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1 Introduction

Heavy ion collisions at RHIC and LHC with energy of 200 GeV per nucleon are believed
to produce sQGP (strongly coupled quark gluon plasma) [1]. In this region, perturbative
QCD is no longer reliable and it is necessary to explore all non-perturbative calculational
methods of QCD. One of the elegant and current developing techniques is the string/gauge
duality in the form of the AdS/CFT correspondence [2–4]. Although there is no known
AdS dual to QCD , it is believed that finite temperature four-dimensional conformal field
theory shares many features with the sQGP phase of QCD as long as the temperature
is above the deconfinement scale. In particular it is expected that collective macroscopic
properties of strongly coupled systems as the sQGP, e.g. thermodynamic properties and
transport coefficients, should be well described in an AdS dual description [7, 8].

An important feature of heavy ion collisions at RHIC and LHC is the spatial anisotropy
of the data correlated with non-zero impact parameter of the colliding ions. The spatial
anisotropy translates into a non-zero component of the second Fourier harmonic of the
particle distribution in the plane transverse to the collision.1 This coefficient is known
as elliptic flow and has been calculated using hydrodynamic evolution of the sQGP in
a stunning agreement with data [9, 10].2 Up to now most AdS computations of sQGP
have ignored spatial anisotropy: the black hole background is always the standard static
isotropic AdS black hole. There is good reason to do so. Transport coefficients such as
the viscosity are defined with respect to the isotropic perfect fluid and for other quantities
the experimental indication that the system thermalizes rapidly to an almost perfect, i.e.

1The first Fourier component vanishes by symmetry.
2A more detailed discussion on this phenomena and others can be found in [11] and references therein.
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isotropic, fluid means that anisotropy corrections are small. The exceptions are “local
temperature/pressure” approximations as in Bhattacharyya et al [12] and Chesler et al [13]
and shockwave collision set-ups [14–18]. Yet in practice isotropic observables are polluted
by the considerable spectator detritus of the heavy ion collision. Due to elliptic flow ,
the anisotropic component of any plasma is enhanced w.r.t. average isotropic background.
It is therefore the anisotropic component that is in many cases experimentally the most
accessible avenue to study the collective properties of the plasma.3

In this paper we make a first step towards the study of anisotropic effects on jet-
quenching from the string theory point of view. Jet-quenching is a characteristic feature of
the sQGP phase in heavy ion collisions. It signals the strong energy loss of a highly massive
quark moving in hot charged plasma. In the frame work of AdS/CFT, a heavy quark is
represented by a string suspended from the boundary of asymptotically AdS space into
the interior [19–21]. This set-up was proposed in the context of N = 4 supersymmetric
Yang-Mills theory at finite temperature [6, 22] and has been explored in detail in [23–
27] with a beautiful extension to the trailing wake of the heavy quark in the sQGP dual
to the backreaction of string on the black-hole geometry. The way we shall introduce
anisotropy in the system is to consider non-zero angular momentum. The advantage is
that the dual description of this system is straightforward: one considers rotating black
holes. The drawback is that the anisotropy primarily responsible for elliptic flow is due
to the asymmetric almond-shape overlap of the two non-central colliding nuclei rather
than angular momentum [28]. As all non-central collisions, the total system does carry a
significant amount of angular momentum, but most of that is carried away by spectator-
nuclei not involved in the formation of the sQGP. At RHIC the angular momentum fraction
of the total elliptic flow is thought to be less than 10%, although it is expected to increase
to 30% at LHC (see [29, 30] and the references therein). Clearly an AdS/CFT study of
elliptic flow due to non-rotational anisotropy would be more relevant. The problem is that
the gravity set-up in this case is unclear. Non-rotational anisotropy dissipates fast as the
system equilibrates and isotropizes, and this points to a time-dependent gravity dual, along
the lines of [13].4 We shall nevertheless propose that studying anisotropic jet-quenching
in a rotating plasma may contain meaningful information for transverse elliptic flow. A
rotating relativistic fluid has a pressure gradient. If one can argue that certain components
of the anisotropic drag force experienced in a rotating fluid are in effect solely due to this
pressure gradient and if one can extract these components and their coefficient strengths,
then one can put forward that the same corrections with the same strengths arise due to
the transverse pressure gradients relevant for realistic elliptic flow. Doing so, one infers that
the leading contribution to the drag force at strong coupling due to anisotropic pressure in

3There are anisotropies of observables which are not due to collective effects. Methods exist to identify

the ”collective anisotropy” and separate it from the anisotropies caused by e.g. resonance decays, jets etc.

