
J
H
E
P
0
4
(
2
0
1
0
)
1
1
8

Published for SISSA by Springer

Received: February 21, 2010

Accepted: April 17, 2010

Published: April 29, 2010

Thermodynamic geometry and phase transitions in

Kerr-Newman-AdS black holes

Anurag Sahay, Tapobrata Sarkar and Gautam Sengupta

Department of Physics, Indian Institute of Technology,

Kanpur 208016, India

E-mail: ashaya@iitk.ac.in, tapo@iitk.ac.in, sengupta@iitk.ac.in

Abstract: We investigate phase transitions and critical phenomena in Kerr-Newman-Anti

de Sitter black holes in the framework of the geometry of their equilibrium thermodynamic

state space. The scalar curvature of these state space Riemannian geometries is computed

in various ensembles. The scalar curvature diverges at the critical point of second order

phase transitions for these systems. Remarkably, however, we show that the state space

scalar curvature also carries information about the liquid-gas like first order phase transi-

tions and the consequent instabilities and phase coexistence for these black holes. This is

encoded in the turning point behavior and the multi-valued branched structure of the scalar
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first for the conventional Van der Waals system, as a preliminary exercise. Subsequently,

we study the Kerr-Newman-AdS black holes for a grand canonical and two “mixed” en-

sembles and establish novel phase structures. The state space scalar curvature bears out

our assertion for the first order phase transitions for both the known and the new phase

structures, and closely resembles the Van der Waals system.
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1 Introduction

Black Hole thermodynamics has emerged as an arena for testing candidate theories of

quantum gravity, and has thus witnessed intensely focussed interest in recent times (see

e.g. [1–3] and references therein). It has been recognized from a semi classical analysis

that they are thermodynamic objects with a Bekenstein-Hawking entropy and a Hawking

temperature [4, 5]. Although an exact microscopic statistical basis underlying this ther-

modynamic description requires a fully consistent quantum theory of gravity, yet this has

yielded a rich and varied structure of phase transitions and critical phenomena (for a small

sampling of this extensive field of research, see, e.g. [6, 7, 9–11]).

It is however well known that black hole thermodynamics is considerably different

from usual thermodynamic systems. The macroscopic entropy is non extensive and for

conventional asymptotically flat black holes, negativity of specific heats in certain regions

of the parameter space renders the canonical ensemble unstable. Furthermore the third

law is invalid as zero temperature extremal black holes exhibit macroscopic degeneracy and

consequently a nonzero entropy. However in spite of these departures, many of which have

been addressed extensively in the literature, the study of black hole thermodynamics has

led to important insights. For diverse black holes, specific heats seem to change signs from

one region to another and exhibits divergences similar to the phenomena of phase transi-

tions in conventional thermodynamic systems. Although the issue of phase transitions in

black holes is still far from being completely settled, conventional thermodynamic analysis

has elucidated a rich phase structure and critical phenomena very similar to that of usual

thermodynamic systems. Some of the critical indices for certain black hole and black ring

solutions have also been determined from standard scaling arguments [12–15]. It must

however be pointed out that a lack of exact knowledge about the microscopic statistical
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framework underlying black hole thermodynamics renders the issue of the choice of ensem-

bles to be an extremely subtle issue. In fact it has been established that the phase structure

of black holes depend crucially on the choice of the ensemble in contrast to conventional

thermodynamic systems [16, 17].

The focus on this field has become more intense over the last decade in the light of

developments in string theory and a better grasp of the underlying microscopic statistical

basis. The AdS-CFT correspondence between a bulk gravity theory in AdS spaces and

a gauge theory on the boundary of the AdS space has been one of the main theoretical

advances in string theory. In particular this has led to a correspondence between Hawking-

Page phase transitions in asymptotically AdS black holes and confinement-deconfinement

phase transitions [18] in the boundary field theory which powered an intense focus on the

thermodynamics of AdS black holes, their phase structures and critical phenomena. The

fact that AdS spaces act like a box with a specific length scale and reflecting walls renders

the thermodynamics to be stable and a stronger basis is provided by the correspondence

with the boundary field theory. A comprehensive analysis has resulted in a rich phase

structure for asymptotically AdS black holes which is very similar to conventional thermo-

dynamic systems. For example, it has been observed that charged Reissner-Nordstrom-AdS

(RN-AdS) black holes show a first order liquid-gas like phase transition in the fixed charge

canonical ensemble analogous to the Van der Waals-Maxwell gas whereas a Hawking-Page

phase transition is observed in the grand canonical ensemble [16].

In a different context, a geometrical perspective of thermodynamics has been an area

of interest for several decades. Following an early treatment due to Tisza [19] and further

extended by Callen [20], the extrinsic geometric description of thermodynamics has been

elucidated. However an intrinsic geometrical realization of thermodynamic behaviour was

rather elusive. Weinhold [21, 22], in an early investigation, attributed a Riemannian metric

to the equilibrium state space of a thermodynamic system in terms of the Hessian matrix

of the derivatives of the internal energy as a function of the entropy and other extensive

variables. However this did not have a clear notion of a distance in the state space from

a physical perspective. Ruppeiner [23] later introduced a similar metric in the equilibrium

thermodynamic state space based on the Hessian matrix of the entropy density as a function

of the internal energy and other extensive variables. A physical interpretation of this

geometric structure involved the consideration of classical fluctuation theory together with

the laws of thermodynamics. The probability distribution of thermodynamic fluctuations

between two equilibrium states in the Gaussian approximation could then be connected to

the notion of the invariant distance between them in the state space. Remarkably enough,

the curvature of the state space could be related to interactions in the underlying statistical

system and scaled as the correlation volume, diverging at critical points of second order

phase transitions. This relation with classical fluctuation theory and the divergence of

the state space scalar curvature at critical points has made thermodynamic geometry an

interesting approach to study thermodynamic systems in diverse areas. Since its inception

this geometrical framework has been applied extensively to study systems such as Van

der Waals gas, Fermi gas, Ising Model, paramagnets etc. and has provided a consistent

and direct method to study second order phase transitions and critical phenomena in these
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systems. However this geometric approach seemed insensitive to the interesting phenomena

of first order phase transitions involving a finite correlation length and a finite discontinuity

in the specific heat and entropy. One of our aims in this paper would be to address this

crucial issue in the formalism of thermodynamic geometries in the context of KN-AdS

black holes.

The first allusion to black hole thermodynamics in the framework of their state space

geometry was made by Ferrara et al [24] in their seminal work on black hole attractors

in the context of extremal black holes in string theory and its relation to the underlying

moduli space. Following this, there has been considerable amount of interest in this field

starting with the work of [25, 26] in studying the thermodynamic geometries of diverse

non extremal and extremal black holes. Several classes of black holes were shown to posess

curved state space geometries, indicating an interacting microscopic statistical basis. More

interestingly the divergences of the curvature scalar encoded the critical points of second

order phase transitions in these systems [27].

In this connection, we had earlier studied a family of non extremal BTZ and BTZ-

CS black holes [28], and shown that these state space geometries were flat. Thermal

corrections to the canonical entropy induced negligibly small curvature to the state space.

Subsequently, we studied several examples of charged extremal black holes in string theory,

and showed that their state space geometries were flat. They were also shown to be

insensitive also to higher derivative corrections in the large charge limit. This exhibited

the stability of such extremal BPS configurations and the regularity of the curvature scalar

in the large charge limit ruled out any classical phase transition. More significantly we

established that the signature of the state space geometries were crucially dependent on

the signature of the moduli space metric. [29].

As we have mentioned, the thermodynamics of asymptotically AdS black holes show a

rich structure of phase transitions and critical phenomena including a liquid-gas like first

order phase transition analogous to the Van der Waals gas and a critical point of second

order phase transition. It was a natural question then to investigate if this rich phase

structure was encoded in the scalar curvature of the equilibrium state space thermodynamic

geometry of these black holes. Several attempts to investigate these issues had been made

earlier. Although the critical points of second order phase transitions were encoded in

the divergence of the state space scalar curvature, it was seemingly insensitive to any

signature of first order phase transitions. So it is a natural issue to investigate if the scalar

curvature also encodes first order phase transitions for general thermodynamic systems. As

applied to conventional thermodynamic systems, the answer to this question seems to be

in the negative, as apparently the state space scalar curvature does not exhibit any special

behavior near such a transition. An early attempt in this context was made by [30, 31] to

analyse the state space geometry of the Van der Waals gas and classify the phases in terms

of the geodesic behavior. A later analysis [32, 33] of the same system yielded again the

critical point of second order phase transition at the end of the “vapour pressure curve”

without any significant special behavior of the scalar curvature near the first order phase

transition curve.

In this article, we take a first step towards addressing this important issue in the

context of the phase transitions and critical behavior of Kerr-Newman AdS (KN-AdS)
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black holes in the framework of the thermodynamic geometry of their state space. We

reproduce the critical points of second order phase transitions for these black holes, from

the divergences of state space scalar curvature. Remarkably, we are also able to establish

that the state space scalar curvature encodes the discontinuities of the first order phase

transitions in terms of its turning point behavior and multi-valued branched structure as

a function of the thermodynamic variables for the system. The first clue to this behavior

arises from an analysis of the conventional first order liquid-gas phase transition in the

Van der Waals gas. Studying the state space scalar curvature of this system as a function

of the thermodynamic variables, we observe that the curvature diverges near the first

order point but shows a turning point behavior at infinity and gives rise to a multi-valued

branched structure similar but not identical to the behavior of the corresponding Gibbs free

energy in the grand canonical ensemble. The turning point and the multi-valued behavior

of the scalar curvature disappears at the end of the “vapor pressure curve” where it is

divergent but single valued. From the usual wisdom of thermodynamic geometries this

happens because the scalar curvature goes like the inverse of the singular part of the free

energy associated with the long range correlations but is insensitive to the short range

correlations. Near the critical point of the second order phase transition the singular part

of the free energy decreases and is exactly zero at the critical point. Hence the divergence

of the scalar curvature occurs exactly at the point where the free energy shows a kink.

