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1 Introduction

The AdS/CFT correspondence is emerging as a promising approach for analyzing strongly-
coupled condensed matter systems.1 Although the systems accessible through the duality
need a lot of refinement in order to resemble actual condensed matter systems, (more than)
a decade-long experience with the correspondence has taught us that it is extremely use-
ful in extracting some universal features of strongly-interacting systems which would be
hard, or even impossible, to obtain using field theoretic methods. It is in this sense that
applying the tools of the correspondence to study strongly-interacting condensed matter
systems seems to be promising. Recent examples of such applications include modeling

1See [1] for a review of the AdS/CFT correspondence.
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superconductivity and superfluidity [2–6], engineering systems with Schrödinger and Lif-
shitz symmetries [7–14], or modeling a system which can exhibit non-Fermi liquid type
behavior [15–19]. See [20–22] for reviews.

Using the correspondence to study quantum critical regions of condensed matter sys-
tems is another example of such applications [23–25]. At the quantum critical point, the
system is often a strongly-coupled conformal field theory, and it is usually the case that a
proper field theoretic understanding is not known. The authors of [17] considered a simple
gravitational background whose dual field theory exhibits a variety of emergent quan-
tum critical behaviors. They considered the background of extremal Reissner-Nordström
AdSd+1 black hole whose dual field theory is supposed to be a d-dimensional strongly-
coupled field theory which is at zero temperature and finite U(1) charge density. Con-
sidering probe scalars as well as spinors in the geometry, it was shown that the retarded
correlator of the dual operators show emergent quantum criticality at low frequency. The
existence of such behaviors was attributed to the fact that the near horizon region of the
background geometry (which encodes the IR physics of the boundary theory) is AdS2×R2,
and the assumption that there exists some sort of IR CFT dual to the AdS2 region. It
was shown that the behavior of the retarded Green function GR(ω,~k) at low frequency is
dictated by GR(ω = 0,~k) as well as the conformal dimension of some operators in the IR
CFT. More specifically, it was shown that GR(ω,~k) can in general exhibit a scaling behav-
ior for the spectral density, a log-periodic behavior, or in the case of fermionic operators
indicate the existence of Fermi-like surfaces with quasi-particle excitations of non-Fermi
liquid type.

In [26] we examined the role played by the IR CFT in constraining the low frequency
behavior of retarded correlators of charge vector and energy momentum tensor operators of
the boundary theory. The main focus though was on extracting some transport coefficients,
such as conductivity and viscosity, of the boundary theory, and investigating the relation-
ship between the IR CFT and the universality of such coefficients. As such, the analyses
were limited to the case of zero spatial momentum. The boundary theory considered was
a (2 + 1)-dimensional field theory at zero temperature and finite charge density dual to an
extremal Reissner-Nordstrom AdS4 black hole. Although temperature is zero, there is a
scale in the problem set by the chemical potential for the charge density and moreover the
entropy density is finite.2 It was shown in [26] that, for example, the ratio of shear viscos-
ity to the entropy density is 1/4π saturating the KSS bound [27]. There are a variety of
reasons why such analyses at zero-temperature are interesting. First, calculating transport
coefficients involves taking the limit of small frequency, which at zero temperature becomes
subtle and extra care is needed to deal with this subtlety. Secondly, they generalize the
universality arguments, given for finite temperature backgrounds [28–30], to backgrounds
of extremal black holes. Third, the system studied may be in the universality class of
some quantum critical points, hence understanding the universal behavior of the transport
coefficients of this system may shed light on the physics of quantum critical points.

In this paper, we analyze the retarded correlators of the charge vector current and

2This is presumably a “large N” effect. Analysis of this has recently appeared in [19].
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energy-momentum (tensor) operators of the aforementioned (2 + 1)-dimensional boundary
theory for non-vanishing (spatial) momentum. Although we perform the analyses in the
(2 + 1)-dimensional boundary theory, they can easily be carried out for higher dimensional
boundary theories dual to extremal Reissner-Nordstrom AdSd+1 black hole. Our focus here
is on the retarded correlators of those operators which are in the so-called shear channel of
the boundary theory. We find that for generic momentum, similar to the cases of scalar and
spinor operators studied in [17], the retarded correlators of such vector and tensor operators
exhibit emergent scaling behavior at low frequency. These operators give rise in the IR
to two sets of operators with different conformal dimensions. The low frequency scaling
behaviors of the boundary theory retarded correlators, especially their scaling exponents,
depend only on one of the two IR CFT operators. By taking linear combinations of the
dual bulk modes, we construct the gauge invariant modes appropriate for extracting the
quasinormal modes.

We study the small frequency regime analytically for finite momentum, and we explore
the analytic structure of the shear channel retarded Green functions numerically for generic
frequency and momentum. We present evidence for the existence of a branch cut in these
Green functions at the origin, as well as a series of metastable modes corresponding to
isolated poles in the lower half complex frequency plane. By turning on temperature we
observe how the branch cut dissolves into a series of poles on the negative imaginary axis
and determine the corresponding dispersion constant of the leading pole, in agreement with
previous results.

The organization of the paper is as follows. In section 2, we review the Reissner-
Nordström AdS4 black hole background, its dual boundary field theory, near horizon
AdS2×R2 geometry and the dual IR CFT. In section 3 we present the Linearized Einstein-
Maxwell equations for the bulk modes dual to the (vector and tensor) operators in the shear
channel of the boundary theory. Taking linear combinations of the modes, we construct
the gauge-invariant combinations in terms of which the linearized Einstein-Maxwell equa-
tions reduce to a set of two coupled second-order differential equations. By introducing
“master variables” we then decouple these equations. In section 4 we solve the decou-
pled equations by matching the solutions in the outer region to the solutions in the inner
AdS2 region. Having determined the solutions, we calculate the retarded correlators of
the charge vector current and energy-momentum tensor operators of the boundary the-
ory. For generic momentum, we then extract the low frequency emergent scaling behavior
of their spectral functions. In section 5 we argue that the (shear-type) electromagnetic
and gravitational perturbations of the extremal Reissner-Nordström AdS4 do not cause
instability by showing that the associated quasinormal frequencies are all located in the
lower half of the complex frequency plane. We then numerically compute the spectrum
of the above-mentioned quasinormal frequencies and compare the numerical results with
the analogous quasinormal frequencies of the non-extremal Reissner-Nordström AdS4 black
hole background. In appendix A we have summarized the finite-temperature equations we
occasionally used in the bulk of the paper in order to extract the shear-type quasinormal
frequencies of the non-extremal Reissner-Nordström AdS4 black hole.
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2 The background and the boundary field theory

Consider the Einstein-Maxwell action in 3+1 spacetime dimensions with a negative cos-
mological constant Λ = −3/L2

S =
1

2κ2
4

∫
d4x
√
−g
(
R− 2Λ− L2FµνF

µν
)
, (2.1)

where L is the curvature radius of AdS4. The background we consider is the Reissner-
Nordström AdS4 black hole

ds2 = gµνdx
µdxν =

r2

L2

(
− f(r)dt2 + dx2 + dy2

)
+

L2

r2f(r)
dr2, (2.2)

A = µ
(

1− r0
r

)
dt, (2.3)

which is a solution to the Einstein-Maxwell equations obtained from (2.1), where

f(r) = 1−M
(r0
r

)3
+Q2

(r0
r

)4
, µ =

Qr0
L2

. (2.4)

Here, r0 is the horizon radius and is given by the largest real root of f(r0) = 0. Also, note
that M = 1 +Q2. The temperature of the black hole takes the form

T =
r0

4πL2
(3−Q2) =

µ

4π
3−Q2

Q
, (2.5)

while its entropy, charge and energy densities are given by

s =
2π
κ2

4

(r0
L

)2
, ρ =

2
κ2

4

(r0
L

)2
Q, ε =

r30
κ2

4L
4
M, (2.6)

respectively [31]. The background is extremal when Q2 = 3, for which the temperature
vanishes but the entropy density remains finite. The background is invariant under flipping
the sign of At. We choose µ to be positive resulting in Q to be positive. With this
convention, Q =

√
3 at extremality.

