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Cittadella Universitaria, 09042 Monserrato, Italy
bINFN — Sezione di Cagliari,

Cittadella Universitaria, 09042 Monserrato, Italy
cCENTRA, Departamento de F́ısica, Instituto Superior Técnico,
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1 Introduction

One of the most productive applications of the AdS/CFT [1] correspondence is obtained

when one considers the regime in which the classical gravity approximation is reliable. In

this regime we can deal with strongly coupled quantum field theories (QFTs) in d − 1 di-

mensions by investigating classical gravity in d dimensions. In particular, this holographic

approach has been recently used to provide techniques for the computation of thermo-

dynamical and transport properties of strongly interacting quantum field theories, which

could be relevant in the description of condensed matter phenomena [2–5].

The basic structure of the holographic correspondence is given by a black hole (black

brane) in the d-dimensional bulk, which is holographically dual to a thermal QFT in d− 1

dimensions. This framework has been used in several cases to investigate the hydrody-

namical limit of the QFT, to compute spectral functions and so on. However, the most

interesting results come up when we consider a thermal QFT with finite charge density,

i.e a charged black hole in the bulk. An even richer structure is obtained if we include in

the bulk a charged scalar field with a minimal (covariant) coupling to the gauge potential.

Below a critical temperature the bulk theory allows for solutions with a non-trivial profile

of the scalar field. This corresponds to the formation of a charged condensate in the dual

theory that breaks spontaneously a global U(1) symmetry. The new phase is therefore

characterized by phenomena typical of superfluid or superconducting systems, as one can

show by using the basic rules of the AdS/CFT correspondence, i.e by studying the response

of small perturbations of the black hole background [6–8].

This general idea of holographic superconductor has generated in the last couple of

years a flurry of activity on AdS gravity whose holographic QFT duals have transport

features with a metal or metal-like behavior [9–17].

Most of the efforts for understanding the holography of charged black branes have

focused on the case of AdS Einstein-Maxwell gravity with a charged scalar fields minimally

coupled to the electromagnetic field. However, there are several reasons for extending the

investigation to the case in which the scalar is non-minimally coupled to the U(1) field, the

so called Einstein-Maxwell-dilaton gravity (EMDG): 1) Non-minimal couplings of the form

f(φ)F 2 between a scalar fields φ and the Maxwell tensor are very common in supergravity

and in the low-energy effective action of string theory models. 2) Exact, charged dilaton

black hole solutions with AdS asymptotics are known in some cases, for instance the family

of four-charge black holes in N = 8 four-dimensional gauged supergravity [18]. 3) Charged

black brane solutions with AdS asymptotics of EMDG have a rather interesting thermo-

dynamical phase structure [19–21]. For instance, when the coupling function f satisfies

the requirement f ′(0) = 0 the model allows for a phase transition between the Reissner-

Nordstrom (RN) black brane and a charged black brane endowed with a scalar hair [19],

corresponding in the dual field theory to the formation of a scalar condensate. 4) In the few

cases in which EMDG has been investigated within the holographic perspective, the mod-

els have shown a rather rich and interesting phenomenology [19, 20, 22–29]. 5) Finally,

the black brane solutions of EMDG are good candidates for gravitational backgrounds

holographically dual to Lifshitz-like theories [23, 30–32].
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Until now investigations of charged dilaton AdS black branes and their holographic

features have considered almost exclusively the cases of coupling functions f(φ) with ex-

ponential behavior in the zero temperature limit [20, 23, 32]. In this paper we extend the

investigation of the black brane solutions of EMDG in four dimensions (4D) and of their

holographic properties. On the one hand we complete the investigation of EMDG with

exponential coupling f ∼ eαφ, by considering electrically charged solutions of the model

at finite, nonvanishing, temperature. On the other hand, we extend the investigation to

electrically charged black brane solutions of models with a power-law coupling function

f ∼ φm both at finite temperature and in the zero temperature limit. Last but not least,

we consider dyonic solutions of models characterized by f ′(0) = 0, thus allowing a phase

transition between the dyonic RN solution and a dyonic black brane with a nontrivial

scalar hair.

After constructing, numerically, the black brane solutions endowed with scalar hairs

for our models, we investigate, using the AdS/CFT correspondence, the field theory holo-

graphically dual to these black brane solutions both at finite temperature and in the zero

temperature limit. We show that at finite temperature the dual field theory presents a

rich phenomenology: phase transitions triggered by nonvanishing VEV of scalar operators,

non-monotonic behavior of the electric conductivities, Hall effect and sharp synchrotron

resonances of the conductivity in presence of a magnetic field. On the other hand, in the

zero temperature limit the optical conductivity for these models shows a universal power-

law behavior as a function of the frequency, whereas the DC conductivity is suppressed at

small temperature and in general scales as T 2.

Our investigations suggest an intriguing holographic picture for the black brane so-

lutions of EMDG. We have an interpolation between some features of electron motion in

metals at finite temperature and an universal strong repulsion behavior, characteristic of

charged plasmas, at zero temperature.

The plan of the work is the following. In section 2 we present general models of

EMDG and the equations of motion. Section 3 is devoted to the study of electrically

charged dilatonic black branes in these models and their holographic properties at finite

temperature. The zero temperature limit is discussed in section 4. In section 5 we discuss

dyonic dilatonic black branes at finite temperature, while in appendix A we briefly present

purely magnetic solutions. Finally, we draw our conclusion in section 6.

2 Einstein-Maxwell-dilaton gravity in Anti de Sitter spacetime

In this paper we will consider general models of EMDG in 4D, which is described by

the action

S =

∫

d4x
√
−GL =

∫

d4x
√
−G

(

R − f(φ)

4
F 2 − 1

2
∂µφ∂µφ − V (φ)

)

, (2.1)

where φ is a scalar field (the dilaton) and F is the field strength for the Maxwell field.

The model is parametrized by two functions: the coupling f(φ) between the scalar and

the Maxwell tensor and the potential V (φ) describing the self-interaction of the scalar.
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Non-minimal couplings, f(φ)F 2 between a scalar fields φ and the Maxwell tensor emerge

naturally in supergravity and in the low-energy effective action of string theory.

In asymptotically flat spacetime, exact, charged black holes (or black branes) solutions

of EMDG carrying non trivial scalar hairs (i.e. different from the usual Reissner-Nordstrom

(RN) solutions) are known since a long time [33–37]. These solutions involve a non-constant

scalar field and differ from the RN black hole both with respect to the causal structure

of the spacetime and to the thermodynamical behavior. Conversely, for charged dilaton

black holes with AdS asymptotics exact solutions with scalar hairs are known only in few

cases [18, 38], the most important one being represented by the family of four-charge black

holes in N = 8 four-dimensional gauged supergravity [18].

In recent years there has been a renewed interest for black hole solutions of EMDG with

AdS asymptotics. This interest has been triggered by the gauge/gravity duality [1, 39] and

by the search for gravitational duals of strongly coupled condensed matter systems with

finite charge density [2–4].

However, until now the investigation of charged dilaton AdS black holes and their

holographic features has been almost completely restricted to case of coupling functions

f(φ) with exponential behavior [19, 20, 23] and to electric charged solutions (see however

ref. [24]). There are several reasons behind this choice. Exponential coupling functions f(φ)

are rather natural in low-energy effective string theory. Furthermore, it is very difficult

to find exact solutions of generic AdS Maxwell-dilaton gravity and typically one has to

resort to numerical calculation. Conversely, an exponential form for f(φ) enables one to

find exact solutions at least in the extremal limit, where they take a Lifshitz-like form [23].

Although the pure exponential form f(φ) = eαφ does not allow for a RN solution,

simple deformations preserving an exponential behavior on the horizon, such as f(φ) =

cosh αφ, do allow for it. The coexistence in the model of the RN solution together with

solutions with scalar hairs is crucial for having a phase transition [19].

In this paper we will not limit ourself to the case of exponential coupling functions

f(φ) but we will extend our investigation to the black brane solutions in a broad class of

EMDG models.

The equations of motion stemming from the action (2.1) read

∇µ (f(φ)Fµν) = 0 ,

∇2φ =
dV (φ)

dφ
+

df(φ)

dφ

F 2

4
, (2.2)

Rµν − 1

2
GµνR =

f(φ)

2

(

FµρF
ρ
ν − Gµν

4
F ρσFρσ

)

+
1

2

(

∂µφ∂νφ − Gµν

2
∂ρφ∂ρφ

)

− Gµν

2
V (φ) .

We will look for static solutions of the previous equations with translational symmetry

in two spatial directions (black branes) carrying electric and/or magnetic charges. The

metric and the scalar field have the form

ds2 = −g(r)e−χ(r)dt2 +
dr2

g(r)
+ r2(dx2 + dy2) , φ = φ(r). (2.3)
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Since we are interested in the holographic features of our models, we will only constrain

the form of the coupling functions f(φ) and V (φ) by imposing conditions at r = ∞ (cor-

responding to the UV region of the dual field theory) and at the horizon of the extremal,

zero temperature, solution (corresponding to the IR region of the dual field theory).

We first require the solutions to be asymptotically AdS and the potential V (φ) to

allows for stable AdS vacua. Assuming for simplicity that V (φ) has only one extremum,

we can consider without loss of generality that φ = 0 as r → ∞. The potential can be now

expanded for small values of the field as1

V (φ) = − 6

L2
+

β

2L2
φ2 + O(φ3) , (2.4)

where L is the AdS radius and β parametrizes the mass of the scalar field, m2
sL

2 = β. The

AdS vacuum is stable if the mass parameter satisfies the Breitenlohner-Freedman (BF)

bound β ≥ −9/4 [40]. On the other hand the coupling functions f(φ) is only constrained

by f(0) = 1.2 Notice that in general we will not require the AdS-RN black hole to be a

solution of the equations (2.2). This would imply the additional condition f ′(0) = 0.

Secondly, in the extremal limit (the zero temperature solution) we can assume without

loss of generality that the horizon is located at r = 0 and that r = 0 corresponds to φ → ∞.

When the U(1) term in the action (2.1) comes from the closed string (adjoint) sector in

some truncation of supergravity actions, φ plays the role of a dilaton and f → ∞ in the

IR [22].3 In this paper we will always assume this to be the case, i.e. that f → ∞ as

φ → ∞. The asymptotic form of the functions f(φ) and V (φ) will be therefore determined

by the leading terms in their φ → ∞ expansion.

The class of functions f(φ) and V (φ) satisfying the requirements above is rather broad.