This seemingly points to a qualification of the original proposal by Ruppeiner about the

behavior of the state space scalar curvature near phase transitions. That the curvature

scalar diverges at the critical point of second order phase transition but is single valued is

well known. We show here that the curvature scalar does have a very interesting behaviour

near first order phase transition points as well. In the latter case, in regions of phase

coexistence, the curvature shows multi-valued branch structures, with turning points at

infinity, and physicality implies that the curvature changes branch close to the first order

phase transition point. We will qualify these statements in the remainder of the paper.

Having clarified our assertion, we then proceed to study the phase structure of the

various KN-AdS black hole solutions for diverse ensembles in the framework of their state

space thermodynamic geometries, which has been previously studied in [8]. In this case,

the conventional phase structure envisions a grand canonical ensemble which allows both

the charge and the angular momentum to fluctuate, or a canonical ensemble where both the

extensive parameters ( charge and angular momentum) are held fixed. However we further

study the case of mixed ensembles in which only one of the two extensive thermodynamic

parameters (charge or angular momentum) is allowed to fluctuate and the other is held

fixed (such ensembles were considered, in the case of asymptotically flat black holes in [9],

and also in [34–36]). Studying the behavior of the corresponding modified Gibbs free

energy we unravel a rich novel phase structure in both these cases involving first order

phase transitions identical to the liquid-gas transition in the Van der Waals-Maxwell gas

ending in a critical point of second order phase transition. Study of the scalar curvature of

the state space of the system seems to bear out our qualification of the original assertion

of Ruppeiner, namely that the scalar curvature encodes information about the first order

phase transition in addition to its divergence at the critical point of second order phase

transition at the end of the vapor pressure curve.
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The article is organized as follows, in section 2, we present a brief review of thermo-

dynamic geometry and its application to study phase transitions and critical phenomena

in conventional thermodynamic systems and black holes. As a preliminary exercise, we

revisit the Van der Waals gas and re-examine its phase behavior in the framework of ther-

modynamic geometry and obtain the first clue of the state space scalar curvature encoding

information about the first order liquid-gas phase transition. Section 3 deals with the ther-

modynamics, phase structure and critical phenomena in the most general rotating charged

KN-AdS black holes for diverse ensembles including mixed ensembles and we establish new

phase behavior for these black holes. In the last section 4, we present a summary of our

results and discuss possible future directions of research.

2 Thermodynamic geometry and phase transitions

In this section we briefly review the essential features of thermodynamic geometries espe-

cially their application to study phase transitions and critical phenomena in thermodynamic

systems particularly black holes. The issue of an intrinsic geometrical structure underly-

ing the thermodynamic behavior of systems is a long standing one. However although

an extrinsic geometric description was evident the issue of an intrinsic geometric struc-

ture remained elusive. The first such geometric structure in equilibrium thermodynamics

was introduced by Weinhold [21, 22] through an inner product in the space of equilib-

rium thermodynamic macrostates defined by the minima of the internal energy function

U = U(S/T, V/T, µi/T ) as the Hessian

hij = ∂i∂jU (2.1)

As mentioned in the introduction, the quantities µi, T, V, S are the chemical potentials,

temperature, volume and entropy respectively and the volume or any other parameter is

held fixed to provide a physical scale and to restrict the occurrence of negative eigenvectors

of the metric. Although such a Riemannian geometric structure was interesting, no phys-

ical significance could be ascribed to it. The inner product on the state space was later

reformulated by Ruppeiner [23] in the entropy representation as the negative of the Hessian

matrix of the entropy density s = s(u, n) with respect to the densities of the other exten-

sive variables. The thermodynamic macrostates underlying the equilibrium state space

being now described by the maxima of the entropy function S = S(U, V,N). Explicitly the

Ruppeiner metric in the state space was given as,

gij = −∂i∂js(u, n) (2.2)

and was conformal to the Weinhold metric with the inverse temperature as the conformal

factor. The negative sign was necessary to ensure positive definiteness of the metric, as the

entropy is a maximum in the equilibrium state. It could be shown that the Riemannian

structure defined by the Ruppeiner metric was closely related to classical thermodynamic

fluctuation theory [34–36] and critical phenomena. The probability distribution of ther-

modynamic fluctuations in the equilibrium state space was characterised by the invariant
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interval of the corresponding thermodynamic geometry in the Gaussian approximation as

W (x) = Aexp

[

−
1

2
gij(x)dxidxj

]

(2.3)

where A is a constant and xi are the extensive variables. The inverse metric may be shown

to be the second moment of fluctuations or the pair correlation functions and given as

gij =< XiXj > where Xi are the intensive thermodynamic variables conjugate to xi. The

Riemannian structure may be expressed in terms of the densities of any suitable thermody-

namic potential arrived at by Legendre transforms which corresponds to general coordinate

transformations of the equilibrium state space metric. One should emphasize here that the

invariant interval in the state space has the dimensions of volume for conventional ther-

modynamic systems unlike the usual dimension of length in Riemannian geometries. This

is a consequence of using densities of thermodynamic poetntials in the expression for the

state space metric.

For a standard two dimensional thermodynamic state space defined by the extensive

variables (x1, x2), application of these geometric notions to conventional thermodynamic

systems suggest that a non zero scalar curvature indicates an underlying interacting sta-

tistical system. It could be shown that the scalar curvature R ∼ κ2ξ
d where ξ is the

correlation length, d is the physical dimensionality of the system and κ2 is a dimensionless

constant of order one. This naturally suggests that the scalar curvature is a measure of the

effective interactions in the underlying statistical system. Near a critical point of second

order phase transition the correlation length ξ diverges and hence the scalar curvature R

also diverges at the critical point. A detailed analysis shows that the scalar curvature

is actually proportional to the inverse of the singular part of the free energy arising from

“long range correlations.” This goes to zero at the critical point and hence R diverges. The

Ruppeiner formalism of thermodynamic geometry has been applied to diverse condensed

matter systems with two dimensional state spaces and is completely consistent with the

scaling and hyperscaling relations involving critical phenomena and have reproduced the

corresponding critical indices.

Note that for black hole systems, the line element in the equilibrium thermodynamic

state space is dimensionless in contrast to usual extensive thermodynamic systems. As a

consequence, the state space scalar curvature R is dimensionless here. Hence, the usual

interpretation of R as the correlation volume is not applicable. However, we will proceed

with the understanding that R is a measure of interactions at the horizon and will continue

to refer to R as the “correlation volume.”

Although the divergences of the state space scalar curvature encodes the critical points

of second order phase transitions it seems insensitive to the interesting thermodynamic

phenomena of first order phase transitions. Instances of such first order phase transi-

tions involving coexistence of two or more phases and multiple length scales, occur quite

frequently for conventional thermodynamic systems the most common being a liquid-gas

phase transition. The simplest example of such a first order phase transition is the Van

der Waals-Maxwell gas where a “vapor pressure curve” along which both the liquid and

gas phase exists ends at critical point of second order phase transition beyond which no
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phase distinctions are possible. An early analysis by Ruppeiner of this system showed no

special behavior of the state space scalar curvature near the first order phase transition

point. Although the curvature showed a clear divergence at the second order critical point

and was consistent with the usual scaling relations and the known critical indices. Several

other authors later analysed the state space for the Van der Waals gas using smoothly con-

nected geodesics as an indication of a coherent phase and also the degeneracy and change

in the sign of the thermodynamic metric across the spinodial vapor pressure curve, but

were however open to several criticisms. Quite obviously it is far from satisfactory that an

important aspect of thermodynamic behavior namely the occurrence of first order phase

transitions had no signature in the intrinsic geometry of the equilibrium state space. Or

the state space scalar curvature was seemingly insensitive to first order phase transitions.

So certainly this aspect needed further investigation.

We have reexamined the issue of first order phase transitions in the framework of

thermodynamic geometries in the context of our study of the phase structure of charged

rotating AdS black holes. One of the main general results of our studies is that the state

space scalar curvature actually encodes information about the first order phase transitions

through the multivalued branched structure and a typical turning point behavior at infinity

with respect to other thermodynamic variables at a first order phase transition. Our result

seems to be sufficiently general and universal in the examples that we have studied. The

first clue to this arises from revisiting the Van der Waals gas state space and studying

the behavior of the scalar curvature with respect to other thermodynamic variables in the

grand canonical ensemble. Our analysis shows a very typical turning point behavior at

infinity and a multivalued branch structure similar to the behavior of the appropriate free

energy and that of the corresponding specific heat or compressibilities/capacitances. This

behavior extends to the phase structure of the KN-AdS black hole where we show first order

phase transitions in mixed ensembles of fixed angular momentum or fixed charge. The full

grand canonical treatment earlier by Caldarelli et al [8] had led to a Hawking Page phase

transition where we find a single valued divergence of the state space scalar curvature.

It should be mentioned here that as alluded in the introduction black hole thermody-

namics and phase transitions are somewhat different from usual thermodynamic systems.

It follows naturally from this that the thermodynamic geometry as a framework for study-

ing phase transitions in black holes involves several subtle issues. Although the general

overall thermodynamic behavior is strongly similar to the usual notions there are indeed

several points of departure. The most important amongst these is the fact that we have

little or no idea still of the underlying microstates or the statistical system for black holes.

So the issue of a suitable ensemble underlying the analysis of the phase structure is an

extremely critical. In fact it has been adequately established now from many different

analysis that the nature of the phase structure and critical phenomena for black holes is

strongly dependent on the choice of a suitable ensemble. So it is always prudent to analyse

and contrast the phase behavior in various different ensembles. Furthermore there is no

concept of a volume for black holes as thermodynamic systems so unlike conventional sys-

tems the thermodynamic metric is directly given by the Hessian matrix of the appropriate

thermodynamic potential and not its density as for usual systems. In addition black holes
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by themselves are not extensive systems so all analysis of black thermodynamics tacitly as-

sume that the black hole is a subsystem of a larger infinite system to ensure thermodynamic

extensivity. With these comments, let us proceed to analyse the Van der Waals model. Its

also important to emphasize at this juncture that unlike usual thermodynamic systems,

black holes may be described by a exact fundamental relation between its thermodynamic

variables through the Smarr formula.

