2φ4 = ∂3ψ. (4.49)

From the torsion-free equation dEA + ωAB ∧ EB = 0, we get

ωî4̂ = −eφ4−φi∂ie
−φ4E4̂ − 1

2
e−φ4−φi−φjfijE

ĵ (NS[i]),

ωîĵ = −1

2
e−φ4−φi−φjfijE

4̂ + e−φi−φj
(
∂je

φiE î − ∂ie
φjE ĵ

)
(NS[ij]), (4.50)

where fij = ∂iqj − ∂jqi with qi ≡ −ε3ij∂jψ.

It is straightforward to check that the self dual relations, ω3̂1̂ = ω2̂4̂ and ω2̂3̂ = ω1̂4̂,

are satisfied if and only if the continual Toda equation (4.47) is satisfied. However, the

relation ω1̂2̂ = ω3̂4̂ is not satisfied. In order to cure this mismatch, first note that we can

perform the local frame rotation (3.1) as follows

ẼA = ΛABE
B

=




1 0 0 0

0 1 0 0

0 0 cos τ2 − sin τ
2

0 0 sin τ
2 cos τ2







E1̂

E2̂

E3̂

E4̂


 . (4.51)

The spin connections also transform according to eq. (3.2)

ω̃AB = ΛACω
C
DΛ−1D

B + ΛAC(dΛ−1)CB (4.52)

where

ΛAC(dΛ−1)CB =
1

2




0 0 0 0

0 0 0 0

0 0 0 1

0 0 −1 0


 dτ (4.53)

and dτ =
(
− qαe

−φαEα̂ + eφ4E4̂
)
. Note that the frame rotation (4.51) affects the self-

duality condition only for ω̃3̂4̂ = ω3̂4̂ + 1
2dτ due to the inhomogeneous term (4.53). In other

words, ω̃3̂1̂ = ω̃2̂4̂ and ω̃2̂3̂ = ω̃1̂4̂ are automatically satisfied thanks to the previous relations.

Now it is straightforward to check that ω̃1̂2̂ = ω1̂2̂ = ω̃3̂4̂ =
(
ω3̂4̂ − 1

2qαe
−φαEα̂ + 1

2e
φ4E4̂

)
.

Therefore, the spin connections in (4.52) become self-dual.

If one introduces SU(2) gauge fields by

Aa ≡ 1

4
ηaABω̃AB = ω̃a4̂ = ωa4̂ +

1

2
δa
3̂
dτ, (4.54)

the corresponding field strengths, F a = dAa− εabcAb∧Ac, should be self-dual according to

the general result (3.41). This can also be proved by using the relation (3.19) which leads

to the following result

F a =
1

4
ηaAB

(
dω̃AB + ω̃AC ∧ ω̃CB

)
=

1

4
ηaABR̃AB . (4.55)
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Hence the self-duality of F a results from the self-dual curvature tensors R̃AB . Or one can

check it by a straightforward calculation using eqs. (4.50) and (4.47) though rather tedious.

The self-dual gauge fields in eq. (4.54) describe a Yang-Mills instanton on the real

heaven (4.46), which is a new solution to the extent of our knowledge.

4.6 Euclidean Schwarzschild solution

The Euclidean Schwarzschild metric [10] was constructed by the Wick rotation of the

Schwarzschild black-hole solution. It is not a gravitational instanton (not a hyper-Kähler

manifold) although it is a Ricci-flat manifold. The metric takes the form

ds2 =

(
1 − 2m

r

)
dτ2 +

(
1 − 2m

r

)−1

dr2 + r2(dθ2 + sin θ2dφ2). (4.56)

The radial coordinate is constrained by r ≥ 2m and the time coordinate τ is an angular

variable with period 8πm. Hence this solution has the topology R2 × S2.

After defining the vierbein basis (E1̂ = h(r)−1dr,E2̂ = rdθ,E3̂ = r sin θdφ,E4̂ =

h(r)dτ), it is easy to compute spin connections:

ω1̂2̂ = −hdθ, ω1̂3̂ = −h sin θdφ, ω2̂3̂ = − cos θdφ,

ω1̂4̂ = −1

2
(h2)′dτ, ω2̂4̂ = ω3̂4̂ = 0, (4.57)

where h(r) =
√

1 − 2m
r

. The corresponding curvature tensors are given by

R1̂2̂ = −m
r3
E1̂ ∧ E2̂, R1̂3̂ = −m

r3
E1̂ ∧E3̂, R1̂4̂ =

2m

r3
E1̂ ∧ E4̂,

R2̂3̂ =
2m

r3
E2̂ ∧ E3̂, R2̂4̂ = −m

r3
E2̂ ∧E4̂, R3̂4̂ = −m

r3
E3̂ ∧ E4̂, (4.58)

which are not self-dual anymore although they are Ricci-flat, i.e., RAB ≡ RACBC = 0.

Because the spin connections in eq. (4.57) are neither self-dual nor anti-self-dual, we

can consider both type of SU(2) gauge fields defined by

A(±)a ≡ 1

4
η

(±)a
AB ωAB. (4.59)

The field strengths, F (±)a = dA(±)a − εabcA(±)b ∧A(±)c, should be either self-dual (for the

+ sign) or anti-self-dual (for the − sign) because we get the following result

F (±)a =
1

4
η

(±)a
AB

(
dωAB + ωAC ∧ ωCB

)
=

1

4
η

(±)a
AB RAB, (4.60)

which can be derived by using the relation (3.19). According to the general result (3.41),

the SU(2) gauge fields in eq. (4.59) automatically satisfy the self-duality equation (2.13)

where the background geometry is given by the metric (4.56). Therefore, the solution (4.59)

indeed describes an SU(2) Yang-Mills (anti-)instanton on the space (4.56).