For the second Fourier component these are what we call ”flow” and ”non-flow”. Such a separation is much

more difficult for isotropic parts of an observable. We thank Thomas Peitzmann for explaining this to us.
4Alternatively one could consider 4+1 dimensional hairy black holes to break the anisotropy; we thank

H. Ooguri for pointing this out.
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the plasma equals a relativistic pressure gradient force, familiar from e.g. astrophysics

∆~Fdrag due to anisotropy = − (3mrest)
∇P
sT

+ . . . (1.1)

Here s, T are the (nearly constant) entropy density and temperature of the plasma, and
mrest is the rest mass of the heavy quark, which must be larger than any scale in the system.
The numerical coefficient 3 is different from the standard pressure gradient, and depends
on the specific AdS/CFT theory rather than being a universal number. For simplicity we
have only considered 3+1 dimensional AdS black holes dual to 2+1 dimensional thermal
field theories, which gives the result quoted above. For 4+1 or even higher dimensional
rotating AdS black holes, the universality of the pressure gradient result indicates that
more realistic but technically more challenging set-ups would give the same answer up to
this number.5

A technical complication is that a rotating relativistic fluid is only consistent on a
sphere and we are forced to consider the global description of AdS black holes. The resulting
calculation is then very similar to the holographic drag force of charged quarks in a charged
plasma [37–40]. This holographic drag force is equivalent to strings moving in a d = 11
spinning M2-brane background, whose near horizon limit is an AdS4 × S7 Kerr black hole
with has rotation along the internal S7 direction. In the calculation here the sphere is now
the geometric sphere of the AdS boundary ∂AdS ' R×S2 on which the dual gauge theory
lives. In section 2, we first recover the known drag force in the global description from
strings with endpoints that move along great circles (geodesics on the boundary sphere).
In section 3, we introduce angular momentum by generalizing the background metric to a
rotating 3+1 dimensional Kerr-AdS black hole. In the limit of small angular momentum
and for zero initial velocities, we can compute the leading correction to drag force at an
arbitrary initial location. The result exhibits the expected focusing in the impact-parameter
plane. In the conclusion we show how the leading anisotropic correction to the drag force
due to non-zero angular momentum implies the pressure gradient correction eq. (1.1).

2 Drag force on a string in a global 4D AdS black hole

In global coordinates, the metric of four dimensional AdS-Schwarzschild is given by

ds2 = −r2h(r)dt2 +
1

r2h(r)
dr2 + r2

(
dθ2 + sin2 θdφ2

)
, (2.1)

h(r) = l2 +
1
r2
− 2M

r3
,

where M is proportional to the mass of the black hole and l is the radius of curvature. The
Hawking temperature of four dimensional AdS-Schwarzschild can be obtained in a simple
way by demanding periodicity of Euclidean time such that we avoid a conical singularity
at r = rH . This gives TH = 1

4π

(
1
rH

+ 3rH l2
)

, where rH is the radius of horizon defined as

5In higher dimensions there are more rotational parameters (Cartan elements of SO(d)). A generic

computation can be constructed by setting only one of the angular momenta to be non-zero.
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the zero locus h(rH) = 0 [31] and can be written explicitly in terms of parameters l and
M : (Note that M has dimensions of length and l has dimensions of mass.)

rH(l,M) =

(
9Ml4 +

√
3l6 + 81M2l8

)1/3

32/3l2
− 1

31/3
(

9Ml4 +
√

3l6 + 81M2l8
)1/3

. (2.2)

The Poincare patch black hole that is usually used in AdS/CFT studies is obtained by
rescaling {θ, r, t,M} → {εθ, r/ε, εt,M/ε3} and taking the limit ε→ 0.

A string in this background can be described by the Nambu-Goto action:

S =− 1
2πα′

∫
dσ2
√
−detgαβ =

∫
dσ2L,

gαβ ≡Gµν∂αXµ∂βX
ν , (2.3)

with σα are coordinates of string worldsheet, Xµ = Xµ(σ) are the embedding of string
worldsheet in spacetime, and Gµν is the spacetime metric (2.1). The equation of motions
derived from (2.3) are,

∇αPαµ = 0, Pαµ ≡ −
1

2πα′
Gµν∂

αXν = − 1
2πα′

√
−g

παµ , (2.4)

with g = detgαβ. Here Pαµ is the worldsheet current of spacetime momentum carried by
the string and παµ equals the canonical worldsheet momentum,

παµ = −(2πα′)
δS

δ∂αXµ
. (2.5)

The total momentum charge in the direction µ carried by the string equals

pµ =
∫
dΣα
√
−gPαµ , (2.6)

where Σα is a cross-sectional surface (a line) on the string worldsheet. Time independent
forces are given by momentum-flow along the string across a time-like surface dΣσ1 =
dσ0√−g00n̂σ1 [22]. The proper-force on the string then equals

∂pµ
∂σ0

=
√
−gP σ1

µ (2.7)

which in turn is equal to the canonical worldsheet-momentum

∂pµ
∂σ0

= − 1
2πα′

πσ
1

µ (2.8)

If the configuration is constant in time, the proper force ∂pµ
∂σ0 does not depend on the location

σ1 along the worldsheet, thanks to the equation of motion.

