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1 Introduction

The four-dimensional maximally supersymmetric Yang-Mills theory (N = 4 SYM) is a

fascinating model which exhibits rich but rigid mathematical structure. Thanks to the

AdS/CFT correspondence [1–4] the theory has been in focus of theoretical research for

the past decade. Many interesting results including those based on integrability [5, 6]

suggest that N = 4 SYM may have an exact solution in the large N limit at least in the

supersymmetric sector. This motivates our interest in studying the supersymmetric sector

to identify non-local gauge invariant observables.
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The N = 4 SYM is a superconformal theory. The fermionic subspace of its superconfor-

mal algebra is generated by Poincare supercharges Qα and special conformal supercharges

Sα. In the scope of the present work we call an operator supersymmetric if there exists at

least one non-zero linear combination of Qα and Sα that annihilates the operator.

In this paper we are interested in one-dimensional non-local operators. Familiar ex-

amples of such operators are ’t Hooft and Wilson loop operators. Presently we focus on

supersymmetric Wilson loop operators, which are obtained from the ordinary Wilson loops

by coupling them to the scalars of the N = 4 SYM [7]. We consider the theory on the

Euclidean space-time R4
spt.

A number of such supersymmetric Wilson loops have been found and analyzed previ-

ously, see e.g. [8–16]. All supersymmetric Wilson loops that have been studied previously

are captured by two classes: the loops of arbitrary shape on R4
spt found by Zarembo in [16]

and the loops of arbitrary shape on a three-sphere S3 ⊂ R4
spt found by Drukker-Giombi-

Ricci-Trancanelli (DGRT) in [12]. Zarembo’s loops on R4
spt are the same Wilson loops

which appear in topological Langlands twist of N = 4 SYM [17]; they have trivial expecta-

tion value. The string dual surfaces to these loops were described in [18]. The most familiar

example of the loops in DGRT class is the 1/2 BPS circular loop coupled to one of the

scalars; this Wilson loop can be computed exactly by Gaussian matrix model [8, 9, 19] and

the results agree with the string dual computation. The subset of DGRT loops restricted

to S2 was also recently studied in great details and a connection between this sector of

N = 4 SYM and two-dimensional Yang-Mill on S2 was established [14, 15, 20–26]. It has

not been clear whether these two classes capture all possible supersymmetric Wilson loops.

In this note we give a systematic answer to this question. We find all possible Wil-

son loop operators W that are invariant at least under one superconformal symmetry Q.

Moreover, we classify the interesting subclass of pairs (Q,W ) modulo equivalence under

the action of the superconformal group of the N = 4 SYM.

We find new supersymmetric Wilson loops which has not been identified before. In

many cases the new operators involve complex couplings to the scalar fields that clearly

distinguishes them from the previously studied cases. In certain cases the new operators

could be related to the previously known ones by a complexified conformal transformation.

However, unless we define the theory on the complexified space-time, and stay in the

framework of the conventional theory formulated in the real Euclidean space, the novel

operators are not equivalent to the known ones.

The crucial ingredient in our construction are the ten-dimensional pure spinors. Their

relevance is not so surprising given that the four-dimensional N = 4 SYM is a dimensional

reduction of the ten-dimensional N = 1 SYM, where pure spinors appear naturally [27–29].

The space-time dependent spinor ε that parametrizes the superconformal transformations

of N = 4 SYM, can be viewed as a reduction of a chiral ten-dimensional spinor.

Locally, at a point x of the space-time, Wilson loop operator can be locally described

by the tangent vector to the curve and the scalar couplings at x. We combine this data

into ten-dimenensional vector v(x). If we want to find supersymmetric Wilson loops with

respect to a supersymmetry generated by a given spinor ε(x), we get a certain system

of equations on v(x). This system of equations might be of different types depending on

ε(x). If ε(x) is not a pure spinor, then the system has the unique solution, so that the
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tangent to the curve and the scalar couplings at x are completely fixed. Namely, the

tangent to the curve and the scalar couplings could be combined into a ten-dimensional

vector v(x). This vector, projectively, is precisely the ten-dimensional vector constructed

in the canonical way as the bilinear in ε(x). The curves, resulting in this way from a

generic supersymmetry parameter ε(x), are nothing else but the orbits of the conformal

transformation generated by Q2
ε. If we ask for the orbits to be compact, then modulo

conformal equivalence, the only resulting compact curves are the (p, q) Lissajous figures

where p
q ∈ Q is the rational ratio of two eigenvalues of the so(4) matrix which represents

the action of Q2 on the space-time R4
spt.

If ε(x) is pure then there are more solutions for the vector v(x) (which tangent to

the curve at x and scalar couplings described together by the ten-dimensional vector v(x).

More precisely, a pure spinor ε(x) defines ten-dimensional almost complex structure J(x),

and then the supersymmetry condition of the Wilson loop at x translates to the condition

that v(x) is anti-holomorphic vector with respect to J(x). On the subspace Σ of the

space-time where ε(x) is pure there is richer space of solutions for supersymmetric Wilson

loops. Generically, for any curve sitting inside Σ one can find scalar couplings to make

supersymmetric Wilson loop.

The supersymmetry spinor ε(x) of N = 4 SYM can be extended to the AdS5×S5 space

where it plays the role of the supersymmetry spinor of the IIB String Theory. Similarly

the space Σ where ε(x) is pure can be extended to the the subspace ΣC in AdS5 ×S5. The

pure spinor defines an almost complex structure J ∈ End(TΣC
+ NΣC

), where T and N

stand respectively for the tangent and normal bundles of ΣC ⊂ AdS5 × S5.

We conjecture that for a Wilson loop operator with the contour in Σ the classical dual

string worldsheet lies on ΣC and is pseudo-holomorphic with respect to J . This is supported

by the fact that the J-pseudo-holomorphic solution is necessarily supersymmetric. Thus

the results [12, 18] developed earlier for the string duals of Zarembo loops [16] and DGRT

loops [12] are the particular examples of this general picture.

The structure of the paper is as follows. In section 2 we summarize our conventions

on N = 4 SYM and superconformal transformations in Euclidean space-time. In section 3

we give general construction of supersymmetric Wilson operators and relate that to pure

spinors. In section 4 we find the pure-spinor-surfaces Σ construct the supersymmetric

Wilson loop operators. The next section 5 deals with classification of the pairs (Q,W )

related to pure spinors modulo equivalence under the action of the superconformal group

of the N = 4 SYM.

2 Conventions

We consider the Euclidean space-time R4
spt equipped with the standard flat unit metric.

We take the action of the N = 4 SYM gauge theory with gauge group G on R4
spt to be

S = − 1

2g2
YM

∫

d4xTr

(

1

2

(

FµνFµν + DµΦADµΦA +
1

2
[ΦAΦB ][ΦAΦB]

)

−

− ΨΓµDµΨ − ΨΓA[ΦAΨ]

)

.

(2.1)
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The indexes µ, ν = 1, . . . , 4 label the directions in the space-time, the indices A,B =

5 . . . 10 label the directions in the target space of scalars. We often combine indexes µ, ν

with A,B into ten-dimensional indexes N,M = 1 . . . 10, and the gauge field Aµ and the

scalar fields ΦA into AM := (Aµ,ΦA). That could be interpreted about as dimensional

reduction of the gauge field of d = 10 N = 1 SYM. All fields take value in the Lie algebra

of the gauge group G, the conventions for the covariant derivative and the curvature are

Dµ = ∂µ + Aµ and Fµν = [Dµ,Dν ].

The fermionic fields Ψ are sixteen-component spinors obtained by dimensional reduc-

tion from the chiral spin representation of Spin(10, R) which we call S+. The chiral spin

representation of Spin(10, R) dual to S+ is called S−. The matrices ΓM : S+ → S− are

the 16 × 16 matrices which are the chiral blocks of the 32 × 32 ten-dimensional Dirac

gamma-matrices γµ. We use conventions where

γM :

(

S+

S−

)

→
(

S+

S−

)

, γM =

(

0 Γ∗
M

ΓM 0

)

, ΓM = ΓT
M , {γM , γN} = δMN . (2.2)

The explicit form of ΓM can be found in appendix A. In ten dimensions there is no

need for complex or Dirac-like conjugation to write down a fermionic bilinear like ΨΓMΨ

which is literally
16
∑

α,β=1

ΨαΓM
αβΨβ . (2.3)

We use the indexes α, β = 1 . . . 16 to denote the sixteen components of S+ spinors such

as Ψα. Since we consider the theory as dimensionally reduced from Euclidean space R10

rather than Minkowski space R9,1, we do not require Ψ to be real. However, in the path

integral we integrate only over Ψ but not over their complex conjugates. This is consistent

because complex conjugate to Ψ never appears in the action or anywhere else.

We consider the superconformal transformations

δAM = εΓMΨ,

δΨ =
1

2
FMNΓMNε + ΦAΓµA∇µε,

(2.4)

where spinor ε(x) is a parameter. We treat the spinor ε(x) as a bosonic parameter of the

fermionic supersymmmetry transformation. It transforms in the same spin representation

as Ψ, i.e. in S+. The N = 4 SYM action (2.1) is invariant under (2.4) if ε(x) is a conformal

Killing spinor (twistor spinor) [30].

By definition, a conformal Killing spinor ε(x) is a solution of the twistor equation

(see [31, 31, 32] for a review on conformal Killing spinors)

Dµε =
1

4
Γµ /Dε. (2.5)

We use the notation ε̃ = 1
4

/Dε, so the conformal Killing spinor equation is Dµε = Γµε̃.

The solutions on R4 are parametrized by two constant spinors, which we call εs ∈ S+

and εc ∈ S−

ε(x) = εs + xµΓµεc . (2.6)
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In total there are 16 + 16 = 32 complex generators of superconformal symmetries. The

spinor εs generates the usual supersymmetries associated with 16 supercharges which are

customarily called Qα, and the spinor εc generates the remaining special conformal su-

persymmetries associated with 16 supercharges which are customarily called Sα. The

supersymmetry transformation Qε is given by Qε = εα
s Qα + εc

βSβ.

3 Supersymmetric Wilson loops and pure spinors

For a closed contour γ : S1 → R4
spt and a representation R of the gauge group, a Wilson

loop operator WR(γ) is the trace in the representation R of the path ordered integral of

the gauge field along the contour γ

WR(γ) = TrR Pexp

∮

γ
Aµdxµ. (3.1)

A natural generalization of (3.1) for a theory with adjoint scalars is obtained by coupling

to the scalar fields ΦA [7, 33]

WR(γ̂) = TrR Pexp

∮

γ
AMvMds

= TrR Pexp

∮

γ
(Aµvµ + ΦAvA)ds ,

(3.2)

where the generalized contour γ̂ = (xµ(s), vA(s)) is now defined by specifying the four-

dimensional tangent velocity vector vµ(s) = dxµ/ds and a six-vector of scalar couplings

vA(s). To make the usual sense of the contour in the real space-time the tangent vector

vµ(s) must be real. At the same time the scalar couplings vA(s) generically could be

complex. Our notation vA is related to the common notation θA, used in the literature

on the subject [7, 12, 16], via vA = iθA. A local operator, say 1
J ! TrR(Φ5 + iΦ6)

J is also

captured by the generic definition (3.2). It corresponds to contour γ which is point in R4
spt

but a unit interval in R6
scl such that

∫

γ vA = (1, i, 0, 0, 0, 0) and taking J-th term in Taylor

series of the exponent expansion.

For the Wilson loop (3.2) to be supersymetric vMAM must be invariant under (2.4),

that is

vM (x)ε(x)ΓMΨ = 0 (3.3)

has to vanish for any Ψ at each point on the contour γ(s). This implies

vM (x)ΓMε(x) = 0 . (3.4)

To find all possible solutions of (3.4), we first consider the problem locally a point x.

We assume that we have a generic spinor ε, and we want to identify the space of directions

L ⊂ R10 ⊗ C which annihilate ε under the Clifford action:

vMΓMε = 0, v ∈ L. (3.5)

At this moment we allow vM to be complex and consider possible reality conditions later.