The solution (4.59) was originally found by Charap and Duff [29, 30]. The reason for

the revival here is that the solution (4.59) exposes an interesting structure for a Ricci-flat
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manifold. According to the decomposition (3.29) and (3.30), we see that the Euclidean

Schwarzschild metric (4.56) describes the sum of an SU(2)L instanton and an SU(2)R anti-

instanton. Therefore, an interesting question is whether this kind of feature is generic or

not. Remarkably it can be shown [58] that any Einstein manifold satisfying RAB = ΛδAB
for either Λ = 0 or Λ 6= 0 always arises as the sum of SU(2)L instantons and SU(2)R
anti-instantons.

5 Topological invariants

The correspondence between gravitational and Yang-Mills instantons now raises an intrigu-

ing question about topological invariants in gravity and gauge theories. In the gravity side,

there are two topological invariants associated with the Atiyah-Patodi-Singer index theo-

rem for an elliptic complex in four dimensions [11], namely the Euler characteristic χ(M)

and the Hirzebruch signature τ(M), which can be expressed as integrals of the curvature

of a four dimensional metric while, in the gauge theory side, there is a unique topological

invariant up to a boundary term given by the Chern class of gauge bundle. Thus a natural

question is how the two kinds of topological invariants for self-dual four manifolds can be

related to the Chern class of instanton bundle. In particular, the two topological invariants

for gravitational instantons should be related to each other, in other words,

aχ(M) + bτ(M) = c, a, b, c ∈ Z, (5.1)

because there is only a unique topological invariant c2(E), the second Chern class, for

Yang-Mills instantons.

The topologically inequivalent sector of instanton solutions is defined by the homotopy

class of a map from a three sphere at asymptotic infinity into the gauge group G = SU(2)

f : S3 → SU(2) (5.2)

and the topological charge is defined by an element of the homotopy group π3(SU(2)) = Z.

Viewed the spin connections in eq. (3.2) as gauge fields in G = O(4) = SU(2)L × SU(2)R,

one may also classify the topological sectors of the O(4) gauge fields in eq. (3.10) by the

homotopy class of the map

f : S3 → O(4) = SU(2)L × SU(2)R. (5.3)

Hence the homotopy group of O(4) in the gravity theory is isomorphic to two copies of the

additive group of integers

π3(O(4)) ≈ π3(SU(2)L × SU(2)R) ≈ Z ⊕ Z. (5.4)

Consequently, there are two independent gravitational topological charges [11], i.e., the

Euler characteristic χ(M) and the Hirzebruch signature τ(M).
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The Euler number χ(M) for the de Rham complex and the signature τ(M) for the

Hirzebruch signature complex are, respectively, defined by4

χ(M) =
1

32π2

∫

M

εABCDRAB ∧RCD

+
1

16π2

∫

∂M

εABCD
(
θAB ∧RCD − 2

3
θAB ∧ θCE ∧ θED

)
, (5.5)

τ(M) = − 1

24π2

∫

M

TrR ∧R− 1

24π2

∫

∂M

Trθ ∧R+ ηS(∂M), (5.6)

where θAB is the second fundamental form of the boundary ∂M . It is defined by

θAB = ωAB − ω0AB , (5.7)

where ωAB are the actual connection 1-forms and ω0AB are the connection 1-forms if the

metric were locally a product form near the boundary [11]. The connection 1-form ω0AB

will have only tangential components on ∂M and so the second fundamental form θAB
will have only normal components on ∂M . And ηS(∂M) is the η-function given by the

eigenvalues of a signature operator defined over ∂M and depends only on the metric on

∂M [11]. The topological invariants are also related to nuts (isolated points) and bolts

(two surfaces), which are the fixed points of the action of one parameter isometry groups

of gravitational instantons [36].

We have verified in the previous sections that, for gravitational instantons, one of the

SU(2) factors in (5.3) completely decouples from the theory. Therefore, the topological

classification of (anti-)self-dual spin connections will essentially be the same as eq. (5.2)

in the gauge theory. That is the reason why we expect the relation (5.1) for the topo-

logical invariants in eqs. (5.5) and (5.6). Now we will confirm the relation (5.1) explicitly

determining the coefficients.

Since θAB in eq. (5.7) are antisymmetric on the AB index pair, we will decompose

them into a self-dual part and an anti-self-dual part according to eq. (3.10)

θAB ≡ a(+)aηaAB + a(−)aη̄aAB . (5.8)

We take the normal to the boundary to be (A = 4̂)-direction and so we have θîĵ = 0. It

is then straightforward to express the topological invariants in terms of SU(2) gauge fields

using the decompositions (3.10), (3.11) and (5.8):

χ(M) =
1

4π2

∫

M

(
F (+)a ∧ F (+)a − F (−)a ∧ F (−)a

)

+
1

4π2

∫

∂M

(
a(+)a − a(−)a

)
∧

(
F (+)a + F (−)a

)

+
1

12π2

∫

∂M

εabc
(
a(+)a − a(−)a

)
∧

(
a(+)b − a(−)b

)
∧

(
a(+)c − a(−)c

)

4Note that our definition is different in signs of boundary terms from that in [11] because we choose the

orientation d3x ∧ dτ = −dτ ∧ d3x to be positive and the τ -direction to be normal to the boundary ∂M

while the orientation dτ ∧ d3x was chosen to be positive in [11].
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=
1

16π2

∫

M

√
gεABCD

(
F

(+)a
AB F

(+)a
CD − F

(−)a
AB F

(−)a
CD

)
d4x

+
1

8π2

∫

∂M

√
hεîĵk̂

(
a

(+)a

î
− a

(−)a

î

)(
F

(+)a

ĵk̂
+ F

(−)a

ĵk̂

)
d3x

+
1

12π2

∫

∂M

√
hεabcεîĵk̂

(
a

(+)a

î
−a(−)a

î

)(
a

(+)b

ĵ
−a(−)b

ĵ

)(
a

(+)c

k̂
−a(−)c

k̂

)
d3x, (5.9)