However, we will not expect the qualitative behavior of the dual field theory to depend

strongly on the details of the functional form of f(φ) and V (φ). The essential information

is contained, for what concerns the UV region, in V ′′(0), f ′(0) and f ′′(0) (primes denote

derivative with respect to φ). On the other hand the form of the potential V (φ) seems to

be quantitatively but not qualitatively relevant for the description of the zero temperature

extremal limit [19, 23]. Thus, the behavior in the IR region will be determined by the

leading terms in the φ → ∞ expansion of f(φ). Obviously, the most interesting cases are

represented by an exponential f ∼ eαφ and a power-law f ∼ φm behavior.

A vanishing value of f ′(0) discriminates between models for which a phase transition

between the AdS-RN black brane and a solution with scalar hairs is possible. The values of

V ′′(0), and f ′′(0) determine both the parameter region where the phase transition takes ef-

fectively place and the specific behavior of the transport coefficients of the dual theory [19].

1The easiest way to include a massive scalar field is by considering V (φ) = −6/L2+β/(2L2)φ2. Although

the numerical results presented in this paper where obtained using this form of V (φ), other choices give

qualitatively similar results, provided they satisfy eq. (2.4). We explicitly checked that the potential V (φ) =

−6/L2 cosh(φ/
√

3) gives the same qualitative results as the polynomial form with β = −2.
2In general, we should only require f(0) to be finite, however f(0) can be set to the unit by a redefinition

of the charges.
3It should be noticed that when the U(1) term comes from the open (fundamental) sector of string

theory, φ may play the role of a tachyon and f → 0 in the IR owing to tachyon condensation. However, in

this paper we will not consider this case.
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When f ′(0) 6= 0 the AdS-RN black brane is not solution of the field equations (2.2). In

this case a central issue is represented by the question about the existence and stability of

“hairy” charged AdS black brane solutions (charged black branes endowed with a nontriv-

ial profile of the scalar field φ). We will generically call these solutions charged dilatonic

black branes (CDBBs). Such solutions should play the role of the RN-ADS black brane in

models with f ′(0) 6= 0. In the next section we will show, numerically, that solutions with

these features exist in a broad class of EMDG models.

It follows that a rough classification of the Maxwell-dilaton-gravity model with inter-

esting holographic features can be simply given in terms of a vanishing/nonvanishing f ′(0)

and by the leading terms in the φ → ∞ expansion of f(φ).

Electric charged solutions for models with f ′(0) = 0, both at finite and zero temper-

ature, has been investigated in ref. [19]. Models with exponential coupling function f(φ)

have been investigated in the zero temperature limit T = 0 both in the case of electric and

dyonic solutions [23, 24].

In this paper we complete the investigation of the holographic properties of the most

interesting EMDG models, by considering:

a) Electrically charged solutions of models with f ∼ eαφ at finite temperature;

b) Electrically charged solutions of models with f ∼ φm (m 6= 1) both at finite temper-

ature and in the zero temperature limit;

c) Electrically charged solutions of models with f ∼ φ both at finite temperature and

in the zero temperature limit

d) Dyonic solutions of models with f ′(0) = 0.

Notice that we consider separately the power-law case and the linear case. This is because

the former case allows for a phase transition to the AdS-RN solution (f ′(0) = 0), whereas

the latter does not (f ′(0) 6= 0).

3 Electrically charged dilatonic black branes at finite temperature

In this section we derive, numerically, electrically charged black brane solutions of the

EMDG (2.1) at finite temperature with exponential, power-law and linear coupling and

investigate their holographic features.

Since only the A0 component of the gauge potential is non-vanishing and φ = φ(r),

the equations of motion (2.2) become

φ′′ +

(

g′

g
− χ′

2
+

2

r

)

φ′(r) − 1

g

dV

dφ
+

A′
0
2eχ

2g

df

dφ
= 0 ,

(r2e
χ

2 f(φ)A′
0)

′ = 0 ,

χ′ +
rφ′2

2
= 0 ,

φ′2

4
+

A′
0
2eχf(φ)

4g
+

g′

rg
+

1

r2
+

V (φ)

2g
= 0 , (3.1)

– 6 –
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where now the prime denotes a derivative with respect to r. Charged dilatonic black branes

solutions of the field equations (3.1) at finite temperature can be computed numerically by

using the method discussed in ref. [19] with slight modifications due to the form of f(φ).

3.1 Numerical solutions

The numerical procedure for solving the field equations (3.1) consists essentially in three

steps (see ref. [19] for details). First, we characterize the solutions in terms of the behavior

of the fields near the AdS boundary at r = ∞ and near the horizon at r = rh. Near the

AdS boundary the solutions are specified by four parameters: the chemical potential µ,

the charge density ρ appearing in the expansion of the gauge potential A0 = µ − ρ/r, the

black brane mass M and the expectation values for the operators dual to the scalar field

O−, O+. These are determined in terms of the asymptotic expansion of the scalar field:4

φ ∼ O−

r∆
−

+
O+

r∆+
, ∆± =

3 ±√
9 + 4β

2
. (3.2)

Near the horizon the solutions are completely specified by four parameters: the horizon

radius rh, A′
0(rh), χ(rh) ≡ χh and φ(rh) ≡ φh. The black brane temperature T can be

expressed in terms of these parameters. Secondly, we reduce the numbers of parameters

exploiting the scaling symmetries of the equations of motion. Using these symmetries

the number of independent parameters specifying the solutions can be effectively reduced

to two. Furthermore, we choose one of the independent parameters at the horizon such

that either O− = 0 or O+ = 0. This is enough to describe the solution in terms of a

single parameter.

Finally, we integrate numerically the equations of motion from the horizon to the AdS

asymptotics, using a shooting method to impose either O− = 0 or O+ = 0. The result

of this integration is a one-parameter family of solutions, the parameter being the black

brane temperature.

We shall directly focus on the results of the numerical integration for the various models

under consideration, referring to ref. [19] for further details on the numerical technique used.

3.1.1 Exponential coupling function

Charged black branes solutions of dilaton gravity with an exponential coupling function

at T ∼ 0 have been recently studied in great detail in refs. [23, 24]. Here we consider the

solution at finite temperature and focus on models defined by

f(φ) = eαφ , V (φ) = − 6

L2
+

β

2L2
φ2 . (3.3)

The model discussed in ref. [23] is obtained for β = 0. We are interested in finite

temperature effects for a generic mass of the scalar field.

4In order to describe states of the dual field theory with a non vanishing expectation value for the operator

dual to the scalar field, the asymptotic expansion (3.2) should contain only normalizable modes [41]. When

m2L2 ≥ −5/4 this requires the boundary condition O
−

= 0, whereas, when −9/4 < m2L2 < −5/4 two

distinct choices are possible [42]: O
−

= 0 or O+ = 0. Finally, when the Breitenlohner-Freedman (BF)

bound [40] is saturated, m2L2 = −9/4, the asymptotic behavior has a logarithmic branch, whose coefficient

is required to vanish.

– 7 –
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Figure 1. The scalar operator O+ as a function of the temperature for several values of α when

β = −2 (left panels) and several values of β when α = 2 (right panels). In the upper panels

and lower panels we have used models with f(φ) = eαφ and with linear coupling f(φ) = 1 + αφ,

respectively. Results are qualitatively similar in the two cases.

Models with coupling functions given by eqs. (3.3) do not allow for AdS-RN black

branes, which may be regarded has a pleasant feature, since the large entropy of extremal

AdS-RN black holes poses some problems of interpretation from the holographic perspec-

tive. Conversely, CDBBs have a vanishing entropy in the extremal limit. Moreover, they

exist at any temperature, since no phase transition occurs in these models.

Our method provides numerical solutions for CDBBs at finite temperature. They

describe hairy black branes, i.e. black branes endowed with a non trivial configuration for

the scalar field φ. These hairy solutions can be completely characterized in terms of the

expectation value of one of the neutral boundary operators O± (the scalar condensate)

defined in eq. (3.2) as a function of the black hole temperature T .

The behavior of some of these boundary operators as function of T are shown in the

upper panels of figure 1 for several values of α and β. The dependence of the condensate

O+(T ) from α is quite simple. Roughly speaking, larger values of α shift the condensate up.

However, the dependence on the mass ms of the scalar is more involved (see the right panels
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of figure 1). In fact, there is a critical value of β, which we call β1, below which the curve

O+(T ) changes convexity at some temperature and an other critical value β2, generically

different from β1, below which the curve develops a maximum at some temperature. β = β1

does not seem to correspond to any phase transition of the theory. The change of convexity

below some value of β of the curve describing the scalar condensate as a function of the

temperature has been already observed also in the case of holographic superconductors

(see for instance figure 2 of ref. [43]). On the other hand, the appearance of a maximum in

the curve O+(T ) is a more involved and mysterious issue. Naively, one would expect the

VEV for the scalar operators to rise monotonically when the temperature decreases. This

simply happens because the number of bosonic excitations sitting in the vacuum will rise

when the temperature decreases. It is likely that in our case the presence of the maximum

at low temperatures is related both to the tachyonic nature of the scalar field φ and to its

nonminimal interaction with the gauge field. In fact our numerical calculations indicate

that β2 is always negative (β2 = −2) independently of α. Although this value is above the

BF bound, the tachyonic nature of the scalar field together with its nonminimal coupling to

the gauge field could result in some effective interaction that at low temperatures depletes

the vacuum. However, we do not have any further indication that this effect originates a

phase transition. Also notice that the condensate exists at any temperature and, although

not shown in figure 1, it vanishes asymptotically when T ≫ √
ρ.

3.1.2 Linear coupling function

Let us now consider a linear coupling function f(φ) and the usual self-interaction potential

f(φ) = 1 + αφ , V (φ) = − 6

L2
+

β

L2
φ2 . (3.4)

Similarly to the exponential case discussed in section (3.1.1), also here we have f ′(0) 6= 0,

forbidding the existence of AdS-RN solutions. Thus only hairy black hole solutions char-

acterized by a nonvanishing scalar condensate are allowed. Because the coupling function

f(φ) given by eq. (3.4) is just the linear approximation near φ = 0 of the exponential

coupling (3.3), these solutions have the same r → ∞ behavior as those discussed in sec-

tion (3.1.1). Obviously the two sets of solutions differ in the near-horizon region. The

behavior of the scalar condensate is shown in the lower panels of figure 1 and it behaves in

a way which is qualitatively similar to that described in the upper panels for exponential

couplings. This suggests that the salient properties of these solutions are simply captured

by the condition f ′(0) 6= 0.