– 5 –
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For any ε we can canonically construct a bilinear vector uM (ε) as

uM = εΓMε. (3.6)

Now, depending on whether uM = 0 or uM 6= 0 we have two distinct cases. If uM = 0 the

spinor ε is pure spinor, and if uM 6= 0 the spinor ε is not pure spinor. This requires some

clarification which will be given below.

First consider the generic case when uM (x) 6= 0 (ε is not pure spinor). It is a simple

exercise to show that in ten dimensions vM = λuM , λ ∈ C is the only solution to (3.5)

unless uM = 0. The fact that vM = uM is a solution follows from the following identity for

the ten-dimensional gamma-matrices

ΓM
α(βΓM

γδ) = 0 . (3.7)

(This Fierz identity is used to establish supersymmetry of d = 10 N = 1 SYM.) The proof

of the uniqueness of the solution vM ∼ uM for uM 6= 0 can be found in appendix A.

Second consider the case when uM (x) = 0 (ε is pure spinor). In the ten-dimensional

space the equation

εΓMε = 0 (3.8)

is equivalent to saying that ε is a pure spinor [27]. Generically, a spinor ε for Spin(R2n) is

called pure if it is annihilated by half of gamma-matrices: there exists a half-dimensional

subspace L ⊂ R2n ⊗ C such that

vMΓMε = 0 ⇔ v ∈ L . (3.9)

A pure spinor ε defines a complex structure on the vector space R2n⊗C by saying that L is

the space of anti-holomorphic vectors L = V (0,1). In general, a complex structure on vector

space R2n can be defined as a 2n × 2n antisymmetric matrix J such that J2 = −1. Under

action by J , the complexified vector space R2n ⊗ C splits as R2n ⊗ C = V (1,0) + V (0,1),

where holomorphic V (1,0) is the +i-eigenspace of J and anti-holomorphic V (0,1) is the

−i-eigenspace of J .

Therefore, whenever εΓMε = 0, the solutions to the local supersymmetry equation (3.5)

are the anti-holomorphic vectors vM with respect to the complex structure Jε. In our case

V
(0,1)
ε is a five-dimensional complex vector space.

Now we can return back to the Wilson loop (3.2) and describe the operators invari-

ant under a superconformal generator Qε. At a generic point in the space-time x where

uM (ε(x)) 6= 0 , locally, the only supersymmetric Wilson loop is

Pexp

∫

γ
(Aµuµ + ΦAuA)

ds

(uµuµ)1/2
. (3.10)

The tangent to the contour γ, specified by xµ(s), must be aligned with uµ(x). In order for

the contour γ to be in R4
spt the vector uµ must be projectively real, i.e. there is λ ∈ C∗

such that dxµ

ds = λuµ is real.
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The vector field uµ(ε(x)) has simple geometrical interpretation. It is the vector field

of the infinitesimal conformal transformation generated by Q2
(εs,εc)

. One can check (see

e.g. [19]) that the action of Q2
ε on any field φ of the theory is represented as

Q2
εφ(x) = (−Lu − GuM AM

− R − Ω)φ(x) (3.11)

where Lu is the Lie derivative in the direction of u, the symbol GuM AM
denotes gauge

transformation, the symbol R is the R-symmetry transformation and the symbol Ω is a

local scale transformations acting on fields according to their conformal dimensions.

In points x where uµ(x) = 0 but uM 6= 0 the supersymmetric Wilson loop reduces to

a local operator

WR(xµ, u) = TrR exp(λuAΦA(xµ)), λ ∈ C∗. (3.12)

The most interesting case is when uM vanishes on some subspace Σε ⊂ R4
spt

Σε = {x ∈ R4
spt|uM (ε(x)) = 0} . (3.13)

The spinor ε(x) is pure everywhere on Σε. Locally at a given point x, the tangent vµ

and the scalar couplings vA of supersymmetric Wilson loop must be components of an

anti-holomorphic vector vM ∈ V
(0,1)
ε(x) .

To find all Wilson loop operators in this class, for each Qε we find pure-spinor-surface

Σε and the bundle of anti-holomorphic vectors V
(0,1)
ε → Σε. For each contour γ such that

the tangent vector vµ is a projection to TΣε of some section v of V (0,1) we can associate

supersymmetric Wilson loop.

We remark that we do not require any integrability condition for the almost complex

structure along Σ as it was not needed to establish supersymmetry of the Wilson loop

operators. Unless explicitly stated otherwise, by complex structure we always mean an

almost complex structure.

3.1 Pure spinors in AdS5 × S5

The conformal Killing spinor (2.6) can be extended from the boundary R4
spt of AdS5 into

the bulk of AdS5 × S5

εAdS(xM ) =
1√
z

(

εs + xMΓMεc

)

, (3.14)

where it becomes the supersymmetry transformation parameter for the theory in the bulk,

see e.g. [12, 34]. The explicit formula (3.14) is presented in the vielbein for the spin bundle

over AdS5 × S5 associated canonically to the coordinates (xµ, yA) on AdS5 × S5 in which

metric has the form

ds2 = y2dxµdxµ +
dyAdyA

y2
. (3.15)

The coordinates yA are related to coordinates zA as yA = zA/z2 where in coordinates

xM = (xµ, zA) the same metric (3.15) is

ds2 = GMNdxMdxN =
dxµdxµ + dzAdzA

z2
. (3.16)

– 7 –
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The subspace Σ ⊂ R4
spt where ε(x) is pure can also be extended to ΣC ⊂ AdS5 × S5.

Then εAdS defines an almost complex structure J on ΣC, more precisely J is a section

of End(TΣC
+ NΣC

) such that it is compatible with the metric and that J2 = −1. We

conjecture that the classical stringy world-sheet dual to the supersymmetric Wilson loop

operator with contour living on Σ will be given by a pseudo-holomorphic surface in ΣC. In

support of this idea we show that such a solution would satisfy the κ-symmetry condition

in the bulk i.e. will be supersymmetric.

We choose the coordinates on the stringy world-sheet such that the induced metric is

flat gαβ = δαβ . In this notations the pseudo-anti-holomorphic surface is given by

V M
α = ∂αXM − ǫαβJM

N ∂βXN = 0 . (3.17)

This condition guarantees that the corresponding profile is supersymmetric i.e. it satisfies

the κ-symmetry condition

(ǫαβ∂αXM∂βXNΓMN − iδαβ∂αXM∂βXNGMN )εAdS5
= 0 . (3.18)

Following [12] we prove (3.18) by showing that

∂αXM (δN
M + iJN

M )ΓNεAdS = 0 , (3.19)

is satisfied (the κ-symmetry condition can by obtained from (3.19) by multiplying it by

∂αXMΓM). The latter is obvious because the vector ∂αXM (δN
M + iJN

M ) is anti-holomorphic

i.e. it is an −i-eigenvalue of the pseudo-complex structure J . Therefore it annihilates the

spinor εAdS5
according to the definition of J .

We remark that this result for the specific cases of the strings dual to Zarembo’s

loops [16] and DGRT’s loops [12] was obtained in [12, 18]. However, there the pseudo-

holomorphic structure J appeared as an extra input, not directly related to ε, and (3.19)

was established with help of the explicit form of J and εAdS. We cosntruct J canonically

starting from an arbitrary superconformal symmetry parameter ε at points where ε is pure.

In addition, one can easily see that the supersymmetry implies that the world-sheet is

psedo-holomorphic provided that it lies in ΣC. To show that one can multiply (3.18) by

εAdS5
from the right and use that (V N

α )2 = 0 implies V N
α = 0. We do not have a general

argument why the world-sheet dual to Wilson loop in Σ must sit inside ΣC, but that seems

to be a reasonable conjecture.

The pseudo-holomorphic surface is always calibrated by some calibration form P [J ] as

follows from the following inequality

∫

d2σGMNV M
α V N

α ≥ 0, (3.20)

and hence

Sstring ≥
∫

P [J ], J[MN ] = GMLJL
N . (3.21)

In general the calibration form J is not closed, therefore we cannot immediately compute

the classical action as a functional of the boundary conditions.

– 8 –
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4 Pure-spinor surfaces Σ

In this section we will find explicitly all superconformal generators Qε that admit a non-

trivial pure-spinor-surface Σε. We call Σε non-trivial if it has at least one component of

positive dimension.

We pick any connected component of positive dimension of Σε and call it Σε in

what follows.1

We choose any point in Σε to be an origin of the coordinate system in R4
spt. In this

coordinate system the conformal Killing spinor ε has the form

ε(x) = εs + xµΓµεc , (4.1)

where εs = ε|x=0 is pure. Our goal is to find for which εc there is a nontrivial pure spinor

surface Σε (3.13) and what shape Σε has. From the definition of Σε and (3.8) it follows

that Σ is an intersection of 10 quadric hypersurfaces in R4
spt. Potentially Σ can have a

complicated shape. It turns out that it is easier first to solve a more generic problem in

ten dimensions. For that reason we formally continue the conformal Killing spinor (4.1)

from R4
spt to R10 by replacing xµΓµ by xMΓM . We have seen in the previous section that

the extended spinor ε(x) in ten dimensions (3.14) plays the role of the supersymmetry

parameter of string theory in AdS5 × S5.

4.1 Form notations and pure spinor constraints

We start by introducing the subsurface ΣC ⊂ R10 where the spinor is pure

ΣC = {x ∈ R10|uM (x) = 0}. (4.2)

If we find ΣC ∈ R10 then we get Σ simply by intersecting ΣC with the space-time R4
spt ⊂ R10.

To solve the pure spinor equations (3.8) it is convenient to identify the Spin(10) spinor

representation S ≃ C32 with the space of anti-holomorphic (0, p) forms, p = 0, . . . , 5, on

the vector space C5 ≃ R10.

The spinor ε(x) is pure at the origin. We use it to define a complex structure on the

vector space R10, so in the following we assume R10 ≃ C5 where the isomorphism is defined

by the pure spinor εs.

Given a pure spinor εs, the spinor representation S of Spin(10) can be constructed as a

Fock space using action of the gamma-matrices. As was explained around formula (3.9) we

use the conventions such that the spinor εs is annihilated by the anti-holomorphic vectors

vĪ . In the following, we use the indices I, Ī = 1 . . . 5 to denote the holomorphic and anti-

holomorphic coordinates xI , xĪ on C5 ≃ R10. (Note that if xI , xĪ are coordinates of a point

in the original real space R10 ≃ C5 then xĪ is a complex conjugate of xI . However, on

the complexified space R10 ⊗ C = C10 we use coordinates xI , xĪ as indendent.) From our

definition of the complex structure

vĪγĪ εs = 0 for any v ∈ V (0,1) (4.3)

1Actually we will see later that Σε is always connected.
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we get that εs is annihilated by matrices γĪ , Ī = 1 . . . 5.

Let us fix our notations more precisely. The 32×32 Dirac gamma-matrices representing

the Clifford algebra on the space R10 satisfy the canonical anticommutation relations

{γM , γN} = 2gMN , (4.4)

where gMN = δMN is the standard unit metric on R10 .

Given the complex structure J on R10 compatible with the metric gMN , we get a

Hermitian metric gIJ̄ on the complexified space C10 = R10 ⊗ C and then a structure of

the Clifford algebra on C10. If (xI , xĪ) are the coordinates on C10, the corresponding

basis elements of Clifford algebra are represented by the matrices γI , γĪ . Moreover, since

gIJ = gĪ J̄ = 0 we have

{γI , γJ̄} = 2gIJ̄ , {γI , γJ} = 0 , {γĪ , γJ̄} = 0 . (4.5)

We can use the inverse metric to raise indexes and then define gamma-matrices with

the upper index

γI = gIJ̄γJ̄ , γ Ī = gĪJγJ , (4.6)

where gIK̄gK̄J = δI
J . Then

{γI , γJ} = 2δI
J , {γ Ī , γJ̄} = 2δĪ

J̄ , {γ Ī , γJ} = {γI , γJ̄} = 0. (4.7)

The construction of the spin representation S as a Fock space is straightforward.