τ(M) =
1

6π2

∫

M

(
F (+)a ∧ F (+)a + F (−)a ∧ F (−)a

)

+
1

12π2

∫

∂M

(
a(+)a − a(−)a

)
∧

(
F (+)a − F (−)a

)
+ ηS(∂M)

=
1

24π2

∫

M

√
gεABCD

(
F

(+)a
AB F

(+)a
CD + F

(−)a
AB F

(−)a
CD

)
d4x

+
1

24π2

∫

∂M

√
hεîĵk̂

(
a

(+)a

î
− a

(−)a

î

)(
F

(+)a

ĵk̂
− F

(−)b

ĵk̂

)
d3x+ ηS(∂M), (5.10)

where we defined the volume forms as E1̂ ∧E2̂ ∧E3̂ ∧E4̂ ≡ √
gd4x and E1̂ ∧E2̂ ∧E3̂|∂M ≡√

hd3x.

An interesting pattern appears in the topological invariants. First consider a compact

Einstein manifold without boundary, i.e. ∂M = 0. It turns out [58] that F (+)a and F (−)a

are self-dual and anti-self-dual instantons, respectively. Then we see that the Euler number

χ(M) = χ+(M) +χ−(M) does not distinguish self-dual and anti-self-dual instantons since

both contribute with equal sign while the Hirzebruch signature τ(M) = τ+(M) − τ−(M)

distinguishes self-dual and anti-self-dual instantons. Based on the observation, we can draw

general properties about 4-dimensional compact Einstein manifolds where all boundary

terms vanish. As we mentioned above, the Euler number χ(M) gets equal sign contributions

from self-dual and anti-self-dual gauge fields while the Hirzebruch signature τ(M) is not the

case. Thus we see that χ(M) ≥ 0 with the equality only if M is flat. This is the Berger’s

result [11]. We can further refine the Berger’s result by looking at the expressions (5.9)

and (5.10):

χ(M) − 3

2
τ(M) = − 1

2π2

∫

M

F (−)a ∧ F (−)a ≥ 0 (5.11)

because F (−) describes SU(2) anti-instantons. The inequality (5.11) will be saturated if

and only if a compact four-manifold is half-flat, i.e. F (−)a = 0. In the result, we get a

general relation

χ(M) ≥ 3

2
|τ(M)| (5.12)

where the bound is saturated only for T4 and K3 surface, which are compact self-dual

four-manifolds as either trivial or nontrivial gravitational instantons. This result is known

as the Hitchin-Thorpe inequality [11].

For noncompact manifolds, there are additional boundary terms as shown in (5.9)

and (5.10) which are not separated into the self-dual and anti-self-dual parts unlike as

the volume terms. In particular, the eta-invariant ηS(∂M) for k self-dual gravitational
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instantons [38] is given by

ηS(∂M) = − 2ǫ

3k
+

(k − 1)(k − 2)

3k
(5.13)

where ǫ = 0 for ALE boundary conditions and ǫ = 1 for ALF boundary conditions. Be-

cause the topological invariants for a noncompact manifold with boundary have nontrivial

boundary corrections, it is not easy to demonstrate the relation (5.1) although such a rela-

tion should exist for general half-flat manifolds. But, one may infer by investigating known

examples so far that the following relation

χ(M) = |τ(M)| + 1 (5.14)

would be satisfied for noncompact gravitational instantons. It turns out [36–38] that ALE

instantons including all ADE series and ALF instantons of AD series satisfy the rela-

tion (5.14).5

Therefore, the evidence for the relation (5.14) is overwhelming. Since we believe that

the relation (5.1) will be generic independently of asymptotic boundary conditions and

topology, we conjecture that the relation (5.14) will be true for general noncompact grav-

itational instantons. It may be proved by showing the following identity for gravitational

instantons, e.g., with F (−)a = 0 and so taking the self-dual gauge A(−)a = 0:

χ(M) − τ(M) =
1

12π2

∫

M

F (+)a ∧ F (+)a +
1

6π2

∫

∂M

a(+)a ∧ F (+)a

+
1

12π2

∫

∂M

εabca(+)a ∧ a(+)b ∧ a(+)c − ηS(∂M)

= 1. (5.15)

Indeed, for ALE and ALF spaces, one can derive the relation χ(M)−τ(M) = 1−4I 1

2

(S±,D)

using eqs. (12), (13), (14) and (20) in [37]. If M has a spin structure, the index of the Dirac

operator, I 1

2

(S±,D), must identically vanish [12], and thus we confirm the above identity.

For general cases, we do not know how to rigorously prove the above identity and so we

leave it as our conjecture.

The topological invariant in SU(2) gauge theory is given by the second Chern number

k =
1

16π2

∫

M

F aY M ∧ F aY M (5.16)

where F aY M = dAaY M + 1
2ε
abcAbY M ∧ AcY M . Note that the SU(2) field strength coming

from the spin connections is given by F aG = dAaG − εabcAbG ∧ AcG. So they are related

by AaY M = −2AaG and F aY M = −2F aG [35]. Taking this factor into account, one can see

5Ak−1 ALE (ǫ = 0) and ALF (ǫ = 1) instantons are described by the Gibbons-Hawking metric (4.1) and

D0 ALF instantons are described by the Atiyah-Hitchin metric (4.37). Especially, Kronheimer obtained

the explicit construction of the ALE manifolds as hyper-Kähler quotients [16] which heavily relies on the

algebraic structure of the Kleinian groups Γ and the crucial identification between the Hirzebruch signature

τ (M) and the number of conjugacy classes of the finite group Γ. See the table 2 in [59] for the relation

(5.14) of all ALE manifolds. See also the table D.1 in [11].
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that the Chern number (5.16) has the same normalization factor as the Euler number in

eq. (5.9), i.e.,

k =
1

4π2

∫

M

F aG ∧ F aG. (5.17)

This fact provides us an interesting insight why the instanton number (5.17) for SU(2)

instantons satisfying (2.13) is not necessarily integer-valued [32, 33]. Note that the Euler

number (5.5) as well as the signature (5.6) are all integer-valued. Therefore, if there is

a nontrivial boundary correction in the Euler number (5.9), the instanton number (5.17)

will not be an integer, i.e., a fractional number in general. We will illustrate it with

explicit examples.