∂

∂σ1

∂pµ
∂σ0

=
∂

∂σ1

√
−gP σ1

µ = − ∂

∂σ0

√
−gP σ0

µ
static= 0 (2.9)
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Using the physical gauge, σα = (t, r), we can write the action (2.3) as follows

S = − 1
2πα′

∫
dσ2√−g, (2.10)

−g = 1 + r4h(r)
(
θ′2 + φ′2 sin2 θ

)
− 1
h(r)

(
θ̇2 + φ̇2 sin2 θ

)
− r4 sin2 θ

(
θ̇φ′ − θ′φ̇

)2
,

with θ̇ ≡ d
dtθ, etc. and θ′ ≡ d

drθ. etc.

2.1 Equatorial quark trajectories: Great circle at θ = π/2

The boundary of the global AdS black hole metric is isomorphic to the sphere S2. In the
absence of any plasma, i.e. no black hole in the interior of AdS, we expect the heavy quark
to follow the geodesic trajectory of a free particle on the sphere or great circles. To study
how great circle motion is affected by the presence of plasma, we make a steady state
ansatz, where the quark is dragged along the geodesic with constant velocity throught
the medium. The string in the interior of AdS will then curve to spread the resulting
tension along the worldsheet. From its resulting equilibrium shape we can compute the
drag following [6, 22].

The simplest steady state solution is when we consider motion in the equatorial plane
θ = π/2 only. The rotational symmetry of AdS-Schwarzschild will guarantee that the full
string curves inside this plane and we can make an ansatz for φ(r) as

φ(t, r) = ωt+ η(r), (2.11)

with ω the angular velocity. Substituting this ansatz (2.11) into the action (2.10), we
obtain an effective action for η(r). Its momentum conjugate πrφ is a constant of the motion
(angular momentum)

πrφ = −2πα′
∂L

∂η′(r)
=

r4h(r)η′(r)√
1 + r4h(r)η′(r)2 − ω2

h(r)

, (2.12)

In terms of πrφ the equation of motion is

η′(r) =
πrφ

r4h(r)

√√√√ h(r)− ω2

h(r)− (πrφ)2

r4

, (2.13)

In order to have a sensible solution, we have to require that (2.13) must be real everywhere.
This requirement gives us a condition on the argument of the square root

h(r)− ω2

h(r)r4 − (πrφ)2
≥ 0 (2.14)

Because (2.13) ought to be real everywhere for rH ≤ r < ∞, the only possible choice is
to take the constant (πrφ)2 = ω2r4

SchErg,ω, with rSchErg,ω defined to be the point where
h(rSchErg,ω) = ω2. Then the numerator and denominator in (2.14) change their sign at the
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same point at r = rSchErg,ω. (Note that the reality requirement (2.14) at the boundary
r →∞ tells us that the velocity of the particle cannot exceed the speed of light 1 ≥ ω2/l2.6)

The exact solution for equation (2.13) is quite difficult to find but to compute the drag
force it is enough to use the equation (2.13). To compute the flow of momentum dpφ down
the string, we use

∆Pφ =
∫
dΣαP

α
φ . (2.16)

In this static configuration all momentum flow is radial. Thus the total momentum
reduces to

∆Pφ =
∫
I
dt
√
−gP rφ =

dpφ
dt

∆t, (2.17)

with I is some time interval of length ∆t. Thus the drag force in the φ direction is given by

dpφ
dt

=
√
−gP rφ = −

πrφ
2πα′

, (2.18)

where the negative value implies that it is the drag force. Explicitly one can recog-
nize in πrφ = ωr2

SchErg,ω the centripetal acceleration at the “ergosphere” defined by
h(rSchErg,ω) = ω2.

2.2 General great circle quark trajectories

In general, the great circle can be in an arbitrary plane. By symmetry, however, the total
force should be same for any great circle and be concentrated in the cross-sectional plane
that defines the great circle when one views the S2 as embedded in S3. This symmetry will
clearly be broken, however, when we introduce angular momentum and we therefore need
to be able to describe general great circles that are not equatorial. We can do so using an
embedding in an auxiliary S3

x = sin θ cosφ, y = sin θ sinφ, z = cos θ. (2.19)

and considering the constrained Nambu-Goto action

ScNG = − 1
2πα′

∫
dσ2√−g

[
1 +

λ2

2
(xixi − 1)

]
,

−g = r4

(
(ẋix′i)2 − (ẋiẋi − h(r))

(
x′ix′i +

1
r4h(r)

))
, (2.20)

6The extra factor of l follows from the fact that the boundary metric corresponding to (2.1) equals

ds2B = −dt2 +
1

l2
`
dθ2 + sin2 θdφ2´

. (2.15)
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where xi ≡ (x, y, z) and λ is a Lagrange multiplier. The equations of motion for this action
are given by a constraint equation xixi = 1 and

λ2xi
√
−g − ∂

∂t

x′i r4ẋjx′j√
−g

− ẋi

(
r4x′jx′j + 1

h(r)

)
√
−g


− ∂

∂r

(
ẋi
r4ẋjx′j√
−g

− x′i r
4(ẋj ẋj − h(r))√

−g

)
= 0. (2.21)

Notice that if we substitute the constraint equation back to the action (2.20) then we get
back the action (2.3).