2.1 The Van der Waals model

We begin with a review of the main features of the Van der Waals model. The thermody-

namic geometry of this system has been well studied in the literature (see, e.g [32, 33, 37,

38]). However, as pointed out in the introduction, we will be able to comment on certain

features of this system which we believe are novel results that have not been reported in

the past. We begin with the expression for the Helmholtz free energy of the system [39]

F = N (−cvT lnT − ζT + ǫ) − NT ln

(

e (V − Nb)

N

)

−
N2a

V
(2.4)

where, as in standard terminology, a and b are the Van der Waals constants, cv refers to

the molar specific heat at constant volume, and ζ and ǫ are constants. N refers to the

number of particles with volume V so that the number density is ρ = N
V

at a temperature

T . With the substitution cv = 3
2

as is appropriate for the Van der Waals model, the molar

Helmholtz potential is

f = −
3

2
T lnT − ζT + ǫ − T (1 − lnρ + ln(1 − bρ)) − aρ (2.5)

The pressure is given by

P = ρ2

(

∂f

∂ρ

)

T

=
ρ

(

aρ − aρ2b − T
)

bρ − 1
(2.6)

The molar Gibbs potential (i.e. the chemical potential) is given by

g = f +
P

ρ
(2.7)

The molar entropy is given by

s = −

(

∂f

∂T

)

ρ

=
3

2
lnT +

5

2
+ ζ − lnρ + ln (1 − bρ) (2.8)

Now, without loss of generality, we set the constants ζ = ǫ = 1, and with this substitution,

the expression for the Ruppeiner curvature for the system is given by

R =

[

4a2ρ2b
(

3 + ρ2b3 − 3ρb2
)

+ T
(

a + 5aρb + 3aρ3b3 + 3Tb − 9Taρ2b2
)

− 4a2ρ
]

3 (2aρ + 2aρ3b2 − T − 4aρ2b)2 (bρ − 1)−1
(2.9)

Note that in calculating R, the components of the thermodynamic metric involves the free

energy density, i.e. free energy per unit volume. From the expression for the molar specific

heat at constant pressure,

cp =
1

2

6aρ3b2 + 6aρ − 5T − 12aρ2b

2aρ + 2aρ3b2 − T − 4aρ2b
(2.10)
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Figure 1. Molar entropy vs pressure for T =

1.02.
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Figure 2. Ruppeiner curvature vs pressure

for T = 1.02.

we see that the Ruppeiner curvature diverges in the same way as cp. This is expected,

because we are allowing the density to fluctuate envisioning a description in the grand

canonical ensemble. Hence, the appropriate potential in this case is the molar Gibbs

potential which remains constant across a first order phase transition.

Our main interest would be to look at the behaviour of the Ruppeiner curvature at

phase transition points of the system. In what follows, we set the Van der Waals constants

as a = 8, b = 2. These are just convenient values. Any other value will not change our

results in any qualitative way. The critical temperature and pressure for this choice of

parameters can be obtained from the P − V isotherms [39]. These values are found to be

Tc = 1.1851, Pc = 0.0741 (2.11)

For temperatures below the critical value, the Van der Waals system undergoes a first order

phase transition. It is instructive to plot the Ruppeiner curvature along an isotherm, as a

function of the system pressure, in order to compare with the variation of the molar entropy

with pressure. This can be done by using the expression for the pressure in eq. (2.6), and

the number density ρ is treated as a parameter. We will find it convenient to discuss the

behaviour of the Ruppeiner curvature along various isotherms, vis a vis that of the molar

entropy along the same, ρ again being the parameter.1

In figure 1 and figure 2, we illustrate the parametric plot of the molar entropy vs

pressure and the Ruppeiner curvature vs pressure, both along an isotherm corresponding

to T = 1.02.

The Ruppeiner curvature in this case, captures many features similar to those seen in

black hole systems. For comparison purposes, we first review the well known behaviour of

1There is no qualitative difference in our description involving isotherms, and one involving curves of

constant pressure (isopotential curves). For black holes, we will find it more convenient to investigate the

Ruppeiner curvature along isopotential curves as a function of temperature.
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the molar entropy as a function of pressure. The Maxwell relation
(

∂s

∂P

)

T

= −

(

∂v

∂T

)

P

(2.12)

where s is the molar entropy and v is the volume per mole, implies that the partial derivative

of the molar entropy with pressure along an isotherm has to be negative in order to maintain

physicality. From figure 1, there are thus two locally stable branches of the system in the

s − P plane, one along the points A1 A3, and the other along the points A7 A8 A9.2 Let

us denote these as branch 1 and branch 3. These have been marked in green and blue

respectively. Inbetween these, marked in red, is an unstable branch 2 of the system, along

the points A4 A5 A6. We have drawn the asymptotes at the turning points of the entropy,

which occur at P (A1) or P (A7) = 0.0475 and P (A3) or P (A8) = 0.0098. These are marked

in black in the figure.

As the system pressure is increased from zero, the system “travels” along branch 1,

until it reaches the point A1, where the entropy becomes multivalued. The system continues

along branch 1, till the point where its free energy exceeds that of branch 3. At this point,

branch 1 becomes metastable, and branch 2 becomes globally stable, and the system may

undergo a first order phase transition from branch 1 to branch 3, driven by the fluctuations.

Thereafter, upon further increase of pressure, the system follows branch 3 of the entropy.

Let us now compare this with the behaviour of the Ruppeiner curvature R along the same

isotherm, which is shown in figure 2. In this figure, we have labelled the corresponding

points in figure 1. The branches of R are coded with the same colors as those of the molar

entropy (remember that we have used the same parameter ρ for both the plots).3

Note that, as can be seen from figure 2, the Ruppeiner curvature has three branches as

expected from the plot of the molar entropy vs pressure. Indeed, the Ruppeiner curvature

by itself cannot predict the stability or instability of a given branch, but comparison with

the known behaviour of the system entropy or Gibbs free energy as a function of the

system pressure, this classification can indeed be made. Hence, in figure 2, the green

line that passes through the points A1, A2, A3 is the first stable branch (branch 1) as we

increase the parameter ρ from zero. The unstable branch, marked in red (branch 2), passing

through A4, A5, A6 begins thereafter, and diverges at A7. The next stable branch (branch

3) begins from negative infinity (at A7) and asymptotes to zero along A7, A8, A9. The

values of pressure corresponding to the divergences in the Ruppeiner curvature corresponds

to those at the turning points of the molar entropy in figure 1. Branch 1 diverges at

P = 0.0475. (Compare the similar points in figure 1. The unstable branch 2 culminates in

the asymptotic point A7, that has the value of pressure P = 0.0098.4

Let us qualitatively discuss the features of the Ruppeiner curvature. If we increase the

system pressure from zero, the curvature becomes multivalued starting from the point A1,

2Note also that along the unstable branch, the line element of the equilibrium state space geometry is

negative, and hence is not relevant to thermodynamic geometry.
3The exact values of the molar entropy or Ruppeiner curvature at these points will not be important for

us, but these can be easily read off.
4The fact that the curvature blows up at values of pressure corresponding to the asymptotes shown in

black can be seen from eq. (2.9).
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Figure 3. Ruppeiner curvature vs pressure for T = 1.14.

and remains so in the phase coexistence region between the two asymptotes in figure 2.

At the pressure corresponding to a first order phase transition, the curvature will “jump”

from one stable branch to the other and then continue along the latter as the system

pressure is further increased. We emphasize that although there are divergences in the

expression for the Ruppeiner curvature at the turning points of the molar entropy, the

system moving along the isotherm will not access these equilibrium states and consequently

the corresponding divergences of the state space scalar curvature are rendered unphysical.

For the moment, we note that for isotherms with higher temperatures (but below Tc),

the qualitative behaviour of the Ruppeiner curvature remains the same. In figure 3, we

show a parametric plot of the Ruppeiner curvature as a function of the system pressure

along the isotherm T = 1.14. As can be seen, this indeed retains the features alluded to in

the last paragraph.

We now discuss the isotherms near T = Tc (eq. (2.11)). We find that the behaviour of

the Ruppeiner curvature closely follows that of the known behaviour of the molar entropy.

Namely, as we approach T = Tc, the unstable branch of the curvature gets pushed to

infinity, and the two stable branches join at infinity, i.e. the curvature goes to infinity. This

happens precisely at the critical value of the pressure, P = Pc in eq. (2.11). In figures 4

and 5, we have shown the snapshots of the molar entropy vs pressure and Ruppeiner

curvature vs. pressure as one approaches the critical temperature.

From figure 4, it is seen that the unstable branch in the molar entropy disappears at

T = Tc, and the entropy becomes single valued thereafter. From figure 5, we see that the

Ruppeiner curvature follows the same behaviour, although in a different manner. As we

approach Tc, the two asymptotes of figure 2 begin to come closer.5 Finally, at T = Tc, the

unstable branch disappears and the two stable branches “separate,” (i.e. do not have any

overlap) signaling a second order phase transition. The Ruppeiner curvature diverges at

5It can be checked that this is true for the isotherm corresponding to T = 1.18 in figure 5, marked in red,

as well. The unstable branch for this isotherm will be seen for very large negative values of the curvature.
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Figure 4. Molar entropy vs pressure for

temperatures approaching Tc.
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Figure 5. Ruppeiner curvature vs pressure

for temperatures approaching T = Tc.

A3

A2

A1

T = 1.165

T = 1.15

T = 1.14

–3000

–2500

–2000

–1500

–1000

–500

0

R

0.06 0.062 0.064 0.066 0.068 0.07 0.072
P

Figure 6. A plot of Ruppeiner curvatures vs pressure as we approach the critical isotherm.

this point.