The background is dual to a (2 + 1)-dimensional strongly-coupled field theory at finite
temperature T and finite charge density ρ. The entropy and energy densities of the dual
theory are given by s and ε in (2.6), respectively. Also, the asymptotic value of the bulk
gauge field At(∞) = µ is interpreted in the dual theory as the chemical potential for
the (electric) charge density. Little is known about the details of the dual theory from
field theory perspectives. On the other hand, using holography a lot has been learned
(especially thermodynamical properties) regarding its strong-coupling behavior; see [31]
and its citations.

In this paper we work in the extremal limit, where the dual theory is at zero tem-
perature but finite charge density. We will refer to this dual theory as the boundary field
theory. Although the black hole temperature vanishes at extremality, its horizon area re-
mains finite whose dual interpretation is that the boundary theory has a finite entropy
density at zero temperature.
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In the extremal limit, f(r) in the background metric (2.2) takes the form

f(r) = 1− 4
(r0
r

)3
+ 3

(r0
r

)4
, (2.7)

which has a double zero at the horizon, and can be approximated near that region (to the
leading order in r − r0) by

f(r) ' 6
r20

(r − r0)2. (2.8)

The near horizon geometry is AdS2 × R2. To see the emergence of this geometry, first
change the radial coordinate r to η defined by

r − r0 =
L2

6η
. (2.9)

There is then a scaling limit [17] in which

ds2 =
L2

6η2

(
− dt2 + dη2

)
+
r20
L2

(
dx2 + dy2

)
, A =

Q

6η
dt. (2.10)

The curvature radius of the AdS2 is L2 = L/
√

6. The radial coordinate is interpreted
holographically as the renormalization scale of the dual field theory, and the near horizon
region corresponds to the IR limit. This implies that the AdS2×R2 geometry encodes the
IR physics (ω → 0) of the boundary theory.

On general grounds of holography, one expects the gravity on the AdS2 space to be dual
to a CFT1. This led the authors of [17] to suggest that the (2 + 1)-dimensional boundary
field theory (which is dual to the extremal charged AdS4 black hole) flows in the IR to a
fixed point described by a CFT1. Following [17] we will refer to this CFT1 as the IR CFT.
The details of the AdS2/CFT1 correspondence and how exactly the mapping works are
poorly understood. In particular, it is not clear whether the CFT1 of the correspondence
represents a conformal quantum mechanics or a chiral sector of a (1+1)-dimensional CFT.
Nevertheless, not knowing the details of the IR CFT and just assuming its existence, the
authors of [17] were able to show that the low frequency behavior of some observables in the
boundary CFT is encoded in the IR CFT. In what follows, we consider the charge current
and the energy-momentum tensor operators of the boundary field theory and elucidate
the role of the IR CFT in determining the low frequency behavior of the retarded Green
functions of the two operators.

3 Gauge field and metric fluctuations

The charge current operator in the boundary field theory is dual to the fluctuations of the
bulk gauge field in the transverse direction while the energy-momentum tensor operator is
dual to the fluctuations of the background metric. The calculation of the corresponding
retarded Green functions starts with solving the linearized Einstein-Maxwell equations for
these fluctuations.

– 5 –
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3.1 Einstein-Maxwell equations

To obtain the linearized Einstein-Maxwell equations, we first define

gµν = ḡµν + hµν , Aµ = Āµ + aµ, (3.1)

where ḡµν and Āµ represent, respectively, the (extremal) metric and the gauge field of the
background, and hµν and aµ are the fluctuations. We choose the so-called radial gauge

ar = 0, hrν = 0, (3.2)

where ν = {t, x, y, r}. We proceed by Fourier transforming the fluctuations

hµν(t, x, r) ∼ e−iωteikxhµν(r), aµ(t, x, r) ∼ e−iωteikxaµ(r), (3.3)

where, without loss of generality, we used the rotation invariance in the (x, y) plane to
set ky = 0 and defined kx ≡ k. The fluctuations split into decoupled groups depending
on whether they are even or odd with respect to parity, y → −y. Accordingly, hty, hxy,
ay have odd parity while htt, htx, hxx, hyy, at, ax all have even parity. In this paper, we
study the odd parity modes which translates into the shear and (charge) diffusion modes
of the boundary theory. The analysis of the even parity modes (sound modes) will be
given elsewhere.

It is more convenient to raise the indices in hty and hxy (by the background metric
ḡµν) and work with hyt, hxy. It is also convenient to define the dimensionless quantities

u =
r

r0
, w =

ω

µ
, q =

k

µ
, (3.4)

In this notation, the linearized Einstein-Maxwell equations for the odd parity modes hty,
hxy, ay then read

f(u)
[
u4hy ′′t (u) + 4u3hy ′t(u) +

12
µ
a′y(u)

]
−3q [whxy(u) + qhyt(u)] = 0, (3.5)

f(u)
[
u4f(u)hx′′y(u) +

[
u4f ′(u) + 4u3f(u)

]
hx′y(u)

]
+3w [whxy(u) + qhyt(u)] = 0, (3.6)

f(u)
[
u4f(u)a′′y(u) + u2

[
u2f ′(u) + 2uf(u)

]
a′y(u) + µu2hy ′t(u)

]
+3
[
w

2 − f(u)q2
]
ay(u) = 0, (3.7)

where f(u) is given in (2.7). There is also a constraint which comes from the yu-component
of the linearized Einstein equations given by

u4
w hy ′t(u) + u4f(u)q hx′y(u) +

12
µ
w ay(u) = 0. (3.8)

As we will see later in more detail, this constraint, evaluated asymptotically, encodes a
Ward identity in the dual boundary theory, as one should expect.

– 6 –
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3.2 Gauge invariant modes

Although working in the radial gauge (3.2) is convenient, it does not completely fix the
gauge freedom of aµ and hµν . In the present case, it is easy to identify the gauge invariant
combinations of fields.