5.1 Taub-NUT space

For the product metric

ds2 =
1

4

r0 +m

r0 −m
dr2 +

1

4
(r20 −m2)(σ2

1 + σ2
2) +m2 r0 −m

r0 +m
σ2

3, (5.18)

the spin connections are given by

(ω0)̂i4̂ = 0, (ω0)̂iĵ = ωîĵ(r = r0). (5.19)

Hence the second fundamental form at the boundary r = r0 is

θî4̂ = ωî4̂(r = r0), θîĵ = 0 (5.20)

or

a1̇ =
r0

r0 +m
σ1, a2̇ =

r0
r0 +m

σ2, a3̇ =
2m2

(r0 +m)2
σ3. (5.21)

Using eqs. (4.28) and (5.21), we get the following result

F a ∧ F a = 24m3 r −m

(r +m)5
σ1 ∧ σ2 ∧ σ3 ∧ dr,

aa ∧ F a|r=r0 = −4m2 (r0 −m)2

(r0 +m)4
σ1 ∧ σ2 ∧ σ3,

a1̇ ∧ a2̇ ∧ a3̇ =
2m2r20

(r0 +m)4
σ1 ∧ σ2 ∧ σ3. (5.22)

Therefore, we see that the boundary integrals vanish because

aa ∧ F a|r0→∞ = 0, a1̇ ∧ a2̇ ∧ a3̇|r0→∞ = 0. (5.23)

Finally we get the topological numbers for the Taub-NUT space

χ(M) =
1

4π2

∫

M

F a ∧ F a

=
24m3

4π2

∫

S3

σ1 ∧ σ2 ∧ σ3

︸ ︷︷ ︸
=16π2

∫ ∞

m

r −m

(r +m)5
dr

︸ ︷︷ ︸
= 1

96m3

= 1, (5.24)
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τ(M) =
1

6π2

∫

M

F a ∧ F a + ηS(∂M)

=
2

3
+ ηS(∂M) = 0. (5.25)

We have used the result (5.13) for the η-invariant with k = 1. In this case, the Eu-

ler number (5.24) is equal to the instanton number (5.17) because there is no boundary

correction [34, 35]. And it is straightforward to check the relation (5.15).

5.2 Eguchi-Hanson space

For the product metric

ds2 =

(
1 − a4

r40

)−1

dr2 +
r20
4

(σ2
1 + σ2

2) +
r20
4

(
1 − a4

r40

)
σ2

3 , (5.26)

the second fundamental form at the boundary r = r0 is

a1̇ =
1

2

√
1 − a4

r40
σ1, a2̇ =

1

2

√
1 − a4

r40
σ2, a3̇ =

1

2

(
1 +

a4

r40

)
σ3. (5.27)

Note that we have to choose the angular coordinate ranges

0 ≤ θ < π, 0 ≤ ϕ < 2π, 0 ≤ ψ < 2π (5.28)

to remove the apparent singularities in the metric at r = a. Thus the boundary at ∞
becomes RP 3.

Then we obtain the following result

F a ∧ F a =
6a8

r9
σ1 ∧ σ2 ∧ σ3 ∧ dr,

aa ∧ F a|r0→∞ = 0,

a1̇ ∧ a2̇ ∧ a3̇|r0→∞ =
1

8
σ1 ∧ σ2 ∧ σ3, (5.29)

and get the topological numbers for the Eguchi-Hanson space

χ(M) =
1

4π2

∫

M

F a ∧ F a +
1

12π2

∫

∂M

εabcaa ∧ ab ∧ ac

=
6a8

4π2

∫

RP
3

σ1 ∧ σ2 ∧ σ3

︸ ︷︷ ︸
=8π2

∫ ∞

a

1

r9
dr

︸ ︷︷ ︸
= 1

8a8

+
6

96π2

∫

RP
3

σ1 ∧ σ2 ∧ σ3

︸ ︷︷ ︸
=8π2

=
3

2
+

1

2
= 2, (5.30)

τ(M) =
1

6π2

∫

M

F a ∧ F a + ηS(∂M) = 1. (5.31)

Unlike the Taub-NUT case, there is a nontrivial boundary correction for the Euler

number (5.30). Since the instanton number (5.17) does not take the boundary contribu-

tion into account, it gets a fractional number k = 3
2 [33, 35]. One can check that the

relation (5.15) is satisfied.
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5.3 Euclidean Schwarzschild solution

This solution is interesting because it has a nontrivial Euler number [10] although it is not

a gravitational instanton. But it turns out that this solution is actually the sum of SU(2)L
instanton and SU(2)R anti-instanton, which explains why it has a nontrivial Euler number.