Let us now come back to the question of where exactly the system changes branch in the

Ruppeiner curvature. This issue can be addressed by examining the behaviour of the Gibbs

free energy as a function of the system pressure. In figure 6, we have marked asymptotes

corresponding to the values of the pressure at which the Gibbs free energy corresponding

to the given isotherms changes branch (see, eg. [20]). It is to be noted that the point of

intersection of the stable branches of the Ruppeiner curvature occurs at slightly different

– 12 –



J
H
E
P
0
4
(
2
0
1
0
)
1
1
8

values of pressure compared to the value of the pressure at which the Gibbs free energy

transits from one stable branch to the other. As can be seen from the figure, this difference

decreases as the critical isotherm is reached. At the critical temperature Tc, there is no

intersection of branches of the Ruppeiner curvature, both of which go to infinity at Pc. At

that temperature, the Gibbs free energy of the two stable branches become identical at Pc,

as is well known. Since the (absolute value of the) Ruppeiner curvature is proportional to

the correlation volume, our results would therefore suggest that there is jump in correlation

volume at the first order phase transition. This is indeed a novel feature, although we do

not have full analytical control of this phenomenon at the moment. However, it seems that

the curvature jumps from one stable branch to the other at the value dictated by the Gibbs

free energy, whereafter it continues its journey along the other stable branch. We believe

that this has not been reported earlier in the literature, and constitutes one of the main

results of this subsection. We will see that essentially the same features appear in black hole

thermodynamics as well, to which we will presently turn to. As a final comment, note that

the Van der Waals system is only an approximate model. The Ruppeiner curvature should

have a more definite meaning in the context of black holes, as the fundamental relation is

exactly known, and hence a more complete thermodynamic description is available.

3 KN-AdS black holes

In this section, we will elucidate the behaviour of thermodynamic geometry for Kerr-

Newman-AdS black holes. These are charged, rotating black holes which are asymptotically

AdS. The thermodynamics and phase structure of these black hole configurations has been

extensively studied in the literature (see, e.g. [8]), and we will only mention the details

relevant for our analysis here. In contrast to the asymptotically flat case, the angular

velocity of rotating black holes in AdS space does not vanish at infinity. The angular

velocity that enters the thermodynamic description of the black hole is then the difference

between the angular velocity at the horizon and that at infinity, which turns out to be

identical to the angular velocity of the rotating Einstein universe at the AdS boundary. This

is also expected from the AdS-CFT correspondence. In the same way, the electric potential

that enters the analysis is also measured with respect to potential at the boundary of the

AdS space, which is non zero in this case. In our analysis, we will use the thermodynamic

quantities, keeping in mind that this subtraction has already been made.6

In the absence of a complete knowledge of the microstates of the system, one naturally

studies the KN-AdS black hole in various ensembles, defined by fixing the charges and the

corresponding potentials. In its conventional form, Ruppeiner geometry naturally alludes

to open systems which envisions a grand canonical ensemble, where we allow fluctuations

in all the charges that appear in the description of the thermodynamic state space. Fixing

a particular charge implies that the curvature is insensitive to fluctuations in the same.

6In our analysis these quantities will be calculated after suitable rescaling of the black hole parameters

by factors of the AdS radius, and will be denoted by lower case letters. For example, the angular velocity

and electric potential are denoted by ω and φ in our analysis. In the notation of [8], these quantities are

denoted by Ω and Φ respectively.
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In the KN-AdS black hole, we have two thermodynamic charges, the electric charge and

the angular momentum (the magnetic charge is set to zero). If we fix both, then in the

Ruppeiner formalism, the thermodynamic state space is naturally flat, i.e. the curvature is

trivially zero. This is of course different from fixing the charges in the expression for the

curvature. The latter would imply that we still allow for fluctuations in the charges. Hence,

a fully canonical ensemble is uninteresting as far as the Ruppeiner formalism is concerned.

However, for KN-AdS black holes, it is possible to define a mixed ensemble, where

one of the thermodynamic charges, say j is held fixed, while the black hole is allowed to

exchange the other charge (q) with its environment which is held at a fixed potential. This

implies that for the electric charge , we are in a grand canonical ensemble, in that the system

can exchange electric charge with a surrounding bath, but the system does not exchange

angular momentum which is held at a fixed value, and hence is in a canonical ensemble with

respect to this variable. We will refer to this as the “fixed angular momentum ensemble” or

the “fixed j ensemble” in what follows. Analogously, we can talk about an ensemble where

we fix the angular velocity and the electric charge. This will be referred to as the “fixed

charge ensemble” or the “fixed q ensemble.” The astute reader might question the stability

of the system in these ensembles. Before we proceed, let us make some brief comments on

the stability issues in the mixed ensembles.

The themodynamic potentials appropriate to the fixed q and fixed j ensembles can be

obtained in a straightforward manner by partial Legendre transforms of the scaled Gibbs

potential g (the scaled variables are appropriately defined in the next subsection). For the

fixed j ensemble, we first construct the potential

A = g + ωj (3.1)

the differential of which is dA = −sdt−qdφ+ωdj. On restricting to the constant j sections

of the parameter space we get, at constant j,

(dA)j = −sdt − qdφ (3.2)

which then is the appropriate potential for black holes with fixed angular momentum

and fluctuating charge. One can proceed in an exactly analogous manner by defining

the potential

B = g + φq (3.3)

for the fixed q ensemble.

Following the discussion in [8], we can briefly comment on the procedure to obtain the

potentials A and B from the Euclidean action. The authors in [8] use the counterterm

method of [40] to obtain the action I(t, ω, φ), corresponding to a fixed potential boundary

condition in the grand canonical ensemble and the action, Ĩ(t, ω, q), corresponding to a

fixed charge boundary condition in the canonical ensemble. Subsequently they obtain the

Gibbs potential, g, and the Helmohltz potential, f , from these actions as

g(t, ω, φ) =
I

β
; f(t, j, q) =

Ĩ

β
+ ωj, (3.4)
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where β is the inverse of temperature. Note that a Legendre transform is required on the

action Ĩ in order that angular momentum may also be held fixed in the canonical ensemble.

One can check that if the action I, rather than Ĩ, is Legendre transformed, we obtain the

potentials A and B correspondig to the “mixed” ensembles. Namely,

A(t, j, φ) =
I

β
+ ωj; B(t, ω, q) =

Ĩ

β
, (3.5)

There remains now to discuss the issue of global stability in various ensembles. The

global stability of the black hole solutions is clearly understood only in the grand canonical

ensemble where the action, I, can be equivalently obtained using the background sub-

traction method of Gibbons and Hawking [41]. Thus, in this case, the zero of the Gibbs

potential corresponds to thermal AdS with a constant pure gauge potential, thereby im-

plying that the black hole is globally stable against AdS only when its Gibbs potential is

negative. However, when either of the charges j or q are held fixed, the AdS space cannot

serve as a reference background as it is no more a solution of Einstein’s equation with the

given fixed charge boundary conditions. In such cases we should compare the free energy

of the black hole with that of a hot gas of particles with a fixed q or j. For example, in the

fixed j ensemble, we could possibly consider as a reference background a thermal AdS with

a constant potential containing a gas of uncharged particles carrying a fixed total angular

momentum. However, we shall not go into details on these issues. We shall just mention

that, as discussed in [42] (and the references therein), even if these black holes are in a

metastable “supercooled” state, where they show interesting phase behaviour, there is a

possibility that these metastable states are long lived.

To begin with, we will study the Ruppeiner geometry of KN-AdS black holes in the

grand canonical ensemble, where both the electric potential and the angular velocity are

held fixed. As in the Van der Waals model, we will be interested mainly in exploring the

behaviour of the Ruppeiner curvature at phase transitions.

3.1 KN-AdS black hole in the grand canonical ensemble

The thermodynamics of these black holes have been studied extensively in [8]. We begin

with the generalised Smarr formula for the KN-AdS black holes:

M =

[

A

16π
+

π

A

(

4J2 + Q4
)

+
Q2

2
+

J2

l2
+

A

8πl2

(

Q2 +
A

4π
+

A2

32π2l2

)]

1

2

(3.6)

where A = 4S, S being the entropy. J and Q are the angular momentum and the electric

charge respectively. It is convenient to absorb the AdS radius in our formulae and redefine

m =
M

l
, s =

S

l2
, q =

Q

l
, j =

J

l2
(3.7)

One can calculate different thermodynamic quantities like the temperature, potentials etc.

via the first law of thermodynamics,

dm = tds + ωdj + φdq (3.8)
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where the scaled intensive quantities are

t = lT, ω = lΩ, φ = Φ (3.9)

Although the expressions are standard, we reproduce some of them for convenience. The

conjugate quantities, i.e. the electric potential and the angular velocity, as a function of

the charges (i.e. s, q, j) are

φ =
π

1

2 q
(

s2 + sπ + q2π2
)

s
1

2 [s4 + 2s3π + s2π2 (1 + 2q2) + 2q2π3s + 4π3j2 (π + s)]
1

2

ω =
π

3

2 j (π + s)

s
1

2 [s4 + 2s3π + s2π2 (1 + 2q2) + 2q2π3s + 4π3j2 (π + s)]
1

2

(3.10)

The temperature of the black hole is given by

t =
3s4 + 4s3π + s2π2

(

1 + 2q2
)

− 4π4j2 − π4q4

4π
3

2 s
3

2 [s4 + 2s3π + s2π2 (1 + 2q2) + 2q2π3s + 4π3j2 (π + s)]
1

2

(3.11)

We can invert the relations in eq. (3.10), and express the electric charge and angular

momentum in terms of the electric potential, the angular velocity, and the entropy. This

will be useful for us in studying the behaviour of the system in the grand canonical ensemble.