2.2.1 The boundary geodesic

The boundary geodesic followed by the endpoint of the string follows from considering the
constrained Nambu-Goto action at a fixed r for r � 1/l. Making a radial independent
ansatz, xi = xi(t), the equation of the boundary geodesic is

λ2xi
√
−g +

∂

∂t

(
ẋi

h(r)
√
−g

)
= 0, (2.22)

where −g = 1
h(h− ẋiẋi). Multiplying with xi and using the constraint xiẋi = 0, we obtain

ẋiẋi =
λ2h(r)
1 + λ2

. (2.23)

A natural solution would be to assume λ is constant, in which case the equations of motion
simplify to

ẍi = −λ
2h(r)

1 + λ2
xi. (2.24)

with the general solution

xi(t) = ai sin

(
λ

√
h(r)

1 + λ2
t

)
+ bi cos

(
λ

√
h(r)

1 + λ2
t

)
, (2.25)

where ai and bi are constants. The constraint requires that these constants obey

aiai = bibi = 1, aibi = 0. (2.26)

These solutions are the general great circle solutions in the plane spanned by ~a and ~b.
However, these solutions have an angular velocity which depends on r and therefore they
are not consistent with the ansatz of radial independence.

It is, however, straightforward to verify that the constant angular velocity v configu-
ration

x(t)i = ai sin (vt) + bi cos (vt) . (2.27)

is also a solution, if λ = λ(r) depends on the radial coordinate, as

λ(r)2 =
v2

h(r)− v2
. (2.28)

– 7 –
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Clearly this solution makes no sense deep in the AdS interior where h(r) � v2, but for
the boundary geodesic this is no issue. At the same time this is the “sign alternation” we
previously found for the string whose endpoint is the equatorial great circle. We therefore
will take this solution as our starting point.

(An alternate interpretation of this solution is as a moving straight string [22].)

2.2.2 Drag Force from curved string solution

Motivated by equatorial solution (2.11) and radial independent general great circle solu-
tions (2.27), we take as ansatz for the curved string solution

xi(t, r)i = ai sin(vt+ c(r)) + bi cos(vt+ c(r)), (2.29)

with v is a constant. Using the constraint equation, as we did in the radial independent
ansatz, the equations of motion now become

√
−g ∂

∂r

(
r4h xi√
−g

)
=
(

λ2

1 + λ2
− v2

h

)
xi. (2.30)

Substituting the ansatz (2.29) into the induced metric, its determinant equals

−g = 1 + r4h(r) c′(r)2 − v2

h(r)
. (2.31)

Comparing this with the equatorial solution we can identify c(r) = η(r) and v = ω. Using
the same way to get (2.23), we obtain

λ2 =
v2 − r4h2c′2

h+ r4h2c′2 − v2
(2.32)

and therefore the determinant −g can also be seen to equal −g = 1
1+λ2 . Using these two ex-

pressions of −g, one can check that at equatorial we get back the equatorial solution (2.11).
Now, the equations of motion reduce to

∂

∂r

(
r4h c′(r)√
−g

)
= 0 (2.33)

which is the same equation for η(r) as in the equatorial case and have the consistency con-
dition πrc = ωr2

SchErg,ω where rSchErg,ω is defined as h(rSchErg,ω) = v2 = ω2. Furthermore
one can also find that λ equals

λ(r)2 =
ω2

r4

r4 − r4
SchErg,ω

h(r)− ω2
, (2.34)

The definition of rSchErg,ω guarantees that λ(r) is a positive definite function.
The advantage of the constrained Nambu-Goto action (2.20) is that the use of x, y, z co-

ordinates makes the SO(3) rotation symmetry manifest. As before, the associated angular
momentum currents in the r direction yield the drag force or rather drag torques

dLi

dt
= − 1

2πα′
J ir

= − r4

2πα′
√
−g
(
ẋjx′jεimnx

mẋn − (ẋj ẋj − h(r))εimnxmx′n
)
, (2.35)
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where εimn is a totally antisymmetric tensor, with ε123 = 1. Substituting the ansatz and
the constraint, we find

dLi

dt
= −r

4h(r)
2πα′

εijkx
jx′k√
−g

= −r
4h(r)c′(r)
2πα′

√
−g

εijkb
jak = −r

4h(r)c′(r)
2πα′

√
−g

ni (2.36)

where ni ≡ (nx, ny, nz) is the normal vector to the cross-sectional plane defined by great
circle, normalized to unity. Thus the force/torque is in the same or rather opposite direction
of the motion. Furthermore, the equations of motion imply that these angular momentum
currents of torques are constants. The norm of total angular momentum current or total
torque is readily seen to be equal to the norm of equatorial drag force (2.18),

J2
r ≡ J irJ ir =

dLi

dt

dLi

dt
=

dp(equatorial)
φ

dt

2

. (2.37)

This shows that also the square of total drag force is indeed the same for any great circle
motion.7