For the metric and gauge field fluctuations of our background, there is a U(1) gauge
transformation Aµ → Ãµ = Aµ +∇µχ, according to which fµν = ∂µaν − ∂νaµ is invariant.
There are also gauge transformations associated with diffeomorphism under an arbitrary
vector field ξ, implying that the fluctuations {h̃µν , ãρ} and {hµν , aρ} are equivalent if they
are related as [32]

h̃µν = hµν −
(
ξλ∇λḡµν + ḡλν∇µξλ + ḡµλ∇νξλ

)
= hµν −

(
∇̄µξν + ∇̄νξµ

)
, (3.9)

ãµ = aµ −
(
ξν∇νĀµ + Āν∇µξν

)
= aµ −

(
ξν∂νĀµ + Āν∂µξ

ν
)
, (3.10)

where ∇ is any torsionless connection and ∇̄ is the connection associated with ḡµν . It is
important to notice that these gauge transformations are not changes of the coordinates.
In particular, they affect only the fields hµν and aµ, while all the other tensors, vectors,
etc. remain invariant.

In this paper, the fluctuations of interest are hyt, hxy and ay. While ay is invariant
under the residual gauge transformations, hyt and hxy transform according to hyt → hyt +
iµwξy and hxy → hxy − iµqξy, respectively. Thus

X(u) = qhyt(u) + whxy(u), (3.11)

Y (u) = ay(u), (3.12)

are invariant combinations.
Note that at q = 0 the symmetries are enhanced, and hxy(u) is gauge invariant. For

this special case, as can be seen in equation (3.6), hxy(u) decouples from the rest, while
equations (3.7) and (3.8) together give a decoupled equation for ay(u). The decoupled
equations read

u4f(u)hx′′y(u) +
[
u4f ′(u) + 4u3f(u)

]
hx′y(u) +

3w2

f(u)
hxy(u) = 0, (3.13)

u2f(u)a′′y(u) +
[
u2f ′(u) + 2uf(u)

]
a′y(u) +

1
u2

(
3w2

f(u)
− 12
u2

)
= 0. (3.14)

Equations (3.13) and (3.13) were studied in [26] and the retarded Green functions of the
dual operators, Txy and Jy, at q = 0 and small w were calculated. For the most part in
this paper, we consider q to be finite and non-zero.

Even at finite q and w , the Einstein-Maxwell shear channel equations can be decoupled
in terms of a pair of “master fields” [33]. This is remarkable, since in the boundary field
theory it corresponds to diagonalizing the entire renormalization group flow. The master
fields are

Φ±(u) = −µ qf(u)u3

w2 − f(u)q2
X ′(u)− 6

u

[
2f(u)q2

w2 − f(u)q2
+ u

(
1±

√
1 + q2

)]
Y (u). (3.15)

– 7 –
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and they satisfy the decoupled equations

[
u2f(u)Φ′±(u)

]′ + [uf ′(u) +
3

u2f(u)
(
w

2 − f(u)q2
)
− 6
u3

(
1±

√
1 + q2

)]
Φ±(u) = 0.

(3.16)

As we will discuss in the next section, it is most convenient to organize numerical calcula-
tions in terms of these modes.

4 Retarded Green functions and criticality

In this section, we first obtain formal expressions for the retarded Green functions of the
vector current and energy momentum tensor operators of the boundary theory. By formal
expressions we mean that we write formulas relating the above-mentioned retarded Green
functions to Π̂±, to be introduced below.

Consider first the solution of the equations (3.5), (3.6) and (3.7) asymptotically, for
u → ∞. For each of the fields in this problem, there is a constant asymptotic value that
we denote by a hat. The solutions take the form

hxy(u→∞) = ĥxy +
3
2
w

u2

(
w ĥxy + q ĥyt

)
+
πxy
u3

+ . . . , (4.1)

hyt(u→∞) = ĥyt −
3
2
q

u2

(
w ĥxy + q ĥyt

)
+
πyt
u3

+ . . . , (4.2)

ay(u→∞) = ây +
πy
u
− 3

2
(q2 − w

2)
u2

(
w ĥxy + q ĥyt

)
+ . . . . (4.3)

In these expressions, all quantities are understood to be functions of w and q even if
not explicitly indicated. Here, ĥxy, ĥ

y
t and ây are regarded, as usual, as the sources for the

corresponding operators in the dual field theory, while πxy, πyt and πy are the corresponding
one-point functions of those operators. The latter are understood to be functions of the
sources, and that functional dependence, given the on-shell action, encodes the correlation
functions of the dual field theory.

The renormalized action in our case is given by

2κ2
4 Sren =

∫
d4x
√
−g
(
R+

6
L2
− L2FµνF

µν

)
−
∫
∂M

d3x
√
|γ|2K − 4

L

∫
∂M

d3x
√
|γ| − L

∫
∂M

d3x
√
|γ| (3)R, (4.4)

where γµν , K and (3)R are, respectively, the induced metric, the trace of the second fun-
damental form and the intrinsic curvature of the 3-dimensional boundary ∂M . The coun-
terterm proportional to (3)R removes a linear divergence in the on-shell action for the
Reissner-Nordström AdS4 background, with no contribution to its finite part. In order to
extract Green functions that we are interested in holographically, it is enough to consider

– 8 –
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the (gravity) action up to quadratic terms in the fluctuations. One finds

Sren = lim
u→∞

C

∫
d3x

[
u4hyth

y ′
t − u4f(u)hxyhx′y + 4u3

(
1−f(u)−1/2

)
(hythyt−f(u)hxyhxy)

− u4f ′(u)hxyhxy −
12
µ2

(
µayh

y
t + u2f(u)aya′y

)
− 3
µ2
uf(u)−1/2 (∂thxy − ∂xhyt)2

]
, (4.5)

where C = r0µ
2/(12κ2

4).
The holographic prescription for evaluating the matrix of retarded Green functions

when the operators mix was given in [36] following [34, 35].3 Because we have rotational
invariance in the spatial plane, we will always take the y-component of momentum to
vanish, and hence it is most convenient to Fourier transform the x-direction only. Having
imposed infalling boundary condition at the horizon, one writes the renormalized on-shell
action in the form

So.s. =
∫
dy

∫
dwdq

(2π)2
φ̂i(w , q)Fij(w , q)φ̂j(−w ,−q), (4.6)

where φ̂i = {ĥyt, ĥxy, ây} in our case. The prescription of [36] then reads

GR(w , q) =

{
−2Fij(w , q) i = j

−Fij(w , q) i 6= j.
(4.7)

In momentum space, (4.5) evaluates to

Sren = 3µ2C

∫
dy

∫
dwdq

(2π)2

[
πxy(w , q)ĥxy(−w ,−q)− πyt(w , q)ĥyt(−w ,−q)

+
4
µ2
πy(w , q)ây(−w ,−q) + . . .

]
, (4.8)

where the ellipsis contains terms which contribute at most to contact terms in two-
point functions.

Now, as we recalled above, the {πxy, πyt, πy} are regarded as functions of {ĥyt, ĥxy, ây},
and for present purposes, they can be regarded as linear functions. Also, by assumption,
none of the corresponding operators have one-point functions when the sources are removed.
The vevs are not all independent in this case though. Indeed, the constraint (3.8) gives
one more piece of information

qπxy + wπyt =
4
µ
w ây (4.9)

This equation is easily understood in the boundary theory. The diffeomorphism Ward
identity [21] takes the form

− gνλ(x)∇µ〈T̂µν(x)〉+ Fλµ(x)〈Ĵµ(x)〉 = 0. (4.10)
3See also [37, 38] for a recent more systematic treatment of holographically computing Green functions

in cases where the boundary theory operators mix.
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whose y-component evaluates to (4.9) at linearized order given the source ây, and
our notation.