The results are

q =
φ

[

πs
(

π + s − ω2s
)

(π + s)
]

1

2

ω2sπ − πs − π2

j =
ωs

3

2

(

πφ2 + s − ω2s + π
) [

(s + π)
(

s + π − ω2s
)]

1

2

2π
3

2 (ω2s − π − s)2
(3.12)

The temperature in eq. (3.11) can now be expressed entirely in terms of the entropy

and the potentials φ and ω, and a plot of temperature vs entropy gives us information about

the stability of the black hole in different regions of parameter space. For convenience, we

have plotted this in two separate graphs, that are illustrated In figures 7 and 8. These

graphs are self explanatory. eg., from figure 7, we see that for the case when both ω, φ < 1

(the black curve), we have stable black holes beyond a certain value of the entropy, the

system undergoing a Hawking Page phase transition in between. For the case when both

ω, φ > 1 (the red curve), no black holes exist at non negative temperature. Keeping ω < 1

and φ > 1, we have a stable black hole branch beginning with an extremal black hole

(the blue curve), and with ω > 1 and φ < 1, we have an unstable black hole branch

at all temperatures starting from extremality (the green curve). The last case, however,

is problematic, as there might be superradiant modes, and a meaningful thermodynamic

description of these black holes may not be possible. Similar analyses can be done with the

graphs in figure 8, where we have restricted to ω < 1. In this graph, (ω, φ) = (0, 0) (the

black curve) represents the familiar AdS-Schwarzschild black hole solution which undergoes

a Hawking Page phase transition at a non-zero value of the entropy. The same features

hold when we increase ω with φ fixed to zero, or as we increase φ with ω fixed at zero.
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Figure 7. Temperature vs entropy for vari-

ous values of (ω, φ).
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Figure 8. Temperature vs entropy for vari-

ous values of (ω, φ) (contd.).

With ω = 0 and φ = 1 (the blue curve), we encounter the RN-AdS black hole (with unit

electric potential), which is stable at all values of the temperature.

We now embark upon an analysis of the phase structure of the KN-AdS black hole

from the point of view of thermodynamic geometry. The line element for KN-AdS black

holes is given by

dl2 = gijdxidxj (3.13)

where gij has been defined in eq. (2.2) and the coordinates xk are the scaled variables

m, j, q.

Let us point out here that in general, some of the regions in parameter space might

be unphysical in the conventional sense that the fluctuations might be unstable [43, 44].

Hence we begin with a few words on the stability of the system.

As emphasized in [23], a necessary and sufficient condition for the line element in the

thermodynamic state space to be positive-definite is that all the leading principal minors

of the metric elements, including the determinant, be positive. This positivity constraint

on the principal minors follows from requirement of thermodynamic stability, i.e., the Le

Chatelier’s principle. In figure 9, we depict various regions in the φ-s plane bounded by the

stability curves L1, L2, L3, and L4. In addition, we have also depicted the extremal curve

E ,with physical regions lying on and below it, and the Hawking-Page curve G, which is the

line of zeroes of Gibbs free energy of the black hole. The stability curve L4 corresponds

to the zeroes of the first minor p1 = gmm, which is negative below and positive above

the curve. Depending on whether the sequence of co-ordinates is {m, j, q} or {m, q, j}

either of the curves L2 or L3 will correspond to the zeroes of the second leading minor,

p2 = (gmmgjj−gmjgjm) or p′2 = (gmmgqq−gmqgqm). Again, this minor is negative below and

positive above L2 or L3. Finally, the curve L1 corresponds to the zeroes of the determinant
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Figure 9. Stability curves in the φ-s plane with ω fixed at 0.7.

of the full metric, with the positive regions lying above the curve. It is now quite evident

from the figure that the quadratic form will be positive definite for regions bounded by the

curve L1 from below and the extremal curve E from above. The interpretation of these

curves in terms of thermodynamic stability is as follows. Moving across the curve L4 from

left to right the specific heat cqj changes sign from negative to positive through an infinite

discontinuity. Across the curves L2 and L3, the corresponding susceptibilities (∂j/∂ω)|φ
and (∂q/∂φ)|ω change sign from positive to negative by passing through zero. We may add

that L2 and L3 are also the lines of divergence of the specific heats cjφ and cqω respectively,

below which the corresponding “mixed” specific heats are negative. Across the curve L1 the

specific heat cφω changes sign from negative to positive through an infinite discontinuity.

Besides, on crossing L1 the previously mentioned susceptibilities change sign again and

become positive through an infinite discontinuity. Thus, we can conclude that only in the

region outside the curve L1 is the black hole on the whole locally thermally stable in the

grand canonical ensemble, even if there exist pockets of mechanical and electrical stability

inside L1. Finally, we may add that the black hole becomes globally stable against thermal

AdS on crossing to the right of the Hawking-Page curve.

As we have mentioned, in the Ruppeiner analysis, we are naturally in the grand canon-

ical ensemble, if we keep all the potentials fixed and let the corresponding charges fluctuate.

Naturally, the variables appearing in the Ruppeiner curvature represent those quantities

that are fluctuating. In the grand canonical ensemble the Ruppeiner curvature has been

calculated in the literature [45]. We will present some of the details here, from a slightly

different perspective.

We find it convenient to study the Ruppeiner curvature as a function of the temper-

ature of the system, for given values of the (fixed) potentials, ω and φ, with entropy s

being treated as a parameter that we vary over suitable ranges. In figure 10, we have

presented the plots of the Ruppeiner curvature vs temperature for various values of (ω, φ),
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Figure 10. Ruppeiner curvature vs tem-

perature for various values of (ω, φ).
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Figure 11. Temperature vs entropy for

same values of (ω, φ).

with both the potentials taking values less than unity.7 For convenience, we have chosen

ω = φ, although the behaviour of the curvature does not qualitatively change for unequal

choices of these parameters. For comparison purposes, we have, in figure 11, shown the

temperature vs entropy plots for the chosen values of the potentials of figure 10. Let us

briefly explain the figures. First of all, note that in these cases, there are two branches

of the solution, and hence the Ruppeiner curvature is also double valued for all values of

the temperature.8 In figure 11, the points A1 · · ·A4 are those for which the
(

∂s
∂t

)

goes to

infinity. These are analogous to the Davies points, but since the portions of the graphs

to the left of these points lie on the unstable branch of the system, no physical meaning

can be attributed to them. The system progresses, beyond a certain value of the entropy

along the “stable” branches, and we have plotted the representative points as B1 · · ·B4.

In figure 10, corresponding points are shown. As the entropy is increased from zero, the

Ruppeiner curvature proceeds along the unstable branch and goes to negative infinity at

the “Davies” points (A1 · · ·A4) and then rises along the stable branch, through points

B1 · · ·B4 as the entropy is further increased.

The behaviour of the Ruppeiner curvature, is as expected, not particularly interesting

in this case, in the absence of clearly defined phase transitions. However, it is interesting

to note that this is an example where the curvature changes sign. The precise physical

meaning of the curvature going to zero is still not understood, and the issue has been

debated in the literature. We are in a position to make a few preliminary comments

on this, in this example. It is believed that the Ruppeiner curvature R changing sign is

expected to signal some kind of “instability” in the system. In this case, the only transition

in the system we have is the Hawking Page transition. With this in mind, we compare R

7For other values of ω and φ, the Ruppeiner curvature shows standard behaviour, in the absence of

multiple branches of the physical solution.
8As before the unstable branches are irrelevant to thermodynamic geometry.
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Figure 12. Ruppeiner curvature and Gibbs

free energy for (ω, φ) = (0, 0) as a function

of temperature.
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Figure 13. Ruppeiner curvature and Gibbs

free energy for (ω, φ) = (0.8, 0.8) as a func-

tion of temperature.

with the the Gibbs free energy near the Hawking Page transition point. The Gibbs free

energy is readily computed in terms of the charges to be

g =
s2π2 + 4π4j2 − π4q4 − 2s2q2π2 − s4

4π
3

2 s
1

2 (s4 + 2s3π + s2π2 (2q2 + 1) + 2π3s (q2 + 2j2) + 4π4j2 + π4q4)
(3.14)

Eq. (3.14) can now be expressed in terms of the potentials using eq. (3.12). The expression

is lengthy and we will not reproduce it here. Rather, we will give a graphical comparison

between g and the R near the Hawking Page transition point.

In figures 12 and 13, we compare the behaviour of the Gibbs free energy with the

Ruppeiner curvature near the Hawking Page transition. We have magnified the scale in

the figures, so as to provide a closer view of the difference between the behaviour of the

two. In both these figures, R is plotted in red, while the free energy is plotted in blue. We

see that R has a slight deviation (at the second decimal place) from the free energy at the

Hawking Page transition. Indeed, it is possible to calculate this deviation exactly, from

the solutions of R = 0 or g = 0. We find that for (ω, φ) = (0, 0) of figure 12, whereas the

Hawking Page transition occurs at t = 0.3183, the stable branch of the Ruppeiner curvature

crosses zero at t = 0.3314. The situation is similar for (ω, φ) = (0.8, 0.8), in figure 13. Here,

the Hawking Page transition temperature is calculated to be at t = 0.1356, whereas the

stable branch of R crosses zero at t = 0.1623. We note that for the case ω = 0 but non

zero φ, the temperature at which the Ruppeiner curvature changes sign becomes almost

indistinguishable from that at which the Gibbs free energy changes sign (signalling the

Hawking Page transition). We have checked that for the values ω = 0, φ = 0.85, the

zero crossing of the curvature of the KN-AdS black hole occurs at t = 0.1663, whereas the

Hawking Page phase transition temperature of the corresponding RN-AdS black hole at

φ = 0.85 occurs at t = 0.1677. We mention here that the zero crossing of the Ruppeiner
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Figure 14. Temperature vs entropy for φ =

0.2 and various fixed values of j.
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Figure 15. Temperature vs entropy for φ =

0.8 and various fixed values of j.

curvature in fact exactly coincides with the Hawking Page transition for the RN-AdS black

holes. The small deviation of the zero crossing temperature of the curvature and the

Hawking Page phase transition temperature in the case of the KN-AdS black holes may

be attributed to the presence of angular momentum fluctuations in the calculation of the

state space scalar curvature for the latter.

3.2 KN-AdS black hole in the fixed j ensemble

We now turn to the description of KN-AdS black holes in the mixed ensemble described

before. We will keep the angular momentum fixed (i.e. in calculating the Ruppeiner cur-

vature, the angular momentum is not treated as a variable) and further set the electric

potential to a constant value. Then, the system can be thought as being in equilibrium

with a charge reservoir (with which it exchanges charge while keeping the electric potential

fixed) and hence is in a grand canonical ensemble as far as the electric charge is concerned.

