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Abstract: Recently, it has been shown that (4+1)-dimensional Yang-Mills theory may be

written as a (3+1)-dimensional BPS Skyrme model, in which the Skyrme field is coupled

to an infinite tower of vector mesons. Truncating this tower to a single vector meson

yields an extension of the standard Skyrme model to a theory of pions coupled to the ρ

meson, with the significant simplification that no additional free parameters are introduced.

The present paper is concerned with this truncated theory and results are presented for

Skyrmions with baryon numbers one to four. The approach involves the use of an extended

version of the Atiyah-Manton construction, in which the Skyrme field is approximated by

the holonomy of a Yang-Mills instanton. It is found that the coupling to the ρ meson

significantly reduces Skyrmion binding energies, to produce an improved comparison with

the experimental data on nuclei. A truncation that includes both a vector and an axial

vector meson is also investigated, providing a model of pions, the ρ meson and the a1

meson. Binding energies are further reduced by the inclusion of this additional meson,

shifting the Skyrmion energies a little closer to those of nuclei. Fixing the energy unit by

equating the energy of the baryon number four Skyrmion to the He4 mass, yields masses

for all lower baryon numbers that are within 20 MeV of the experimental values, which is

an error that is four times smaller than in the standard Skyrme model.
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1 Introduction

Skyrmions are topological solitons that describe baryons within a nonlinear theory of pi-

ons [1]. It is an ambitious goal to accurately capture the properties of nuclei in terms

of Skyrmions, given that in the standard Skyrme model (with massless pions) the only

parameters of the theory correspond to energy and length units.

There are several aspects of nuclei that are reproduced remarkably well by the Skyrme

model (for a review see [2, 3]), but there is only limited success regarding the important issue

of nuclear masses. A main problem is that Skyrmions are too tightly bound in comparison

to the experimental data for nuclei. For a large range of nuclei, binding energies are fairly

constant at around 8 MeV per nucleon, which is of the order of 1% of the mass of the

nucleon. However, in the Skyrme model binding energies per Skyrmion are more like 10%

of the mass of a single Skyrmion, even for baryon numbers as low as four, and can rise

to almost double this for much larger baryon numbers [4, 5]. Introducing a pion mass

into the Skyrme model improves the situation slightly, but there is only a significant effect

for larger baryon numbers, where there is a dramatic change in the qualitative form of

Skyrmions [6–8].

Recently, it has been shown that (4+1)-dimensional Yang-Mills theory may be written

as a (3+1)-dimensional BPS Skyrme model, in which the Skyrme field is coupled to an

infinite tower of vector mesons [9]. This is clearly relevant to the above issue, since in a

BPS Skyrme theory all binding energies vanish. If the BPS Skyrme theory is truncated

by neglecting all the vector mesons then the standard Skyrme model is recovered. This

suggests that a truncation in which only a small number of vector mesons are included

should lower the binding energies of Skyrmions, in comparison to the standard Skyrme

model. The purpose of the present paper is to investigate this issue. Skyrmions are first

studied in the simplest example of the truncated theory, where only a single vector meson

survives the truncation. Physically, this describes a nonlinear theory of pions coupled to

the ρ meson.
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Skyrme models including the ρ meson have been the subject of considerable study in

the past [10–14] but there are difficulties because of the large number of coupling constants

that need to be determined. A significant advantage of the truncated BPS theory is that

all parameters are uniquely determined once the energy and length units are fixed, so the

standard Skyrme model is extended without the introduction of any additional unknown

parameters. This is a simplification that is also shared by the holographic model of Sakai

and Sugimoto [15], in which a string theory derivation yields a similar extension of the

standard Skyrme model to include an infinite tower of vector mesons. Indeed the theory

of Sakai and Sugimoto provided the inspiration for the construction of the BPS Skyrme

model, but the latter has an additional mathematical advantage in that its solutions are

given by self-dual Yang-Mills instantons.

The work of Atiyah and Manton [16, 17] has shown that Skyrmions in the standard

Skyrme model are well-approximated by the holonomy of Yang-Mills instantons. In the

BPS Skyrme model this approximation becomes exact, therefore it should provide a good

approximation in the truncated BPS theory, being at least as accurate as in the standard

Skyrme model, if not better. This is the approach adopted here, to calculate the energies of

Skyrmions with baryon numbers one to four, without the need to resort to computationally

intensive full field numerical simulations. It is found that the coupling to the ρ meson sig-

nificantly reduces Skyrmion binding energies, to less than half their values in the standard

Skyrme model. Although Skyrmion binding energies are still too large in comparison with

nuclei, this is certainly a considerable improvement.