The drag force of a string moving in the background of 4D AdS-Schwarzschild is thus a
constant related to the momentum of a particle represented by the end of the string at the
boundary. To illustrate the frictional nature of the force note that in the non-relativistic
limit, the drag force (for equatorial motion) can be written as

dpφ
dt

= − l2

2πα′
pφ
m
r2
H +O(ω) (2.38)

with pφ = mω/l2 the angular momentum. Taking rH = 4πT+
√

(4πT )2−12l2

6l2
as the plasma

description corresponds to the solution with rH largest [7], we find a friction coefficient for
large T equal to

µφ =
(

4πT
3l

)2 1
2mπα′

+O(ω, l/T ). (2.39)

3 Anisotropic drag on a string in 4D Kerr-AdS black hole

Having recovered the known drag force results in global AdS for any point on the boundary
sphere, we are now in a position to introduce anisotropy in the system through angular mo-
mentum of the plasma. The corresponding gravitational solution is a Kerr-AdS black hole,
and the computation is formally similar to that of the drag force in a charged plasma [37–
40], except that the internal sphere is replaced by the geometric sphere at spatial infinity.
This means that we shall need to now consider arbitrary motion of the string on the
sphere, rather than special cases. We shall use Kerr-AdS in Boyer-Lindquist coordinates
which have less mixing terms than other coordinate system and it manifestly reduces to
the non-rotating solution of previous section when the rotation parameter a vanishes. A

7For nonequatorial motion, the r.h.s. of (2.37) will contain nonzero dpθ/dt. Individually dpθ/dt is not

conserved, but the square of total drag force with the solution (2.29) is a constant as given by the l.h.s.

of (2.37).
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disadvantage of Boyer-Lindquist coordinates is that this coordinate system does not have
manifest SO(3) symmetry far away from the black hole r � M . Instead one finds AdS in
non-standard coordinates [32, 33, 35].

Explicitly the metric of four dimensions Kerr-AdS black hole in Boyer-Lindquist coor-
dinates is [33, 36]

ds2 = − ∆r

ρ2

(
dt− a

Ξ
sin2 θdφ

)2
+
ρ2

∆r
dr2 +

ρ2

∆θ
dθ2

+
∆θ sin2 θ

ρ2

(
adt− r2 + a2

Ξ
dφ

)2

, (3.1)

where

ρ2 = r2 + a2 cos2 θ

∆r = (r2 + a2)(1 + l2r2)− 2Mr

∆θ = 1− l2a2 cos2 θ

Ξ = 1− l2a2, (3.2)

with a is a rotation parameter related to the angular momentum J of the black hole:
J = Ma/Ξ2. The event horizon or outer horizon is located at r = rKH which is the largest
root of ∆r. The Hawking temperature is given by

TH = rKH
3l2r2

KH + 1 + a2l2 − a2/r2
KH

4π(r2
KH + a2)

. (3.3)

The rotation parameter a is not arbitrary but constrained to 1 > a2l2 in order to have a
finite positive value of the area [33].

The action for a string moving in the Kerr-AdS metric is

SNG = − 1
2πα′

∫
dσ2√−g,

−g =
((
a∆r − a(r2 + a2)∆θ

) sin2 θ

Ξρ2
φ′ +

ρ2

∆θ
θ̇θ′

+
(
∆θ(r2 + a2)2 − a2∆r sin2 θ

) sin2 θ

Ξ2ρ2
φ̇φ′
)2

−
(
ρ2

∆r
+
ρ2

∆θ
θ′2 +

(
∆θ(r2 + a2)2 − a2∆r sin2 θ

) sin2 θ

Ξ2ρ2
φ′2
)
×

×
((
a2∆θ sin2 θ −∆r

) 1
ρ2

+
(
a∆r − a(r2 + a2)∆θ

) 2 sin2 θ

Ξρ2
φ̇

+
(
∆θ(r2 + a2)2 − a2∆r sin2 θ

) sin2 θ

Ξ2ρ2
φ̇2 +

ρ2

∆θ
θ̇2

)
. (3.4)

Let us again first consider the equatorial solution for θ = π/2. The remaining rotational
symmetry around the axis of rotation ensures that πrφ is still a constant of the motion and
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substituting the ansatz (2.11) the equation of motion now becomes

η′(r) =
πrφ(1− a2l2)

∆r

√
(1− a2l2 − aω)2∆r − f(r)

∆r − (1− a2l2)2(πrφ)2
,

f(r) = (a− a3l2 − a2ω − ωr2)2, (3.5)

Requiring a real solution for ∞ > r > rKH demands

(1− a2l2 − aω)2∆r − f(r)
∆r − (1− a2l2)2(πrφ)2

≥ 0 (3.6)

At r →∞ we recover the relativistic bound

l2 ≥ ω2

(1− a2l2 − aω)2
. (3.7)

for the r →∞ boundary Boyer-Lindquist metric

ds2
B = −

(
Ξdt− a sin2 θdφ

)2 +
1

l2∆θΞ2
dθ2 +

∆θ sin2 θ

l2
dφ2 . (3.8)