Thus, there are really only two independent vevs here, in accordance with the fact
that the bulk problem can be reduced to the two gauge-invariant fields. What is more, the
system is in fact diagonalized by passing to the master fields. Asymptotically, we write the
master fields as

Φ±(u→∞) ' Φ̂±

(
1 +

Π̂±
u

+ . . .

)
, (4.11)

where Φ̂± and Π̂± are functions of w and q , and we have in mind that the master fields
satsify infalling boundary conditions at the horizon.

By comparing asymptotic expansions, one easily deduces that

Φ̂± = 3µq
(
w ĥxy + q ĥyt

)
− 6

(
1±

√
1 + q2

)
ây, (4.12)

while
Φ̂±Π̂± = 3

q

w
πxy − 6

(
1±

√
1 + q2

)
πy, (4.13)

where we have used (4.9) to simplify. It should be clear then that the on-shell action can
be written as a function of the sources {ĥyt, ĥxy, ây} and Π̂±. The latter two functions (of
w and q) must be determined numerically. The matrix of retarded two-point functions in
the shear channel are then determined by these two functions. This is in fact consistent
with the requirements of the Ward identities.

Returning to the on-shell action, using the holographic prescription given above, we
deduce the retarded correlators of Ĵy, T̂xy and T̂yt

Gyt,yt(w , q) = µ2
q

2G1(w , q), (4.14)

Gyt,xy(w , q) = − µ2
qwG1(w , q), (4.15)

Gxy,xy(w , q) = µ2
w

2G1(w , q), (4.16)

Gyt,y(w , q) = − 1
2
µq2 [G1(w , q) +G2(w , q)] , (4.17)

Gxy,y(w , q) =
1
2
µqw [G1(w , q) +G2(w , q)] , (4.18)

Gy,y(w , q) = − 4G2(w , q), (4.19)

where

G1(w , q) ≡ 3C√
1 + q2

[(
1−

√
1 + q2

)
Π̂+ −

(
1 +

√
1 + q2

)
Π̂−
]
, (4.20)

G2(w , q) ≡ 3C√
1 + q2

[(
1 +

√
1 + q2

)
Π̂+ −

(
1−

√
1 + q2

)
Π̂−
]
. (4.21)

We have implicitly assumed here that the bulk equations of motion are to be solved by
placing infalling boundary conditions on Φ±(u). It can easily be verified that the prescrip-
tion (4.7) implies that Gxy,yt(w , q) = Gyt,xy(w , q), Gy,xy(w , q) = Gxy,y(w , q), and up to a
contact term Gy,yt(w , q) = Gyt,y(w , q).
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4.1 Frequency expansions of Φ̂± and Π̂±

The expressions we derived above for the retarded Green functions are not very informative
unless Π̂±(w , q) is known. One thing that can be done semi-analytically is to develop a
series expansion in w . This is an extension of our earlier results to finite momentum. This
analysis makes use of the fact that the near horizon geometry is AdS2 ×R2.

Let us expand Φ±(u) in a power series in w :

ΦO±(u) = Φ(0)
O±(u) + wΦ(1)

O±(u) + w
2Φ(2)

O±(u) + . . . , (4.22)

where the subscript denotes the outer region (see the discussion below). Since the black
hole background is extremal, taking the limit of w → 0 becomes somewhat more subtle
near the horizon. This is due to the fact that in the extremal case f(u) has a double zero
at the horizon. A way to handle this issue was explained in [17]. Basically, one realizes
that near the horizon the equations for Φ± in (3.16) organize themselves as functions of
ζ ≡ ωη, where, using (2.9) and (3.4), we have

u = 1 +
w√
12ζ

. (4.23)

Since the coordinate ζ is the suitable radial coordinate for the AdS2 part of the near horizon
geometry, the w expansion of Φ± in that region can be written

ΦI±(ζ) = Φ(0)
I±(ζ) + wΦ(1)

I±(ζ) + w
2Φ(2)

I±(ζ) + . . . , (4.24)

where the subscript I denotes the inner region. Having implemented the (infalling) bound-
ary condition at the horizon [34, 35] in the ζ coordinate, one then matches the inner and
outer expansions in the “matching region” where the ζ → 0 and w/ζ → 0 limits are taken.
Since the differential equations (3.16) are linear, and we also require that the solutions
for the higher order terms in the expansions (4.22) and (4.24) do not include terms pro-
portional to the zeroth-order solutions near the matching region, we just need to match
Φ(0)
I±(ζ) to Φ(0)

O±(u) near that region [17] at leading order.

4.1.1 Inner region

Substituting (4.24) in (3.16), we find that the leading terms satisfy

−Φ(0)′′
I± (ζ) +

(
q

2 + 2± 2
√

1 + q2

2ζ
− 1

)
Φ(0)
I±(ζ) = 0. (4.25)

Equations (4.25) are identical to the equations of motion for massive scalar fields with
effective AdS2 masses

m2
±L

2
2 = 1 +

q
2

2
±
√

1 + q2. (4.26)

Thus Φ(0)
I±(ζ) source operators O± in the IR CFT with conformal dimensions δ± = ν± +

1
2 where

ν± =
1
2

√
1 + 4m2

±L
2
2 =

1
2

√
5 + 2q2 ± 4

√
1 + q2. (4.27)
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Having imposed the infalling boundary conditions at ζ → ∞, Φ(0)
I±(ζ) take the following

form near the matching region (where one takes the ζ → 0 and w/ζ → 0 limits)

Φ(0)
I±(u→ 1) =

[
(u− 1)−

1
2
+ν± + G±(w)(u− 1)−

1
2
−ν±

]
. (4.28)

Note that in writing (4.28) we used (4.23) to express ζ in terms of u. Also, we chose
a specific normalization for Φ(0)

I±. Such a choice does not affect the calculation of the
boundary theory Green functions. In (4.28), G±(w) denote the retarded Green functions
of the aforementioned IR CFT operators O±, and are given by [17, 26]

G±(w) = −2ν±e−iπν±
Γ(1− ν±)
Γ(1 + ν±)

(
w

2

)2ν±
. (4.29)

The analytic structure of G±(w) is the same as the retarded Green function of an IR CFT
scalar operator discussed in [17]. Namely, for generic values of momentum q , there is a
branch point at w = 0, and moreover the branch cut is chosen to extend along the negative
imaginary axis in the complex w-plane.

4.1.2 Outer region and matching

In the outer region, the equations for Φ(0)
O±(u) are obtained by setting w = 0 in (3.16). It is

easy to show that near the matching region, the solutions for Φ(0)
O±(u) are given by a linear

combination of (u− 1)−
1
2
+ν± and (u− 1)−

1
2
−ν± . For ease of notation, we define

η
(0)
± (u) = (u− 1)−

1
2
+ν± + . . . , ξ

(0)
± (u) = (u− 1)−

1
2
−ν± + . . . , u→ 1. (4.30)

Then, matching Φ(0)
O±(u) to (4.28), we obtain

Φ(0)
O±(u) =

[
η

(0)
± (u) + G±(w)ξ(0)

± (u)
]
. (4.31)

The discussion here follows that of [17]. To higher orders, we can write

η±(u) = η
(0)
± (u) + wη

(1)
± (u) + w

2η
(2)
± (u) + . . . , (4.32)

ξ±(u) = ξ
(0)
± (u) + wξ

(1)
± (u) + w

2ξ
(2)
± (u) + . . . , (4.33)

where η(n>0)
± (u) and ξ

(n>0)
± (u) are obtained demanding that in the u → 1 limit, they are

distinct from η
(0)
± (u) and ξ

(0)
± (u), respectively. Thus,

ΦO±(u) = [η±(u) + G±(w)ξ±(u)] . (4.34)

Near u→∞, one can expand η
(n)
± (u) and ξ

(n)
± (u) as follows (here n ≥ 0)

η
(n)
± (u→∞) = a

(n)
±

(
1 + . . .