The truncation that retains both a vector and an axial vector meson is also investigated,

providing a model of pions, the ρ meson and the a1 meson. In this theory Skyrmion binding

energies are further reduced, shifting the Skyrmion energies a little closer to those of nuclei.

Fixing the energy unit by equating the energy of the baryon number four Skyrmion to

the He4 mass, yields masses for all lower baryon numbers that are within 20 MeV of the

experimental values.

The following section provides a brief review of the derivation of the BPS Skyrme

model, as described in [9]. The later sections are concerned with truncations of the BPS

theory and the computation of Skyrmion energies in these theories.

2 Skyrme from Yang-Mills

The starting point is to consider SU(2) Yang-Mills theory in (4+1)-dimensions. As this

paper is only concerned with static fields then the theory may be defined by its static

energy

E = −1

8

∫

Tr(FIJFIJ ) d4x , (2.1)

where xI , with I = 1, . . . , 4, denote the spatial coordinates in four-dimensional Euclidean

space and FIJ = ∂IAJ − ∂JAI + [AI , AJ ] are the components of the su(2)-valued field

strength.

There is a lower bound on the energy

E ≥ 2π2 |N | , (2.2)
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in terms of the instanton number of the gauge field

N = − 1

16π2

∫

Tr(FIJ
⋆FIJ) d4x , (2.3)

where ⋆FIJ = 1
2εIJKLFKL is the dual field strength. This is a BPS theory, in that the lower

bound is attained by self-dual instantons, ⋆FIJ = FIJ , for which there is an 8N -dimensional

moduli space.

For notational convenience let z = x4 and denote the three remaining spatial coor-

dinates by xi with i = 1, 2, 3. A Skyrme theory in three-dimensional space is obtained

by performing a dimensional deconstruction in the z-direction. Explicitly, this involves

expanding all components of the gauge potential AI in terms of a complete set of orthonor-

mal basis functions ψn(z), with n a non-negative integer. These are taken to be Hermite

functions

ψn(z) =
(−1)n

√

n! 2n
√
π
e

1

2
z2 dn

dzn
e−z2

. (2.4)

A key step is to transform to the gauge Az = 0, in which the remaining components have

an expansion of the form

Ai = −∂iU U
−1 ψ+(z) +

∞
∑

n=0

V n
i (x)ψn(z) , (2.5)

where U is the holonomy

U(x) = P exp

∫ ∞

−∞
Az(x, z) dz . (2.6)

The kink function ψ+(z) that appears in (2.5) is obtained from the integral of the first

basis function ψ0(z) as

ψ+(z) =
1

√
2π

1

4

∫ z

−∞
ψ0(ξ) dξ =

1

2
+

1

2
erf(z/

√
2) , (2.7)

where erf(z) the usual error function, and the constant of integration has been chosen so

that ψ+(−∞) = 0 and ψ+(∞) = 1.

In the three-dimensional theory the fields V n
i correspond to a tower of vector mesons

and U is the Skyrme field, encoding the pion degrees of freedom. As discussed by Atiyah

and Manton [16, 17], the Skyrme field defined by the instanton holonomy (2.6) captures

all the topological information of the instanton, in that the instanton number is equal to

the baryon number of the Skyrme field. Explicitly, it is easy to show that N = B, where

B = − 1

24π2

∫

εijkTr(RiRjRk) d
3x , (2.8)

is the topological charge that is identified with baryon number, and the above formula

allows its calculation in terms of the su(2)-valued currents Ri = ∂iU U
−1 of the Skyrme

field.
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A truncated theory can be defined by including only the first K vector mesons and

substituting the truncated expansion

Ai = −∂iU U
−1 ψ+(z) +

K−1
∑

n=0

V n
i (x)ψn(z) , (2.9)

into the Yang-Mills energy (2.1). Performing the integration over z yields a three-

dimensional theory with an energy that will be denoted by E(K). The simplest example is

to neglect all the vector mesons, which reproduces the standard Skyrme model

E(0) =

∫
(

− c1
2

Tr(RiRi) −
c2
16

Tr([Ri, Rj ]
2)