We define the vacuum state |εs〉 as a state annihilated by all anti-holomorphic vectors

in V (0,1) ⊂ C10 under the Clifford action (compare with (4.3))

vĪγĪ |εs〉 = 0 for all (0, 1) vectors v. (4.8)

It will be more convenient to use the p-forms instead of p-vectors in what follows and

we use the Hermitian metric gIJ̄ to identify V (0,1) with the space of holomorphic one-forms

V ∗
(1,0). Then

vIγ
I |εs〉 = 0 for all (1, 0) forms v. (4.9)

We call γI the lowering operators and γ Ī the raising operators. The Fock space as a vector

space is spanned on the states (with n = 5 in our case)

γ Ī1···Īk |εs〉 , I1 < I2 < · · · < Ik , k ≤ n. (4.10)

Let ρp denote an antisymmetric (0, p)-form

ρp =
∑

Ī1<Ī2<···<Īp

ρĪ1...Īp
γ Ī1...Īp . (4.11)

Then an arbitrary spinor ε as a state in Fock space can be written as

ε =

n
∑

p=0

ρp|εs〉. (4.12)
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The space of anti-holomorphic forms ⊕pV
∗
(0,p) is isomorphic to the spin representation space

S. There is a natural Z2 grading on S that is compatible with the action of the generators

γMN of Spin(2n). This Z2 grading defines the chiral decomposition S = S+ ⊕ S−. The

space S+ of spinors of positive chirality is the space of forms of even degree p and the space

S− of spinors of negative chirality is the space of forms of odd degree p.

If n is odd, then the representation S+ and S− are dual to each other, which means

that there is a natural Spin(2n)-invariant pairing between S+ and S−. If ρ ∈ S+ and

σ ∈ S−, in the conventional spin index notations the pairing is simply ρασα. The same

contraction in Fock space representation (4.12) is

(ρ, σ) := (R[ρ] ∧ σ)top. (4.13)

Here |top stands for picking up the coefficient of the top degree form normalized by some

fixed element in V ∗
(0,n), and R[ρ] denotes the reverse order operation on S+, see e.g. [35, 36]

R[ρp] = ρp for p = 4k, 4k + 1,

R[ρp] = −ρp for p = 4k + 2, 4k + 3.
(4.14)

For n = 5 the pairing between spinor ρ = ρ0+ρ2+ρ4 ∈ S+ and spinor σ = σ1+σ3+σ5 ∈
S− is

(ρ, σ) = (ρ0 ∧ σ5 − ρ2 ∧ σ3 + ρ4 ∧ σ1). (4.15)

At the next step we rewrite the pure spinor condition for a spinor ε ∈ S+

ε = (ρ0 + ρ2 + ρ4)|εs〉 , (4.16)

in terms of the constraints on the forms ρ0, ρ2, ρ4. In general, given a vector space V = R2n,

and a complex structure on V , a pure spinor is a vacuum state in the spin representation

constructed as a Fock space. In other words, ε ∈ S is a pure spinor if it is annihilated

by a half-dimensional isotropic subspace L ⊂ VC with L ∩ L̄ = 0.2 A choice of L ⊂ VC

defines a complex structure on V by declaring L to be the space of anti-holomorphic vectors

L = V (0,1). To summarize, the space of complex structures on V is isomorphic to the space

of equivalence classes of pure spinors ε modulo rescaling ε ∼ λε, ε ∈ C∗.

As we already mentioned above, if n = 5 a spinor ε is a pure if and only if

εΓMε = 0, M = 1, . . . , 10. (4.17)

Now we rewrite (4.17) using the form notation (4.16) and (4.13)

εvĪγ
Īε = 0, v ∈ V ∗

0,1

εvĪγĪε = 0, v ∈ V 0,1.
(4.18)

To simplify notations in the calculation we notice that for any spinor ε = ρ|εs〉, where

ρ is a polyform, we have

vĪγ
Īε = (v ∧ ρ)|εs〉 , (4.19)

2 Isotropic means that g(L, L) = 0 i.e. gIJ = gĪJ̄ = 0.
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where v ∧ ρ denotes the usual external product of the antisymmetric forms v and ρ. Simi-

larly, using (4.6) we also have

vĪγĪε = (2ivρ)|εs〉 , (4.20)

where ivρ denotes a contraction of the vector v and a polyform ρ.

We want to express the condition that a spinor is pure spinor as a constraint on ρ.

After contracting (4.19) with 〈ε| we get (first equation of (4.18))

ρ0 ∧ v ∧ ρ4 − ρ2 ∧ v ∧ ρ2 + ρ4 ∧ v ∧ ρ0 = 0 , (4.21)

for any anti-holomorphic one-form v, which means that if ρ is pure then

ρ0ρ4 =
1

2
ρ2 ∧ ρ2. (4.22)

Similarly, the second equation of (4.18) implies that if ρ is pure then

ρ2 ∧ ivρ4 = ρ4 ∧ ivρ2 for any vector v. (4.23)

Since 0 = iv(ρ2 ∧ ρ4) = ivρ2 ∧ ρ4 + ρ4 ∧ ivρ2, we get that (4.23) is equivalent to

ivρ2 ∧ ρ4 = 0 for any vector v. (4.24)

Notice that if ρ0 6= 0, the condition (4.22) implies (4.23). Indeed, it is easy to check that

ρ2 ∧ ρ2 ∧ ivρ2 vanishes identically in five dimensions for any two-form ρ2 and vector v.

Another way to derive the pure spinor constraint (4.22) is to notice that all pure spinors

ρ with ρ0 6= 0, modulo rescalings ρ → λρ, λ ∈ C∗ are in the Spin(10) orbit of the vacuum

spinor |εs〉. The Spin(10) acts on S+ as

|εs〉 7→ exp(ωĪ J̄γ Ī J̄)|εs〉 . (4.25)

(We write only (0, 2) components ωĪJ̄ of all Spin(10) generators, because |εs〉 is annihilated

by holomorphic generators γI). Then

|εs〉 7→ (1 + ωĪJ̄γ Ī J̄ +
1

2
ωĪ J̄ωK̄L̄γĪJ̄γK̄L̄)|εs〉, (4.26)

which can be rewritten as

|εs〉 7→ (1 + ω2 +
1

2
ω2 ∧ ω2)|εs〉. (4.27)

Here ω2 is a two-form ω2 = ωĪ J̄γ Ī J̄ . Hence, all pure spinors with ρ0 6= 0 can be parametrized

by a scale factor ρ̃0 ∈ C and a two-form ω2 ∈ Λ2(C5). (This is a well-known local

parametrization of pure spinors in ten dimensions used in [37, 38]). In the ρ = ρ0 + ρ2 + ρ4

is expressed in terms of ρ̃0 and ω as

ρ0 = ρ̃0 , ρ2 = ρ̃0ω2 , ρ4 =
1

2
ρ̃0ω2 ∧ ω2. (4.28)

The quadratic constraints (4.22) are satisfied.
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4.2 Pure spinor surface in R10

Now we are ready to rewrite the conformal Killing spinor (4.1) in the form notations on

C5 and solve the pure spinor constraint (4.22) and (4.24).

We use the Fock space representation of S− to identify the superconformal generator

εc with three anti-holomorphic forms v, m, w, where v is a (0, 1)-form, m is a (0, 3) and w is

a (0, 5)-form on C5 (clearly, the total number of components matches as 5 + 10 + 1 = 16).

More explicitly

εc =

(

vĪγ
Ī +

1

3!
mĪ1Ī2Ī3γ

Ī1Ī2Ī3 +
1

5!
wĪ1Ī2Ī3Ī4Ī5γ

Ī1Ī2Ī3Ī4Ī5

)

εs . (4.29)

A conformal Killing spinor (2.6) formally extended to R10 = C5 is then

ε(x) = εs + (ξJ̄γJ̄ + xĪγĪ)εc

= ((1 + 2ixv) + (ξ ∧ v + 2ixm) + (ξ ∧ m + 2ixw))|εs〉,
(4.30)

where we introduced the (0, 1) one-form ξĪ = gĪJxJ .

If x ∈ R10, so the coordinates xM are real, then xI and xĪ are complex conjugate to each

other. In this case the (0, 1) form ξĪ and the (0, 1) vector xĪ are related through complex

conjugation. More generally, one can treat ξĪ and xĪ as independent, which corresponds

to taking complex xM .

Recall that we defined ΣC ⊂ R10 as a set of points where the spinor ε(x) (4.30) is pure.

Clearly, the point xM = 0 is always in ΣC. We say that ΣC is non-trivial if xM = 0 belongs

to a component of positive dimension.

We call a (0, 3) form m totally decomposable if there exist three (0, 1)-forms µ1, µ2, µ3

such that m = µ1 ∧ µ2 ∧ µ3.

Now we formulate the key result of this section.

Proposition. Given a pure spinor εs, a pure spinor hypersurface ΣC ⊂ R10 is non-trivial

if and only if εc in parametrization of (4.29) satisfies w = 0 and m is totally decomposable.

In this case the hypersurface ΣC is described by the equation

(ξ + 2(ξ, x)v) ∧ m = 0 , (4.31)

where the complex coordinates (xĪ , ξĪ = gĪJxJ) are defined by the complex structure on

R10 associated to the pure spinor εs.

We delegate the proof that the non-trivial ΣC requires w = 0 and m to be decomposable

to the appendix B. Here we just show that if both conditions are satisfied ΣC is given

by (4.31).

For the spinor (4.29) the quadratic pure spinor constraint (4.24) with v = x takes

the form

0 = ixρ2 ∧ ρ4 = ix(ξ ∧ v) ∧ (ξ ∧ m) = (x, ξ)v ∧ ξ ∧ m . (4.32)

For a real non-zero x the pairing (x, ξ) = 1
2 |x|2 is also non-zero. Therefore v ∧ ξ ∧ m must

vanish and consequently

0 = ix(ξ ∧ v ∧ m) = ixξ v ∧ m− ixv ξ ∧ m + ξ ∧ v ∧ ixm . (4.33)
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Now we proceed with the constraint (4.22)

(1 + 2ixv) ∧ (ξ ∧ m) =
1

2
(ξ ∧ v + 2ixm)

2 . (4.34)

First we expand both sides

ξ ∧ m + 2ixv ∧ ξ ∧ m =
1

2
(ξ ∧ v)2 + 2ξ ∧ v ∧ ixm + 2(ixm)

2 , (4.35)

and notice that (ξ ∧ v)2 = 0 and also (ixm)
2 = 0 because we assume that m is

totally decomposable.

Together with (4.33) the equation (4.35) reduces to

(ξ + 2(x, ξ)v) ∧ m = 0 . (4.36)

Since (4.36) imply ξ ∧ v ∧ m = 0 we conclude that if w = 0 and m is totally decomposable

the pure spinor constraints (4.22), (4.24) are equivalent to (4.36).

Now let us solve the equation (4.36) for ΣC. There are only two topologically distinct

cases: m = 0 and m 6= 0. If m = 0 the equation (4.31) for ΣC is trivial and ΣC = R10,

Σ = R4 spt. If m = µ1 ∧ µ2 ∧ µ3 6= 0 then it is convenient to choose an orthonormal

coordinate system z1, . . . , z5 in C5 ∼= R10 such that

m = µ dz1 ∧ dz2 ∧ dz3 (4.37)

with µ ∈ C∗.

Orthonormality of the chosen coordinate system implies that gIJ̄ = gĪJ = 1
2 . In this

coordinates the equation for ξĪ is

ξ4̄ = −|ξ|2v4̄ ,

ξ5̄ = −|ξ|2v5̄ ,
(4.38)

where |ξ|2 = 2gIJ̄ξĪξJ̄ = x2.

If v4̄ = v5̄ = 0 then ΣC is a complex three-plane ΣC = C3 defined by z4 = z5 = 0.