3.1.3 Power-law coupling function

The method described above can be also used to construct numerical solutions for the class

of models with power-law coupling function,

f(φ) = 1 + αφm , m > 1 , V (φ) = − 6

L2
+

β

L2
φ2 . (3.5)

The most important difference between this and the previously discussed cases is that

f ′(0) = 0. This implies that in these models black brane solutions with non trivial scalar
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profile for the scalar field can coexist with the AdS-RN black brane for any m > 1. In

general, these models will be therefore characterized by a phase transition. Below a critical

temperature Tc the AdS-RN solution becomes unstable and the operator dual to the scalar

field acquires a nonvanishing expectation value, i.e. a scalar condensate forms. This behav-

ior is very similar to that observed in the class of models investigated in ref. [19]. In the left

panel of figure 2 we show the expectation value for the scalar operator O+ as a function

of the temperature for different values of m. Interestingly, near the critical temperature

these solution exist also for T > Tc and, for a given temperature, there exist two branches

of solutions. This is due to a non-monotonic behavior of the function T (φh).

Moreover, as shown in the right panel of figure 2, in the first branch the hairy dilatonic

solutions have always a larger free energy than the corresponding AdS-RN black brane

at the same temperature. Hence, they are energetically less favored and likely decay into

AdS-RN black branes. On the other hand, solutions in the second branch are unstable with

respect to the AdS-RN solution only at (relatively) high values of T . After the turning

point shown in the right panel of figure 2, the difference in the free energy ∆F changes sign

and solutions in the second branch are energetically favored all the way down to the zero

temperature limit (see ref. [44] for similar effects in models of holographic superconductors

with nonminimal couplings). This behavior has to be compared with that arising in the

EMDG models investigated in ref. [19] (and also in the case of a scalar with covariant

coupling with the gauge field [6–8]). In these latter cases the hairy solution exists and,

it is stable, only below the critical temperature. Above Tc only the AdS-RN solution

exists [6–8, 19].

As we will discuss in detail in section 4, in the zero temperature limit the hairy solutions

are stable and show a behavior which is largely independent from the parameters. Indeed,

the qualitative behavior does not depends on m, α and β. This universality can be traced

back to the common property of these theories, which have f ′(0) = 0 regardless of the

values of m and α.

3.2 Holographic properties

Holographic properties of CDBBs with exponential coupling function f ∼ exp(αφ) have

been investigated in great detail in refs. [23, 24], in the zero temperature limit (see also

ref. [20]). In this limit, an approximate method can be developed in order to obtain

analytical results for thermodynamical properties and transport coefficients in the dual

field theory. The dual theory is reminiscent of a charged plasma at T ∼ 0 [24].

At zero temperature and when β = 0, some of these holographic features of CDBBs are

mostly universal, i.e. they do not depend on α. In particular, in ref. [20] it has been shown

that exponential coupling functions capture the essential IR behavior of theories with the

same set of fields and that only for special transition values of the exponents there can be a

qualitative change of the asymptotical behavior. However, some transport properties, such

as the optical conductivity, can depend on the actual form of the self-interaction potential

V (φ) [19], or on the number of spacetime dimensions [25], even in the zero temperature

limit. See also refs. [21] for related studies.
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Figure 2. Left panel: scalar condensate for models with a power-law coupling function f(φ) =

1 + αφm as a function of the temperature. Markers correspond to the temperatures considered in

figure 6 (see section 4). Right panel: Difference in free energy between the AdS-RN black brane

and the hairy black brane, ∆F = FRNBB −FHBB as a function of the temperature. When ∆F > 0

the dilatonic solution is energetically favored. We have considered α = 2 and β = −2.

Here, we extend the investigation to a large class of CDBBs and show that some

holographic properties at finite (but non-vanishing) temperature are not universal. Indeed,

qualitative differences arise depending on the particular model at hand. This is also true

even for the very same configuration explored in ref. [24], i.e. an exponential coupling

function f ∼ exp(αφ) and β = 0. In this case qualitative differences arise depending on

the value of α.

The transport properties in the field theory dual to CDBBs show a rather rich struc-

ture. For instance, as we will see later on this paper, the electrical conductivity as a

function of the temperature shows some remarkable and non-trivial behavior, previously

observed in ref. [19] (see also ref. [28, 45] for similar results in the context of strange metals

and holographic superconductors, respectively).

The AdS/CFT correspondence provides a precise prescription for describing transport

phenomena of the field theory dual to CDBBs in terms of perturbations of fields in the

bulk. This is in particular true for the electrical conductivity, which can be derived from

the equations governing the fluctuations of the gauge field component Ax and of the metric

component Gtx [4]. In the case of a purely electric background, perturbations of Ax with

zero spatial momentum and harmonic time dependence decouple from all the other modes.

The perturbation Ax is obtained by solving the equation [19, 23]

A′′
x +

[

g′

g
− χ′

2
+

f ′(φ)

f(φ)

]

A′
x +

(

ω2

g2
− A′

0
2f(φ)

g

)

eχ Ax = 0 , (3.6)

with purely ingoing boundary conditions at the horizon.

The electric conductivity of the dual field theory is given by [8]

σ = −i
A

(1)
x

ωA
(0)
x

(3.7)
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where A
(0)
x and A

(1)
x are defined by the asymptotic behavior of the fluctuation at infinity

Ax ∼ A
(0)
x + A

(1)
x /r.

The electrical conductivity σ, in particular its dependence from the frequency ω, can

be also calculated by recasting eq. (3.6) in the form of a Schrödinger-like equation [46].

The conductivity can be expressed in term of the reflection coefficient R for a quantum

particle incident from the right on a potential barrier, generated by an effective potential

Vs(z) [19, 46]:

σ(ω) =
1 −R
1 + R − i

2ω

[

1

f

df

dz

]

z=0

. (3.8)

where the coordinate z is defined by dr/dz = g exp(−χ/2). By numerical integration of

eq. (3.6) one can calculate the electric conductivities at finite, non-vanishing temperature,

for the fields theories dual to CDBBs. In particular, we have derived the dependence of

σ on the frequency ω and on the temperature T . In the following, we will present the

numerical results for σ separately for the three class of models under consideration.

3.2.1 Exponential coupling function

Numerical integration of the equation (3.6) and the ensuing calculation of the conductiv-

ity (3.7) proceeds straightforwardly. A summary of our results is presented in figure 3,

where we show the real part of the AC conductivity for a model with coupling functions

f(φ) and V (φ) given by eq. (3.3) as a function of the frequency and the DC conductivity

as a function of the temperature for selected values of α and β.

Notice that, as a consequence of the translation invariance, Re[σ] ∼ δ(ω) at ω = 0

(see e.g. [3]). From a numerical point of view, the Dirac delta contribution cannot be

extracted from Re[σ]. However, through Kramers-Kronig relations, this corresponds to a

simple pole of Im[σ(ω)] at ω = 0, which can be easily extracted from our numerics (see

e.g. [7] for more details). The DC conductivity σDC is computed by subtracting the Dirac

delta contribution. Indeed, σDC is the physical interesting quantity, as in any realistic

system an arbitrarily small amount of impurities would destroy the translation invariance,

leaving σDC unaltered.

Depending on the values of α and β, the model considered shows two interesting fea-

tures: a “Drude peak” in the AC conductivity at ω = 0, a minimum at low frequencies and

a non-monotonic behavior of the DC conductivity as a function of the temperature. These

effects are absent in the zero temperature limit, where the behavior is mostly universal.

However, they have been previously observed in models with f ∼ cosh(αφ) at T < Tc [19].

Interestingly, also models with a simple exponential coupling f(φ), which do not undergo a

phase transition AdS-RN/CDBBs and which can be more easily embedded in supergravity

theories, show the same peculiar behavior.

The appearance of the Drude peak in the AC conductivity can be explained in terms of

the features of the potential Vs(z) entering in the Schrödinger equation that determines the

reflection coefficient R in eq. (3.8) [19]. The potential Vs(z) develops a negative minimum

at finite temperature and for large values of α, regardless of the actual form of f(φ). As

shown in figure 3, the critical value of α, above which such behavior is manifest, depends
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Figure 3. Left panels: real part of the AC conductivity as a function of the frequency for different

temperatures for models with exponential coupling function f(φ) and potential V (φ) given by

eqs. (3.3). Right panels: DC conductivity as a function of the temperature for several values of α.

Top, middle and bottom panels refer to β = 0, β = −2 and β = βBF = −9/4 respectively.
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on β. For β = 0 the maximum of conductivity appears at α & 4 but, as β approaches the

BF bound, the critical value of α is smaller.

Although the conductivity for models with f ∝ exp(αφ) and for models with f ∝
cosh(αφ) behaves qualitatively in the same way, there are nevertheless some important

differences. For the models investigated in ref. [19] the AC conductivity shows a mini-

mum which, for given α and β, is roughly independent from the temperature. Conversely,

the location of the minimum in figure 3 depends on the temperature. Furthermore, at

larger frequency the conductivity for the models of ref. [19] develops a maximum before

approaching the universal value σ(ω → ∞) → 1 (cf. figure 9 in ref. [19]). Intriguingly,

similar transport properties are observed in the electrical conductivity in graphene and

they are not completely understood in terms of standard theory (cf. for example figure 17

in ref. [47]). On the other hand, the models with exponential coupling explored in this

work do not show this peculiar behavior.

At relatively small values of T (as those considered in figure 3) the resistivity as a

function of the temperature is very well-fitted by

ρ(T ) ≡ 1

σDC(T )
= a0 + a1T

2 + a2 log(T ) + a3T
−γ , (3.9)

where ai are fit parameters depending on α and β. We estimate a relative standard error

of at most 5% in the fit parameters above. The accuracy depends on α and β and it

also varies for each parameter, but it is usually better than 1%. In figure 3 these fits are

graphically indistinguishable from numerical data. The last term in the equation above

leads to the following behavior at small temperatures:

σDC(T ∼ 0) ∼ T γ . (3.10)

When V (φ) = − 6
L2 cosh bφ, the positive constant γ can be computed by applying the same

method discussed in section 3 of ref. [24], extended to include a potential as discussed in

ref. [19]. Its explicit value reads

γ = 2 +
bξ

1 − bξ
, ξ =

4(α + b)

4 + (α + b)2
. (3.11)

Notice that γ = 2 for β = 0 [24] and that the existence of a near-extremal solution requires

bξ < 1 [19], so that γ > 1. This avoids reproducing results for strange metals [27, 45, 48],

which typically have γ = −1. In principle, when different forms of V (φ) are considered,

the value of γ can be computed analytically from the near-extremal solutions by applying

similar arguments (cf. section 4).

The fit (3.9) has been partially inspired by the typical behavior of the resistivity in

ordinary metals. However, a microscopic description of transport properties in the dual

theory is missing and the fit is only qualitative. In realistic metals, the first two terms are

due to the usual residual resistivity and to the electron-electron scattering, respectively.

The third term is the celebrated Kondo term, which encloses the non-monotonic behavior

at finite temperature. This term is due to strong coupling interactions between conduction

electrons and impurities. Although no impurities are present in our model, it is nevertheless
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intriguing that a (homogeneous) scalar condensate leads to a non-monotonic behavior of

the resistivity.