)

d3x , (2.10)

where the constants are given by

c1 =
1

4
√
π

= 0.141 , c2 =

∫ ∞

−∞
2ψ2

+(ψ+ − 1)2 dz = 0.198 . (2.11)

This is the standard Skyrme model in dimensionless units, but it is not in standard Skyrme

units because the constants c1 and c2 are not equal to unity. In these units the Faddeev-

Bogomolny energy bound [18] becomes

E(0) ≥ 12π2√c1c2 |B| = 2.005π2 |B| . (2.12)

This bound is very close to the Yang-Mills derived energy bound (2.2)

E(K) ≥ 2π2 |B| , (2.13)

which is valid for all non-negative integer K, including K = 0 and the limit K → ∞.

The fact that the Yang-Mills BPS bound (2.13) is within 1
4% of the Faddeev-Bogomolny

bound (2.12) is an indication that the choice of basis functions ψn(z) is close to optimal.

An ideal choice would result in the two bounds being identical, and it is easy to show that

this occurs only if the kink function is ψ+(z) = 1
2 + 1

2 tanh(z), up to an arbitrary rescaling

of z. However, there is no suitable infinite set of complete basis functions such that the

first basis function is proportional to the derivative of this kink function, hence the ideal

choice is unattainable.

Including the infinite tower of vector mesons extends the standard Skyrme model to

a BPS Skyrme model, since it is simply equivalent to Yang-Mills theory with one extra

dimension. Self-dual instantons attain the energy bound E(∞) = 2π2|B| and the Skyrme

field of the BPS Skyrme model is given exactly by the holonomy of an instanton. This pro-

vides an explanation of the Atiyah-Manton construction [16, 17], of approximate solutions

of the standard Skyrme model in terms of instanton holonomies, since it is a truncation of

an exact equivalence.

3 Including the ρ meson

In the standard Skyrme model, minimal energy Skyrmions with baryon numbers one to

four have spherical, axial, tetrahedral and cubic symmetry respectively [2]. The energies
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B E
(0)
B /(2π2B) E

(1)
B /(2π2B) E

(2)
B /(2π2B)

1 1.235 1.071 1.048

2 1.182 1.050 1.030

3 1.149 1.038 1.021

4 1.123 1.029 1.017

Table 1. The ratio of the energy of the charge B Skyrmion to the energy bound 2π2B, for

1 ≤ B ≤ 4, in the standard Skyrme model (second column), the theory including a vector meson

(third column) and the theory including both a vector and an axial vector meson (fourth column).

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1  2  3  4

E
B
/(

B
E

1)

B

Figure 1. The energy per baryon, in units of the single baryon energy, for baryon numbers one to

four. Squares denote the experimental data. Circles are the energies in the standard Skyrme model.

Triangles are the energies in the theory including a vector meson. Diamonds are the energies in the

theory including both a vector and an axial vector meson.

of these Skyrmions, using the dimensionless units defined by (2.10), are presented in the

second column of table 1, as ratios to the Yang-Mills BPS energy bound 2π2B. The energies

per baryon are plotted as the circles in figure 1, in units of the single baryon energy, which

removes any dependence on the units of the theory and hence the parameters of the Skyrme

model. For comparison, the associated experimental data on the masses of these nuclei are

plotted as the squares in figure 1. This clearly illustrates the point made earlier, that

Skyrmions are too tightly bound in the Skyrme model compared to nuclei.

For each of these baryon numbers there is a unique instanton (up to position, orienta-

tion and scale) whose holonomy yields a Skyrme field with the correct symmetry [16, 17, 19].

In each case, minimizing over the scale of the instanton yields an approximate Skyrmion

with an energy that is only around 1% above that of the true Skyrmion. In this section the

instanton approximation is applied to calculate the energies of Skyrmions in the truncated

theory including a vector meson.