Take the product metric

ds2 =

(
1 − 2m

r0

)
dτ2 +

(
1 − 2m

r0

)−1

dr2 + r20(dθ
2 + sin θ2dφ2). (5.32)

The second fundamental form at the boundary r = r0 is then given by

a1̇ = −m
r20
dτ, a2̇ = a3̇ = 0. (5.33)

Using the result (4.58) with the definition F (±)a = 1
4η

(±)a
AB RAB, we obtain

F (±)a ∧ F (±)a = ±3m2

r4
dr ∧ dΩ ∧ dτ,

a(±)a ∧ F (±)a|r0→∞ = 0,

a(±)1̇ ∧ a(±)2̇ ∧ a(±)3̇ = 0. (5.34)

It is then straightforward to get the topological invariants [10]

χ(M) = χ+(M) + χ−(M) = 2, (5.35)

τ(M) = τ+(M) − τ−(M) = 0, (5.36)

where χ+(M) = χ−(M) = 1 and τ+(M) = τ−(M) = 2
3 + η(∂M). Hence we confirm that

the Euclidean Schwarzschild solution (4.56) is the sum of an SU(2) instanton and an anti-

instanton. And the relation (5.14) implies that τ±(M) = 0 or η(∂M) = −2
3 . Therefore the

SU(2) instanton for the Euclidean Schwarzschild solution (4.56) has the same topological

invariants as the Taub-NUT space (4.19) [29, 30]. Note that two instantons belong to

different gauge groups, one in SU(2)L and the other in SU(2)R, and so they cannot decay

into a vacuum. As a result, the space (4.56) should be stable at least perturbatively. One

may ask whether this kind of feature is special or general. Remarkably it can be shown [58]

that any Ricci-flat four-manifold always arises as the sum of SU(2)L instantons and SU(2)R
anti-instantons. Hence any Ricci-flat manifold should be stable for the same reason.

5.4 Topological invariant of Yang-Mills instantons

We have noticed that the instanton number (5.16) for (anti-)self-dual gauge fields satis-

fying (2.13) is not necessarily integer-valued because it does not take possible boundary

corrections into account. But the equivalence of the self-dual systems in (2.13) and (3.37)

implies that we need to also consider boundary contributions for the topological charge

of Yang-Mills instantons defined on a curved manifold. Thereby we suggest the Chern

number for an instanton bundle including boundary corrections

k =
1

16π2

∫

M

F a ∧ F a +
1

16π2

∫

∂M∞

Aa ∧ F a − 1

96π2

∫

∂M∞

εabcAa ∧Ab ∧Ac (5.37)
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which can be identified with the Euler characteristic (5.9) in the self-dual gauge, A(−)a = 0,

with the gauge theory normalization AaY M = −2AaG and F aY M = −2F aG and is accordingly

integer-valued. Note that the boundary term in (5.37) is precisely the Chern-Simons form

for the SU(2) vector bundle at an asymptotic infinity.

Now we consider the four-manifold M to have two ends, one at an asymptotic infinity

∂M∞ and the other at an inner boundary ∂M0 describing nuts and bolts of gravitational

instantons [36]. For example, the inner boundary is at r = m for the Taub-NUT space (4.19)

and at r = a for the Eguchi-Hanson space (4.30). Using the identity F a ∧ F a = dK where

K = Aa ∧ dAa +
1

3
εabcAa ∧Ab ∧Ac (5.38)

and the boundary operation ∂M = ∂M0 − ∂M∞,6 one can rewrite the instanton num-

ber (5.37) as the Chern-Simons integral on the inner boundary ∂M0, i.e.,

k =
1

16π2

∫

∂M0

(
Aa ∧ F a − 1

6
εabcAa ∧Ab ∧Ac

)
. (5.39)

Recall that the instanton number (5.37) is simply the expression of the Euler number (5.9)

and the Euler number χ(M) can be determined by the set of nuts and bolts through the

fixed point theorem (eq. (4.6) in [36])

χ(M) = ♯(nuts) + 2 ♯(bolts). (5.40)

Then we get a very interesting result that the Chern-Simons integral (5.39) on the inner

boundary ∂M0 simply counts the number of nuts plus the twice of the number of bolts in

gravitational instantons:

k =
1

16π2

∫

∂M0

(
Aa ∧ F a − 1

6
εabcAa ∧Ab ∧Ac

)
= ♯(nuts) + 2 ♯(bolts). (5.41)

It is easy to check the result (5.41) for the Taub-NUT space (♯(nuts) = 1, ♯(bolts) = 0)

and for the Eguchi-Hanson space (♯(nuts) = 0, ♯(bolts) = 1), using the previous results

with the relation AaYM = −2AaG and F aY M = −2F aG.

6 Discussion

Let us go back to the questions we have raised in section 1. So far we have focused on

the similarity between gauge theory and gravitation. A main source of the similarity is

coming from the fact that the O(4)-valued 1-forms ωAB are gauge fields (a connection of the

spin bundle SM) with respect to O(4) rotations as shown in eq. (3.2). Then the Riemann

curvature tensors in (3.7) constitute O(4)-valued curvature 2-forms of the spin bundle SM .

Therefore, the four-dimensional Euclidean gravity can be formulated as a gauge theory

using the language of the O(4) gauge theory. Via the fact that the Lorentz group O(4) is

a direct product of normal subgroups SU(2)L and SU(2)R, i.e. O(4) = SU(2)L × SU(2)R,

6The sign is due to our choice of orientation. See the footnote 4.
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Property Einstein Yang-Mills

Metric gMN (x) or EA . . .

Torsion dEA + ωAB ∧ EB = 0 . . .

Cyclic identity RAB ∧ EB = 0 . . .

Einstein equation GMN = 8πGTMN . . .

Coupling constant [G] = L2 [gYM ] = L0

Symmetry Spacetime Internal

Interaction Long-range Short-range

Table 1. Einstein vs. Yang-Mills.

the four-dimensional Euclidean gravity can be decomposed into two copies of SU(2) gauge

theories. In particular, the (anti-)self-dual sector satisfying (3.37) can be formulated as an

SU(2) gauge theory, as clearly indicated in eq. (3.33).