)
+ b

(n)
±

1
u

(
1 + . . .

)
, (4.35)

ξ
(n)
± (u→∞) = c

(n)
±

(
1 + . . .

)
+ d

(n)
±

1
u

(
1 + . . .

)
, (4.36)
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where the coefficients a(n)
± , b

(n)
± , c

(n)
± and d

(n)
± are all functions of q . So, asymptotically, we

obtain

Φ̂± =
[
a

(0)
± + wa

(1)
± +O

(
w

2
)]

+ G±(w)
[
c
(0)
± + wc

(1)
± +O

(
w

2
)]
, (4.37)

Φ̂±Π̂± =
[
b
(0)
± + wb

(1)
± +O

(
w

2
)]

+ G±(w)
[
d

(0)
± + wd

(1)
± +O

(
w

2
)]
. (4.38)

By virtue of (4.14)–(4.19), these determine the frequency dependence of the retarded Green
functions in the boundary theory, for small w .

4.2 Criticality: emergent IR scaling

Although the Green functions (4.14)–(4.19) can be numerically computed by computing the
coefficients a(n)

± , b
(n)
± , c

(n)
± , d

(n)
± , it turns out that one can analyze the low frequency behavior

of the Green functions without knowing these coefficients explicitly. For the cases of scalar
and spinor operators, such analyses were performed in [17] where a variety of emergent IR
phenomena were observed. In this subsection, we perform similar analyses of the retarded
Green functions of the vector current and the energy-momentum tensor operators of the
boundary theory at low frequency and determine their emergent IR behaviors. As we will
see momentarily, one of the reasons which makes the low frequency analyses of the above-
mentioned retarded Green functions non-trivial and interesting is the fact that there are
now two IR CFT Green functions G±(w) both of which can potentially play a role. Not
surprisingly, the mixing of G±(w) in the expressions (4.14)–(4.19) for the boundary theory
Green functions is due to the coupled nature of the electromagnetic and gravitational
perturbations we are considering in the charged (extremal) black hole background.

As defined in (4.27), ν± are real implying that a(n)
± , b

(n)
± , c

(n)
± and d

(n)
± are all real.

Thus the complex part of Π̂± comes entirely from the IR CFT Green functions G±(w).
Suppose for generic momentum q , the product a(0)

+ a
(0)
− is non-vanishing. Expanding (4.20)

and (4.21) for small w , and noticing that 2ν+ > 3 while 2ν− > 1, one then deduces that
Im G1(w , q) and Im G2(w , q) exhibit scaling behavior at small frequency:

Im G1(w , q) ' 3C√
1 + q2

(
1 +

√
1 + q2

)
e0(q) Im G−(w) [1 + . . .] ∝ w

2ν− , (4.39)

Im G2(w , q) ' 3C√
1 + q2

(
1−

√
1 + q2

)
e0(q) Im G−(w) [1 + . . .] ∝ w

2ν− , (4.40)

where

e0(q) =
b
(0)
−

a
(0)
−

(
c
(0)
−

a
(0)
−
−
d

(0)
−

b
(0)
−

)
. (4.41)

Substituting (4.39) and (4.40) into (4.14)–(4.19), the spectral functions (the imaginary
part of the aforementioned retarded Green functions) of the vector current Ĵy and the
energy-momentum tensor operators T̂yt and T̂xy of the boundary field theory show scaling
behavior at small frequency

Im Gytyt(w , q) ∝ w
2ν− , Im Gxyxy(w , q) ∝ w

2+2ν− , Im Gytxy(w , q) ∝ w
1+2ν− ,

Im Gyty(w , q) ∝ w
2ν− , Im Gxyy(w , q) ∝ w

1+2ν− , Im Gyy(w , q) ∝ w
2ν− .

(4.42)

– 13 –



J
H
E
P
0
4
(
2
0
1
0
)
0
7
5

Note that the low-frequency scaling behavior of the spectral functions above is emergent
meaning that it is a consequence of the fact that the near horizon region of the background
geometry (which translates into the IR physics of the boundary theory) contains an AdS2

factor. Although e0 depends on details of the background geometry, the scaling behavior
w

2ν− does not change by changing the geometry in the outer region as long as the AdS2

part of the near horizon geometry is kept intact. Also, note that because ν± are strictly
real, the retarded Green functions (4.14)–(4.19) do not exhibit the log-periodicity behavior
observed in [16, 17] for the cases of charged scalar and spinor operators.

Of course, it is also of interest to consider the physical poles and branch points of the
correlation functions at arbitrary q and w . We turn to a study of that problem in the
following sections.

5 Retarded Green functions and quasinormal modes

The expressions (4.14)–(4.19) for the retarded Green functions of the boundary field theory
indicate that they generically have poles whenever Φ̂±(w , q) = 0. We denote by w

±
n (q)

the frequencies at which Φ̂±(w , q) vanish. In order to obtain our boundary theory Green
functions holographically, we imposed infalling boundary condition on Φ± at the horizon.
By further imposing Φ± to vanish asymptotically we are essentially solving for their quasi-
normal modes (QNMs) in the extremal Reissner-Nordström AdS4 black hole background.

In the context of the AdS/CFT correspondence, the connection between the QNMs
of gravitational backgrounds and the singularities of the retarded Green functions of the
dual boundary theories was first suggested in [39]. It was then argued in [34] that the
quasinormal frequencies of the decoupled fluctuations of a black hole background coincide
with the poles in the retarded Green functions of the corresponding dual operators in the
boundary theory. The authors of [40] then argued that in cases where the fluctuations
are coupled, in order for the quasinormal frequencies to coincide with the poles in the
retarded Green functions of the dual operators, one should consider the gauge invariant
combinations as the right set of variables and impose on them infalling boundary condition
at the horizon together with an asymptotic normalizable boundary condition. In our case,
as it is seen from the linearized Einstein-Maxwell equations (3.5)–(3.8), the electromagnetic
and gravitational perturbations of the background are certainly coupled. In section 3
we constructed the gauge invariant combinations X(u) and Y (u) in terms of which the
linearized Einstein-Maxwell equations are still coupled. We decoupled the equations for the
gauge-invariant modes by introducing new variables Φ±(u). These variables are themselves
gauge invariant by virtue of their definition (3.15) in terms of X(u) and Y (u). Thus, with
Φ±(u) being gauge invariant and satisfying decoupled second-order differential equations,
we can analyze their QNMs.