Otherwise, ΣC is a real six-dimensional sphere ΣC = S6 defined by the equations (4.38).

For illustration, consider an example when z1, . . . , z5 are related to the original coordinates

x1, . . . , x10 on R10 in the simplest way3

zI = x2I−1 − ixI . (4.39)

Then the equations (4.38) can be written in real notations as follows

xa + x2va = 0 , a = 7 . . . 10, (4.40)

and x2 = xMxM . The sphere S6 is located inside the R7 spanned by first six directions in

R10 and the vector va.

3Notice that we have chosen the simplest relation just to illustrate the idea. In general the relation

between the original basis xM and the complex basis zI that diagonalize m could be different.
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Now, depending on the relative orientation of the space-time R4
spt ⊂ R10 and ΣC ⊂ R10,

we obtain various pure spinor hypersurfaces Σ = ΣC

⋂

R4
spt. In the example above Σ is

just a point xM = 0 i.e. it is trivial, but in general Σ = Sn with n = 1, . . . , 3 or Σ = Rn

with n = 1, . . . , 4.

Let us summarize possible cases for Σ:

1. If m = 0 then ΣC = R10. Then automatically Σ = R4
spt.

2. If m 6= 0 but v ∧ m = 0 then ΣC = R6. Then Σ is Rn, where n = 1, . . . , 4 depending

on the relative orientation of R4
spt and ΣC.

3. If m 6= 0 and v ∧ m 6= 0 then ΣC = S6. Then Σ is Sn, where n = 1, . . . , 3 depending

on the relative orientation of R4
spt and ΣC.

The third case could be related to the second one by a suitable conformal transforma-

tion as explained in section 5.2.

4.3 Complex structure on the pure spinor hypersurface

We have just shown that for a suitable choice of spinors (εs, εc) the supersymmetry spinor

ε(x) is pure on a hypersurface ΣC ⊂ R10. If ΣC is non-trivial then ΣC is either R10,

R6 or S6.

In the previous section we used the pure spinor εs = ε|x=0 to define complex structure

on R10 as on the vector space (not as on the manifold R10). It was merely a technical trick

that helped us to find ΣC. Now, when this is done, we will find an almost complex structure

J(x) ∈ End(R10, R10) at each point x on ΣC defined by ε(x). The complex structure at the

origin J(x = 0) coincides with the base complex structure on R10 defined by εs and used

in the previous section.

This complex structure J(x) or, more precisely, the space of anti-holomorphic vectors

V
(0,1)
x at each point x defines locally the space of allowed supersymmetric combinations of

the contour directions vµ and the scalar couplings vA of the Wilson loop (3.2).

Let ZM
Ī

where M = 1 . . . 10, I, Ī = 1 . . . 5 be x-dependent 10×5 basis matrix of V
(0,1)
x .

Similarly, let ZM
I be the basis matrix of V

(1,0)
x , so

xM = ZM
I xI + ZM

Ī xĪ . (4.41)

The matrix ZM
Ī

defines the anti-holomorphic vector space V
(0,1)
x associated with the

pure spinor ε(x) at a given point x ∈ ΣC

ZM
Ī (x)γMε(x) = 0. (4.42)

We can normalize ZM
I as

δMNZM
I ZN

J = 0 , δMNZM
I ZN

J̄ = gIJ̄ . (4.43)

We assume for now that v ∧ m = 0 which means that ΣC is either the total space R10

if m vanishes, or a six-plane R6 ⊂ R10 if m is a non-zero decomposable three-form. The
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supersymmetry spinor ε(x) (4.30) is explicitly given by

ε(x) = (1 + 2xĪvĪ)

(

1 +
1

2
αĪ J̄γ Ī J̄

)

εs (4.44)

where (1 + 2xĪvĪ) is a scalar multiplier and the (0, 2) form αĪ J̄ is

αĪ J̄(x) =
ξĪvJ̄ − ξJ̄vĪ + 2xK̄mK̄ĪJ̄

1 + 2xĪvĪ

. (4.45)

To find ZM
Ī

(x) we start with (4.42) at x = 0

ẐM
Ī γMεs ≡ γĪεs = 0, (4.46)

where ẐM
Ī

= ZM
Ī

(x = 0), and multiply it by (1 + 1
2αĪ J̄γ Ī J̄) from the left. Then we use the

anticommutation relations to move this factor to the right and also the fact that α∧α = 0

to express εs through ε(x). As a result we get

ZM
Ī (x) = ẐM

Ī + 2ẐM
K gKJ̄αJ̄ Ī(x). (4.47)

5 Classification of the SO(5, 1) × SO(6) orbits in the space of supercon-

formal charges

In section 4 we found the conditions on a pair of spinors (εs, εc) such that the conformal

Killing spinor ε(x) (2.5) is pure on a nontrivial hypersurface Σ ∈ R4. The Wilson loop

operator (3.2) on Σ is supersymmetric with respect to ε(x) if vM is anti-holomorphic at each

point x ∈ Σ with respect to the complex structure J(x). That means vM (X) = ZM
Ī

(x)vĪ

for a suitable vĪ . To find a real contour in R4
spt one is compelled to choose vĪ such that

vµ is real and vµ = dxµ/ds for some contour γ : xµ(s) ⊂ Σ. Using the matrix ZM
Ī

,

introduced in the previous section, one can construct all possible supersymmetric Wilson

loop operators on Σ.

It is clear nevertheless that this description is not unique in a sense that different

operators can be related to each other by the action of the global symmetry group. For

example if we start with some pair (εs, εc), that leads to a nontrivial Σ, we can always

move the origin of the coordinate system and obtain a new pair (ε′s, ε
′
c). Therefore the

same contour on Σ and hence the corresponding Wilson loop operator will be described

twice, once as corresponding to (εs, εc) and another time as corresponding to (ε′s, ε
′
c). To

avoid double-counting we should factorize the space of suppersymmetric Wilson operators

by the shifts in R4
spt, and in general by the total global bosonic symmetry group of the

theory SO(5, 1) × SO(6), where

SO(5, 1) is the conformal group of one-point compactification of R4
spt and SO(6) is the

R-symmetry group.

Let us notice that partially we have already fixed the “conformal gauge” by requiring

that εs is pure i.e. the origin of coordinate system belongs to Σ. Clearly this is not enough

as other symmetries including shifts along Σ and conformal transformations still have to
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be gauged away. Ultimately, we would like to find the space of all equivalence classes of

pairs (Qε,W ) modulo the global symmetry.

In this paper we consider only an interesting subclass of the pairs (Qε,W ) the pure-

spinor case of this problem, i.e. the pairs when the contour of W is located on a pure-spinor

surface Σ and the couplings on W are defined by anti-holomorphic vectors.

The problem of finding equivalence classes in the other, not pure-spinor case, when

contour of W is just an orbit of conformal transformation generated by Q, is left for the

future. As we have mentioned in the introduction, if we require that the orbits are com-

pact, there are no other curves except simple generalization of circle known as p
q Lissajous

figure. For xµ being coordinates on R4, take the orbit x1 + ix2 = r1e
ipt, x3 + ix4 = r2e

iqt

corresponding to generator of the SO(2)⊕SO(2) rotations of the 12-plane and the 34-plane,

such that p
q ∈ Q.

The bosonic global symmetry group of the N = 4 SYM on R4
spt is the product of

the conformal group SO(5, 1) of the four-dimensional Euclidean space SO(5, 1) and the

R-symmetry group SO(6).

Actually, to classify pairs (Q,W ) in a meaningful way we should say more precisely

that Q denotes one-dimensional fermionic subspace of the superconformal algebra. In other

words, if Qε is a symmetry of W then so obivously is a Qλε, λ ∈ C∗. When we represent

Q by a pair of spinors (εs, εc) we actually consider equivalence classes under the action of

SO(5, 1)×SO(6)×C∗ on this space, where C∗ acts by a simple rescaling (εs, εc) → (λεs, λεc),

λ ∈ C∗.

It is convenient to represent the action of SO(5, 1)×SO(6) on the space of pairs (εs, εc)

using the spinor representation of the SO(11, 1) group acting on the 64 component spinor

that is built of (εs, εc).

Before we proceed with further details let us explain how the conformal group SO(5, 1)

acts on the (εs, εc). First we compactify R4
spt into S4. The group SO(5, 1) acts on S4 as

follows. Let (1, 2, 3, 4, 11, 12) be the set of indexes in the space R5,1 where acts SO(5, 1)

canonically. Let us consider the SO(5, 1)-invariant cone

X2
1 + X2

2 + X2
3 + X2

4 + X2
11 − X2

12 = 0. (5.1)

For any point on this cone and X12 6= 0 the five dimensional vector ni = Xi/X12 has

unit norm and therefore parametrizes unit S4 within R5. The action of the conformal

group SO(5, 1) on S4 is the action on ~n induced from the canonical action of SO(5, 1) on

(X1, . . . ,X11,X12).

For example the generators Kµ of the special conformal transformation on R4 are

related to the generators of SO(5, 1) as follows

Kµ = −R11,µ + R12,µ . (5.2)

To check this we perform a special conformal transformation (5.2) parametrized by

vector bµ =
vµ

2 . Without loss of generality we can choose vµ to be along the direction X1.

Then the action of SO(5, 1) is restricted on the directions {X1,X11,X12}. The correspond-
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ing generator

K =







0 1 0

1 0 −1

0 1 0






(5.3)

can be exponentiated as follows

ebK =







1 + b2

2 b − b2

2

b1 1 −b1
b2

2 b 1 − b2

2






. (5.4)

This matrix generates the transformation

n1 → n1 + b(1 − n5)

(1 + b2

2 ) + bn1 − b2

2 n5

,

nµ → nµ

(1 + b2

2 ) + bn1 − b2

2 n5

, µ 6= 1 ,

n5 → (1 − b2

2 )n5 + bn1 + b2

2

(1 + b2

2 ) + bn1 − b2

2 n5

.

(5.5)

Using the relation between the unit vector nµ, n5 on S4 ⊂ R5 and the stereographic

projective coordinates xµ on R4

xµ = nµ
2

1 + n5
,

nµ =
xµ

1 + x2

4

, n5 = r
1 − x2

4

1 + x2

4

,

(5.6)

we get the usual formula for the special conformal transformations

xµ → xµ + vµx2

1 + 2vµxµ + v2x2
. (5.7)

At the next step we want to find the action of the conformal group SO(5, 1) on the

conformal Killing spinor on R4
spt (2.6). It is defined as follows. If uµ is a vector field

generating a conformal transformations, then ε(x) transforms as

δε = Luε − 1

2
λε (5.8)

where Luε = uµ∂µε + 1
4∂µuνΓ

µνε is the Lie derivative acting on ε and λ = 1
4∂µuµ is the

conformal scaling factor. This formula follows from the fact, that the conformal Killing

spinor ε under conformal rescaling of metric gµν → e2Ωgµν transforms as ε → eΩ/2ε. To find

the the action of the conformal group SO(5, 1) on the pair (εs, εc) one may find vector field

uµ that corresponds to a generator Rmn ∈ so(5, 1), and then find (δεs, δεc) through (5.8).

As an example, consider the case of the special conformal transformation −Rµ,11 +

Rµ,12. For an infinitesimal vµ the corresponding vector field is uµ = vµx2 − 2xµ(xv) as
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follows from (5.7). Then (5.8) implies that δεs = 0 and δεc = vµΓµεs. This infinitesimal

transformation can be easily integrated for a finite vµ

(

εs

εc

)

→
(

1 0

Γµvµ 1

)(

εs

εc

)

. (5.9)

In the case of translation of xµ by vµ one obviously gets

(

εs

εc

)

→
(

1 Γµvµ

0 1

)(

εs

εc

)

, (5.10)

The dilatations by factor eΩ are represented as

(

εs

εc

)

→
(

eΩ/2 0

0 e−Ω/2

)(

εs

εc

)

, (5.11)

and, finally, the space-time SO(4) rotations and the SO(6) R-symmetry transformations

are represented as

(

εs

εc

)

→ exp

(

1
4RMNΓ∗

[MΓN ] 0

0 1
4RMNΓ[MΓ∗

N ]

)(

εs

εc

)

. (5.12)

The spin representation (5.9)–(5.12) of SO(5, 1)×SO(6) can can be embedded into the

Clifford algebra of R11,1 represented by the following 64 × 64 gamma-matrices

γ̂M =

(

γM 0

0 −γM

)

, M = 1 . . . 10 ,

γ̂11 =

(

0 132×32

132×32 0

)

, γ̂12 =

(

0 −132×32

132×32 0

)

.