Finally, the last term in eq. (3.9) is needed to correctly reproduce the zero temperature

limit and it gives a vanishing DC conductivity at T ∼ 0. Thus, the non-monotonic behavior

appears to be related to an interplay between the zero temperature limit (in which σDC

decreases as T is lowered) and the finite temperature regime (where, for sufficiently large

values of α, σDC increases as T is lowered).

Interestingly, the emerging holographic picture interpolates between some aspects rem-

iniscent of electron motion in real metals at finite temperature and a charged plasma [24]

at zero temperature. It would be highly desirable to develop approximate methods (similar

in spirit to those considered in ref. [24]) in order to extract the exact dependence of the

conductivity at finite temperature and to understand the microscopic mechanism leading

to the observed behavior. We hope to address this issue in a future work.

3.2.2 Linear coupling function

Also in the case of linear coupling functions f(φ) and V (φ) given in eq. (3.4), the conduc-

tivity of the dual field theory can be extracted, numerically, using the method explained

above. The results are summarized in figure 4 and are qualitatively similar to those shown

in figure 3. In particular the DC conductivity is a non-monotonic function of the temper-

ature for sufficiently large values of α. Also the AC behavior is similar, but in this case

the sharp minimum is smoothed out. The DC conductivity is again perfectly fitted by

eq. (3.9), but in this case the dominant term in the zero temperature limit is not T γ . We

shall compute its exact form in section 4 (cf. eq. (4.17)).

3.2.3 Power-law coupling function

The numerical results for the electrical conductivity σ in the dual field theory in the

case of models with coupling functions f(φ) and V (φ) given by eq. (3.5) are shown in

figures 5 and 6.

In the left panel of figure 5 we show the AC conductivity at T ∼ 0.015
√

ρ for different

values of m and for solutions in the stable branch. Sharp peaks develop at the same

frequency ωpeak ∼ 1.5T , which is largely independent from m, while the height of the

peak increases with m. In the right panel of figure 5 we shown the DC conductivity as a

function of the temperature for solutions both in the stable and in the unstable branch,

for different values of m. Again the qualitative behavior is very similar. Notice that, a

part from the peculiar behavior of the temperature, also in this case the conductivity has

a non-monotonic behavior. As we prove in section 4, in the zero temperature limit the DC

conductivity universally approaches zero with a power-law behavior.

Finally, in figure 6, we show the behavior of the AC conductivity as a a function of ω

for m = 4 and for selected values of the temperature.

4 The zero temperature limit of electric charged black branes

In the previous section we have constructed numerical solutions for several CDBBs at

finite, nonvanishing, temperature and investigated some of their holographic features. In
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Figure 4. Left panels: real part of the AC conductivity as a function of the frequency for different

temperatures for models with linear coupling function f(φ). f(φ) and V (φ) are given by eq. (3.4)

. Right panels: DC conductivity as a function of the temperature for several values of α. Top,

middle and bottom panels refer to β = 0, β = −2 and β = βBF = −9/4 respectively.
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Figure 5. Left panel: Real part of the conductivity as a function of the frequency for models with

power-law coupling function f(φ) and potential V (φ) are given by eq. (3.5). We show Re[σ] for

different values of m and for T ∼ 0.015
√

ρ in the stable branch. Right panel: DC conductivity as a

function of the temperature. Notice that we show the conductivity for solutions both in the stable

and in the unstable branch.
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Figure 6. Real part of the conductivity as a function of the frequency for m = 4 and different

temperatures for models with power-law coupling function f(φ) and potential V (φ) are given by

eq. (3.5) . The selected temperatures are marked in the left panel of figure 2 by dots. In particular

notice that we show results both for the stable (dashed blue) and unstable branch (straight red)

for T = 9 × 10−2√ρ.

this section we will discuss the zero temperature behavior of our models, by considering

the near-horizon regime of the black brane solutions. The near-horizon, extremal behavior

of charged dilaton black holes for which the coupling function and/or the potential behave

exponentially, has been already investigated in refs. [19, 23, 24, 32]. In this section we will

extend this analysis to include the case of a power-law behavior of f(φ) and/or V (φ).

A general problem one has to tackle while searching for extremal near-horizon solutions

of AdS black branes is the possibility of connecting smoothly these solutions with the
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asymptotic AdS4 region. In other words, the near-horizon solutions should allow for the

existence of a global black brane solution interpolating between them and the asymptotic

AdS4 region. It is not easy to perform this analysis analytically. A possibility is to use

the method proposed in ref. [23] (see also ref. [19]). A subleading deformation term, which

grows outside the near-horizon region and becomes dominant in the asymptotic region

giving the correct AdS4 behavior, is introduced in the near-horizon solution .

For generic EMDG models this method is not easy to implement, mainly because the

subleading terms in the near-horizon expansion of the metric and scalar field are difficult

to control.

For this reason in this paper we will use a simplified approach: we will just compute,

using the field equations, the leading term in the near-horizon expansion of the bulk fields.

These leading term will be used to investigate the holographic features of the dual field

theory. The question about the existence of global solutions interpolating between the

leading near-horizon solution and the asymptotic AdS4 behavior will be tackled numerically

for a number of cases.

4.1 The near-horizon, extremal solution

We can assume without loss of generality that the horizon of our extremal CDBB solutions

is located at r = 0. We are interested in the leading term of the asymptotic expansion of

the solution near r = 0, which corresponds to φ → ∞.

To keep the discussion as general as possible, we will consider coupling functions with

the following leading term in the φ → ∞ expansion:

a) V (φ) = aφn , f(φ) = bφm;

b) V (φ) = aφn , f(φ) = beαφ;

c) V (φ) = aeαφ , f(φ) = bφm; (4.1)

Where a, b, n ≥ 0,m ≥ 0 and α ≥ 0 are constants.

Notice that the leading term in the φ → ∞ expansion of the exponential, linear, power-

law coupling functions f(φ) and the self-interaction potentials V (φ) considered in section 3

are all particular cases of eqs. (4.1).

In this section we use the following parametrization for the metric

ds2 = −λ(r)dt2 +
dr2

λ(r)
+ H2(r)(dx2 + dy2) . (4.2)

The equation of motion for the gauge field can be immediately integrated and gives

A′
0 =

ρ

fH2
, (4.3)
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where ρ is the charge density of the solution. The remaining equations are

(λH2)′′ = −2H2V (φ)

(H)′′ = −H

4
(φ′)2

(λH2φ′)′ = H2 dV

dφ
− ρ2

2H2

1

f2

df

dφ

λ(H ′)2 +
λ′

2
(H2)′ =

H2

4

[

λ(φ′)2 − ρ2

fH4
− 2V

]

. (4.4)

To find the leading term in the near-horizon expansion of the fields, we try the following

scaling ansatz

φ = φ0(− ln r)h, H = Crν(− ln r)p, λ = λ0r
µ(− ln r)q, (4.5)

where φ0, h, C, ν, p, λ0, µ, q are constants. We discuss separately the three cases under

consideration.

4.1.1 Power-law coupling functions f(φ) and V (φ)

Using the scaling ansatz (4.5) in the field equations (4.4) one finds in this case the leading

behavior of the near-horizon solution:

H = C(− ln r)−
n+m

8 , λ = −aφn
0r2(− ln r)

n
2 , φ = φ0(− ln r)

1

2 , (4.6)

where

φ0 = [2 (n + m)]1/2 , C4 = − ρ2

2ab
[2 (n + m)]−

n+m
2 . (4.7)

Notice that the parameter a must be negative and b positive. For n = 0 this is consistent

with the presence of a negative cosmological constant in the action, a = − 6
L2 . In the case

of a quadratic V (φ), a = m2
s/2, so that the scalar squared mass must be negative.

Using the field equations one can easily compute the leading behavior of the scalar

curvature tensors on the horizon:

R = 2aφn
0 (− ln r)

n
2 , RµνRµν ∼ (− ln r)n. (4.8)

The leading term of the scalar curvatures does not depend on the coupling function

f(φ), i.e. it depends on n but not on m. For n = 0, independently of m, the scalar curvature

R on the horizon goes to a constant, which is essentially the cosmological constant of the

spacetime. For n 6= 0, we have in r = 0 a mild logarithmic singularity R ∼ (− ln r)n/2.

4.1.2 Exponential f(φ) and power-law V (φ)

The field equations (4.4) are now solved at leading order by eqs. (4.6), (4.7) with m = 0.

The only difference is that now the term depending on f(φ) in the third equation (4.4)

is subleading with respect to the term depending on V (φ), so that C is not anymore

determined by eq. (4.7) but is a free integration constant.
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4.1.3 Power-law f(φ) and exponential V (φ)

In this case the field equations (4.4) allow for metric solutions having a near-horizon Lifshitz

scaling behavior and logarithmic scalar field. These Lifshitz-like solutions exist when 0 <

α < 2 . They read

H = Crγ, λ = − α2a

4γ(1 − 2γ)
r2−4γ , φ = −4γ

α
ln r, γ =

α2

4 + α2
, (4.9)

where C is a free integration constant. It is important to stress that the solution does not

depend on the coupling function f(φ), i.e. on the parameters b,m. This is because the term

depending on f(φ) in the third equation (4.4) is either subleading with respect to the term

depending on V (φ) (m 6= 0) or identically zero (m = 0). In particular, for m = 0 (f = b)

our model describes a scalar field minimally coupled with the U(1) field, with exponential

potential. This is an important result. It shows that extremal solutions with Lifshitz

scaling are not only solutions of dilaton gravity models with exponential coupling function

f(φ) [19, 23, 24], but can be also obtained in the case of a minimally coupled dilaton.5

4.1.4 Exact solutions at T = 0

In some case eqs. (4.4) allow also for exact AdS2 × R2 solutions. Let us that assume

V (φ) = V0 + aφn and f(φ) = f0 + bφm, where n,m > 0 and, in order to recover an

asymptotic AdS4, we impose V0 = −6/L2 and f0 = 1. Then, there exists an exact solution

which reads

λ(r) = λ0r
2 = −(V0 + aφn

0 )r2 , H(r) = H0 =

(

ρ2bmφm−n
0

2an(f0 + bφm
0 )2

)1/4

, φ(r) = φ0 ,

(4.10)

provided φ0 is an extremum of the effective potential Veff = H2
0V + (ρ/2H2

0 )f−1, i.e. it is

solution of the following equation

ab(m + n)φn
0 + af0nφn−m

0 + bmV0 = 0 . (4.11)

Notice that eqs. (4.10) imply a, b < 0. For example if n = m = 2, then a = m2
s/2 < 0 and

b = α < 0 has the opposite sign with respect to the case studied in ref. [19].