In order to satisfy the inequality (3.6) for other values of r > rKH we need to know the
profile of both numerator and denominator on the left hand side of the inequality (3.6).
This is not as easy a task as in the case of AdS-Schwarzschild. There could be multiple
solutions to the vanishing of the numerator (1−a2l2−aω)2∆r−f(r) for r > rKH . Following
the case of AdS-Schwarzschild we shall insist that at the largest positive root of (1−a2l2−
aω)2∆r − f(r), denoted rKErg,ω, the numerator and denominator simultaneously change
sign as we move from the boundary at r →∞ toward the horizon r = rKH . This fixes πrφ
to equal

(πrφ)2 =
f(rKErg,ω)

(1− a2l2)2(1− a2l2 − aω)2
=

(a− a3l2 − a2ω − r2
KErg,ωω)2

(1− a2l2)2(1− a2l2 − aω)2
. (3.9)

Then we can compute the drag force as follows

dpφ
dt

= −
πrφ

2πα′
= −

√
f(rKErg,ω)

2πα′(1− a2l2 − aω)(1− a2l2)
. (3.10)

The exact expression for rKErg,ω, as the largest root of (1 − a2l2 − aω)2∆r(r) − f(r) is
rather long and complicated and will not be of interest to us. We are primarily interested
in the first order correction to the isotropic result, both for experimental reasons and for
the more interesting drag force away from the equator. For small a � 1, we can write
rKErg,ω = rSchErg,ω + a r1 +O(a2), with rSchErg,ω and

r1 =
ωl2r4

SchErg,ω − 2ωMrSchErg,ω

2(l2 − ω2)r3
SchErg,ω + rSchErg,ω −M

. (3.11)

Then the drag force for a quark moving on the equator of the rotating fluid to first order
in a equals

dpφ
dt

= − 1
2πα′

[
ωr2

SchErg,ω − (1− ωrSchErg,ω (ωrSchErg,ω + 2r1)) a+O(a2)
]
. (3.12)
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The fist term is the drag force of the 4D non-rotating black hole (2.18) and the second
term can be considered as correction in the present of small angular momentum a. A more
illustrative way of writing the drag force is as

dpφ
dt

= − 1
2πα′

[
π0
φ − a+ C π0

φa+O(a2)
]
,

C = ω

[
2(2l2 − ω2)r3

SchErg,ω + rSchErg,ω − 5M

2(l2 − ω2)r3
SchErg,ω + rSchErg,ω −M

]
, (3.13)

with π0
φ is the drag force of non-rotating AdS-Schwarzschild black hole. It is then clear that

the first linear term in a is simply due to the relative angular velocities of the black hole
and the heavy quark. Choosing a co-rotational velocity such that ωr2

SchErg,ω = a, there
would be no drag to first order as if the quark is at rest with respect to the plasma. On
the other hand the term with coefficient C exhibits a nonlinear-enhancement of the drag
force in the presence of angular momentum for large velocities ωrSchErg,ω ∼ 1.

3.1 Static solution

For equatorial motion the dominant effect of introducing angular momentum is therefore
simply a change of frame, as would conform our intuition. Equatorial motion experiences no
pressure gradient, however, and as we argued in the introduction this is the effect we wish
to extract. To us, the far interesting situation is to consider how the introduction of angular
momentum affects generic non-equatorial great circle motion. True generalization of the
arbitrary great circle solutions (2.29) to Kerr-AdS black holes is very difficult, however,
because of the complexity of the equations of motion. Fortunately we shall not need to do
so. Our insight builds on the fact that the dominant effect for equatorial motion is simply
a change in relative velocity of the quark w.r.t. the plasma. For generic great circle motion,
we can solve the equations for the particular situation where we consider the quark to be
static, whose precise definition will follow below. This static solution can already capture
the drag force effect of a rotating plasma. In or parallel to the equatorial plane, the effect
should again be the same as considering a moving string in a non-rotating black hole by
switching observers. For motion perpendicular to the equatorial plane, we will find a new
component to the force due to the anisotropy breaking by the angular momentum. We
expect this new component to be centrifugal force-like and drive the motion away from the
poles back to equatorial orbits. Specifically this means that this force will not depend on
the direction of the angular momentum, but only on its magnitude. To lowest order in a

therefore, this contribution must go as a2.
What we mean precisely by the static solution, is a string solution with the dragging

velocity set to zero. Intuitively such a solution, where we keep the quark pinned at one point
in the rotating fluid, will give rise to a stationary solution. However, due to the subtlety
that the Kerr-AdS metric in Boyer-Lindquist coordinates does not asymptote to a rotation-
parameter independent asymptotically AdS metric, this solution is not time-independent
in Boyer-Lindquist coordinates. This follows from the coordinate transformation between
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Boyer-Lindquist and asymptotically AdS coordinates [33]

T = t, Φ = φ− al2t,

Y cos Θ = r cos θ, Y 2 =
1
Ξ
(
r2∆θ + a2 sin2 θ

)
. (3.14)

Although the full expression for the Kerr-AdS metric in aAdS coordinates T, Y,Θ,Φ is very
complicated, in the absence of a black hole, for M = 0, it is simply the global AdS metric

ds2 = −(1 + l2Y 2)dT 2 +
1

1 + l2Y 2
dY 2 + Y 2

(
dΘ2 + sin2 ΘdΦ2

)
. (3.15)