(5.13)

Then the SO(11, 1) chirality operator is

γ̂13 = −iγ̂1γ̂2 . . . γ̂12 =











116×16 0 0 0

0 −116×16 0 0

0 0 −116×16 0

0 0 0 116×16











. (5.14)

Therefore the spinor

ε =











εs

0

0

εc











, (5.15)

is a SO(11, 1) Weyl spinor of positive chirality, while the εs and εc from (5.15) are the SO(10)

chiral Weyl spinors of opposite chiralities. One can check that the action by the conformal

SO(5, 1) group and the SO(6) group on the conformal Killing spinor ε(x) = εs + γµxµεc is

represented precisely in the same way as SO(5, 1) × SO(6) ⊂ SO(11, 1) action on (5.15).
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We denote positive and negative chiral representations of SO(11, 1) as S+
11,1 and S−

11,1.

Now recall that the Weyl representations of SO(10), which we called S+ and S−, are

related by complex conjugation. Namely, if ε∗s, ε
∗
c denote complex conjugates to εs, εc, then

ε∗s transforms in S− and ε∗c transforms in S+. Another important observation is that the

pair (ε∗s, ε
∗
c) transforms under SO(5, 1) × SO(6) in the same way as the SO(11, 1) Weyl

spinor of negative chirality

ε̃ =











0

ε∗s
ε∗c
0











. (5.16)

To classify the supercharges modulo SO(5, 1)×SO(6) we construct the SO(5, 1)×SO(6)

invariants in the spin space S+
11,1 ⊕S−

11,1 by contracting a twelve-dimensional spinor with a

Diract conjugated one. Thus for any pair of spinors (ε1, ε2) ∈ S+
11,1⊕S−

11,1 we can construct

a bilinear

ρi1...ipj1...jq = ε̄1γ̂i1...ip γ̂j1...jqε2 , i1 . . . ip = 1 . . . 4, 11, 12 , j1 . . . jq = 5 . . . 10, (5.17)

which is a p-forms in R5,1 under SO(5, 1) and a q-form in R6 under SO(6). Here ε̄1 stands

for the Dirac conjugated spinor

ε̄1 = ε∗1γ̂12. (5.18)

The (p, q) form in (5.17) is generically nonzero if ε1 and ε2 have the same chirality for

odd p + q, and opposite chirality for even p + q. We use the spinors (5.15) and (5.16) to

construct the non-trivial SO(5, 1) × SO(6) (p, q)-forms either as

ρi1...ipj1...jq = ε̃∗γ̂0γ̂i1...ip γ̂j1...jqε for even p + q , (5.19)

or as

ρi1...ipj1...jq = ε∗γ̂0γ̂i1...ip γ̂j1...jqε for odd p + q . (5.20)

The forms of even degree are holomorphic in εs, εc, while the forms of odd degree depend

on εs, εc and their complex conjugates. Now one can easily construct a bilinear in ρp,q

invariants by contracting the i and j indexes. We use (a, b) notation to denote the standard

metric pairing of the (p, q)-forms a and b as

(a, b) :=
1

p!q!
ai1...ipj1...jqbi′

1
...i′pj′

1
...j′q

gi1i′
1 . . . gipi′pgj1j′

1 . . . gjqj′q . (5.21)

Clearly, not all resulting invariants will be independent and our job will be to identify the

complete set of the independent ones that parametrize the space of supercharges uniquely.

It turns out that to built independent invariants it is enough to consider (5.21) with either

p or q equal to zero. We introduce the following concise notations for the contraction of

the (p = n, q = 0) form ρ with itself

In
p = (ρ, ρ) , Ĩn

p = (ρ, ρ∗) , (5.22)

and similarly In
q , Ĩn

q for the invariants built out of the (p = 0, q = n) form.

In the rest of this section we proceed with a systematic consideration of all cases when

Σ is non-trivial, namely m = 0 (when ΣC = R10) and when m 6= 0 (when ΣC = S6 or

ΣC = R6).
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5.1 The case m = 0, ΣC = R10, Σ = R4
spt

We start with the case when the 3-form m (4.29) vanishes and the supersymmetry spinor

ε(x) is pure everywhere in the space-time Σ = R4
spt. In this case the pair (εs, εc) is

parametrized by 30 real parameters where 20 parameters parametrize a pure spinor εs

modulo C∗ action, and 10 parameters vM define εc via (4.29). Out of 30 parameters only

2 combinations are invariant under the transformation of the global symmetry group. In

principle we can write down a general 30-parameter dependent spinor ε and calculate the

invariants using (5.21). But this strategy is not very practical because in order to write

the unique ε explicitly we would have to express 30 parameters through just two.

It is much easier to use geometrical intuition to cast the pair (εs, εc) to the simplest

possible form in the first place. Let us start by choosing the simplest possible form for a

generic pure spinor εs. As was discussed in section (3), a pure spinor can be characterized

by the complex structure JM
N , or, after lowering one index, by 10×10 antisymmetric matrix

JMN . Its 4× 4 space-time block Jµν can be thought of as an element in the so(4) algebra.

After applying an appropriate rotation of R4
spt, this 4 × 4 block can be transformed to a

canonical form parametrized by two numbers α, β (the non-zero components can not be

larger than 1 to ensure J2 = −110×10)

Jµν =











0 − sin(α) 0 0

sin(α) 0 0

0 0 0 − sin(β)

0 0 sin(β) 0











. (5.23)

The rest of JM
N can be transformed to the canonical form below by an appropriate SO(6)

transformation

J =







































0 − sin(α) 0 0 cos(α) 0 0 0 0 0

sin(α) 0 0 0 0 cos(α) 0 0 0 0

0 0 0 − sin(β) 0 0 cos(β) 0 0 0

0 0 sin(β) 0 0 0 0 cos(β) 0 0

− cos(α) 0 0 0 0 sin(α) 0 0 0 0

0 − cos(α) 0 0 − sin(α) 0 0 0 0 0

0 0 − cos(β) 0 0 0 0 sin(β) 0 0

0 0 0 − cos(β) 0 0 − sin(β) 0 0 0

0 0 0 0 0 0 0 0 0 −1

0 0 0 0 0 0 0 0 1 0







































.

(5.24)

To understand why this is always possible, let’s take JM
N with Jµν given by (5.23) and act

by it on the unit vector in the direction 1, and then choose the projection of the resulting

vector on the orthogonal compliment to R4
spt to be the direction 5. Then we do the same

with the direction 2 and call the resulting direction 6. Notice that the directions 5 and 6

are orthogonal to each other because of J2 = −110×10. Similarly acting by J on 3 and 4

gives 7 and 8 respectively. Eventually the remaining directions 9, 10 must transform into

each other.
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What we achieve at this point, using SO(4)× SO(6) symmetry, is the parametrization

of the projective pure spinor εs by only two parameters instead of 20

εs =

(

cos
α + β

2
,−i sin

α − β

2
, 0, 0, i cos

α − β

2
, sin

α + β

2
, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

)

. (5.25)

At the next step, we reduce ten components vM parameterizing εc to just three com-

ponents. First of all, the first four components v1, . . . , v4 can be set to zero because they

correspond to the special conformal transformation of the space-time (see (5.9)). As a

result we are left with six parameters v5, . . . , v10.

The projective spinor εs (5.25) is invariant under U(1)3 as evident from (5.24). The first

U(1) simultaneously rotates the 1-2 and 5-6 planes, the second U(1) simultaneously rotates

the 3-4 and 7-8 planes, and the third one U(1) rotates the 9-10 plane. This symmetry is

enough to kill v6, v8, v10 leaving vM = (0, 0, 0, 0, vα, 0, vβ, 0, vn, 0).

We summarize that the conformal supercharges Q “of the type m = 0” can be

parametrized modulo the action of SO(4) × SO(6) symmetry by two angles α, β (which

determine the complex structure J at the origin x = 0) and three non-negative real num-

bers vα, vβ , vn. Still, not all five parameters α, β, vα, vβ, vn are independent. Now we will

use the SO(5, 1) × SO(6) invariants (5.22) to find which points in the five-dimensional

parametric space (α, β, vα, vβ, vn) are related to each other by a SO(5, 1)×SO(6) transfor-

mation.

There are just two independent invariants (under SO(5, 1) × SO(6) × C∗)

I1 =
Ĩ6
p

I1
p

=
v2

n

v2
cos2 α cos2 β ,

I2 =
I5
p

I1
p

=
v2

n

v2
sin2 α sin2 β +

v2
α

v2
sin2 β +

v2
β

v2
sin2 α ,

(5.26)

where v2 = v2
α + v2

β + v2
n. They uniquely parametrize the conformal (projective) Killing

spinor ε(x) up to the action of the global symmetry group.

Now, we would like to pick a canonical representative for the pair (εs, εc) in each

SO(5, 1) × SO(6) orbit in the space of conformal killing spinors to write down concrete

formulas for the Wilson loop operators.

To choose such a representative, we analyze the allowed range of values for I1, I2 and

parametrize it in a convenient way. To find the allowed range, we fix I1 and vary I2 with

respect to α, β, v2
α/v2, v2

β/v2. A simple calculation reveals that for the given I1 the maximal

value of I2 is achieved when two of three terms in I2 vanish. In general the invariants belong

to the interval 0 ≤ I1, I2 ≤ 1 and satisfy
√

I1 +
√

I2 ≤ 1 . (5.27)

The same range of allowed values could be parametrized by two parameters α, v2
β/v2 keeping

β = vβ = 0. Indeed, in this case we introduce t1 = v2
β/v2, t2 = cos2 β with 0 ≤ t1, t2 ≤ 1 and

I1 = t1t2 ,

I2 = (1 − t1)(1 − t2) .
(5.28)
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Clearly I1, I2 from (5.28) cover the same allowed range of values (5.27).

The conclusion is that for any allowed values of I1, I2 there exists a point on the

SO(5, 1)×SO(6) orbit such that α = 0, vβ = 0. The space of nonequivalent pure conformal

Killing spinors is parametrized by angle β and the cosine of the angle between the vector

v and the α-plane vα/v, keeping α = 0 and vβ = 0.

5.1.1 Complex structure and Wilson loop operators

Now we give concrete formula for the Wilson loop operator in this case. The most general

supersymmetric coupling at point x is given by ϕĪZM
Ī

(x)AM where AM = (Aµ,ΦA), ZM
Ī

(x)

satisfies (4.42) and ϕĪ(x) are five arbitrary complex numbers. For the contour xµ(s) to

be a real contour in R4
spt we ask vµ = ẋµ to be real. In general the matrix ZM

Ī
(x) can be

found with help of (4.47). To make the connection between ϕĪ and dxµ more obvious it is

preferable to make a transformation ZM
Ī

→ Z̃M
Ī

(x) = ZM
J̄

(x)U J̄
Ī
(x) bringing it to the form

Z̃M
Ī =

(

I5×5

−iΘ

)

. (5.29)

The new matrix Z̃ is still a matrix of the antiholomorphic vectors. Therefore the supersym-

metric coupling takes the following simple form (here ϕ is an arbitrary complex number)

AM Z̃M
Ī











ẋ1

. . .