In some particular case the equation above can be solved analytically. For example if

n = m we have

φn
0 = −bV0 + af0

2ab
. (4.12)

Let us close this subsection by stressing the fact that the solutions we have presented here

not only give the leading term of T = 0 extremal black branes, but can be generically

used also in the near-extremal region T ∼ 0. Thus, our eqs. (4.6) and (4.9) can be used to

construct also the the leading behavior of near-extremal black branes, as explained e.g. in

ref. [23]. In this case the horizon radius rh is small but nonvanishing.

5Actually our solution (4.9) can be obtained also as a particular case of the solution of [19], by setting

the coupling function f(φ) to a constant.
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4.2 Holographic properties

In this section we will discuss the transport features of the field theory dual to extremal

CDBBs at T ∼ 0, using the the Schrödinger-like picture for the dynamics of electric bulk

perturbations described at the beginning of section 3.2 and, in particular, eq. (3.8).

The Schrödinger-like description is particularly useful when one has bulk solutions

written in explicit analytic, albeit approximate, form. This is because from the near-horizon

behavior of the solution one can derive the near-horizon behavior of the potential Vs(z)

of the Schrödinger equation. Assuming that the near-horizon solution can be smoothly

connected with the asymptotic AdS4, the leading power in ω of the conductivity σ (3.8) can

be calculated by matching the conserved probability current of the Schrödinger equation

near the boundary at infinity and near the horizon [23].

The Schrödinger-like equation and the related potential read [19],

d2Ψ

dz2
+(ω2−Vs(z))Ψ = 0, Ψ =

√

fAx,
dr

dz
= λ, Vs(z) = λf(φ)(A′

0)
2
+

1
√

f(φ)

d2
√

f(φ)

dz2
.

(4.13)

The case of the Lifshitz-like solutions (4.9) has been already investigated in ref. [19, 23, 24]

(see also refs. [30, 31]). A near-horizon Vs(z) ∼ C/z2 was found, which in general gives a

leading term for σ scaling as some power of ω, namely σ ∼ ωs with s ≥ 2 [19].

Let us now consider the solution (4.6) corresponding to the near-horizon behavior of

CDBBs with power-law coupling f(φ). Notice that this solution contains as particular case,

m = 1, a linear coupling function f(φ). The Schrödinger potential Vs(z) is easy calculated

using eqs. (4.6) into eq. (4.13). It reads

Vs(z) ∼ 2

z2
, (4.14)

independently from the values of m and n. Hence, assuming the near-horizon solution can

be smoothly connected with the asymptotic AdS4, the same analysis of refs. [19, 23, 24]

applies and the conductivity reads

Re[σ(T ∼ 0)] ∼ ω2 , (4.15)

for any m and n and when ω ∼ 0. This is an important result: in the T ∼ 0 regime the

optical conductivity as a function of the frequency for the field theories holographically dual

to CDBBs with power-law coupling functions has a universal quadratic scaling behavior.

Our result (4.15) can be also compared with the general result of ref. [20] derived in the

case of exponential coupling functions. Eq. (1.10) of ref. [20] in the case of zero exponents

reproduces, as expected, the quadratic behavior of eq. (4.15).

Let us now consider the DC conductivity. At T ∼ 0 the DC conductivity as a function

of T can be computed by applying the same procedure used in ref. [24]. In the near-horizon

region Re[σ] is first expressed as a function of the horizon radius rh, then as function of T by

means of the radius-temperature relation, rh(T ). In the T → 0 limit, the near horizon be-

havior of our numerical solutions is consistent with λ ∼ λ0r
2[− log r]n/2 [1 − (r/rh)η], where
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η depends on the details of the model. Hence, at leading order, the radius-temperature

relation reads

T ∼ rh [− log rh]n/2 , (4.16)

which can be formally inverted to obtain rh(T ). This implies

σDC ≡ Re[σ(ω ∼ 0)] ∼ r2
h ∼ T 2 {− log [rh(T )]}−n/2 , (4.17)

where the first relation follows from the arguments in ref. [24], whereas the second one

follows from eq. (4.16).

The DC conductivity does not depend on the nonminimal coupling f(φ), but only

on the self-interaction potential V (φ). When n = 0 we recover the “universal” behavior

σDC ∼ T 2, while for n 6= 0, although the relation (4.16) cannot be inverted analytically, we

expect some subdominant contribution.

Let us now consider the case in which the near-horizon solution is AdS2 × R2 and is

described by eq. (4.10) Interestingly, it follows from eqs. (4.10), (4.11) and (4.13) that also

in this case the Schrödinger potential near the horizon reads Vs(z) ∼ 2/z2, regardless of the

values of m and n. Moreover in this case the temperature scales linearly with the radius,

T ∼ rh. Thus, as explained in refs. [19, 23], we find the same “universal” behavior found

in ref. [24]

Re[σ(T ∼ 0)] ∼ ω2 , σDC ≡ Re[σ(ω ∼ 0)] ∼ T 2 . (4.18)

4.2.1 Comparison with the numerical results

Let us now compare the analytical results for the T ∼ 0 region described in this section

with the numerical results of section 3.

The first issue to be discussed concerns the possibility of jointing smoothly the near-

horizon, extremal, approximate solutions (4.6)–(4.9) with the asymptotic AdS4 form of the

solutions (for a general numerical construction of global interpolating solution between the

IR and UV vacua in Einstein-Maxwell-scalar theories see ref. [32]). We have not performed

such analysis analytically, but we have done it numerically by a case by case analysis.

Indeed, for the various cases presented in this section, we have explicitly checked that the

near-horizon limit of the numerical CDBBs discussed in section 3 approaches the analytical

behavior (4.5) at leading order in the T → 0 limit.

A second important issue is the comparison of our numerical results for the AC conduc-

tivity σAC(ω) and for the DC conductivity σDC(T ) obtained in section 3 with, respectively

eqs. (4.15) and (4.17). In the T → 0 limit, we have explicitly checked for the case of a

linear and power-law coupling function that our numerical results for σAC(ω) and σDC(T )

presented in section 3 agree respectively with eqs. (4.15) and (4.17). As a general results,

our numerical solutions and the analytic expectations at T ∼ 0 are in full agreement,

validating each other.
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5 Dyonic black branes at finite temperature

In this section, we shall consider solutions of the theory (2.1), which describe dyonic dila-

tonic black branes (DDBBs), i.e. dilatonic solutions endowed with both an electrical and

a magnetic charge.

The zero temperature limit of DDBBs have been studied in detail in ref. [24] in the

case of exponential coupling and for a SL(2,R) invariant action including an axion field. In

that case dyonic solutions can be constructed from purely electrical solutions by applying

the electromagnetic duality [24]. We shall restrict ourself to the theory (2.1), which is not

SL(2,R) invariant. Moreover, we shall consider couplings such that f ′(0) = 0, i.e. theories

allowing for dyonic AdS-RN black branes. Our main motivation is to understand the role

played by the magnetic field in the phase transition and in the holographic properties of

the dilatonic black branes investigated in ref. [19].

As we have argued in the previous sections, the holographic properties of dilatonic

black branes are qualitatively similar regardless of the details of the coupling. Hence, we

expect that the results we discuss below apply to a broader class of EMDG models. Finally,

for completeness in appendix A we discuss purely magnetic black brane solutions obtained

in our theory via the electromagnetic duality.

In the following, we consider a dyonic configuration for the gauge potential A =

Aµdxµ = A0(r)dt+Bxdy, where B is the magnetic field, together with the ansatz eq. (2.3)

for the metric. The first and fourth of eqs. (3.1) then read

φ′′ +

(

g′

g
− χ′

2
+

2

r

)

φ′(r) − 1

g

dV

dφ
+

1

2g

df

dφ

(

A′
0
2
eχ − B2

r4

)

= 0 , (5.1)

φ′2

4
+

f(φ)

4g

(

A′
0
2
eχ +

B2

r4

)

+
g′

rg
+

1

r2
+

V (φ)

2g
= 0 , (5.2)

whereas the second and the third of eqs. (3.1) are not affected by B. We look for solutions

of these four coupled nonlinear ODEs which describe a static, planar black brane, endowed

with an electric field, a magnetic field perpendicular to the (x, y) plane and a scalar field.

Notice that these solutions are translationally invariant in the (x, y) direction, unlike those

obtained by considering a minimal coupling [49, 50].

Finally, we are interested in models which admit AdS-RN black branes as solution. For

this purpose, we restrict ourself to the following form for the potential and the nonminimal

coupling:

V (φ) = − 6

L2
+

β

2L2
φ2 + O(φ3) , f(φ) = 1 +

α

2
φ2 + O(φ3) . (5.3)

Due to the expansions (5.3), the dyonic AdS-RN black brane is solution of the equations

of motion with

g ≡ gRS = −2M

r
+

Q2 + B2

4r2
+

r2

L2
, χ = 0 , A =

(

Q

r
− Q

rh

)

dt+Bxdy , φ = 0 . (5.4)

5.1 Instability of dyonic AdS-RN black branes

For models which satisfy eq. (5.3) scalar perturbations of AdS-RN black branes can be

explicitly computed [19]. In ref. [19] it has been shown that in the purely electric case
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(B = 0), below a critical temperature, the AdS-RN solution is unstable against scalar

perturbations . Here we generalize this result to the case of dyonic AdS-RN black branes.

Following ref. [19], we consider scalar perturbations around the AdS-RN black

brane (5.4), and we Fourier-expand the perturbation as φ
ω,~k

= R(r)
r ei(k1x+k2y−ωt). Remark-

ably, for models satisfying eq. (5.3), scalar perturbations around the AdS-RN background

decouple, in the linear approximation, from both the Maxwell and the gravity sector. In

fact, the first order contribution to the Maxwell equations in (2.2) is proportional to f ′(0)

and therefore vanishes identically. Furthermore, Einstein equations (2.3) depend quadrat-

ically on the scalar field if we impose eq. (5.3). Therefore, expanding Einstein equations

around φ ∼ 0 up to first order gives only zeroth order equations, which are identically solved

by the AdS-RN background. We are therefore left with a single pertubation equation for

the scalar field, which can be written in a Schrödinger-like form [19]

g2
RSR′′ + gRSg′RSR′ +

[

ω2 − Vs(r)
]

R = 0 , Vs(r) = gRS

[

~k2

r2
+

g′RS

r
+ m2

eff

]

, (5.5)

where the effective mass reads

m2
eff(r) = m2

s − α
Q2 − B2

2r4
, (5.6)

and again m2
s = β/L2 is the squared mass of the scalar field. Interestingly, the contributions

of the magnetic and of the electric field are opposite. While the electric field contributes to a

tachyonic mode in the effective mass (hereafter we focus on α > 0), the magnetic field gives

a positive contribution and stabilizes the AdS-RN black brane. For dyonic black branes,

these two contributions are competitive and an instability can arise only when Q2 > B2.