In the absence of a plasma, the static straight string solution to the equation of motion in
this metric , is simply given by Θ = Θ0 and Φ = Φ0 with Φ0 and Θ0 constants corresponding
to a massive quark at rest. The corresponding “time-dependent” solution in M = 0 Boyer-
Lindquist coordinates is thus

φ = Φ0 + al2t, (3.16)

θ = arccos
(
Y

r
cos Θ0

)
, (3.17)

with

Y 2 =
r2(r2 + a2)

(1− a2l2 sin2 Θ0)r2 + a2 cos2 Θ0
. (3.18)

From the derivation it is obvious that this nevertheless describes a static string.
We now introduce the rotating plasma by considering finite M . From previous sec-

tions we can see that the straight string with ω = 0 is still a solution for a non-rotating
plasma. Therefore all bending of the string must be proportional to the rotation parame-
ter a. Rather than solving the full complicated equations of motion descending from the
action (3.4), we can thus try to solve the static string equations order by order in a. As
we shall see this will already yield non-trivial contributions to the drag force that can be
surmised to follow from the rotationally induced pressure gradient. In particular, time-
reversal symmetry of the system dictates that the bending in the θ-direction will always
be of even order in a; to lowest order this is readily verified directly from the equations of
motion. The force in the θ-direction will be the centrifugal-like force. We therefore make
the “static” ansatz for the curved string solution

θ(r) = Θ0 + a2θ1(r) +O(a4), (3.19)

φ(t, r) = Φ0 + al2t+ aφ1(r) +O(a2). (3.20)

Solving the equations of motion order by order in power of a, we readily obtain

φ1(r) =
∫
dr

P1

r4h(r)
, (3.21)
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with P1 a constant of integration. The first correction θ1(r) is determined by the inhomo-
geneous equation

θ′′1 +
2

r4h(r)
(
−M + r + 2l2r3

)
θ′1 +

1
2r8h(r)2

(1− P 2
1 − 4l2Mr + 3l4r4) sin(2Θ0) = 0

(3.22)

with h(r) as in (2.1). One can solve this with e.g. Mathematica and substituting both first
order solutions into the expressions for the conjugate momenta

πrθ = r4h(r)θ′1a
2 +O(a4) (3.23)

πrφ = P1 sin(Θ0)2a+O(a2),

we find that the world sheet conjugate momenta in radial direction as an expansion of
small a near the boundary are given by

πrθ =
(
−3l2r +

2T2

sin(2Θ0)
+ (1− P 2

1 )
log(r)
M

− 3
r

+ · · ·
)
a2

2
sin(2Θ0) +O(a4),

πrφ = P1 sin(Θ0)2a+O(a2), (3.24)

with T2 a constant of integration. Comparing to the equatorial solution (3.12) with ω = 0
we see that P1 = −1 and T2 = 0. Because our solution is no longer time-independent,
we had to expect a dependence on the radial direction. As is explained in [22], the drag
force is read off from the value of πri at the AdS boundary. In our case the conjugate
momentum πrθ diverges linearly as r → ∞ which goes linearly in r. This singularity at
r → ∞ corresponds to the infinite mass of our heavy quark [22]. In order to have a more
realistic picture, we can consider a finite large mass of quark by introducing a cut-off in
the geometry near the boundary at r = rc. In the bulk this is interpreted as the location
of a probe D-brane where the string can end. Following [22], the static rest mass of quark
can be computed. For a = 0, T = 0 it is simply mrest = rc/2πα′. Then by evaluating
conjugate momenta above at r = rc we obtain the leading contribution of the conjugate
momenta

πrθ = −
(
6πα′l2mrest

) a2

2
sin(2Θ0) + . . . , (3.25)

πrφ = − sin(Θ0)2a+ . . . , (3.26)

3.2 Drag force

The conjugate momenta for the static string solution gives us directly the drag force for a
static heavy quark held fixed in the rotating plasma. We can, however, combine this result
with the known result for the relative velocity-induced drag to obtain an approximation to
the general drag force for a slowly moving quark. Since this force vanishes in the absence
of rotation, and since the drag force in a non-rotating plasma vanishes for a static quark,
to lowest order in both a and ω the total instantaneous drag force for a quark at location
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(Θ0,Φ0) with velocities (ωθ, ωφ) is simply the sum of the two individual contributions

dpθ
dt

=
(

3l2mrest +
1

2πα′
(

2πT +
√

4π2T 2 − 3l2
)) a2

2
sin(2Θ0)−

ωθr
2
H

2πα′
+O(a, ω),

dpφ
dt

= − 1
2πα′

(
ωφr

2
H − sin(Θ0)2a

)
+O(a, ω). (3.27)

Writing sin(2Θ0) = 2 sin(Θ0) cos(Θ0), we clearly see the dragging of the heavy quark
towards equatorial motion at θ = π/2. At the poles, defined at Θ0 = 0 and Θ0 = π,
there is no additional momentum induced drag forces, but these are unstable points. To
illustrate the focal aspect of the lowest order instantaneous drag force for different locations
and velocities (3.27) we have give a comprehensive force diagram in figure 1. The sphere on
which the rotating fluid lives is depicted as seen from the north pole and a quark moving
at the velocity given by the blue arrow experiences a drag force given by the red arrow.