Nevertheless, gravity is different from gauge theory in many aspects. A decisive source

of the difference is the existence of a Riemannian metric which does not have any coun-

terpart in gauge theory. We highlight some crucial differences between gauge theory and

gravitation with the table 1.

The metric is constrained to be covariantly constant with respect to the Levi-Civita

connection (3.9) or equivalently the vierbeins are constrained to be torsion-free, i.e., TA =

dEA + ωAB ∧ EB = 0. This constraint leads to the result that the spin connections ωAB
are determined by potential fields, i.e., vierbeins, as eq. (3.8). As a result, a primary field

for gravity is the metric tensor rather than a gauge field (a connection of vector bundle).

This extra structure comprises a core origin of the differences in the above table.

Recently one of us showed [27] (see also recent reviews [28] and [60]) that Einstein

gravity can be derived from electromagnetism in noncommutative space. In particular, the

vierbeins EA in gravity arise from the leading order of noncommutative U(1) gauge fields

and higher order terms give rise to derivative corrections to Einstein gravity. Actually the

Einstein equations arising from the noncommutative gauge fields and the resulting emergent

gravity motivate to newly address the questions in section 1 in a more broad context

to include noncommutative U(1) gauge theories. For example, it was rigorously shown

in [61–64] that noncommutative U(1) instantons are equivalent to gravitational instantons.

Therefore, it will be very interesting to find a precise map between noncommutative U(1)

instantons and Yang-Mills instantons because a particular class of Yang-Mills instantons

can be obtained from gravitational instantons as was shown in this paper. We hope to

draw some valuable insights from this line of thought in our future works.

Now our method in section 3 can easily be generalized to get new instanton solutions

by the conformal rescaling method [41, 42]. Suppose that (M,g) is a self-dual gravitational

instanton and consider a Weyl transformation given by eq. (3.43) which can be represented

as ẼA = Ω(x)EA ∈ Γ(T ∗M) or ẼA = Ω−1(x)EA ∈ Γ(TM) in terms of vierbeins. Under

the Weyl transformation, the spin connections transform as follow:

ω̃AB = ωAB + (EB log ΩEA − EA log ΩEB). (6.1)
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We can apply the decompositions (3.10) and (3.11) to the transformed spin connection (6.1)

and the corresponding curvature tensor R̃ = dω̃+ ω̃∧ ω̃, respectively. After all, we will get

new SU(2) gauge fields defined by

Ã(+)a = A(+)a + A
(+)a, Ã(−)a = A

(−)a (6.2)

where A(+)a are the self-dual gauge fields determined by the original self-dual spin connec-

tion ωAB and

A
(±)a ≡ 1

2
η

(±)a
AB (EB log Ω)EA (6.3)

and the corresponding SU(2) field strengths will be given by

F̃ (±)a = dÃ(±)a − εabcÃ(±)b ∧ Ã(±)c. (6.4)

Now we can make two different choices:7

(I) F̃
(−)a
AB =

1

2
εAB

CDF̃
(−)a
CD , (6.5)

(II) F̃
(−)a
AB = −1

2
εAB

CDF̃
(−)a
CD . (6.6)

For the first choice (I), we will get a self-dual Yang-Mills instanton while, for the second

choice (II), an anti-self-dual Yang-Mills instanton. Then one can show [58] that, for the

case (I), the Ricci-scalar R̃ = g̃MN R̃MN will identically vanish, i.e. R̃ = 0, but the case

(II) seems to give rise to an intriguing manifold satisfying R̃MN − 1
4 g̃MN R̃ = 0. Because

the Ricci scalar transforms under the Weyl transformation (3.43) as Ω3R̃ = ΩR − 6�gΩ

where �g refers to the scalar Laplacian on (M,g), we see that the rescaling function Ω(x)

must be harmonic, i.e. Ω−1
�gΩ = 0, for the case (I), taking into account that R = 0. But

the harmonic function Ω(x) will allow mild singularities [41, 42] which can be removed by

a gauge transformation.

By the same procedure as eq. (3.42), the self-dualities in eqs. (6.5) and (6.6) can be

written as

F̃
(−)
MN = ±1

2

εRSPQ√
g̃
g̃MRg̃NS F̃

(−)
PQ (6.7)

where
√
g̃ = Ω4√g. However, taking into account the conformal invariance of self-duality,

we get the self-duality equation on the original four-manifold (M,g), i.e.,

F̃
(−)
MN = ±1

2

εRSPQ√
g

gMRgNSF̃
(−)
PQ . (6.8)

Consequently, we get new Yang-Mills instantons on an original Ricci-flat manifold (M,g)

after the Weyl transformation (6.1). More details about explicit solutions obtained in this

way and their topological properties will be discussed elsewhere.

7It may be worthwhile to compare the solution (6.3) with ’t Hooft ansatz (see section 4.3. in [1]) in

singular (the case (I)) and regular (the case (II)) gauges. Note that the solution (4.9) from the Gibbons-

Hawking metric takes the form (6.3) for the case (I).
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In this paper we showed that any gravitational instanton is an SU(2) Yang-Mills instan-

ton on the gravitational instanton itself. Regarding to this property, there is an interesting

theorem (Example 3 (page 302) in [20] and see also section 7 in [21]) that there always

exists an instanton bundle on an ALE manifold M with the instanton number k = 1 − 1
|Γ|

(|Γ| denoting the order of Γ in M ∼= C̃2/Γ) defined by (5.16) such that the moduli space of

self-dual connections on the instanton bundle is a four-dimensional hyper-Kähler manifold

and coincides with the base manifoldM . Inferred from our result, the above property seems

to be true for other self-dual manifolds. To be precise, suppose that M(E →M,k) is the

moduli space of self-dual connections on a vector bundle E over M with instanton number

k where M is a gravitational instanton. Then, each non-empty, non-compact 4-dimensional

component of the moduli space M(E →M,k) is isomorphic to the gravitational instanton

itself. It will be interesting to clarify this assertion.