To our understanding of the literature, the electromagnetic and gravitational QNMs
of the extremal Reissner-Nordström AdS4 black hole have not been studied before,4 which

4The QNMs of the four-dimensional asymptotically flat extremal Reissner-Nordström black hole were

studied in [42]. ref. [43] analyzed the scalar, electromagnetic and gravitational QNMs of non-extremal

Reissner-Nordström AdS4 black hole. Recently, the authors of [44] studied the QNMs of a massive, charged

scalar field in the background of the electrically, as well as the dyonic extremal Reissner-Nordström AdS4

black hole.
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makes finding these QNMs an interesting problem in its own. ref. [45] is a nice review of
QNMs from both general relativity and the AdS/CFT perspectives.

There are only very few backgrounds whose QNMs are known analytically. Although
there are semi-analytic methods for calculating small or large (magnitudes of) quasinormal
frequencies, one is usually forced to do numerics in order to extract the generic values of
such frequencies. We refer the reader to [45] for an extensive list of analytic and numerical
methods available in the literature on how to compute the QNMs of different backgrounds.
In this section, we numerically compute the quasinormal frequencies of the (shear channel)
electromagnetic and gravitational perturbations of the extremal Reissner-Nordström AdS4

black hole. Along the way, we find it useful to compare our zero-temperature numerical
results with the analogous QNMs of the non-extremal Reissner-Nordström AdS4 black hole
background. Although, the results in the non-extremal case are not new, we present them
here for the purpose of comparison and to study the T → 0 limit (at fixed µ). By doing
so, we will see more clearly how the analytic structure at T = 0 is related to that of
finite temperature.

5.1 Generalities

Before numerically computing the quasinormal frequencies for our problem, we discuss
some general features that one expects to observe.

5.1.1 Branch cut

For small w , the analytic structure is determined by the small frequency analysis that we
presented earlier, pertaining to the near-horizon geometry. For generic values of q , G±(w)
are multi-valued and the boundary theory Green functions are then generically multi-valued
as well. When q = 0, 2ν± are integers: indeed 2ν+ = 3 and 2ν− = 1. In this case, the
multi-valuedness of the Green functions is due to the existence of terms like w

m logw in
their expressions, where m is a positive integer, in the extremal case.5 For example, one
can show that at small w

Gxy,xy(w , q = 0) ∝ iw

1 + c1w logw + c2iw
, (5.1)

where c1 and c2 are numerical factors. Thus, the QNMs of Φ± will also be multi-valued
(in the extremal case). There is another, perhaps, more direct argument for the existence
of the branch cut in the QNMs of Φ±, which is based on analyzing the “tail” of the Φ±
fluctuations in the extremal black hole background [46]. An argument of this type was
used in [44] to show the existence of the branch cut in the QNMs of a chargeless massless
scalar in the extremal Reissner-Nordström AdS4 black hole background, and can easily be
adopted to our case, as well. To that end, define the (dimensionless) tortoise coordinate
u∗ via

du∗
du

=
1

u2f(u)
. (5.2)

5As we will recall below, such logs are absent at finite temperature, and the cut resolves into a series of

Matsubara poles along the negative imaginary axis.
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The asymptotic boundary of the background in the tortoise coordinate is obtained by
taking u∗ → 0 whereas u∗ → −∞ is the near horizon region. Using the tortoise coordinate,
we can write the equations in (3.16) in the form of Schrödinger equations (where we think
of q as being fixed)

Φ′′±(u∗) +
[
3w2 − V±(u∗)

]
Φ±(u∗) = 0, (5.3)

where the potentials V±(u∗) are given by

V±(u∗) =
6
u
f(u)

(
1±

√
1 + q2

)
+ 3q2f(u)− u3f(u)f ′(u). (5.4)

It is understood that in the above expressions for V±(u∗), one should use (5.2) to express
u in terms of u∗. Near the horizon, one easily finds

V±(u∗ → −∞) ∼ 1
u3
∗
. (5.5)

Such a power law behavior in the asymptotic form of the potentials is a characteristic of
the background being extremal (as opposed to a non-extremal background for which the
potential dies off exponentially as u∗ → −∞). It is this power law behavior which gives rise
to a branch cut [46] (for small frequencies), extended in the negative imaginary axis, for
the QNMs of Φ±. We will shortly see the appearance of this branch cut in our numerical
plots of the QNMs.

5.1.2 Stability

Suppose Φ± are QNMs with frequencies w
±
n . So, Φ± are ingoing at the horizon and

vanish asymptotically. Following [47], we will see shortly that, using the properties of the
potentials V±, these two boundary conditions constraint w

±
n . Since Φ± are infalling at

the horizon, one has e−i
√

3w±n τΦ± ∼ e−i
√

3w±n (τ+u∗) where τ = r0t/L
2 is the dimensionless

time coordinate and u∗ is the tortoise coordinate defined in (5.2). Note that τ + u∗ is the
dimensionless ingoing Eddington coordinate. Define

Φ±(u∗) = e−i
√

3w±n u∗Ψ±(u∗). (5.6)

Substituting (5.6) into (5.3), and writing the result in terms of the coordinate u, we obtain[
u2f(u)Ψ′±(u)

]′ − 2i
√

3w±nΨ′±(u)− U±(u)Ψ±(u) = 0, (5.7)

where the potentials U±(u) are given by

U±(u) =
6
u3

(
1±

√
1 + q2

)
+

3
u2
q

2 − uf ′(u). (5.8)

We multiply (5.7) by Ψ̄±(u) and integrate the result to obtain[
u2f(u)Ψ̄±(u)Ψ′±(u)

]∞
1

(5.9)

−
∫ ∞

1
du
[
u2f(u)

∣∣Ψ′±(u)
∣∣2 + 2i

√
3w±n Ψ̄±(u)Ψ′±(u) + U±(u) |Ψ±(u)|2

]
= 0
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where we have also performed an integration by parts. Using (5.6) and (4.11) and the fact
that Φ±(u) are assumed to be QNMs, one obtains that as u → ∞, u2Ψ′±(u) is finite and
Ψ̄±(u) vanishes. At the horizon, both Ψ̄±(u) and Ψ′±(u) are finite and f(u) vanishes. Thus,
all together, one concludes that

[
u2f(u)Ψ̄±(u)Ψ′±(u)

]∞
1

= 0. Take the complex conjugate
of (5.9) and subtract the result from (5.9) to obtain∫ ∞

1
du
[
w
±
n Ψ̄±(u)Ψ′±(u) + w̄

±
nΨ±(u)Ψ̄′±(u)

]
= 0. (5.10)

Integrating by parts the second term in (5.10), and noting that Ψ±(u) vanishes at u =∞,
we obtain

(
Im w

±
n

) ∫ ∞
1

duΨ̄±(u)Ψ′±(u) = − i
2
w̄
±
n |Ψ±(u = 1)|2 . (5.11)

Since Ψ±(u = 1) is finite, if Re w
±
n 6= 0 equation (5.11) then implies that Im w

±
n 6= 0.

Substituting (5.11) into (5.9), we obtain∫ ∞
1

du
[
u2f(u)

∣∣Ψ′±(u)
∣∣2 + U±(u) |Ψ±(u)|2

]
+
√

3
(
Im w

±
n

)−1 ∣∣w±n ∣∣2 |Ψ±(u = 1)|2 = 0.