4 Discussion and conclusion

Having computed the leading anisotropic correction to the drag force due to the rotation,
we argue that we can extract from this result the leading correction due to general pressure
gradients in the system. First recall that any rotating fluid will have a pressure gradient.
A relativistic 2+1 dimensional perfect fluid which is rotating at constant angular velocity
Ω must live on a two-sphere S2 to be causal. With the metric eq. (2.15) on S2 × Rt, it
has a natural velocity field ua = 1√

1−l−2Ω2 sin2 θ
(1, 0,Ω). In hydrostationary equilibrium its

stress-energy tensor

T ab = (ρ+ P )uaub + Pgab, (4.1)

is conserved, ∇aT ab = 0. Rotational symmetry along φ dictates that the energy density
ρ and pressure P are functions of θ only. Projecting the conservation equation onto the
direction orthogonal to the velocity field

(gbc + ubuc)∇aT ac = 0. (4.2)

one obtains the non-trivial equation for the pressure

∂θP =
1

2l2
Ω2 sin(2θ)(P + ρ)
(1− l−2Ω2 sin2(θ))

=
1

2l2
Ω2 sin(2θ)sT

(1− l−2Ω2 sin2(θ))
(4.3)

In the last step we have used the first law of thermodynamics ρ+ P = sT .
In AdS/CFT the parameters of the fluid are encoded in the parameters of the black

hole metric. For rigidly rotating fluids, the mapping has been given in detail in [7], and we
can identify the angular velocity Ω = al2.8 To lowest order in a, the pressure gradient in
the fluid is therefore

∂θP (θ) = (sT )
a2l2

2
sin(2θ) (4.4)

8The entropy density equals s =
“

4πT
(d−1)l

”d−2
1

4Gd(1−a2)
; for AdS4, dual to Nc M2-branes, Newton’s

constant equals G4 = 3l−2/(2Nc)
3/2; for AdS5, dual to N = 4 SU(Nc) SYM, one finds G5 = π/(2N2

c l
3).
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a = 0.1,M = 10
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Figure 1. The drag force (red arrow) felt by a heavy quark moving at a uniform velocity (blue
arrow) at different positions in a rotating fluid living on a sphere S2 for various rotational velocities
a in units of l−1 and quark masses M in units of (6πα′l)−1. The sphere is depicted as seen from
the North Pole, with the bold line denoting the equator. The circular brown arrow is the direction
of rotation of the fluid. The calibration marks correspond to latitutes θ =

{
π
10 ,

2π
10 ,

3π
10 ,

4π
10

}
and the

force is in units of (2πα′l)−1.

For any constituent of the fluid this pressure gradient provides the centripetal force
that ensures rigid rotational motion. Consider now the situation where the heavy quark
is precisely moving with ωφ = a and ωθ = 0. In that case the quark is at rest w.r.t. the
fluid, and the drag force in the theta-direction is in fact nothing but the “centrifugal force”
of the particle wishing to persist in its great circle motion. This centrifugal force is equal
and opposite to the centripetal force needed if we wanted to keep the heavy quark at fixed
value of θ and co-rotating with the fluid. One way to provide this force is to immerse the
heavy quark into a rigidly co-rotating bath of identical quarks; the force then follows from
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the pressure gradient. Of course the fluid in AdS, as in real heavy ion collisions, already
consists of constituents identical to the heavy quark. We therefore put forward that in a
general pressure gradient, a heavy quark will experience to first order a force equal and
opposite to the a2-component of the drag force computed in (3.27) where a2 encodes the
pressure gradient according to (4.4). If so, we recognize in the resulting expression

dpθ
dt

= − (3mrest)
∂θP (θ)
sT

+ . . . (4.5)

the standard (relativistic) pressure gradient force (up to the factor 3), as stated in the
introduction. It is interesting to see that AdS/CFT encodes general principles of fluid
mechanics once again.

As a final step, we can subsitute into the expression the entropy density of the strongly
coupled gauge theory as computed in AdS/CFT. In the specific case of the strongly coupled
d = 3 ABJM/M2-brane theory, we find

dpθ
dt

= − (3mrest)
33

4π2(2Nc)3/2T 3
∂θP (θ) (4.6)

At the same time, the generality of the pressure gradient force implies that the result (4.5)
is the same in any dimension (up to the numerical factor 3). On the gravity side, one
can explain this by realizing that in any dimension the rotational dependence of a simple
rotating black hole is characterized by a single non-zero element of the Cartan algebra of
the rotation group. Extrapolating the result to the more relevant case of d = 4 YM and
using the entropy density for strongly coupled N = 4 SYM, the anisotropic component of
the drag force equals

dpθ
dt

= − (3mrest)
2

π2N2
c T

4
∂θP (θ). (4.7)
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