Acknowledgments

We are grateful to Kimyeong Lee for guiding us to a correct direction. HSY thanks Jungjai

Lee for helpful discussions for some issues. The work of C. Park was supported by the

National Research Foundation of Korea (NRF) grant funded by the Korea government

(MEST) through the Center for Quantum Spacetime (CQUeST) of Sogang University

with grant number 2005-0049409. The work of H.S. Yang was supported by the RP-Grant

2009 of Ewha Womans University.

References

[1] R. Rajaraman, Solitons and instantons, North Holland, Amsterdam The Netherlands (1982).

[2] N. Seiberg and E. Witten, Monopole condensation, and confinement in N = 2

supersymmetric Yang-Mills theory, Nucl. Phys. B 426 (1994) 19 [hep-th/9407087]

[SPIRES].

[3] N. Seiberg and E. Witten, Monopoles, duality and chiral symmetry breaking in N = 2

supersymmetric QCD, Nucl. Phys. B 431 (1994) 484 [hep-th/9408099] [SPIRES].

[4] M.F. Atiyah, N.J. Hitchin, V.G. Drinfeld and Yu.I. Manin, Construction of instantons,

Phys. Lett. A 65 (1978) 185 [SPIRES].

[5] N. Dorey, T.J. Hollowood, V.V. Khoze and M.P. Mattis, The calculus of many instantons,

Phys. Rept. 371 (2002) 231 [hep-th/0206063] [SPIRES].

[6] E.J. Weinberg and P. Yi, Magnetic monopole dynamics, supersymmetry and duality,

Phys. Rept. 438 (2007) 65 [hep-th/0609055] [SPIRES].

[7] N.A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math.

Phys. 7 (2004) 831 [hep-th/0206161] [SPIRES].

[8] N. Nekrasov and A. Okounkov, Seiberg-Witten theory and random partitions,

hep-th/0306238 [SPIRES].

[9] S.K. Donaldson and P.B. Kronheimer, The geometry of four-manifolds, Oxford University

Press, Oxford U.K. (1990).

– 33 –

http://dx.doi.org/10.1016/0550-3213(94)90124-4
http://arxiv.org/abs/hep-th/9407087
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9407087
http://dx.doi.org/10.1016/0550-3213(94)90214-3
http://arxiv.org/abs/hep-th/9408099
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9408099
http://dx.doi.org/10.1016/0375-9601(78)90141-X
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA,A65,185
http://dx.doi.org/10.1016/S0370-1573(02)00301-0
http://arxiv.org/abs/hep-th/0206063
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0206063
http://dx.doi.org/10.1016/j.physrep.2006.11.002
http://arxiv.org/abs/hep-th/0609055
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0609055
http://arxiv.org/abs/hep-th/0206161
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0206161
http://arxiv.org/abs/hep-th/0306238
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0306238


J
H
E
P
0
4
(
2
0
1
1
)
0
8
7

[10] S.W. Hawking, Gravitational instantons, Phys. Lett. A 60 (1977) 81 [SPIRES].

[11] T. Eguchi, P.B. Gilkey and A.J. Hanson, Gravitation, gauge theories and differential

geometry, Phys. Rept. 66 (1980) 213 [SPIRES].

[12] G.W. Gibbons and C.N. Pope, The positive action conjecture and asymptotically euclidean

metrics in quantum gravity, Commun. Math. Phys. 66 (1979) 267 [SPIRES].

[13] C.W. Misner, K.S. Thorne and J.A. Wheeler, Gravitation, W.H. Freeman & Co., New York

U.S.A. (1973).

[14] T. Eguchi and A.J. Hanson, Selfdual solutions to euclidean gravity,

Ann. Phys. 120 (1979) 82 [SPIRES].

[15] N.J. Hitchin, Polygons and gravitons, Math. Proc. Camb. Phil. Soc. 85 (1979) 465.

[16] P.B. Kronheimer, The construction of ALE spaces as hyper-Kähler quotients, J. Diff. Geom.

29 (1989) 665 [SPIRES].

[17] G.W. Gibbons and P. Rychenkova, Hyper-Kähler quotient construction of BPS monopole

moduli spaces, Commun. Math. Phys. 186 (1997) 585 [hep-th/9608085] [SPIRES].

[18] S.A. Cherkis and N.J. Hitchin, Gravitational instantons of type D(k),

Commun. Math. Phys. 260 (2005) 299 [hep-th/0310084] [SPIRES].

[19] O. Biquard and V. Minerbe, A Kummer construction for gravitational instantons,

arXiv:1005.5133 [SPIRES].

[20] P.B. Kronheimer and H. Nakajima, Yang-Mills instantons on ALE gravitational instantons,

Ann. Math. 288 (1990) 263.

[21] M. Bianchi, F. Fucito, G. Rossi and M. Martellini, Explicit construction of Yang-Mills

instantons on ALE spaces, Nucl. Phys. B 473 (1996) 367 [hep-th/9601162] [SPIRES].

[22] S.A. Cherkis, Moduli spaces of instantons on the Taub-NUT space,

Commun. Math. Phys. 290 (2009) 719 [arXiv:0805.1245] [SPIRES].

[23] S.A. Cherkis, Instantons on the Taub-NUT space, Adv. Theor. Math. Phys. 14 (2010) 609

[arXiv:0902.4724] [SPIRES].

[24] E. Witten, Branes, instantons, and Taub-NUT spaces, JHEP 06 (2009) 067

[arXiv:0902.0948] [SPIRES].

[25] C. Vafa and E. Witten, A strong coupling test of S duality, Nucl. Phys. B 431 (1994) 3

[hep-th/9408074] [SPIRES].