To include a single vector meson the truncation (2.9) is performed at level K = 1. For

notational convenience write V 0
i = Vi. Substituting (2.9) into the Yang-Mills energy (2.1)

– 5 –
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and performing the integration over z yields an extension of the standard Skyrme model

to an energy of the form

E(1) = E(0) + EV + ESV . (3.1)

Here EV is the vector meson energy

EV =

∫

−Tr

{

1

8
(∂iVj−∂jVi)

2 +
1

4
m2V 2

i + c3(∂iVj−∂jVi)[Vi, Vj ] + c4[Vi, Vj ]
2

}

d3x , (3.2)

with dimensionless mass m = 1√
2

and constants

c3 =

∫ ∞

−∞

1

4
ψ3

0 dz =
1

2
√

6π
1

4

= 0.153 , c4 =

∫ ∞

−∞

1

8
ψ4

0 dz =
1

8

√

1

2π
= 0.050 . (3.3)

The interaction energy between the Skyrme field and the vector meson is

ESV =

∫

−Tr

{

c5([Ri, Vj ] − [Rj, Vi])
2 − c6[Ri, Rj ](∂iVj − ∂jVi) − c7[Ri, Rj ][Vi, Vj ]

+
1

2
c6[Ri, Rj ]([Ri, Vj ] − [Rj, Vi]) −

1

8
([Ri, Vj ] − [Rj , Vi])(∂iVj − ∂jVi)

− 1

2
c3([Ri, Vj ] − [Rj , Vi])[Vi, Vj ]

}

d3x , (3.4)

where the constants are

c5 =

∫ ∞

−∞

1

8
ψ2

+ψ
2
0 dz = 0.038 , c6 =

∫ ∞

−∞

1

4
ψ+(1−ψ+)ψ0 dz =

π1/4

12
√

2
= 0.078 ,

c7 =

∫ ∞

−∞

1

4
ψ+(1−ψ+)ψ2

0 dz = 0.049 . (3.5)

The vector mesons V n
i that appear in the expansion (2.5) do not have a definite parity,

but an additional gauge transformation yields an expansion in terms of parity eigenstates

and reveals that even values of n correspond to vector mesons and odd values of n to

axial vector mesons [9]. This means that Vi = V 0
i should be identified with the lightest

vector meson, namely the ρ meson. Numerically it is more convenient to work in the gauge

presented above, rather than the gauge in which parity is manifest.

It seems a reasonable assumption, at least for baryon numbers up to four, that the

symmetry of the Skyrmion in the theory extended by the inclusion of a small number of

vector mesons is the same as in the standard Skyrme theory. This is based on the highly

symmetric form for these Skyrmions and the fact that as further vector fields are included

the theory flows to a BPS theory in which all points in the instanton moduli space produce

Skyrme fields with equal energy 2π2B. With this assumption, the approriate instanton is

known [16, 17, 19] and all that remains is to determine the energy minimizing scale. This

is an easy task once all the contributions to the energy have been computed at any given

scale, since the behaviour of each term under a rescaling is easily determined.

Given the fields AI(x, z) of an appropriate instanton, a numerical gauge transformation

is performed to arrive at the gauge Az = 0. By comparison with the expansion (2.5) the

– 6 –
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currents of the Skyrme field are then given by Ri(x) = −Ai(x,∞). The required vector

mesons V n
i are then extracted as the integrals

V n
i (x) =

∫ ∞

−∞

(

Ai(x, z) +Ri(x)ψ+(z)

)

ψn(z) dz . (3.6)

These integrals are performed numerically by mapping z ∈ (−∞,∞) to the finite interval

Z ∈ (−1, 1) via the transformation z = tan(Zπ/2) and using an equally spaced grid in

the Z coordinate containing (at least) 400 grid points. The same procedure is used in

performing the numerical gauge transformation to Az = 0.

The above scheme allows the construction of the Skyrme currents and vector mesons

for any given point in three-dimensional space. This is implemented at all points in a spatial

lattice containing 1013 grid points with a lattice spacing ∆x = 0.15. The energy E(1) is

then computed using the formulae (2.10), (3.2) and (3.4), where the spatial derivatives

of the vector meson are approximated using fourth-order accurate finite differences. As a

numerical check, the baryon number is computed using the same lattice, and is found to

be equal to an integer to at least four decimal places for all baryon numbers considered.

The numerical results for E(1) are presented in the third column of table 1, as ratios

to the BPS bound, and are plotted as the triangles in figure 1. These results show that

the Yang-Mills derived coupling to the ρ meson moves the Skyrmion energies much closer

to the BPS bound and significantly reduces Skyrmion binding energies, to less than half

their values in the standard Skyrme model, as is evident from figure 1. However, it is also

clear that Skyrmion binding energies are still larger than those of nuclei, even with this

considerable improvement.

4 Including the a1 meson

In this section the truncated theory at level K = 2 is investigated, in which both a vector

and an axial vector meson are coupled to the standard Skyrme model. The notation of

the previous section Vi = V 0
i is retained and the first axial vector meson is denoted by

Wi = V 1
i . Physically, this field is to be identified with the lightest axial vector meson,

which is the a1 meson.