Indeed, the effective square mass is positive above a critical value of the magnetic field, i.e.

for B > Bc where

Bc = ±Q . (5.7)

Independently from the value of α, dyonic AdS-RN black branes with B ≥ Bc = Q,

are stable against scalar perturbations. On the other hand, for B < Q the non-minimal

coupling gives a negative contribution to the effective mass. If the coupling is strong enough

it can lower the mass below the BF bound and destabilize the background. In the following,

we shall confirm this result by solving numerically the equations of motion.

5.2 Dyonic dilatonic black branes and phase transitions

DDBB solutions of eqs. (5.1)–(5.2) can be obtained numerically by using the same proce-

dure sketched in the previous sections and discussed in detail in ref. [19]. When B = 0, a

phase transition occurs below a critical temperature, the two phases being the (unstable)

AdS-RN black brane and the new (stable) charged dilatonic black brane. Here we want to

understand the role of the magnetic field in the phase transition.6

6See also ref. [16] for phase transitions from dyonic solutions in Einstein-Yang-Mills-Higgs theory.
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The black brane temperature T is simply defined in terms of near-horizon quantities

as (L = 1)

T =
g′h
4π

e−
χh
2 =

rhe−
χh
2

4π

(

1

r2
h

− eχh
A0(rh)2f(φh)

4
− V (φh)

2
− B2f(φh)

4r2
h

)

. (5.8)

As previously explained, when B = 0 the solutions form a one-parameter family, the

physical parameter being the temperature T . However when B 6= 0, the series expansion

near the horizon depends on three independent parameters, say φh, A0(rh) and B. At

given φh, the remaining parameters can be chosen to be the zeros of two functions of

two variables,
{

F1 : {A0(rh), B} −→ Oi ,

F2 : {A0(rh), B} −→ B/ρ − C ,
(5.9)

where ρ is the charge density defined by the asymptotic expansion of the gauge field at

infinity. Both Oi and B/ρ result from the numerical integration and C is the value of the

constant magnetic field in units of ρ. Therefore numerical solutions form a two-parameter

family: the parameters can be chosen to be the black brane temperature T/
√

ρ and the

magnetic field C = B/ρ. The functions Fi are known only numerically and they are not

necessarily polynomials. In order to find their zeros we implemented a two-dimensional

extension of Müller method, recently proposed in ref. [51]. Solving the system (5.9) iter-

atively (i.e. for several values of φh), we can follow the evolution of the condensate as a

function of the temperature at fixed magnetic field. Alternatively, we can also study the

evolution of the condensate as a function of the magnetic field at fixed temperature. This

is necessary to study the magnetic susceptibility, as we explain below. In this case, we

should find the zeros of the following functions

{

F1 : {A0(rh), B} −→ Oi ,

F2 : {A0(rh), B} −→ T/
√

ρ − C ,
(5.10)

where now C is the constant temperature in units of
√

ρ.

5.2.1 Numerical results

We refer to refs. [19, 51] for further details on the numerical method, now focusing on some

results. Consistently with the requirements (5.3), we have considered both polynomial

forms V, f ∼ a + bφ2 and hyperbolic cosine forms V, f ∼ cosh(aφ) for the potential V (φ)

and the coupling function f(φ). Results are qualitatively similar regardless of the precise

form of f, V and they only show a strong dependence on β ≡ V ′′(0)L2 and α ≡ f ′′(0).

For concreteness, we shall focus on β = m2
sL

2 = −2 and on solutions obtained by

imposing O− = 0. Imposing O+ = 0 or choosing different values of the scalar mass β, gives

qualitatively similar results.

First, we report that this method is successful in constructing dyonic AdS black branes

coupled to a neutral scalar field. From the holographic point of view, DDBBs are dual to

field theories in which a neutral scalar operator acquires a non-vanishing expectation value

below a critical temperature and below a critical magnetic field. In fact, in figure 7 we show
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Figure 7. Left panel: scalar condensate for DDBBs with as a function of the temperature for

selected values of the magnetic field B. Right panel: scalar condensate as a function of the magnetic

field for selected values of the temperature. We used f(φ) = cosh(2φ) and β = −2.

0.0 0.2 0.4 0.6 0.8 1.0
B/ρ

0.05

0.10

0.15

0.20

0.25

T c
/ρ

1/
2

a=1
a=2
a=3
a=4

Figure 8. Phase diagram for dyonic and dilatonic black branes with f(φ) = cosh(aφ), showing the

critical temperature as a function of the ratio B/ρ. Regions below the curves mark the parameter

space where the scalar operator condenses. We considered several values of a =
√

α. Choosing

f = 1 + αφ2 gives qualitatively similar results.

the scalar condensate both as a function of the temperature for several values of constant

magnetic field (left panel) and as a function of the magnetic field for several values of

constant temperature (right panel) for α = 4 and β = −2.

The phase diagram of DDBBs, i.e. the critical temperature as a function of the mag-

netic field, is shown in figure 8 for several values of the coupling α. The numerical results

confirms our analytic expectation: Tc = 0 when B = Bc = ρ, i.e. the scalar operator does

not condense at any finite temperature above the critical magnetic field Bc. The critical

value Bc does not depend neither on the coupling constant α nor on the precise forms for

f(φ) and V (φ), when they behave as prescribed in eq. (5.3).

Remarkably, figure 8 is qualitatively similar to figure 8 in ref. [7], which describes the

(qualitative) phase diagram for holographic superconductors immersed in a magnetic field.
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The phase diagram for DDBBs shown in figure 8 is exact and confirms the schematic

illustration depicted in ref. [7].

Another interesting issue is the nature of the phase transition shown in the right panel

of figure 7. At B ∼ Bc the scalar condensate has the typical behavior for second order

phase transitions in the mean-field approximation,

Oi ∼ (B − Bc)
1/2 . (5.11)

This kind of phase transitions occurs in type-II superconductors. The same behavior is

observed in real high-Tc superconductors and it is correctly reproduced by holographic

models [43]. However, in the case at hand, the new phase is not superconducting, as the

neutral scalar operator preserves the U(1) symmetry of the action (2.1). Nevertheless,

also in this case we observe a sort of inverse-Meissner effect [49]: as the external magnetic

field is increased, a second order phase transition occurs, and the condensate disappears.

We stress that this effect occurs although the scalar condensate is homogeneous on the

boundary.

5.2.2 Free energy and magnetic susceptibility of dyonic dilatonic black branes

As discussed above, a sufficiently strong magnetic field will destroy the new phase. The

critical magnetic field can be also understood in terms of energetics. The difference in free

energy between the normal and the dressed phase reads

B2
c (T )V
8π

= Fnormal(T ) − Fdressed(T ) , (5.12)

where V is the volume of (x, y) plane and F is the free energy. We wish to compare the

free energy between different phases – with and without the scalar condensate – and in

presence of a magnetic field. As for the normal phase, the free energy of a dyonic AdS-RN

black hole (see for instance ref. [7]) reads

FRN

V =
Fnormal

V = −r3
h +

3(ρ2 + B2)

4rh
, (5.13)

where we have set L = 1. In order to compute the free energy for DDBBs we start from

the Euclidean action

SE = −
∫

d4x
√
−GL , (5.14)

where L is the Lagrangian written in (2.1) and computed for the numerical DDBB solution.

Following ref. [7] we write the Einstein tensor,

Exx =
r2

2
(L − R) +

B2f(φ)

2r2
, (5.15)

where Eµν = Rµν − 1
2GµνR. Thus we obtain

L = −Et
t − Er

r − B2f(φ)

r4
= − 1

r2

[

(rg)′ + (rge−χ)′eχ
]

− B2f(φ)

r4
, (5.16)
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where we have used the scalar curvature R = −Ea
a computed for the dressed solution.

Then the Euclidean action reads

SE =

∫

d3x

∫ ∞

rh

dr
(

2rge−χ/2
)′

+ B2

∫

d3x

∫ ∞

rh

dr
f(φ)e−χ/2

r2
. (5.17)

The first radial integral in the equation above is a total derivative and it is straightfor-

wardly performed. However, it diverges as r → ∞ and must be regularized by suitable

counterterms [7]. On the other hand, the contribution arising from the magnetic field is

finite. Defining the regularized Euclidean action S̃E, the thermodynamical potential in the

gran-canonical ensemble reads

Ω = T S̃E =

∫

d2x

(

−ǫL2

2
+ B2

∫ ∞

rh

dr
f(φ)e−χ/2

r2

)

, (5.18)

where ǫ is the energy density, we have defined the (compact) Euclidean time
∫

dt = 1/T ,

and we have used the boundary conditions (either O− = 0 or O+ = 0) for the scalar field.

Finally, the free energy of DDBBs in the canonical ensemble simply reads (L = 1)

FDD ≡ Fdressed = Ω + µQ = V
(

− ǫ

2
+ µρ + B2

∫ ∞

rh

dr
f(φ)e−χ/2

r2

)

. (5.19)

In the particular case of AdS-RN black holes (f(φ) ≡ 1 and χ ≡ 0) the integral above is

trivial and FDD reduces to eq. (5.13). In the left panel of figure 9 we compare FRN and

FDD as functions of the temperature for selected values of the constant magnetic field. Free

energies refers to solutions with same mass and same charge. Although not shown, for both

solutions the specific heat c = −T∂T F/V is positive for any value of B. AdS-RN black holes

always have a larger free energy, for any value of B and, roughly speaking, the magnetic field

shifts the free energy of both solutions up. Therefore, when T < Tc and B < Bc, DDBBs

are energetically favored. However, the magnetic field contributes to lower the difference

∆F = FRS−FDD. Such a difference grows as T → 0 but, for fixed temperature, it decreases

as the magnetic field increases. This is consistent with our analytical understanding, since

we expect ∆F = 0 both when T = Tc and when B = Bc = ρ.

Finally, we can compute the magnetic susceptibility

Ξ =
∂2F

∂B2

∣

∣

∣

∣

ρ,T

, (5.20)

where the derivative is performed on solutions at constant temperature and constant charge

density. Therefore in the numerical integration, we find the zeros of eqs. (5.10), in order to

compute the free energy as a function of the magnetic field at constant temperature and we

obtain the magnetic susceptibility by performing the derivative in eq. (5.20). Results are

shown in the right panel of figure 9. The free energy and the magnetic field are normalized

as F → F/ρ3/2 and as B → B/Bc, respectively. Hence, the magnetic susceptibility is

normalized as Ξ → Ξρ3/2/B2
c .