(5.12)

For all (real) values of q , U+(u) is always positive definite. This is because in order for
U+(u) to be always positive definite, one has to have 3q2 + 2

√
1 + q2 − 2 ≥ 0, which is

satisfied for all (real) values of q . Thus, the integral (with subscript +) in (5.12) never
becomes negative. From equation (5.12), we then reach the conclusion that Im w

+
n < 0.

This result indicates that the Φ+(u) fluctuation does not cause instability, as e−i
√

3w+
n τΦ+

decays in time for all w+
n . For U−(u), on the other hand, it can easily be shown that the

condition for it being positive definite turns out to be 3q2−2
√

1 + q2−2 ≥ 0 which is true
only if q2 ≥ 16

9 . Therefore, for |q | ≥ 4
3 , the integral (with subscript −) in (5.12) is positive

definite yielding Im w
−
n (q) < 0. For |q | < 4

3 , there are ranges of u for which U−(u) becomes
negative. As a result, when |q | < 4

3 , without knowing the solution Ψ−(u), equation (5.12)
cannot by itself determine the sign of Im w

−
n (q). However, as we will see later on, it is

easy to numerically confirm that even for |q | < 4
3 one obtains Im w

−
n (q) < 0, so the Φ−(u)

fluctuation does not cause instability either.
In the background geometry we are considering, the quasinormal frequencies of Φ±

are further constrained. Using equations (5.3) together with the infalling boundary con-
dition (5.6), one easily concludes that if w±n (q) is a quasinormal frequency of Φ±, so is
−w±n (q), that is to say that the quasinormal frequencies appear as pairs with the same
imaginary part but opposite real part. On the field theory side, the pairing of the poles of
the retarded Green functions (4.14)–(4.19) is due to the fact that the boundary theory is
parity invariant.6

6This symmetry of the quasinormal modes would be broken, for example, in the presence of a mag-

netic field.
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5.2 Numerical analysis: matrix method

To compute the quasinormal frequencies of Φ± (in the extremal case) numerically, we use
the “matrix method” of [48]. Unlike the algorithm of [47] which is known not to work for ex-
tremal black hole backgrounds,7 the matrix method of [48] is believed to be applicable here.
The authors of [44] used this matrix method to find the quasinormal frequencies of a charged
minimally-coupled scalar field in the extremal Reissner-Nordström AdS4 background. In
what follows we first present our numerical results for the quasinormal frequencies of Φ±
in the extremal case, then compare their general features with the analogous quasinormal
frequencies when the Reissner-Nordström AdS4 black hole background is non-extremal.

5.2.1 Zero temperature

For numerical purposes it is more convenient to switch to a new radial coordinate z = 1/u.
In this coordinate, z = 1 represents the horizon while z = 0 is the asymptotic boundary.
We write the equations (3.16) in terms of the new coordinate z and arrive at

z2
[
f(z)Φ′±(z)

]′ + [−zf ′(z) +
3z2

f(z)
(
w

2 − f(z)q2
)
− 6z3

(
1±

√
1 + q2

)]
Φ±(z) = 0.

(5.13)

To apply the matrix method of [48], we first isolate the leading behaviors of Φ±(z) at the
horizon and the boundary. The rest is then approximated by a power series in z around a
point z0 such that the radius of convergence of the series covers both the horizon and the
boundary. That point in our case is taken to be z0 = 1

2 . Thus, we write

Φ±(z) = e
i w√

12(1−z) f(z)−i
√

3w
9 z

M∑
m=0

a±m(w , q)
(
z − 1

2

)m
. (5.14)

Substituting (5.14) into (5.13), we obtain a set of M+1 linear equations for M+1 unknowns
ap(w , q)’s, and write them in a matrix form

M∑
m=0

A±mp(w , q)a±p (w , q) = 0. (5.15)

Suppose now we choose a specific value for the spatial momentum q . The quasinormal
frequencies w±n for that particular value of q are solutions to the following equation

det A±mp(w
±
n , q) = 0. (5.16)

Since Φ± in (5.14) are approximated by power series, the more terms kept in the series,
the more accurate results one obtains for the quasinormal frequencies of Φ±.

The plots (a) and (b) in figure 1 show respectively the quasinormal frequencies of Φ+

and Φ− for q = 1, where, due to space limitations, we have only shown a handful of them.
We used M = 100 for both plots. It can easily be verified numerically that, for both plots,

7This is because for extremal black holes, the horizon is an essential singularity.
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Figure 1. Electromagnetic and gravitational quasinormal frequencies (in the shear channel) of
extremal Reissner-Nordström AdS4 black hole. Plot (a) shows the quasinormal frequencies of Φ+

and plot (b) shows the quasinormal frequencies of Φ−. For both plots, q = 1 and M = 100. As M
is increased the poles on the negative imaginary axis get closer to one another and form a branch
cut in the M →∞ limit.

as M is increased the poles on the negative imaginary axis become closer to one another.
This observation suggests that the sequence of discrete poles on the negative imaginary
axis is due to approximating Φ± in (5.14) by power series. In particular, although not
numerically accessible, it should be the case that in the M → ∞ limit there is actually a
branch cut [44]. This picture is consistent with the two arguments we presented earlier for
the existence of the branch point at the origin in the extremal case. Notice that the plots
are symmetric under w±n → −w̄±n as they should be. One also sees that the off-axis poles
are approximately equally spaced and line up on almost straight lines. Aside from the poles
on the negative imaginary axis, which coalesce as M is increased, the qualitative behavior of
the plots does not change by increasing M . In particular, we do not see any poles crossing
into the real axis, indicating that these QNMs do not cause instabilities in the system.
This observation is consistent with the argument we gave earlier in subsection 5.1.2. The
argument there was not powerful enough to determine the sign of Im w

−
n (q) for q ∈ (−4

3 ,
4
3).

The plot (b) of figure 1 (for which q = 1) shows that the imaginary part of w−n is negative.
One can also plot the quasinormal frequencies of Φ− for other values of q in the range
(−4

3 ,
4
3) and observe that Im w

−
n is always negative. Indeed we have shown one such plot

in figure 2(b).

The plots in figure 2 show the quasinormal frequencies of Φ± for q = 1/
√

3. Although
not shown, we considered other values of q and were able to verify that the qualitative
patterns of the plots shown in figures 1 and 2 stay the same as q is varied. Excluding the
poles on the negative imaginary axis, which form a branch cut in the M → ∞ limit, we
observed that independent of what value q takes, there are no small quasinormal frequencies
for Φ−, while there are only two for Φ+ (which are the ones closest to the real axis). Here,
by small quasinormal frequencies we mean those which satisfy |w±n | ≤ 1. Therefore, one can
conclude that at small frequencies |w | ≤ 1, there are only two single poles in the boundary
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Figure 2. Quasinormal frequencies of Φ± (in the extremal case) for q = 1/
√

3. (a) Quasinormal
frequencies of Φ+. (b) Quasinormal frequencies of Φ−. M = 100 for both plots.

theory retarded Green functions (4.14)–(4.19). Moreover, those poles do not approach zero
as q → 0.