However, having fixed the angular momentum, the system is in a canonical ensemble in

that it does not exchange angular momentum with its surrounding, while the angular ve-

locity may vary. As already mentioned, we will call this the “fixed j” ensemble. As far as

thermodynamics is concerned, such ensembles are perfectly admissible.

For the fixed j ensemble, it is appropriate to study the thermodynamics by expressing

the charge q in terms of φ in eq. (3.10). The solution is multivalued, and the correct

solution is chosen by matching with the j = 0 limit of the RN-AdS black hole. Once

this is obtained, we can express the temperature in eq. (3.11) in terms of the entropy, the

(constant) angular momentum and the (fixed) electric potential. The result is lengthy,

and we can only discuss our results graphically. In figures 14 and 15, we have plotted

the behaviour of temperature with entropy, for some representative values of φ = 0.2 and

φ = 0.8 respectively, for certain values of the angular momentum.
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In figure 14, the pink, red, blue green and black lines corresponds to j = 0, j = 0.01,

0.015, 0.021 and 0.03 respectively, while for figure 15, the corresponding values are j = 0,

j = 0.001, 0.002, 0.005, and 0.007. For each non zero value of j, we see from the figures

that there is a stable branch that starts from extremality, with a non zero entropy. As

the entropy is increased, there is a turning point in the t − s plane where the specific heat

diverges, and an unstable branch appears with negative specific heat. This continues into

a second stable branch after a second turning point where the specific heat again diverges.

It can be seen from the figures that such behaviour is present only below a certain value of

the angular momentum j for a given value of the electric potential φ. Hence, we see that

there is a critical value of j, for a given (fixed) φ below which the system will exhibit a

first order phase transition (from a small black hole phase to a large black hole phase), as

the entropy is multi valued below this j. At the critical value of j, the system undergoes

a second order phase transition, and the coexistance curve disappeaers.

The critical value of the angular momentum at which this second order phase transition

occurs can be calculated, but an exact analytic expression is difficult to obtain. In figure 16,

we present the graph of the critical value of j vs the electric potential φ plotted as a set of

points calculated numerically. Figure 17 shows the behaviour of the Gibbs free energy for

a subcritical, critical, and supercritcal value of φ for this ensemble with j = 0.011. With

the aid of figure 16, we can further improve our understanding of figures 14 and 15. In

the former, we have set φ = 0.2. From figure 16, it can be checked that for this value

of φ, the critical value of j is 0.2293. Indeed, for j = 0.03 (the black curve in figure 14),

we find that the entropy is single valued. Similarly, for φ = 0.8, the critical value of the

angular momentum is j = 0.0065. At j = 0.007 (the black line in figure 15, the entropy is

single valued again, signalling no unstable regions. As expected, below these critical values

of j, the system has two stable branches connected by an unstable branch. Note that in

figure 17, the Gibbs free energy of the system is positive. As mentioned earlier, however,

the issue of global stability is not yet fully settled, and we proceed with the understanding

that we are possibly dealing with long lived metastable states.

We will now make some general comments about the phase structure in this ensemble.

In figure 18, we have plotted, in the q− s plane, isotherms for the fixed value of j = 0.011.

In figure 19, we have shown the isotherms in the φ− q plane corresponding to some values

of the temperature in figure 18. Let us first focus on figure 18. To understand this figure,

we use he specific heats at constant potential and constant charge

cφ = t

(

∂s

∂t

)

φ

, cq = t

(

∂s

∂t

)

q

(3.15)

Clearly, cφ and cq are the restrictions of the specific heats cjφ and cjq to constant j sections

of the parameter space. These can be effectively used to understand the phase behaviour.

Let us see if we can substantiate this.

In figure 18, the brown and red semi circular lines denote the curves along which the

specific heats cφ and cq of eq. (3.15) blow up. We will refer to these loosely as the cφ curve

and the cq curve respectively. The black line denotes the values of q and s at extremality,

with j = 0.011. It can be shown by direct calculation that the capacitance c =
(

∂q
∂φ

)

t
of
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Figure 16. Critical value of j vs φ for the
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Figure 17. Free energy plots for j = 0.011

ensemble along isopotentials with φ fixed at
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Figure 18. Phase plot of isotherms in the

q − s plane for fixed j ensemble,with j =

0.011. The numbers denote the various val-

ues of temperature.
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Figure 19. Isotherms in the q − φ plane in

the fixed j ensemble, with j = 0.011. The

numbers denote some values of t in figure 18.

the system is infinite on all points of the boundary of the cφ curve and is zero on all points

of the boundary of the cq curve. The exact expressions are lengthy, and in order to justify

the above remarks, we simply state that the numerator of the capacitance is proportional

to the denominator of cq and the denominator of the capacitance is proportional to that
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Figure 21. Isopotential plots for t vs s for

some fixed values of φ of figure 22, in the

fixed j ensemble with j = 0.011

of cφ. We find that

Ncap

Dcq

= s
1

2

(

4π4j2 + π4q4 + 2q2π3s + 4j2π3s + s2π2 + 2s2q2π2 + 2s3π + s4
)

1

2 (3.16)

where Ncap is the numerator of the capacitance and Dcq is the denominator of the specific

heat cq. A similar calculation yields

Dcap

Dcφ

= π
1

2 (3.17)

where Dcap is the denominator of the capacitance and Dcφ
is the denominator of the specific

heat cφ.

It can also be checked that the capacitance c is negative at all points on the q−s plane

that lie outside the (brown) cφ curve, and changes sign through an infinite discontinuity at

the points on that curve, where cφ blows up. It further becomes zero at the points where

cq diverges and is positive at all points in the q − s plane inside the cq curve, bounded by

the red line in figure 18. The isotherms of figure 19 can now be easily understood. For the

t = 0.271 isotherm, we see from figure 18 that as we increase the entropy from its extremal

value, the capacitance is initially positive, becomes infinite and then assumes negative

values in the region between the cφ and cq curves, then becomes zero at the boundary

of the cq curve. Thereafter, it changes sign and becomes positive. It then repeats this

behaviour in the reverse order until it exits from the boundary of the cφ curve. The

isotherms corresponding to t = 0.240 and t = 0.140 should be self explanatory.

To complete the analysis, we now turn to the isopotential graphs. We refer to fig-

ure 20. In this figure, we have plotted the isopotential (fixed φ) curves in the q − s plane
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corresponding to a chosen value of j = 0.011. The brown and red lines still denote the

cφ and cq curves as in figure 18, where cφ and cq are the specific heats as before (the cq

curve will, however, not be important for us in this analysis). The black line denotes the

exremal black hole, with zero temperature for j = 0.011. As we have mentioned, in this

q−s parameter space, the specific heat cφ is positive for all values of (q, s) that lies outside

the cφ curve, and is negative for the region inside the cφ curve; it changes sign via a dis-

continuity on the curve. The reader would note that this graph also clearly indicates the

possibility of first order phase transitions in the mixed ensemble. There is a region between

the extremal line and the cφ curve, where the specific heat cφ is positive. For appropriate

values of φ, cφ becomes positive after passing through two infinites. In the t− s plane, this

behaviour clearly indicates a first order phase transition between a large black hole and a

small black hole. We have shown some of these plots in figure 21. The critical value of

φ = 0.687 for j = 0.011 denotes the end of the first order curve, and a second order phase

transition occurs for these values of j and φ. In figure 21, this corresponds to the blue

line which, as can be checked, has a point of inflection, and this is the second order phase

transition point. Above this line, the system undergoes first order phase transitions, as

seen from the multivaluedness of the temperature with entropy. Below this, there are no

phase transitions and the system resides in the unique large black hole phase. Also note

that for any given value of the angular momentum j, there are regions where the angular

velocity ω > 1. Removing these regions in parameter space will not qualitatively affect our

analysis above.

We now elaborate upon the Ruppeiner curvature, R. Since in this ensemble the angular

momentum j is held fixed, the thermodynamic state space is two dimensional, with the

charge q and and the internal energy m as the two independent fluctuating variables. The

curvature obtained from the 2 − d Riemannian metric is a function of q and s, with j

appearing as an ensemble parameter.9

It may be verified that the line element is positive definite in the regions where cφ

is positive definite, which is our region of interest for the Ruppeiner curvature R. The

expression for R being very lengthy it is best studied graphically. Let us first make a couple

of preliminary observations on R. Firstly, on setting j to zero, the expression for R reduces

to that of RN AdS black hole, which is as expected because the j = 0 ensemble is the RN

AdS black hole in grand canonical ensemble. Secondly, we find that apart from a factor

of s, the denominator of R can be factored into two polynomials, one of them being the

numerator of the expression for the temperature t which we call the “extremal polynomial”

in the sequel, and the other being the square of the denominator of the expression for cφ.

It can also be checked that in the limit of s going to infinity R is zero.

The behaviour of the curvature regarding its sign is more complex in this ensemble.

Nevertheless, the magnitude of curvature should have a definite meaning regardless of its

sign. As mentioned earlier, we will continue to refer to R as a correlation volume [34–36].

9Even though m and q are the independent fluctuating variables we find it convenient to perform all

our calculations with s and q as the independent paramaters. This has to do with the difficulty involved in

inverting the Smarr formula for m.
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Figure 22. Plot of zeroes and infinities of R

in the j = 0.011 ensemble. Also shown are

isopotentials with φ=0.6873(φc) and 0.375

respectively.
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Figure 23. Close up of the ‘negative win-

dow’ of fig 12 with the φ=0.6873(φc), 0.675,

0.660, 0.652 and 0.645 curves drawn respec-

tively from top to bottom.

Figure 22 represents the zeroes and infinities of R in the q − s parameter space for

the j = 0.011 ensemble. In the figure the black semicircle represents the zeroes of the

numerator of R. We call this the N - curve for future reference. The black curve to the left

is made of the zeroes of the “extremal polynomial” (that appears in the denominator of

R), and the green cφ curve consists of the zeroes of the cφ polynomial (which also appears

in the denominator of R, as we have remarked before). In the region of parameter space

inside the cφ curve, the system is thermally unstable owing to negative cφ . It can be

verified that R is negative in the naked singularity region to the left of the extremal curve.