The magnetic susceptibility Ξ is order 1 and positive. This means that the boundary

theory is strongly diamagnetic. This is analog to the AdS-RN case where Ξ ∼ 9/(8πT ) > 0

for B ≪ M and ρ ≪ M [7].
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Figure 9. Left panel: free energy for DDBBs (straight lines) and for AdS-RN black holes (dashed

lines) as a function of the temperature for selected values of the magnetic field. Right panel:

normalized magnetic susceptibility for DDBBs as a function of the magnetic field. We used f(φ) =

cosh(2φ).

5.3 Holographic properties of DDBBs

Let us now discuss some holographic properties of DDBBs. In particular we shall focus on

the effects of the magnetic field on the electrical conductivity in the dual theory, such as the

Hall effect and the presence of cyclotron resonances. The AdS/CFT correspondence pro-

vides a precise prescription for the computation of electrical conductivity of the dual field

theory in terms of bulk electromagnetic perturbations. However, electromagnetic pertur-

bations of a dyonic black hole are fairly involved. In fact, the minimal set of perturbations

includes both the x and y components of the gauge potential Ax(r), Ay(r) and the tx and

ty components of the metric, Gtx(r) and Gty(r), which are coupled through the electric

and magnetic field.

Perturbations of dyonic AdS-RN black holes have been studied in refs. [52, 53]. Here

we want to extend those calculations to the case of dilatonic background.

Let us consider perturbations with vanishing 3-momentum,

Aµ = (A0, 0, 0, Bx) + (0, 0, Ax(r), Ay(r))e
−iωt ,

and similarly for the metric perturbations, Gtx(r)e−iωt and Gty(r)e
−iωt. Linearized Einstein

and Maxwell equations provide a set of four coupled equations. Two of them are

A′′
x + A′

x

(

f ′(φ)

f(φ)
φ′ +

g′

g
− χ′

2

)

+ ω2 eχ

g2
Ax = −eχ

[

iBω

r2g2
Gty +

A′
0

g

(

G′
tx − 2

r
Gtx

)]

, (5.21)

G′
tx − 2

r
Gtx + f(φ)A′

0Ax = − iBf(φ)

r2ω

[

A′
0Gty + ge−χA′

y

]

, (5.22)

and the other two can be obtained from those above by changing x ↔ y and B ↔ −B.

Notice that terms proportional to B couple perturbations along the x direction to those

along the y direction. When B = 0 equations above decouple and reduce to a single

Schrödinger-like equation. In the case at hand, such a decoupling does not occur and we
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are left with a system of four coupled ODEs. Furthermore notice the presence of terms

proportional to B/ω. When B 6= 0 these terms diverges in the ω → 0 limit, whereas

they vanish if B = 0. Thus, as first noted in ref. [52], the limits B → 0 and ω → 0 do

not commute.

We integrate the system of ODEs above numerically, starting from a series expansion

close to the horizon, where we impose purely ingoing waves. The asymptotical behav-

iors read

Ax ∼ a(0)
x + axgν

h , Ay ∼ a(0)
y + ayg

ν
h , (5.23)

Gtx ∼ g(0)
x + gxgν+1

h , Gty ∼ g(0)
y + gyg

ν+1
h , (5.24)

with gh = g(rh) ∼ (r − rh) and the requirement of purely ingoing waves at the horizon

implies ν = −iωeχh/2/g′(rh). The constants ax, a
(0)
x , gx, g

(0)
x , ay, a

(0)
y , gy and g

(0)
y are

related to each other by requiring that the expansions above are solutions of the equations

of motion at first order.

5.3.1 Conductivity in the dual field theory

Before presenting the results of the numerical integration, we briefly review some analytical

results obtained in refs. [52, 53] for the electrical conductivity in theories dual to AdS-

RN dyonic black hole. In that case, eqs. (5.21)–(5.22) can be solved analytically in the

hydrodynamical limit, i.e. when ω/T ≪ µ/T,B/T 2. In this limit the diagonal and off-

diagonal components of the conductivity matrix σ can be computed via the AdS/CFT

duality and they read [53]

σxx = σQ
ω(ω + iγ + iω2

c/γ)

(ω + iγ)2 − ω2
c

, σxy = − ρ

B

−2iγω + γ2 + ω2
c

(ω + iγ)2 − ω2
c

,

with

ωc =
Bρ

ǫ + P , γ =
σQB2

ǫ + P , σQ =
(sT )2

(ǫ + P)2
(5.25)

and where P, s and ǫ are the pressure, entropy density and the energy density respectively.

Rotational invariance implies σxx = σyy and σxy = −σyx. The electrical conductivity has a

pole at ω = ωc− iγ, corresponding to a damped cyclotron frequency. The real part ωc does

not depend on the temperature [53]. Furthermore, in the ω → 0 limit, the DC diagonal

component σxx vanishes, whereas the DC off-diagonal component gives the well-known Hall

conductivity:

σxx = 0 , σxy =
ρ

B
. (5.26)

Notice that σxy → ∞ as B → 0. This is due to the non-commuting limits ω → 0 and B → 0.

It is important to study whether and how the scalar condensate affects these results.

Unfortunately, in our model, the background solution is only known numerically and this

prevents to derive explicit formulas. However we can still use the AdS/CFT prescription

in order to relate the conductivity to the asymptotic behavior of the numerical solution.

Following ref. [53], the conductivity reads

σ± = σxy ± iσxx =
Bx ± iBy

Ex ± iEy
, (5.27)
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Figure 10. Conductivity in the field theory dual DDBBs with f(φ) = cosh(2φ) (left panel: σxx,

right panel: σxy) as a function of the frequency for B/ρ = 0.5. The conductivity in the normal phase

at T = Tc (AdS-RN black brane) is compared to that in the dressed phase at T ∼ 0.28Tc (DDBB).

where

Bi = − lim
r→∞

ǫijA
′
j , Ei = lim

r→∞

[

f(φ)

(

iωAi −
B

r2
ǫijGtj

)]

, (5.28)

are the spatial components of δF and δ ⋆F respectively (F = F0 +δF and ⋆F = ⋆F0 +δ ⋆F

being its dual). The coefficients A
(0)
i , A

(1)
i and G

(0)
ti are related to the asymptotic behavior

of the electromagnetic and metric perturbations at infinity:

Ai → A
(0)
i +

A
(1)
i

r
, Gti → G

(0)
ti r2 , i = x, y (5.29)

Thus, once perturbation equations are solved with suitable boundary conditions, eq. (5.27)

gives the AdS/CFT prescription for the conductivity in the dual theory.

5.3.2 Numerical results

In figure 10 we show the conductivities σxx and σxy as functions of the frequency both for

the AdS-RN case (T = Tc) and for the DDBB at T < Tc. The numerical procedure previ-

ously discussed has been tested by reproducing numerical results in ref. [53] for vanishing

scalar field. A general result that can be inferred from our simulations is that, regardless of

the scalar condensate, the DC conductivities are the same as those computed for AdS-RN

black branes [53],

σxx(ω → 0) = 0 , σxy(ω → 0) =
ρ

B
, (5.30)

at any T ≤ Tc. This result holds regardless of the precise form of V (φ) and f(φ) given

by (5.3). While the first result (σxx = 0) simply arises from the Lorentz invariance, it is

interesting that the Hall effect is not affected by the scalar condensate, for any value of B.

However, as shown in figure 10, the AC behavior is more complex. Depending on the

temperature and on the magnetic field, sharp peaks appear in the real part of σxx and σxy.

These correspond to the (complex) cyclotron frequencies discussed in ref. [53] for AdS-RN

black branes. Our results confirm and extend that analysis to the case of DDBBs. Indeed
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Figure 11. Real (left panel) and imaginary (right panel) part of the damped cyclotron frequency

ω = ωc +iγ as functions of the temperature for selected values of the magnetic field B/ρ for DDBBs

with f(φ) = cosh(2φ).

the scalar condensate affects the cyclotron frequency. In figure 11 we show the location of

the pole of σxx as a function of the temperature for selected values of B. Both the real

and the imaginary part of the frequency strongly depend on the magnetic field (notice that

the plot scale in figure 11 is logarithmic). The real part increases exponentially as the

temperature is lowered, while the imaginary part, as a function of the temperature, has

a less clear behavior, being monotonic at large values of B and having a non-monotonic

behavior at small values of B.

6 Conclusion

In this paper we have presented a detailed study of the holographic properties of the

4D, charged, black brane solutions of broad classes of EMDG models both at finite and

vanishing temperature and for different charge configurations (purely electric or magnetic,

dyonic). Although our analysis is far from being exhaustive, it is likely that most of the

qualitative relevant features concerning the holographic behavior of 4D charged dilatonic

black branes in EMDG models have been captured by our investigation.

For what concerns the zero temperature limit, our results extend the results of ref. [19,

23, 24] obtained in the case of a exponential coupling function f to a broad class of EMDG

models. In the T ∼ 0 regime the AC conductivity has the universal scaling behavior,

σAC ∼ ω2 as a function of the frequency ω. For a generic form of the self-interaction

potential V (φ) the quadratic behavior is generalized to a generic power-law form σAC ∼ ωs.

In view of the results of ref. [19, 23, 24] one could have been lead to conclude that

the power-law behavior of the conductivity is related to the Lifshitz form of the black

brane metric in the near-extremal, near-horizon region. However, we have shown that this

power-law behavior of σAC is not spoiled if the Lifshitz form of the metric is (multiplica-

tively) deformed by powers of logarithms. This means that a power-law scaling behavior

of σAC is still consistent with a breaking of the non-relativistic scaling isometry of the

Lifshitz background.
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On the other hand the behavior of the DC conductivity in the zero temperature limit

as a function of T seems more involved. The quadratic scaling σDC ∼ T 2 found in ref. [24]

for the case of a exponential coupling function f , seems to be a quite general feature

of EMDG models. This gives further support to the ‘charged plasma picture’ proposed in

ref. [24]. The electric conductivity is suppressed at small temperatures by strong repulsion.

However, differently from the case of σAC(ω) discussed above, now the deformation of the

Lifshitz form of the extremal black brane metric by logarithms, due to a power-law self-

interaction potential, changes σDC(T ) (see eq. (4.17)). This different behavior of σAC(ω)

and σDC(T ) in the near-extremal case is somehow puzzling and a proper understanding of

it could shed light on the physical nature of the dual field theory.

For what concerns black branes at finite temperature our results extend the results

of ref. [19], derived for the case of coupling functions f ∼ cosh αφ and f ∼ 1 + αφ2, to a

broad class of EMDG models. The non-monotonic behavior of σAC(ω) — characterized by

a minimum at low frequencies and then by a ‘Drude peak’, at ω = 0 — and of σDC(T ) —

characterized by the presence of a maximum, reminiscent of the Kondo effect — seem to

be a rather generic feature of EMDG. In particular, we have shown that the emergence of

these effects is not related to the presence of a phase transition RN/CDBB (as it is the case

for the models of ref. [19]) but shows up because of the nonmimimal coupling, whenever a

sufficiently large scalar condensate is present.