Substituting the level K = 2 truncation (2.9) into the Yang-Mills energy (2.1) and

integrating over z gives an extension of the energy of the previous section to

E(2) = E(1) + EW + ESW + EVW + ESVW . (4.1)

In the above EW is the axial vector meson energy

EW =

∫

−Tr

{

1

8
(∂iWj − ∂jWi)

2 +
1

4
M2W 2

i +
3

4
c4[Wi,Wj ]

2

}

d3x , (4.2)

with dimensionless mass M =
√

3
2 .

Note that the dimensionful masses of the particles in the theory depend upon the

choice of energy and length units, which may be fixed in a variety of ways according to
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which physical properties are deemed most desirable to reproduce. A theme of this paper

has been to consider fundamental aspects that are independent of the choice of units, and

another example is the ratio of the mass of the lightest axial vector meson to the mass of

the lightest vector meson. From (3.2) and (4.2) this mass ratio is

M

m
=

√
3 = 1.73 (4.3)

to be compared with the experimental result

ma1

mρ
=

1230MeV

776MeV
= 1.59 (4.4)

for the ratio of the a1 to ρ mass. Given that this ratio is completely determined in the

theory, with no adjustable parameters, then an error of less than 9% is striking.

The remaining terms in the energy expression (4.1) are rather cumbersome and are

presented below. The interaction energy between the Skyrme field and the axial vector

meson is

ESW =

∫

−Tr

{

c8([Ri,Wj] − [Rj ,Wi])
2 − c9[Ri, Rj ][Wi,Wj ]

+ c10[Ri, Rj]([Ri,Wj] − [Rj,Wi]) −
1

8
([Ri,Wj ] − [Rj ,Wi])(∂iWj − ∂jWi)

− c11([Ri,Wj ] − [Rj ,Wi])[Wi,Wj ] − c12RiWi

}

d3x , (4.5)

where the constants are

c8 =

∫ ∞

−∞

1

8
ψ2

+ψ
2
1 dz = 0.047 , c9 =

∫ ∞

−∞

1

4
ψ+(1−ψ+)ψ2

1 dz = 0.030 ,

c10 =

∫ ∞

−∞

1

4
ψ+(1−ψ+)ψ1 dz = 0.016 ,

c11 =

∫ ∞

−∞

1

4
ψ+ψ

3
1 dz =

11
√

2

144π3/4
= 0.046 , c12 =

1

4π1/4
= 0.188 . (4.6)

Note that the last term in (4.5) is the familiar mixing between the Skyrme field and the

lightest axial vector meson that arises in coupling the Skyrme model to vector mesons [11].

The interaction energy between the vector meson and the axial vector meson is

EVW =

∫

−Tr

{

1

2
c4([Vi,Wj ] − [Vj ,Wi])

2 + c4[Vi, Vj ][Wi,Wj ]

+
2

3
c3([Vi,Wj ] − [Vj ,Wi])(∂iWj − ∂jWi)

+
2

3
c3([Wi,Wj ] − [Wj ,Wi])(∂iVj − ∂jVi)

}

d3x . (4.7)
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Mass in MeV

B Experiment Theory

1 939 959

2 1876 1887

3 2809 2806

4 3727 3727

Table 2. For baryon numbers one to four the experimental values of the masses of nuclei are

compared with the theoretical predictions in the truncated Skyrme model containing a vector and

an axial vector meson.

Finally, there is an interaction energy coupling the Skyrme field to both the vector and

axial vector mesons

ESVW =

∫

−Tr

{

− 6

11
c11[Vi, Vj ]([Ri,Wj ]−[Rj,Wi]) − c13([Ri, Vj ]−[Rj , Vi])(∂iWj−∂jWi)

− c13([Ri,Wj ]−[Rj ,Wi])(∂iVj−∂jVi) −
1

3
c3[Wi,Wj ]([Ri, Vj ]−[Rj , Vi])

+ c13([Ri, Vj ]−[Rj , Vi])([Ri,Wj ]−[Rj ,Wi])

− 6

11
c11([Ri, Vj ]−[Rj , Vi])([Vi,Wj ]−[Vj ,Wi])

− 1

3
c3([Ri,Wj ]−[Rj ,Wi])([Vi,Wj ]−[Vj ,Wi])

}

d3x , (4.8)

where

c13 =

∫ ∞

−∞

1

4
ψ+ψ0ψ1 dz =

1

4
√

6π
= 0.058 . (4.9)

Applying the numerical procedure described in the previous section, involving the

same symmetric instantons (though with different energy minimizing scales) produces the

energies presented in the final column of table 1 and plotted as the diamonds in figure 1.