ẋ4

ϕ











. (5.30)

To find Z̃(x) we start with the matrix Ẑ at the origin which satisfies (4.43) with

gMN = 1
2δMN and is annihilated by (I10×10 + iJ) with J given by (5.24)

(ẐM
Ī )T =

1

2















cos α
2 i sin α

2 0 0 −i cos α
2 − sin α

2 0 0 0 0

−i sin α
2 cos α

2 0 0 sin α
2 −i cos α

2 0 0 0 0

0 0 cos β
2 i sin β

2 0 0 −i cos β
2 − sin β

2 0 0

0 0 −i sin β
2 cos β

2 0 0 sin β
2 −i cos β

2 0 0

0 0 0 0 0 0 0 0 1 i















.

(5.31)

The corresponding holomorphic coordinates xI on R10 are

xI=1 = cos
α

2
x1 − sin

α

2
x6 + i

(

sin
α

2
x2 − cos

α

2
x5

)

,

xI=2 = cos
α

2
x2 + sin

α

2
x5 − i

(

sin
α

2
x1 + cos

α

2
x6

)

,

xI=3 = cos
β

2
x3 − sin

β

2
x8 + i

(

sin
β

2
x4 − cos

β

2
x7

)

,

xI=4 = cos
β

2
x4 + sin

β

2
x7 − i

(

sin
β

2
x3 + cos

β

2
x8

)

,

xI=5 = x9 + ix10 .

(5.32)
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Similarly the holomorphic vector vI is built of vM with all vM = 0 except for v5 = vα and

v9 = vn. In fact the formulae above are too general because we can always put α = 0.

Now one can use the computer algebra to construct the 5 × 5 matrix αĪ J̄ using (4.45),

calculate ZM
Ī

(x) using (4.47) and then transform it to the form (5.29) by multiplying it by

an appropriate U J̄
Ī
. It is convenient to rearrange index M as follows

AM = (A1, . . . A4,Φ5, . . . ,Φ10) → AM̃ = (A1, . . . , A4,Φ9,Φ5, . . . ,Φ8,−Φ10) . (5.33)

In this case the equation (4.47) that determines Z away from the origin obviously stays the

same while the matrix (5.31) assumes a simpler form (remember that we put angle α = 0)

ẐM̃
Ī = 1

2

(

z

−iz̄

)

, z =















1 0 0 0

0 1 0 0

0 0 cos β
2 i sin β

2 0

0 0 −i sin β
2 cos β

2 0

0 0 0 0 1















. (5.34)

With help of (4.47) and using that gMN = 1
2δMN the matrix Θ from (5.29) is given by

Θ = (z̄ + 4zα)(z + 4z̄α)−1 , (5.35)

with α given by (4.45). In general the explicit expression for Θ can be calculated with help

of computer algebra. Here we present a simple analytical derivation for the specific case

β = 0. In this case Θ = (1 − A)(1 + A)−1 where matrix A = 4α has a specific structure

Aij = aibj − ajbi. For any such matrix A with arbitrary vectors ai, bi the inverse matrix

(1 + A)−1 has a simple analytical form

((1 + A)−1)ij = δij +
−(aibj − ajbi) + (ab)(aibj + bjai) − a2bibj − b2aiaj

1 − ((ab)2 − a2b2)
. (5.36)

This immediately gives for Θ

ΘI
J̄ = δIJ + 2

(1 + xv)(−xIvJ + vIxJ) + (xv)(xIvJ + xJvI) − xIxJv2 − vIvJx2

(1 + xv)2 − (xv)2 + x2v2
,

x2 ≡ xIxI , v2 ≡ vIvI , xv ≡ xIvI , xv ≡ xIvI .(5.37)

In the generic case β 6= 0, the expression (5.37) is not applicable anymore. Nevertheless,

the explicit calculation reveals that all ΘI
J̄

remain the same except for ΘA=3,4
Ī

. We present

the expressions for these couplings below and notice that they coincide with (5.37) in the

limit β = 0

(

ΘA=3
Ī

)T
(x) =

1

cos β























2(ivα+(v2
α−v

2
n)x1)(x3+i sinβx4)

1−2ivαx1−x2(v2
α−v

2
n)

2(v2
α−v

2
n)x2(x3+i sinβx4)

1−2ivαx1−x2(v2
α−v

2
n)

1−2ivαx1−(v2
α−v

2
n)(x2

1
+x2

2
−x2

3
−2i sinβx3x4+x2

4)
1−2ivαx1−x2(v2

α−v
2
n)

2(v2
α−v

2
n)x3x4+i(1−2ivαx1−(v2

α−v
2
n)(x2

1
+x2

2
+x2

3
−x2

4)) sinβ

1−2ivαx1−x2(v2
α−v

2
n)

− 2vn(x3+i sin βx4)
1−2ivαx1−x2(v2

α−v
2
n)























, (5.38)
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(

ΘA=4
Ī

)T
(x) =

1

cos β























2(ivα+(v2
α−v

2
n)x1)(x4−i sin βx3)

1−2ivαx1−x2(v2
α−v

2
n)

2(v2
α−v

2
n)x2(x4−i sinβx3)

1−2ivαx−x2(v2
α−v

2
n)

2(v2
α−v

2
n)x3x4−i(1−2ivαx1−(v2

α−v
2
n)(x2

1
+x2

2
−x2

3
+x2

4)) sin β

1−2ivαx1−x2(v2
α−v

2
n)

1−2ivαx1−(v2
α−v

2
n)(x2

1
+x2

2
+x2

3
+2i sin βx3x4−x2

4)
1−2ivαx1−x2(v2

α−v
2
n)

− 2vn(x4−i sinβx3)
1−2ivαx1−x2(v2

α−v
2
n)























. (5.39)

Finally, the supersymmetric Wilson loop, parametrized by an arbitrary contour γ in R4
spt

and a complex coupling ϕ(s), is

WR[γ(s), ϕ(s)] = TrR Pexp

∮

γ
AM̃

(

I5×5

−iΘ(x)

)











ẋ1

. . .

ẋ4

ϕ











ds , (5.40)

AM̃ = (A1, . . . , A4,Φ9,Φ5, . . . ,Φ8,−Φ10) . (5.41)

In the specific case β = vα = vn = 0 the operator (5.40) becomes the supersymmetric

Wilson loop on R4 discovered by Zarembo in [16].

5.2 The case m 6= 0, ΣC = R6 or ΣC = S6

Now we are ready to consider a more interesting case when m 6= 0, and hence Σ is either

a sphere Sn or a plane Rn in R4. First of all, if Σ is a sphere, we can always perform an

appropriate special conformal transformation that turns Σ into a plane. Explicitly, such

transformation amounts to a shift of vµ in such a way that v4̄, v5̄ in (4.38) vanish. Let us

show that this is always possible. We assumed that Σ is non-trivial, hence there are other

points in R4
spt besides the origin that satisfy (4.38). Then we can choose the coordinates

x∗
µ of one of those points to be the parameters of a special conformal transformation

vµ → vµ +
x∗

µ

|x2| . (5.42)

Obviously such transformation kills v4̄, v5̄ from (4.38). From now on we therefore assume

that Σ is a plane Rn, n = 1, 2, 3, 4. The dimension n depends on the mutual orientation

within R10 of the space-time R4
spt and the pure-spinor-surface ΣC = R6

Below we classify all possible scenarios.

5.3 Σ = R1

Perhaps the simplest scenario is when Σ = R1. In this case the pure spinor εs is unique

up to a SO(5, 1) × SO(6) rotation. The main difference with the m = 0 case, where εs

was parametrized by two angles α, β, comes from the fact that J transforms ΣC (and its

orthogonal compliment Σ+
C
) into itself and this rigidly constraints J and hence εs. As

always, we choose the directions 1 . . . 4 to be along the space-time R4
spt, and we choose the

direction 1 be along Σ = R1. Then ΣC includes the directions 1, 5, 7−10 and its orthogonal

compliment Σ+
C

includes the directions 2 − 4, 6.
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We can always choose the coordinate x5 to be along the J-image of x1 and x2 to

be along the J-image of x6. After an appropriate SO(4) ⊂ SO(6) rotation of the 7 − 10

directions the matrix J (and the corresponding spinor εs) acquires the form (5.24) with

α = 0 and β = π/2.

The corresponding complex coordinates xI are

xI=1 = x1 + ix5 , (5.43)

xI=2 = x7 + ix8 ,

xI=3 = x10 + ix9 ,

xI=4 = x2 + ix6 ,

xI=5 = x4 + ix3 .

Thus we chose xI=1,2,3 to lie within ΣC and xI=4,5 to be orthogonal.

Since we assume that Σ is R1 rather than S1, v2 − iv6 and v3 − iv4 must vanish. We

can also kill v1 using a special conformal transformation along Σ.

There are two independent invariants that depend on six real parameters v5, v7, . . . , v10

and one complex parameter µ from (4.37)

I1 = −
I5
q

I1
q + Iq

p
=

v2
5

|µ2| , (5.44)

I2 =
I5
q − I1

q

I1
q + I1

p

=
v2

7 + v2
8 + v2

9 + v2
10

|µ2| .

There is a great deal of degeneracy in (5.44) as the two invariants depend on seven pa-

rameters. This partially can be explained by the fact that we did not fix all geometric

symmetries of the setup. There are three U(1) symmetries which rotate the 7 − 8, 9 − 10

and both planes simultaneously. Moreover, there is dilatation that rescales all coordinates

together with vM and µ. These symmetries allow us to set µ = 1 and to kill two compo-

nents out of the four v7, . . . , v10. Another parameter can be killed because of shifts along

the subspace Σ: if we choose a different point along Σ to be an origin of the coordinate

system then the original combination of parameters v7, . . . , v10 will turn into a new one

such that I1, I2 do not change. Since the only invariant quantities are (5.44) we can choose

two variables v5, v7 to parametrize I1, I2 while taking µ1 = Reµ = 1, µ2 = Imµ = 0 and

vM = 0 for all M 6= 5, 7.

5.3.1 Complex structure and supersymmetric Wilson loops

The complex structure at the origin is given by (5.24) with α = 0 and β = π/2. The matrix

ẐM
I (5.31) admits the form (5.29) with Θ = I5×5 if we rearrange the index M as follows

AM = (A1, . . . , A4,Φ5, . . . ,Φ10) → AM̃ = (A1,Φ7,Φ10, A2, A4,Φ8,Φ5,Φ9,Φ6, A3) . (5.45)

The components of the three-form mK̄ĪJ̄ written in coordinates (5.43) are non-zero only if

all three indexes are 1, 2, or 3, and zero otherwise

mK̄ĪJ̄ = µgK̄KgĪIgJ̄JεKIJ , Ī, J̄ , K̄ = 1, 2, 3 . (5.46)

– 26 –



J
H
E
P
0
4
(
2
0
1
0
)
1
1
5

Here εKIJ is the absolutely antisymmetric tensor, ε123 = 1. As follows from the expression

for αĪJ̄ (4.45) and formula for ZM
Ī

(4.47), only ZM
Ī

for Ī = 1, 2, 3 change when we move

along Σ, while ZM
Ī=4,5

remain the same. Note, that one can not add the couplings

ZM
Ī=4AM = (A2 − iΦ6) , (5.47)

ZM
Ī=5AM = (A4 − iA3) , (5.48)

to the supersymmetric Wilson loop operator because this would require the contour γ to

leave Σ.