Given this observation we can now see that the Ruppeiner curvature changes sign

through an infinite discontinuity and becomes positive on crossing to the right of the

extremal curve, while below the N - curve, it becomes negative by passing through zero.

Along the cφ curve it diverges without changing its sign as the cφ polynomial appears as

a square in the denominator in the expression for R. In the same figure two isopotential

curves have been drawn, the red one being the critical curve (φ = 0.687) which we see

is tangential to the cφ curve and the brown one below being a subcritical one (φ = 0.37)

which cuts across the cφ curve.

One can follow the variation of R along the sub critical curve as it negotiates various

regions in the q − s parameter space. Typically, along such curves, R will become infinite,

pass through zero, and then go to negative infinity, as the isopotential enters and exits the

unstable region bounded by the cφ curve. In the case of the critical curve, a closer look at

the region surrounding the cφ curve reveals an interesting structure (figure 23). Note that

the N - curve cuts the cφ curve below the critical point. Thus it leaves out a small range
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Figure 24. Plot of absolute value of Rup-

peiner curvature vs temperature for the j =

0.011 ensemble, with its potential fixed at
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Figure 25. Absolute value of Ruppeiner

curvature vs temperature for j = 0.011, φ =

0.645, 0.652, and 0.658 from right to left.

of φ values where the isopotentials would already have acquired a negative curvature value

before entering the unstable region. By abuse of terminology, we will call this the “negative

φ window.” The values of φ for which the isotherms intersect the N - curve below the cφ

curve will be called the “positive φ window.” In this latter window, the isopotential curves

are similar to the subcritical one just discussed.

In order to obtain the isopotential plots for the Ruppeiner curvature as a function of

the temperature, we first express the charge in terms of the electric potential. This way,

we obtain R and t as functions of the entropy, s, and the electric potential, φ, with the

angular momentum j again appearing as the ensemble parameter. The plots can now be

arrived at by fixing φ and varying s as the common parameter along the curve, which we

have varied over a suitable range, starting from its extremal value. We shall investigate

the negative and positive windows of φ separately, with a few representative isopotential

plots corresponding to each case.

We first describe the positive φ window. It is apparent that for this range of φ values

the curvature always changes sign from positive to negative as the black hole undergoes a

first order phase transition from the small to the large black hole phase. In order to compare

the magnitudes of curvature across the phase boundary we shall find it convenient to draw

|R| vs t plots. Figure 24 is one such plot for j = 0.011 ensemble with φ fixed at 0.375. We

shall follow the curve in the sense of increasing entropy. As we increase entropy beyond its

extremal value ,|R|, which has a divergent behaviour at the extremal limit, proceeds from

the left of the figure along the (blue) stable small black hole branch A1A2 until it diverges

at t = 0.254. Thereafter, it turns back and moves along the (red, dotted) unstable branch
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A3A4A5 until it again diverges at the turning point t = 0.285. From there on, it proceeds

forward along the (blue) stable large black hole branch A6A7, progressively diminishing in

magnitude with temperature. For comparison, we refer the reader to a similar isopotential

curve in the t − s plot of figure 21. As expected, one can check that the turning point

and multivalued behaviour of |R| exactly corresponds with the turning point behaviour of

entropy and its multivaluedness with respect to temperature in the s − t plane.

We now turn our attention to the vertical line at t = 0.262 in figure 24 which is the

first order transition temperature. At this point, the free energy at constant φ changes

branch from the small to the large black hole and vice versa (see figure 17). The vertical

free energy line thus naturally divides the small black hole branch into a stable one on the

left and a metastable one the right. Similarly, it divides the large black hole branch into a

stable one on the right and a metastable one on the left. Our conclusion is that the black

hole, owing to the constraint of minimum free energy, jumps from one stable branch to the

other and never accesses the unphysical branch. Short lived metastable states, though, are

not ruled out. Observe that the temperature at which the two stable branches cross each

other(t = 0.255, point (A)) is slightly different from the transition temperature. Thus, at

the first order phase transition, for the given set of parameters, the black hole “correlation

volume” appears to decrease discontinuously to about a tenth of its value on the small black

hole branch, if we associate |R| with the “correlation volume”. As we move up the positive

φ window, the free energy line shifts to the left and approaches the point of intersection

of the stable branches. It crosses it at about φ = 0.652 and then continues leftwards.

This has been shown in figure 25 for three isopotentials, with their respective unstable

branches omitted for clarity of presentation. This can be directly interpreted in terms of

the correlation volume. Thus, we conclude that the difference in correlation volume across

the phase boundary progressively decreases as we approach φ = 0.652 from below, beyond

which it starts to increase from the small black hole to the large black hole phase.

This feature becomes more pronounced in the negative window. Figure 26 is a plot of

R vs t for φ = 0.675 (in the negative φ window). We have not colour coded or labelled the

plots as by now the multivaluedness and general flow of the curves is apparent. Here there is

no need to consider the magnitude of R since both its divergences are on the negative side,

even though for this particular value of φ, Ruppeiner curvature still jumps from positive to

negative at phase transition. The reader can easily notice the similarity with the Van der

Waals case of figure 3. The subsequent behaviour of these plots, shown in figures 27 and 28

exactly mirrors the Van der Waals case depicted in figure 6, culminating in a second order

phase transition along the φc = 0.68727 curve at tc = 0.196, the temperture at which the

free energy curve shows an inflection. Similar to the Van der Waals case, the unphysical

branch gets pushed to infinity for the φc plot and R becomes a single valued function of

temperature. In figure 28, we have increased the accuracy of the numerical value of φ to

show the exact coincidence of the divergence with the value of the temperature at which

the free energy shows an inflection.

Finally, in figure 30, we have plotted a snapshot of the Ruppeiner curvature for different

values of the potential φ for a fixed value of j = 0.011. As expected, the two branches of

R separate out at the critical value of φ.
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Figure 26. Plot of R vs t in j = 0.011

ensemble for φ = 0.675.
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Figure 27. Plot of R vs t in j = 0.011

ensemble for φ = 0.687.
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Figure 28. Plot of R vs t in j = 0.011

ensemble for critical value of φ = 0.6872707.

0.8 0.6 0.4 0.2

–1200

–1000

–800

–600

–400

–200

0

R

0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28
t

Figure 29. Divergence of Ruppeiner curva-

ture at critical values of j, for different values

of φ.

In figure 29, we have shown the behaviour of the the Ruppeiner curvature as a function

of the temperature for the critical values of the angular momentum, corresponding to

φ = 0.2, 0.6 and 0.8 (the red, blue and green lines in the figure respectively). The critical

values of j for the given value of φ can be obtained from figure 16. Qualitatively, we can

understand these plots as follows. As we increase the value of the entropy from the extremal

value, the system moves along a stable branch, on which the Ruppeiner curvature diverges

at a certain critical value of the entropy. Beyond this, the curvature comes down along

the second stable branch, when we further increase the entropy. The unstable branch, as
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Figure 30. Ruppeiner curvature in the fixed j = 0.011 ensemble for different values of φ.

discussed before, is pushed to infinity, and the divergence occurs at the end of the “vapour

pressure” curve. Note also that the critical temperature at which R diverges decreases as

we increase the value of the electric potential.

To summarize, in this subsection, we have studied the Ruppeiner geometry of the KN-

AdS black hole in the fixed j ensemble. We have calculated and analysed the Ruppeiner

curvature R and seen that it closely resembles our discussion on the Van der Waals system,

in that R captures the behaviour of the first order phase transitions along (the analogue of)

the vapour pressure curve in the latter, that culminates in a second order phase transition

where it shows a negative divergence. At the first order phase transition, the Ruppeiner

curvature jumps from one stable branch to another, at a temperature dictated by the free

energy. We have interpreted this in terms of the correlation volume. As emphasized at

the end of the previous section, the Van der Waals system is an approximate model, but

in the case of black holes, with a well defined fundamental relation in all the phases, our

analysis has a more direct physical significance. We can say with some certainty that even

for a non extensive system such as the KN-AdS black hole being considered here, there is

a change in correlation volume at a first order phase transition. These are the main results

of this subsection.

3.3 KN-AdS black hole in the fixed q ensemble

Finally, we come to the fixed q ensemble mentioned in the beginning of this section. This

case is markedly different from the fixed j ensemble that we have discussed. Note that

in this case, we can restrict our analysis to the case ω < 1. To begin with, we express j

in eq. 3.10 in terms of ω, s and q. The physical solution (obtained by matching with the

known q = 0 case) is

j = 2ωπ
(

s2 + sπ + π2q2
)

[

sπ
(

s2
(

1 − ω2
)

+ s
(

2π − πω2
)

+ π2
)]

1

2

[4π3s2 (1 − ω2) + 4π4s (2 − ω2) + 4π5]
(3.18)

– 30 –



J
H
E
P
0
4
(
2
0
1
0
)
1
1
8

0

0.2

0.4

0.6

0.8

1

1.2

1.4

omega

0.05 0.1 0.15 0.2 0.25 0.3 0.35

q

Figure 31. Critical value of q vs ω for the KN-AdS black hole in the fixed q ensemble.

In analogy with the previous case, we calculate the specific heats cω and cj where

cω = t

(

∂s

∂t

)

ω

, cj = t

(

∂s

∂t

)

j

(3.19)

The expressions are too lengthy, but we will find it convenient to use these specific

heats to describe the phase structure, as we had done for the fixed j ensemble. First, as in

the previous case, we show the curve of critical points in the q−ω plane, figure 31. Starting

at a critical charge qc = 1/6, as appropriate for the RN-AdS black hole, it asymptotes to the

ω = 1 line, with the regions of coexistence lying outside the curve. Namely, for all values

of q beyond qc, there is a critical value of ω below which there is no phase coexistence.

On the other hand, we see that below qc, there is phase coexistence but no second order

phase transition.