The addition of the axial vector meson shifts the Skyrmion energies a little closer to

the BPS bound and slightly decreases the binding energies. As the energy of the B = 1

Skyrmion is less than 5% above the BPS bound then this provides an upper limit on the

binding energy per baryon of 5% of the energy of the single baryon, which is a significant

improvement on the standard Skyrme model.

For B > 1 the slope of the curve joining the triangles in figure 1 is similar to the slope

of the curve joining the squares that represent the data for nuclei. Hence a reasonable

approximation to the masses of nuclei with B = 2, 3, 4 can be obtained at the expense of

overestimating the energy of the single baryon. In fact, it is wise to fix the energy unit

by matching the energy of the B = 4 Skyrmion to the mass of He4 since its ground state

has zero spin and isospin, so there are no associated quantum corrections to the classical

energy. Choosing the energy unit in this way allows the data in the final column of table 1

to be written in terms of the predicted physical masses for nuclei, which are presented

in the final column of table 2. For comparison, the second column of table 2 displays

the experimental values measured for nuclei. It can be seen that this gives a reasonable
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approximation to the experimental data, particularly for baryon numbers greater than one,

but even the single baryon mass is only 20 MeV above the true value. Note that a similar

calculation in the standard Skyrme model gives an energy excess which is more than four

times greater than this.

The Skyrmion energies presented in this paper are purely classical, but there are also

quantum contributions associated with spin and isospin. These contributions can be cal-

culated within a semiclassical rigid-body quantization, though the computations become

significantly more involved with the inclusion of vector mesons. The calculation has been

performed [9] for the single baryon in the theory including just one vector meson and the

result is similar to that in the standard Skyrme model. The magnitude of the quantum

corrections depends strongly upon the choice of energy and length units, but it is clear that

such quantum contributions can only exacerbate the problem regarding binding energies.

In fact, considerations of binding energies require that these quantum corrections must be

small; since they vanish for B = 4 such quantum corrections for the single nucleon must not

be much greater than 8 MeV otherwise, even in a BPS theory, they would produce a bind-

ing energy for nuclei such as B = 4 that exceeds the experimental value. It may therefore

be judicious to fix energy and length units by considering this issue in more detail, though

this will be left for a future investigation, as it would be more useful to perform an analysis

once further results are available for larger baryon numbers. Note that these considerations

will certainly require that the energy units for quantum corrections are much smaller than

those determined by fixing to the mass of the delta resonance [20], but it has already been

demonstrated that this is not a good approach to fixing the parameters of the Skyrme

model, as the result it determines is an artefact of the rigid-body approximation [21].

5 Conclusion

Skyrmions have been investigated in an extension of the standard Skyrme model to include

the ρ and a1 mesons, with all couplings and masses uniquely determined by the truncation

of a BPS theory. The results are encouraging, with binding energies being dramatically

reduced so that discrepencies between the values for nuclei and Skyrmions are reduced to

around one quarter of those found in the standard Skyrme model.

Skyrmions have been approximated using self-dual instantons, with the assumption

that for baryon numbers up to four the symmetry of the Skyrmion in the extended theory

is the same as that in the standard Skyrme model. For B ≤ 4 these symmetries select

a unique instanton, up to the obvious freedom associated with position, orientation and

scale, but for B > 4 symmetry alone is not sufficient to select the required instanton;

except for the special cases B = 7 and B = 17, where icosahedral symmetry does pin down

the instanton [22, 23]. Therefore, to extend the results to larger baryon numbers, and

also to check the assumed symmetries and accuracy of the instanton approximation, it will

be necessary to perform full field numerical simulations of the extended model. This will

be a computational challenge because there is a significant increase in both the number

of degrees of freedom and the number of terms contributing to the energy, in comparison

to the standard Skyrme model. However, this would certainly be a worthwhile avenue
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for future research and would also allow Skyrmions to be studied in the extended theory

including a pion mass term, which is known to be necessary when considering larger baryon

numbers.
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