From now on we can neglect ZM̃
Ī

for Ī = 4, 5, and assume in what follows that index

Ī = 1, 2, 3. Similarly we do not need to worry about M̃ = 4, 5, 9, 10, and the matrix Z̃

effectively becomes 6 × 3

Z̃ =

(

I3×3

−iΘ

)

. (5.49)

Let us define a three-dimensional vector α̃K̄ dual to the 2-form αĪ J̄

α̃K̄ = 2εĪ J̄K̄αĪ J̄ =
εĪ J̄K̄xIvJ + µxK̄

1 + x̄v
. (5.50)

The matrix Θ is then given by

Θ = (1 − 4α)(1 + 4α)−1 , (5.51)

4αIJ = εIJKαK̄ . (5.52)

This expression can be easily calculated analytically

ΘĪ
J̄ =

δĪ J̄(1 − α̃2) + 2α̃Ī α̃J̄ − 2εĪ J̄K̄αK̄

1 + α̃2
, (5.53)

α̃2 ≡ α̃Ī α̃Ī . (5.54)

The resulting supersymmetric Wilson loop associated with Σ is

WR[γ, ϕ1, ϕ2] = TrR Pexp

∮

γ
ds
(

A1 Φ7 Φ10 Φ5 Φ9 Φ8

)

(

I3×3

−iΘ

)







ẋ1

ϕ1

ϕ2






. (5.55)

Here contour γ(s) is just a straight line x1(s) and ϕ1,2(s) are arbitrary complex functions of

the contour parameter s. If ϕ1 = ϕ2 = 0 the operator (5.55) is defined through the vector

ΘÃ
1 =













1−2iv5x1+(1−v
2

5
−v

2

7)x2

1

1−2iv5x1+(1−v
2

5
+v

2

7)x2

1

2v7x1(1−iv5x1)

1−2iv5x1+(1−v
2

5
+v

2

7)x2

1

2v7x2

1

1−2iv5x1+(1−v
2

5
+v

2

7)x2

1













. (5.56)

If v5 = 0 this Wilson loop is the conformal transformation of the circular Wilson loop with

zero expectation value from [16]. Let us notice here that the denominator 1 − 2iv5x1 +
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(

1 − v2
5 + v2

7

)

x2
1 never vanishes and hence the corresponding operator (5.55) is well defined

for any smooth ϕ̇1, ϕ̇2.

Besides the Wilson loops described above, there are some supersymmetric Wilson loops

associated with the vector field uM (3.6)

uM ∼= (0, x3 + ix4,−x2 + ix6,−x6 − ix2, 0,−ix3 + x4, 0, 0, 0, 0) , (5.57)

living outside of Σ. The components uµ on R4
spt (x6 = · · · = x10 = 0) should be real.

Therefore x2 = 0 and x3/x4 must be constant. The corresponding contour γ : xµ(s) is a

straight line

xµ(s) = (x1, 0, k3s, k4s) (5.58)

in the 3-4 plane while x1 is some constant and x2 = 0. The corresponding Wilson loop

operator is a straight line in R4
spt with the string fixed at the north pole of S5 [7].

5.4 Σ = R2

The next scenario is Σ ≡ R4
spt

⋂

ΣC = R2. In this case J has the most general form (5.24)

and the complex coordinates on R10 are

xI=1 = cos
α

2
x1 − sin

β

2
x6 + i

(

sin
α

2
x2 − cos

α

2
x5

)

,

xI=2 = cos
α

2
x2 + sin

α

2
x5 − i

(

sin
α

2
x1 + cos

α

2
x6

)

,

xI=3 = x9 + ix10 ,

xI=4 = cos
β

2
x3 − sin

β

2
x8 + i

(

sin
β

2
x4 − cos

β

2
x7

)

,

xI=5 = cos
β

2
x4 + sin

β

2
x7 − i

(

sin
β

2
x3 + cos

β

2
x8

)

.

(5.59)

We rearranged xI (compare with (5.32)) in such a way that xµ=1,2 parametrize Σ and

xI=1,2,3 parametrize ΣC.

As usual, v3, v4, v7, v8 vanish after a conformal transformation that makes Σ flat, and

we kill v1, v2 by a special conformal transformation along Σ. The only non-zero parameters

are α, β, µ, v5, v6, v9, v10. There are four independent real invariants which can be combined

into two real and one complex variables

I1 = −
I1
q

I1
q + I1

p

v2
5 + v2

6 + v2
9 + v2

10

|µ2| , (5.60)

I2 =
I6
q

I2
q

=
((v10 − iv9) cos α − µ sinα)2

µ2
, (5.61)

I3 = − Ĩ2
p

I1
q + I1

p

= cos2 β . (5.62)

The list of invariants is somewhat long but we still have symmetries to play with.

First of all, we can rotate the 1-2 plane and the 5-6 plane to eliminate v6, and the 9-10
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plane to get rid of Imµ. Then the dilatation sets µ = 1, leaving five non-trivial parameters

α, β, v5, v9, v10. It is not surprising that β is an invariant. After these geometrical symme-

tries are used up, the only transformation that could relate different β’s is the shift along

Σ ⊂ ΣC. Those shifts change complex structure in ΣC, but leave the orthogonal compli-

ment to ΣC invariant. Therefore β that governs the complex structure in NΣC
(unlike α

that governs the complex structure in TΣC
) is an invariant.

To completely fix the conformal gauge, we eliminate one of the four parameters

v5, v9, v10, α, using the simplified invariants:

I1 = v2
5 + v2

9 + v2
10 ,

Re I
1/2
2 = cos αv10 − sin α ,

Im I
1/2
2 = − cos αv9 .

(5.63)

One easy way to do that is to express v9 and v10 from the last two equations and

substitute into the first equation. We get then

v2
5 = I1 −

(

ImI
1/2
2

cos α

)2

−
(

ReI
1/2
2 + sin α

cos α

)2

(5.64)

For the generic values of the invariants I1, I2 such that v2
5 > 0, the r.h.s. of (5.64) is

positive. But for α sufficiently close to π/2 the r.h.s. of (5.64) is negative, hence it must

vanish at some intermediate value of α. At that point v5 = 0 and α can be expressed

through I1, I2. In fact one can always choose α in such a way that v5 vanishes leaving

α, β, v9, v10 as the parameters, while setting µ = 1, v5 = v6 = 0.

5.4.1 Complex structure and supersymmetric Wilson loops

Similarly to the previous case Σ = R1, we rearrange index M as follows

AM = (A1, . . . , A4,Φ5, . . . ,Φ10) → AM̃ = (A1, A2,Φ9, A3, A4,Φ5,Φ6,Φ10,Φ7,Φ8), (5.65)

to bring Ẑ to the form (5.34) with z given by

z =















cos α
2 i sin α

2 0 0 0

−i sin α
2 cos α

2 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1















. (5.66)

As in the previous case Σ = R1, the two couplings ZM̃
Ī=4,5

AM̃ are the same for all points

on Σ. In general they can not be added to the supersymmetric Wilson loop operator because

they require non-zero ẋ3,4, and hence lead away from Σ (in the exceptional case β = π/2

one of the couplings becomes Φ7− iΦ8 and can be added with arbitrary complex coefficient

ϕ(s)). Therefore we neglect two last columns Ī = 4, 5 and the rows M̃ = 4, 5, 9, 10, similarly

to the previous case, effectively reducing Z to the 6 × 3 size. The resulting matrix of the
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antiholomorphic vectors can be presented in the form (5.49) with Θ given by (5.35) with

3 × 3 matrix α given by (4.45) and the 3 × 3 matrix

z =







cos α
2 i sin α

2 0

−i sin α
2 cos α

2 0

0 0 1






. (5.67)

In a particular case, when α = 0, the matrix Θ is given by (5.53). Even in this case the

explicit expression is too bulky to be written here.

The general supersymmetric Wilson operator associated with Σ is given by

WR[γ, ϕ1] = TrR Pexp

∮

γ
ds
(

A1 A2 Φ9 Φ5 Φ6 Φ10

)

(

I3×3

−iΘ

)







ẋ1

ẋ2

ϕ1






, (5.68)

with contour γ living on Σ = R2.

In the special case α = vM = 0 the matrix Θ acquires a simple form

ΘĪJ̄ =
δĪ J̄(1 − x2) + 2xĪxJ̄ − 2εĪ J̄K̄xK̄

1 + x2
, (5.69)

xĪ = (x1, x2, 0) . (5.70)

These loops are related by a conformal transformation to the particular case of the DGRT

loops on S3 [12] when the contour is limited to the equator S2 ⊂ S3.

The vector field uM (3.6)

uM ∼= (0, 0, cos βx4 + sinβx7 − ix8,− cos βx3 + ix7 + sinβx8,

0, 0,− sin βx3 − ix4 − cos βx8, ix3 − sin βx4 + cos βx7, 0, 0) , (5.71)

gives rise to the suppersymmetric Wilson loops along the concentric circles in the 3-4 plane

for any fixed x1, x2. The corresponding operators are the non-equator circular lines on S4

with β playing the role of the latitude [19].

5.5 Σ = R3

In the case Σ ≡ R4
⋂

ΣC = R3 one of the angles α, β must vanish. We choose β = 0 with

the directions 1, 2, 3 and 5, 6, 7 to lie along ΣC. The corresponding complex structure is

given by (5.24) and the holomorphic coordinates are

xI=1 = cos
α

2
x1 − sin

β

2
x6 + i

(

sin
α

2
x2 − cos

α

2
x5

)

,

xI=2 = cos
α

2
x2 + sin

α

2
x5 − i

(

sin
α

2
x1 + cos

α

2
x6

)

,

xI=3 = x3 − ix7 ,

xI=4 = x4 − ix8,

xI=5 = x9 + ix10 ,

(5.72)
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with x1,2,3 parameterizing Σ.

As usually v1, v2, v3, v4, v8, v9, v10 vanish after an appropriate special conformal trans-

formation and we end up with µ and v5, v6, v7. There are two invariants

I1 = −
I1
q

I1
q + I1

p

=
v2

5 + v2
6 + v2

7

|µ2| , (5.73)

I2 = −
I5
q

I1
q + I1

p

=
(Re µ cos α − v7 sinα)2

|µ2| . (5.74)

The U(1) symmetry that rotates the 1-2 and 5-6 planes can be used to eliminate the phase

of µ and then we use dilatation to set µ = 1. It is also clear that we can always choose v2
6

to be zero as it is always combined with v2
5 in (5.73). It is clear then that the invariant I1

is an arbitrary positive number when I2 is any postive number in the range

0 ≤ I2 ≤ 1 + I1 . (5.75)

One can cover exactly the same range by letting v5 vanish, leaving v7 and α as the only

independent variables.

5.5.1 Complex structure and supersymmetric Wilson loops

This case is very similar to the previous one Σ = R2. After rearranging index M

AM = (A1, . . . , A4,Φ5, . . . ,Φ10) → AM̃ = (A1, . . . , A4,Φ9,Φ5, . . . ,Φ8,−Φ10). (5.76)

the matrix Ẑ acquires the form (5.34) with z given by (5.66). The last two columns ZM
Ī=4,5

are the same everywhere on Σ. One of the corresponding couplings ZM
ī=5

AM = Φ9 + iΦ10

can be added to the supersymmetric Wilson operator with arbitrary complex coefficient

although the other one ZM
Ī=5

AM = A4 − iΦ8 requires non-zero ẋ4 and therefore leads

outside of Σ. Upon elementating two last columns and the 4, 5, 9, 10 rows, the 6×3 matrix

Ẑ becomes of the form (5.34) with z given by (5.67).

The matrix of antiholomorphic vectors can be presented in the form (5.49) with Θ

given by (5.35) with 3× 3 matrix α given by (4.45) and the 3× 3 matrix z (5.67). If α = 0

the result simplifies and Θ is given by (5.53) but even in this case the explicit expression

is too bulky to be written here.

The general supersymmetric Wilson operator associated with Σ is given by

WR[γ, ϕ] = TrR Pexp

∮

γ
ds
(

A1 A2 A3 Φ5 Φ6 Φ7

)

(

I3×3

−iΘ

)







ẋ1

ẋ2

ẋ3






+

+dsϕ(Φ9 + iΦ10) , (5.77)

with contour γ living on Σ = R3.

In the special case α = vM = 0 the matrix Θ acquires simple form (5.69) with xĪ =

(x1, x2, x3). These loops are related by a conformal transformation to the DGRT loops on

S3 [12].
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The space-time part of the vector field uM (3.6)

uM = x4(0, . . . , 0, 1, i), (5.78)

is zero on the boundary x5 = · · · = x10 = 0 and therefore there are no suppersymmetric

Wilson loops besides those described above and the local operator Φ9 + iΦ10.