In order to understand the phase structure better, we have, in figures 32 and 33, plotted

the curves along which the specific heats cω and cj diverge, in the j − s plane, for q = 0.14

and q = 0.16, both values less than qc = 1/6. In these figures, the red lines and the blue

line correspond to the divergence of cω and cj respectively. We will call the (collection of)

red lines as the cω curve and the blue line as the cj curve. From the figures, it is clear

that as we increase the charge, the area bounded by the cj curve shrinks, and we find that

at q = qc, it disappears. This is the critical value of q alluded to in figure 25. Beyond

this point the two disjoint cω curves meet up, which brings into existence the second order

critical points. Our analysis for the phases of the system in this fixed q ensemble will

closely follow that of the fixed j ensemble. In this case, we find by direct calculation that

(apart from some unimportant factors)
(

∂j

∂ω

)

≃
cω

cj
(3.20)

As for the behaviour of the specific heats, we have the following results (refer to figure 33).

cj is negative inside the blue semicircular region, and is positive outside this region. cφ is
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Figure 32. Divergence curves of cω (red

lines) and cj (blue line) in the j − s plane

for q = 0.14.
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Figure 33. Divergence curves of cω (red

lines) and cj (blue line) in the j − s plane

for q = 0.16.
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Figure 34. Phase plot of isotherms in the

j − s plane for fixed q ensemble,with q =

0.16. The numbers denote the various values

of temperature.
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Figure 35. Isotherms in the ω − j plane

in the fixed q ensemble, with q = 0.16. The

numbers denote some values of φ in figure 28.

negative in the region inbetween the two red curves, and is positive everywhere else (i.e.

to the left and right of the left red curve and the right red curve respectively). Hence, we

can now present a clear picture of the phase structure of the system as follows.

In figure 34, we have plotted the isotherms in the q − s plane for q = 0.16, which is

at a value less than qc, (see 25) . Let us focus on the pink line. For this isotherm, the

system starts from the extremal value of the entropy and is initially in a region where cω
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Figure 36. Isopotential phase plot in the

j − s plane in the fixed q ensemble, with q =

0.16, for various values of ω.
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Figure 37. Isopotential plots for t vs s for

some fixed values of ω of figure 30, in the

fixed q ensemble with q = 0.16.

and cj are both positive, and hence so is
(

∂j
∂ω

)

. It crosses the cω curve as the entropy is

increased, after which cω becomes negative, although cj remains positive, and hence
(

∂j
∂ω

)

changes sign. By the same logic, it changes sign three more times before becoming positive

again in the region to the right of the cω curve. The behaviour of the other isotherms are

similar. In figure 35, we have plotted the isotherms in the ω − j plane, that shows exactly

the behaviour discussed above. Thus, it is easy to see that, along such isotherms, the

black hole will undergo a first order phase transition at an appropriate pressure decided

by the Gibbs free energy for this ensemble. Expectedly, the ‘critical’ isotherm is missing.

In figure 36, we have shown plots of constant ω in the j − s plane, for various values of ω.

Again, we point out that there is an absence of a critical isopotential curve. Besides, we

also make the observation that for curves with ω > 1 there is no large black hole branch.

Finally, we need to look at the case q > 1
6
, where as discussed previously, we can expect

to find a second order phase transition. Figures 38 and 39 show the isotherms for q = 0.17,

and the corresponding plots of the isotherms in the ω− j plane. It is easy to make out the

critical isotherm above which the black hole has a phase co-existence regime.

Constant ω plots for the same value of q = 0.17 are shown in figures 40 and 41. Once

again, we notice the critical isopotential and an absence of large black hole branch for ω

greater than one.

It now remains to calculate the Ruppeiner curvature R for this ensemble. It can

once again be verified that the positivity of the line element is ensured in our region of

interest. Once again the curvature is a lengthy expression, but it has features similar to

the constant j case. Thus, it diverges at extremality by changing its sign and along the cω

curve without change in signature. Besides, it goes to zero in the limit of s, and therefore
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Figure 38. Phase plot of isotherms in the

j − s plane for fixed q ensemble, with q =

0.17. The numbers denote the various values

of temperature.
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Figure 39. Isotherms in the ω − j plane in

the fixed q ensemble, with q = 0.17. The

numbers denote some values of t in figure 32.
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Figure 40. Isopotential phase plot in the

j − s plane in the fixed q ensemble, with q =

0.17, for various values of ω.
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Figure 41. Isopotential plots for t vs s for

some fixed values of ω of figure 34, in the

fixed q ensemble with q = 0.17.

temperature, going to infinity. Figure 42 is a plot of |R| vs t in for q = 0.16. It can serve

as a representative plot for all points in the q < qc region. We observe that the free energy

line corresponding to the transition temperature too at a small relative distance on the

right side of the intersection of the two stable branches. As a result, this seems to tell
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Figure 42. Behaviour of |R| for q = 0.16

and ω = 0.8 in the fixed q ensemble.
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Figure 43. Plot of zeroes and infinities of R

for q = 0.22 ensemble.

us that at the first order phase transition point the large black hole branch has a lower

‘correlation volume’ than the small black hole branch. In order to investigate the q > qc

region we first make a plot of zeroes and infinities of R similar to figure 18 for the constant

q ensemble. Thus, in figure 43 for q = 0.22 ensemble, the curvature is positive between

the extremal (brown) line and the line R = 0 (black line), while negative on the right side.

Three isopotentials have been shown. with the blue dotted one having ω = 1. We can

notice that the lowest green colored isopotential, which is slightly above criticality, crosses

the cω curve both the times to the right of R = 0 line. Thus, just like in the constant j

ensemble, we once again recover a range of potentials (ω here) near the critical isoptential,

such that the behavior of the scalar curvature R closely parallels that of the Van der Waals

gas near the transition region. We draw one such plot in figure 44.

In the figure we clearly see that the free energy line is now to the left of the inter-

section, so that the correlation volume increases from the small black holes to the large

black holes. As we approach the critical point, the unstable and metastable branches get

pushed away to infinity and R becomes a single valued function with a divergence at the

critical temperature.

Finally, in figure 45, we show the divergence of the Ruppeiner curvature for φ = 0.6

and 0.4 at the critical value of q. We see that as in the fixed j ensemble, the critical

temperature reduces with increasing ω.

4 Conclusions and summary

In this paper, we have examined in details various aspects of thermodynamic geometry at

phase transitions and critical points in the thermodynamics of 4-D KN-AdS black holes.

Admittedly, in the absence of complete analytical control, given the algebraic complexity

of the expressions involved in the analysis, much of our results have been illustrated graph-
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Figure 44. Behaviour of |R| for q = 0.16

and ω = 0.8 in the fixed q ensemble.
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Figure 45. Divergence of |R| at critical val-

ues of q for ω = 0.6 and 0.4.

ically. However, this has, we believe, brought out a host of new features not studied before

in the literature. Let us first recall our main results.

To begin with, we had a relook at the thermodynamic geometry of the Van der Waals

gas. Our motivation was that, as has been known, many features of asymptotically AdS

black hole thermodynamics closely resemble this system, and we find a confirmation of the

same from the point of view of Ruppeiner geometry as well. In this study, we came across

some novel results in thermodynamic geometry, in particular in relation to first order phase

transitions. We studied these in details for the Van der Waals example, and established

that the Ruppeiner curvature encodes in a very specific way, the behaviour of the system

at a first order phase transition along the vapour pressure curve, that culminates in a

critical point.

Thereafter, we studied the KN-AdS black hole in the grand canonical, as well as the

mixed ensembles where one of the thermodynamic charges were held fixed. These latter

cases also, to the best of our knowledge, have not been reported in the literature. We

have uncovered novel phase behaviour in these mixed ensembles, and we have seen that in

these, the system undergoes a first order phase transition along the analogue of the vapour

pressure curve in the Van der Waals system and that it culminates at a critical point.

One of the most striking features of our analysis is the behaviour of the Ruppiner

curvature at first order phase transitions. We have seen that, given the interpretation of the

curvature as a correlation volume, one can make interesting predictions about the stability

of the system. For example, the Ruppiener curvature R seemingly captures more than

just the Gaussian fluctuations in the system. Note that for a conventional thermodynamic

system, R is always negative. A larger (less negative) value of R is then interpreted in

terms of greater stability of the system [23]. However, for black holes, we have seen that

the curvature usually changes sign. Given the interpretation of |R| as a correlation volume,

it would therefore seem more reasonable that a more stable system would correspond to a
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Figure 46. Relative mean fluctuation of energy as a function of temperature in the fixed j ensemble.

for j = 0.011 and φ = 0.375.

smaller value of |R|. This would seem to imply that in figure 24 for example, a first order

phase transition drives the system from a small black hole to a more stable large black hole

branch. Taking into account only second order moments of the fluctuation in the energy

seem to give a somewhat different picture. In figure 46, we have plotted the relative mean

fluctuation of the energy
δ(E2)

E2 as a function of the temperature t in the fixed j ensemble. In

the figure, the two blue lines represent the two stable black hole branches. The red curves

indicates
δ(E2)

E2 in the unstable region, which is negative indicating unphysicality. From

this figure, we see that the relative mean fluctuation increases as the black hole makes

a jump in first order phase transition, i.e. the black hole jumps to a less stable branch

(along the vertical free energy line). This discrepancy is probably due to the fact that the

Ruppeiner curvature captures more information than just the Gaussian fluctuations. We

defer this issue for future investigations.

Also, note that our analysis conforms to the behaviour of the scalar curvature for

critical phenomena in standard thermodynamics. In the latter, R is always negative in

the neighborhood of the critical point. We have been able to establish that in the mixed

ensembles that we have considered in this paper, there exists a finite neighborhood of the

critical point where R is negative and it diverges to −∞ at the critical point. Finally, it

should be emphasized that characterisation of first order phase transitions is an important

issue in the thermodynamics of condensed matter systems. We believe that our qualifi-

cation of Ruppeiner’s original assertion vis a vis first order phase transitions should find

applications in this exciting branch of research.
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