[26] M.R. Douglas and G.W. Moore, D-branes, quivers and ALE instantons, hep-th/9603167

[SPIRES].

[27] H.S. Yang, Emergent spacetime and the origin of gravity, JHEP 05 (2009) 012

[arXiv:0809.4728] [SPIRES].

[28] J. Lee and H.S. Yang, Quantum gravity from noncommutative spacetime, arXiv:1004.0745

[SPIRES].

[29] J.M. Charap and M.J. Duff, Gravitational effects on Yang-Mills topology,

Phys. Lett. B 69 (1977) 445 [SPIRES].

[30] J.M. Charap and M.J. Duff, Space-time topology and a new class of Yang-Mills instanton,

Phys. Lett. B 71 (1977) 219 [SPIRES].

– 34 –

http://dx.doi.org/10.1016/0375-9601(77)90386-3
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA,A60,81
http://dx.doi.org/10.1016/0370-1573(80)90130-1
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRPLC,66,213
http://dx.doi.org/10.1007/BF01197188
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA,66,267
http://dx.doi.org/10.1016/0003-4916(79)90282-3
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=APNYA,120,82
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JDGEA,29,665
http://arxiv.org/abs/hep-th/9608085
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9608085
http://dx.doi.org/10.1007/s00220-005-1404-8
http://arxiv.org/abs/hep-th/0310084
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0310084
http://arxiv.org/abs/1005.5133
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=1005.5133
http://dx.doi.org/10.1016/0550-3213(96)00240-4
http://arxiv.org/abs/hep-th/9601162
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9601162
http://dx.doi.org/10.1007/s00220-009-0863-8
http://arxiv.org/abs/0805.1245
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0805.1245
http://arxiv.org/abs/0902.4724
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0902.4724
http://dx.doi.org/10.1088/1126-6708/2009/06/067
http://arxiv.org/abs/0902.0948
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0902.0948
http://dx.doi.org/10.1016/0550-3213(94)90097-3
http://arxiv.org/abs/hep-th/9408074
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9408074
http://arxiv.org/abs/hep-th/9603167
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9603167
http://dx.doi.org/10.1088/1126-6708/2009/05/012
http://arxiv.org/abs/0809.4728
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0809.4728
http://arxiv.org/abs/1004.0745
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=1004.0745
http://dx.doi.org/10.1016/0370-2693(77)90841-3
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA,B69,445
http://dx.doi.org/10.1016/0370-2693(77)90782-1
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA,B71,219


J
H
E
P
0
4
(
2
0
1
1
)
0
8
7

[31] M. Bianchi, F. Fucito, G.C. Rossi and M. Martellini, ALE instantons in string effective

theory, Nucl. Phys. B 440 (1995) 129 [hep-th/9409037] [SPIRES].

[32] H. Boutaleb-Joutei, A. Chakrabarti and A. Comtet, Gauge field configurations in curved

space-times. 3. Selfdual SU(2) fields in Eguchi-Hanson space, Phys. Rev. D 21 (1980) 979

[SPIRES].

[33] H. Boutaleb-Joutei, A. Chakrabarti and A. Comtet, Gauge field configurations in curved

space-times. 4. Selfdual SU(2) fields in multicenter spaces, Phys. Rev. D 21 (1980) 2280

[SPIRES].

[34] C.N. Pope and A.L. Yuille, A Yang-Mills instanton in Taub-NUT space,

Phys. Lett. B 78 (1978) 424 [SPIRES].

[35] H. Kim and Y. Yoon, Effects of gravitational instantons on Yang-Mills instanton,

Phys. Lett. B 495 (2000) 169 [hep-th/0002151] [SPIRES].

[36] G.W. Gibbons and S.W. Hawking, Classification of gravitational instanton symmetries,

Commun. Math. Phys. 66 (1979) 291 [SPIRES].

[37] G.W. Gibbons, C.N. Pope and H. Romer, Index theorem boundary terms for gravitational

instantons, Nucl. Phys. B 157 (1979) 377 [SPIRES].

[38] G.W. Gibbons and M.J. Perry, New gravitational instantons and their interactions,

Phys. Rev. D 22 (1980) 313 [SPIRES].

[39] N.P. Buchdahl, Instantons on CP2, J. Diff. Geom. 24 (1986) 19.

[40] E. Witten, Some exact multipseudoparticle solutions of classical Yang-Mills theory,

Phys. Rev. Lett. 38 (1977) 121 [SPIRES].

[41] G. Etesi and T. Hausel, Geometric construction of new Taub-NUT instantons,

Phys. Lett. B 514 (2001) 189 [hep-th/0105118] [SPIRES].

[42] G. Etesi and T. Hausel, New Yang-Mills instantons over multi-centered gravitational

instantons, Commun. Math. Phys. 235 (2003) 275 [hep-th/0207196] [SPIRES].

[43] H. Kim and Y. Yoon, Instanton-meron hybrid in the background of gravitational instantons,

Phys. Rev. D 63 (2001) 125002 [hep-th/0012055] [SPIRES].

[44] H. Kim and Y. Yoon, Yang-Mills instantons sitting on a Ricci-flat worldspace of double

D4-brane, Phys. Rev. D 63 (2001) 126003 [hep-th/0101179] [SPIRES].

[45] Y. Brihaye and E. Radu, On d = 4 Yang-Mills instantons in a spherically symmetric

background, Europhys. Lett. 75 (2006) 730 [hep-th/0605111] [SPIRES].

[46] E. Radu, D.H. Tchrakian and Y. Yang, Spherically symmetric selfdual Yang-Mills instantons

on curved backgrounds in all even dimensions, Phys. Rev. D 77 (2008) 044017

[arXiv:0707.1270] [SPIRES].
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