5.6 Σ = R4

The exotic case is when Σ coincides with the total space-time Σ ≡ R4
spt

⋂

ΣC = R4
spt. If

we choose the directions 5, 6 to lie inside Σ and be defined in the same way as in the cases

Σ = R2,3 above, the complex structure J will be given by (5.24) with some α and β = π/2.

The remaining parameters α, µ, v5, v6 form the unique invariant

I1 =
I1
q

I1
q + I1

p

=
v2
5 + v2

6

|µ2| . (5.79)

Clearly we can set µ = 1 as we did before, and also α = 0 because I1 is α-independent.

It also follows from (5.79) that we can fix v6 = 0 leaving v5 to be the only non-trivial

parameter.

5.6.1 Complex structure and supersymmetric Wilson loops

Since we fixed α = 0 the appropriate choice of holomorphic coordinates on R10 with first

three coordinates xI=1,2,3 parametrizing ΣC is

xI=1 = x1 + ix5 , (5.80)

xI=2 = x2 + ix6 , (5.81)

xI=3 = x3 − ix4 , (5.82)

xI=4 = x7 + ix8 , (5.83)

xI=5 = x9 − ix10 . (5.84)

We rearrange index M

AM = (A1, . . . , A4,Φ5, . . . ,Φ10) → AM̃ = (A1, A2, A3,Φ7,Φ9,Φ5,Φ6,−A4,Φ8,−Φ10) ,

to bring Ẑ to the form (5.34) with z = I5×5. As in the previous cases, we remove the last

two columns, which correspond to the couplings Φ7 − iΦ8 and Φ9 + iΦ10 (these couplings

should be added to the supersymmetric Wilson loop operator) and the rows 4, 5, 9, 10 from

Ẑ to reduce it (and consequently Z̃) to the form (5.49). The matrix Θ is given by (5.53)

and the supersymmetric Wilson loop operator is

WR[γ, ϕ1, ϕ2] = TrR Pexp

∮

γ
ds
(

A1 A2 A3 Φ5 Φ6 −A4

)

(

I3×3

−iΘ

)







ẋ1

ẋ2

ϕ






+

dsϕ1(Φ7 − iΦ8) + dsϕ2(Φ9 + iΦ10) . (5.85)
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By definition of the Wilson loop in R4
spt we need to choose contour γ and function ϕ

such that the coefficients in front of all four A1, . . . , A4 are real for all s. At each point on

Σ = R4
spt only two out of four tangent directions would satisfy this requirement with an

appropriately chosen ϕ. First of all, ϕ must be real ϕ = ẋ3 to avoid multiplying A3 by a

complex number. Moreover it should be such that the coefficient in front of A4 is real as

well (we denote it by ẋ4)

3
∑

µ=1

Im
(

iΘ3
µẋµ

)

= 0 , (5.86)

3
∑

µ=1

Re
(

iΘ3
µẋµ

)

= ẋ4 .

The resulting two-dimensional vector space is quite complicated and we do not present

the explicit expression for the vectors ẋµ(ẋ1, ẋ2) here.4 We will call the contours that

satisfy (5.86) allowed and from now on assume that γ(s) is one of them. Since the space

of allowed directions is two dimensional at each point the contour can be parametrized by

an initial point and one real degree of freedom. We note that commutator of two generic

non-collinear allowed vectors at a given point is not an allowed vector

ξ1 = ẋµ(1, 0) , ξ2 = ẋµ(0, 1) ,

[ξ1, ξ2] ∧ ξ1 ∧ ξ2 6= 0 . (5.87)

Therefore the space of allowed directions at each point x ∈ Σ = R4
spt can not be thought

of as a tangent-space to some two-dimensional submanifold in R4
spt. Even more so, the

commutators of the commutators would span the whole four-dimensional space

[ξ1, [ξ1, ξ2]] ∧ [ξ1, ξ2] ∧ ξ1 ∧ ξ2 6= 0 , (5.88)

which means that the contour γ is not restricted to any particular submanifold in R4
spt. In

this sense γ is four-dimensional. Given that it is parametrized by only one real function

(which chooses the angle on the allowed plane at each point) there is not enough degrees

of freedom to ensure that γ is closed. Therefore our general predictions would be that

the contour γ that locally ensures gauge symmetry is not closed and can not be used

to construct a gauge-invariant Wilson loop. Nevertheless there could be some particular

examples of closed γ which would be interesting to identify.

To demonstrate that the contour γ can have a non-trivial shape we consider a particular

case v5 = 0 and notice that in this case both vectors ξ1, ξ2 have no projection on fourth

direction if calculated at x4 = 0. Therefore the contour γ will stay at the plane x4 = 0 if

the original point belongs to it. For such a contour the tangent vector can be described by

ẋ3 = −2
ẋ1(x2 − x1x3) − ẋ2(x1 − x2x3)

1 − x2
1 − x2

2 + x2
3

. (5.89)

4This vector space can be defined as a zero eigenspace of the projector matrix I4×4 − P , where the

projector P is a properly normalized combination I4×4 + J2

4×4 with J4×4 being the 4 × 4 upper-left corner

part of the complex structure matrix JM
N (x).
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Similarly such a contour will stay at x2 = 0 if the starting point is at x2 = 0 as follows

from (5.89). In this case the contour will stretch in the x1 − x3 plain and will be uniquely

specified by the starting point. Let us introduce a complex coordinate z = x1 + ix3. Then

the contour z(s) will satisfy ż = 1 − z2 with the solution

z = tanh(s + s0) . (5.90)

Here s is a real parameter of the contour and s0 is the complex number that specifies the

starting point x1 + ix3 = tanh(s0). This contour interpolates between the points (x1 =

±1, x3 = 0) and the imaginary part of s0 specifies the maximal value of x3 = tanh Ims0.
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A Proof that v
M ∼= u

M is the unique solution if u
M does not vanish

Here we show that vM = λuM with some complex non-zero λ and uµ given by (3.6) is the

unique solution to (3.5) if uM 6= 0. First we notice that it follows from (3.7) that uMuM = 0,

i.e. uM is a light-like vector. In Euclidean signature it means that u is necessarily complex.

Let u′
M = Re uM and u′′

M = Im uM , so uM = u′
M + iu′′

M . Since u2 = 0 we get (u′)2 = (u′′)2

and u′
Mu′′

M = 0. That is, the u′ and the u′′ are two non-zero orthogonal vectors of equal

length. The two-plane in R10 spanned by u′ and u′′ defines breakes SO(10) to SO(8)×SO(2).

Let us make SO(10) transformation so that the basis vectors 9 and 10 are aligned with

u′ and u′′ respectively. Now we take the following representation of the ten-dimensional

chiral gamma-matrices ΓM

ΓM =

(

0 ET
M

EM 0

)

, M = 1 . . . 8 ,

Γ9 =

(

18×8 0

0 −18×8

)

, Γ10 = i

(

18×8 0

0 18×8

)

.

(A.1)

Here EM are the gamma-matrices for SO(8). They can be also thought of as the

8× 8 matrices representing left multiplication in the octonion algebra (see e.g. appendix A

in [19]). These matrices satisfy the standard anticommutation relations

EMET
N + ENET

M = 2δMN . (A.2)
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Since we have chosen direction 9 to be aligned with u′ and direction 10 to be aligned with

u′′ we get

(Γ9 + iΓ10)ε = 0 . (A.3)

Written explicitly this means
(

0 0

0 1

)(

εu

εd

)

= 0 , (A.4)

where we represented the spinor ε ∈ S+ of SO(10) as 8s ⊕ 8c according to the breaking

SO(8) ⊗ SO(2) ⊂ SO(10). Clearly εd must vanish. The equation (3.5) then splits into

two parts

(v9 + iv10)ε
u = 0 , (A.5)

viEiε
u = 0 , i = 1 . . . 8 . (A.6)

Let us show now that there is no 8-dimensional vector vi which would solve the equa-

tion (A.6). First we assume that such a vector exists. Then we pick up any vector pi such

that pivi 6= 0 and multiply (A.6) by εuET
i pi from the left. Using (A.2) we get

(pivi)(ε
u)2 = 0 . (A.7)

Since u9 = u′ = (εu)2 =
8
∑

α=1
εu
αεu

α is non-zero we get a contradiction. Therefore vM
∼= uM

is the only solution to (3.5) if uM is not zero.

B Proof that a non-trivial pure spinor hypersurface requires zero w and

decomposable m

We will get the result in several steps. First we show that a nontrivial Σ requires w = 0.

We start with the equation (4.22)

(1 + 2ixv) ∧ (ξ ∧ m + 2ixw) =
1

2
(ξ ∧ v+ 2ixm)

2 . (B.1)

Our assumption is that Σ is a non-trivial smooth manifold passing through the origin.

Therefore we can expand the (B.1)up to the linear level in x

ξ ∧ m + 2ixw = 0 . (B.2)

Here ξ and x are in the tangent space of Σ at the origin.

Now we multiply (B.2) by ξ to get

2ξ ∧ ixw = 0 , (B.3)

and then rewrite it as

2ξ ∧ ixw = 2ixξw− 2ixξ ∧ w = 2(x, ξ)w = 0 . (B.4)
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Here we have used that w is a form of the top degree and hence ξ ∧ w = 0 for any ξ. Now,

for real xµ 6= 0 we have

2ixξ ≡ 2(x, ξ) = 2xĪgĪJxJ = xMxM > 0 , (B.5)

and therefore w = 0.

The analysis of the constraint (4.24) in section (4.2) yielding v ∧ ξ ∧ m = 0 did not

assume that m is decomposable. Using this we can rewrite the constraint (4.22) as (compare

with (4.36))

(ξ + 2(x, ξ)v) ∧ m = 2(ixm) ∧ (ixm)

= 2ix(m ∧ ixm) .
(B.6)

If we multiply both sides by ξ we get zero in the left hand side implying

0 = 2(x, ξ)(m ∧ ixm) , (B.7)

because the six form ξ ∧ m ∧ ixm = 0 exceeds the dimension of the space. As a result we

have

m ∧ ixm = 0. (B.8)

and (B.6) reduces to (4.36).

The equation (4.36) actually implies that m is decomposable if Σ is non-trivial. To

show that, we introduce an antisymmetric matrix (bi-vector) m̂ as follows

m̂i4i5 =
1

3!
ǫi1i2i3i4i5mi1i2i3 , (B.9)

and reinterpret the equation (4.36) in a way that vector ξ + 2(x, ξ)v is a zero vector of

matrix m̂. Clearly a non-zero antisymmetric matrix m̂ must have at least one zero vector

although there could be three ones if m is decomposable. The simplest way to understand

it is to bring m̂ to the canonical form by an appropriate SU(5) transformation

m̂ =















0 0 0 0 0

0 0 µ′ 0 0

0 −µ′ 0 0 0

0 0 0 0 µ

0 0 0 −µ 0















(B.10)

in the new coordinate basis z1, . . . , z5. If m̂ has only one zero vector (i.e. both µ and µ′ are

non-zero) the equation (4.36) requires vector ξ + 2(x, ξ)v to be aligned with the direction

z1 while the equation (B.8) which can be rewritten as

m̂ ∧ m̂ ∧ x = 0 , (B.11)

requires vector x to have zero projection on that direction. Therefore the contraction of x

and ξ + 2(x, ξ)v would give zero

0 = ix(ξ + 2(x, ξ)v) = (x, ξ)(1 + 2(x, v)) . (B.12)
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Hence for any non-zero x on Σ we have

1 + 2(x, v) = 0 . (B.13)

This equation does not have solutions for x being arbitrary close to 0, and therefore there

could be no nontrivial Σ passing through x = 0.

To resolve the contradiction we have to assume that µ′ = 0 and therefore m

is decomposable

m = µ dz̄1 ∧ dz̄2 ∧ dz̄3 . (B.14)

In this case the equation (4.32) is automatically satisfied for any x and the only remaining

equation on Σ is (4.36).
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