Finally, our results concerning the holography of dyonic black branes at finite temper-

ature confirm and extend to a broad class of EMDG the results of ref. [24], derived for an

exponential coupling function f . Again, we have found that the main features observed in

ref. [24] (Hall effect, presence of synchrotron resonances) when a magnetic field is switched

on, also apply to a the case of a coupling function f that allows for a RN/CDBB phase

transition. On the other hand, the switching on of a magnetic field does not shed much

light on the nature of the microscopic degrees of freedom of the field theory dual to the

models investigated in ref. [19]. Naively, one could have expected this to be the case in

view of the peculiar behavior of the AC and DC conductivities in absence of a magnetic

field. Unfortunately, the effects of the magnetic field on the conductivities are so strong

that any other effect becomes subleading and is completely washed out.

The overall picture emerging from our results about the holographic features of charged

dilatonic black branes in EDGM can be described as an interpolation between some aspects

reminiscent of electron motion in real metals at finite temperature and a charged plasma

at zero temperature. It would be highly desirable to develop analytical methods to give

further support to this picture.
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A Purely magnetic dilatonic black branes via the electromagnetic

duality

In this appendix, we focus on the purely magnetic solutions, hereafter setting Q = 0. As

discussed in the main text, in this case the AdS-RN black brane is stable and no mag-

netically charged dilatonic black branes exist. However, we can obtain purely magnetic

solutions by applying the electromagnetic duality. In fact, a background solution charac-

terized by coupling function, electric charge and magnetic charge {f(φ), Q,B} is related,

via the electromagnetic duality, to the same background solution with {h = 1/f,B,−Q}.
In particular the charged dilatonic black branes found in ref. [19] are also valid magnetic

solutions with f → 1/f and B → −Q.

For dyonic AdS-RN black branes, the duality acts on the electromagnetic tensor only

2πF → ⋆F ≡
√
−G

4
ǫµνρσF ρσdxµ ∧ dxν . (A.1)

Perturbation equations for δF (F = F0 + δF ) are most conveniently written in terms of

Ba and Ea, (cf. eq. (5.28)) which are the spatial component of δF and of δ ⋆F respectively.

The electromagnetic duality acts as E → B and B → −E . It follows from eq. (5.27) that

the duality transforms the conductivities as

σ±(Q,B) → 1

σ±(B,−Q)
. (A.2)

Equation (A.2) has been recently extended to the case of SL(2,R) invariant theories with a

dilaton and an axion [24]. Also in that case, starting from a purely electrical background,

a transformation similar to (A.2) holds

σ±(0,−Q) =
1

σ±(Q, 0)
, (A.3)

which does not explicitly depend on the dilaton and axion fields. Although eq. (A.3) has

been derived for SL(2,R) invariant theories and the action (2.1) is not invariant under the

full SL(2,R) transformation, nevertheless the same derivation should apply to our case as

well. We shall explicitly confirm this statement below, by computing the conductivity in

the purely magnetic case.

Electrical conductivity. Notice that, in the rest of this section, we keep referring to the

coupling f(φ) for convenience, although the duality transformation acts on the action (2.1)

by transforming f → h = 1/f . The real non-minimal coupling for solutions obtained by

the duality is h(φ), not f(φ). Furthermore, note that h(φ) ∼ 1 − αφ2 at φ ∼ 0, whereas

f(φ) ∼ 1 + αφ2. The electromagnetic duality reverses the sign of α. This is why purely

magnetic solutions exist in this case (cf. eq. (5.6)).

For purely magnetic backgrounds, setting A0(r) ≡ 0, eqs. (5.21)–(5.22) (and those

obtained from them by x ↔ y and B ↔ −B) decouple pairwise. Equations for Ax and Gty
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read

A′′
x + A′

x

(

f ′(φ)

f(φ)
φ′ +

g′

g
− χ′

2

)

+ ω2 eχ

g2
Ax +

iBω

r2g2
eχGty = 0 , (A.4)

G′
ty −

2

r
Gty −

iBf(φ)

r2ω
ge−χA′

x = 0 , (A.5)

and those for Ay and Gtx can be again obtained by x ↔ y and B ↔ −B. The two equations

above can be written in terms of a single Schrödinger-like equation for A′
x(r), i.e. they are

third order in Ax(r). In fact, we define

A′
x(r) =

eχ/2

g(r)
√

f(φ)
Y (r) , (A.6)

and the equation for Y (r) reads

Y ′′(r) +

(

g′

g
− χ′

2

)

Y ′(r) +
eχ

g2

[

ω2 − Vs(r)
]

Y (r) = 0 , (A.7)

or, equivalently,

Y ′′(z) +
[

ω2 − Vs(z)
]

Y (z) = 0 , (A.8)

where z is the tortoise coordinate defined by dr/dz = eχ(r)/2/g(r) and the explicit form of

the potential reads

Vs(z) = ge−χ

{

B2f(φ)

r4
− g

2

f ′(φ)

f(φ)

[

φ′′ +

(

f ′′(φ)

f ′(φ)
− 3

2

f ′(φ)

f(φ)

)

φ′2 +

(

g′

g
− χ′

2

)

φ′

]}

.

(A.9)

Interestingly, in the equation above the magnetic field dependence is B2 and the contribu-

tion ∝ 1/ω of eq. (A.5) cancels out, i.e. in the purely magnetic case the limits B → 0 and

ω → 0 commute.

For a magnetic AdS-RN black brane (χ ≡ 0 and φ ≡ 0) the potential above simply

reduces to

VRS = gRS(r)
B2

r4
, (A.10)

and it is positive defined. Moreover VRS = 0 at the horizon and at infinity. From gen-

eral quantum mechanics theorems it follows that such a Schrödinger potential does not

admit bound states, i.e. the magnetic AdS-RN black brane is stable. The potential for

purely magnetic dilatonic solutions (obtained via the electromagnetic duality) is shown in

figure 12. Also in this case the potential is positive defined and the background solution

is stable.

Numerical results. As non-trivial test of our numerical method, we have computed the

conductivity σ+(ω) in a purely electrical background and compared it to the inverse of the

conductivity in a purely magnetic background σ−1
+ (ω) with f(φ) → 1/f(φ). A represen-

tative example is shown in figure 13. The two functions coincide, confirming analytical

expectations (cf. eq. (A.3) and ref. [24]).

Notice that, although the electromagnetic duality straightforwardly relates the conduc-

tivities σ± in an electrical and in a magnetic background, nevertheless the transformation
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Figure 13. Left panel: comparison between the DC conductivity in an electrical and in a magnetic

background. The black dashed line is Re[σ+(ω = 0)] in the purely electrical background, whereas

the red straight line is Re[σ+
−1(ω = 0)] in the purely magnetic background with f(φ) → 1/f(φ).

Right panel: the same but showing the AC conductivity at T = 0.17Tc as a function of the

frequency. As proved in ref. [24], the two functions coincide. The magnetic solution is obtained via

the electromagnetic duality from an electrical solution with f(φ) = cosh(
√

αφ).

is non-trivial and it connects the conductivities computed in two different theories (the cou-

plings in the action are different). Furthermore, not only σ± are complex quantities, but,

above all, the physically interesting quantities are the frequencies σxx and σxy. Namely,

the explicit transformations for these quantities read

σM
xy =

σE
xy

(σE
xx)

2
+
(

σE
xy

)2 , σM
xx = − σE

xx

(σE
xx)

2
+
(

σE
xy

)2 ,

Re[σM ] =
Re[σE ]

Abs[σE ]2
, Im[σM ] = − Im[σE ]

Abs[σE ]2
, (A.11)

where σM and σE are the electrical conductivities in the magnetic and electrical case,
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Figure 14. Left: AC conductivity in a purely magnetic background for several values of T/Tc

and for f(φ) = cosh(2φ). Right: AC conductivity σxx for a purely magnetic DBB at T = 0. The

magnetic solution is obtained via the electromagnetic duality from the purely electric DBB with

f(φ) = cosh(φ/
√

3) (see ref. [19] for details). For purely magnetic backgrounds the off-diagonal

component identically vanishes, i.e. σxy(ω) ≡ 0.

respectively and all the quantities are complex. Therefore the explicit dependence of, say,

Re
[

σM
xx

]

can be non-trivial. In the left panel of figure 14 we show the AC conductivity

σxx(ω) for a purely magnetic background solution. From our numerical simulations we can

infer the general behavior

σxy(ω) ≡ 0 , σxx(ω ∼ 0) = 0 , (A.12)

that is, for any temperature, the off-diagonal component of the conductivity vanishes at

any frequency. However, as shown in the left panel of figure 14, the AC diagonal component

has a maximum whose location and height depend on the temperature. These peaks in

the conductivity may signal the excitation of some bound state in the dual field theory.

Thus σM , although related to σE by the electromagnetic duality, can show some non-

trivial features.

The zero temperature limit of purely magnetic DDBs. For the sake of complete-

ness, let us conclude this section by briefly discussing extremal magnetic DBBs. Purely

magnetic background solutions can be again obtained from purely electrical extremal back-

grounds via the electromagnetic duality. Extremal electrical solutions have been discussed

in detail in ref. [19]. They are most conveniently studied using the ansatz (4.2). Using this

ansatz perturbation equations around dyonic background solutions read

A′′
x + A′

x

(

f ′(φ)

f(φ)
φ′ +

λ′

λ

)

+
ω2

λ2
Ax +

iBω

H2λ2
Gty +

A′
0

λ

(

G′
tx − 2H ′

H
Gtx

)

= 0 , (A.13)

G′
tx − 2H ′

H
Gtx + f(φ)A′

0Ax +
iBf(φ)

H2ω

[

A′
0Gty + λA′

y

]

= 0 , (A.14)

plus those obtained via x ↔ y and B ↔ −B. As previously discussed, in a purely mag-

netic background (A0(r) ≡ 0) perturbation equations decouple and can be written as a
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Schrödinger equation. Following the derivation described by eqs. (A.6)–(A.9), we obtain a

Schrödinger-like equation, Y ′′(z) +
[

ω2 − Vs(z)
]

Y (z) = 0, where the potential reads

Vs(z) = λ

{

B2f(φ)

H4
− λ

2

f ′(φ)

f(φ)

[

φ′′ +

(

f ′′(φ)

f ′(φ)
− 3

2

f ′(φ)

f(φ)

)

φ′2 +
g′

g
φ′

]}

. (A.15)

where dr/dz = 1/λ and Y (z) =
√

f(φ)λA′
x. The conductivity as a function of the frequency

at T = 0 is shown in the right panel of figure 14. Also in this case the real part of σxx(ω)

shows a peak at intermediate frequencies.
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