The analysis at q = 0 is quite a bit simpler, but is qualitatively similar. In this case,
the relevant equations are

z2f(z)hx′′y(z) +
[
z2f ′(z)− 2zf(z)

]
hx′y(z) +

3w2

f(z)
z2hxy(z) = 0, (5.17)

f(z)a′′y(z) + f ′(z)a′y(z) +
(

3w2

f(z)
− 12z2

)
ay(z) = 0, (5.18)

which are obtained from equations (3.13) and (3.14) by changing the radial coordinate to
z = 1/u. (Note that hxy(z) is gauge invariant at q = 0, while ay(z) is gauge invariant for
all q .) We can find the quasinormal frequencies of hxy(z) and ay(z) similar to the steps
we performed above to obtain the quasinormal frequencies of Φ±. The only difference is
that the normalizable mode of hxy(z) falls off asymptotically as z3. Therefore in writing
the analog of (5.14) for hxy(z) the factor of z should be replaced by z3. The results are
shown in figures 3(a) and 3(b). Note that equation (5.17) is the same as the equation
of motion for a minimally-coupled chargeless massless scalar in the background of the
extremal Reissner-Nordström AdS4 black hole. The quasinormal frequencies of this scalar
have been numerically computed in [44] using the same matrix method and a (density)
plot resembling the one in figure 3 (b) was generated there.

The pattern we observe in the two plots of figure 3 is very much similar to the ones
in figures 1 and 2. The plots were obtained for M = 100, but the pattern stays almost the
same for higher values ofM . One still observes that the poles on the negative imaginary axis
coalesce while the locations of the poles on each side of the imaginary axis do not change
much. Also, we neither find poles crossing into the upper half plane, nor do we find poles
which vanish. As it is seen from figure 3(b), there are no (diagonally-oriented) quasinormal
frequencies for hxy at small |w | ≤ 1 frequencies while there are two such frequencies for ay
in that range. The quasinormal frequencies of ay in figure 3(a) can be used to estimate,
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Figure 3. Quasinormal frequencies for q = 0 of ay and hx
y in the extremal Reissner-Nordström

AdS4 black hole background. Plot (a) shows the quasinormal frequencies of ay and plot (b) are the
quasinormal frequencies of hx

y. We set M = 100 for both plots.

along the lines of [44], the UV behavior of a one-loop contribution to the free energy of the
extremal background by the gauge field ay. Knowing the one-loop corrections to the free
energy enables one to compute a “1/N correction” to charge conductivity.

5.2.2 Finite temperature

It is instructive to compare our results for the quasinormal frequencies of Φ± in the extremal
case to the quasinormal frequencies of Φ± in the background of non-extremal Reissner-
Nordström AdS4 black hole. Written in terms of the z-coordinate, equations (A.9) take
the form

z2
[
f(z)Φ′±(z)

]′ + [−zf ′(z) +Q2 z2

f(z)
(
w

2 − f(z)q2
)
− 2Q2g±(q)z3

]
Φ±(z) = 0, (5.19)

where Q2 < 3 in the non-extremal case. The definition of Φ± at finite temperature is given
in (A.7).

In the non-extremal case, we also use w±n to denote the quasinormal frequencies of Φ±.
In order to find w

±
n we use the matrix method of [48] and follow the exact same steps as

we did in the extremal case except that (5.14) is now replaced by

Φ±(z) = f(z)−iw/τz
M∑
m=0

a±m(w , q)
(
z − 1

2

)m
, (5.20)

where we have defined τ = 4πT/µ, with T and µ being the temperature and chemical
potential, respectively. The finite-temperature quasinormal frequencies of Φ± have been
plotted in figure 4. Only a handful of w±n have been shown, though. To generate the plots,
we chose a temperature of T = 0.09µ. Also, the plots were obtained for q = 1 and M = 100.
The branch cut in figures 1(a) and 1(b) are replaced at finite temperature by a sequence
of almost equally-distanced poles along the negative imaginary axis. Note that the poles
are all in the lower half of the frequency plane, indicating that they do not give rise to
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Figure 4. Quasinormal frequencies of Φ± in non-extremal Reissner-Nordström AdS4 black hole
background. Plot (a) shows the quasinormal frequencies of Φ+ while plot (b) shows the quasinormal
frequencies of Φ−. For both plots, q = 1, M = 100, and T = 0.09µ.
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Figure 5. The lowest quasinormal frequency of Φ− as function of q. The temperature is T = 0.09µ,
and M = 100. The solid black curve is the quadratic fit: iw ' 0.17q2.

instabilities. As q → 0, none of the quasinormal frequencies of Φ+ approach zero. On the
other hand, the lowest quasinormal mode of Φ−, shown in figure 4(b) by a larger red dot,
approaches zero as q → 0. This is the leading hydrodynamic pole. Thus, one concludes
that the finite temperature generalization of (4.14)–(4.19) all have the same hydrodynamic
pole, namely the diffusion constant D is the same for all of them. In figure 5, we plotted
the lowest quasinormal frequency of Φ± (shown in figure 4(b) by a larger red dot) as a
function of q , and fitted the plot by a quadratic function. The solid black curve on the plot
shows the fit. From the slope of the fitted curve, we obtain D ' 0.17/µ, with T = 0.09µ.
Substituting the numerically obtained diffusion constant into the hydrodynamic equation
η = (Ts + µρ)D, where µ, s and ρ are respectively given in (2.4) and (2.6), one easily
obtains η/s ' 1/4π.8

8The sign ' is because of numerical uncertainties. One can of course show analytically that the ratio
should be equal to 1/4π [28, 29].
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Figure 6. (a) Finite-temperature quasinormal frequencies of ay at q = 0. (b) Finite-temperature
quasinormal frequencies of hx

y. The temperature is T = 0.09µ, and M = 100.

We present the case of q = 0 separately. The relevant equations in this case read

z2f(z)hx′′y(z) +
[
z2f ′(z)− 2zf(z)

]
hx′y(z) +Q2 w

2

f(z)
z2hxy(z) = 0, (5.21)

f(z)a′′y(z) + f ′(z)a′y(z) +Q2

(
w

2

f(z)
− 4z2

)
ay(z) = 0, (5.22)

which are equations (A.5) and (A.6) expressed in terms of the coordinate z = 1/u. We find
the finite-temperature quasinormal frequencies of hxy(z) and ay(z) following what we did
above to obtain the finite temperature quasinormal frequencies of Φ±. The only difference
is that in writing the analog of (5.20) for hxy(z) we replace the factor of z by z3. This is
because asymptotically the normalizable mode of hxy(z) falls off as z3.

The quasinormal frequencies of ay and hxy have been plotted in figure 6 for a tem-
perature of T = 0.09µ using M = 100. We see that, as for q 6= 0, there is no branch
cut at finite temperature: it is replaced by a sequence of almost equally-distanced poles
along the negative imaginary axis. Also, as it is seen from the plots, the finite-temperature
quasinormal frequencies of ay and hxy stay away from the real axis. To the extent that we
have checked numerically, this behavior of the quasinormal frequencies is unchanged as M
is increased.

There does not appear to be a qualitative difference in the quasinormal spectrum
between the T = 0 results and the finite temperature spectrum for small temperatures.
To see that more clearly, we consider the limit T → 0, holding µ fixed. For numerical
simplicity, we have done this at q = 0, but do not expect an appreciable difference at finite
q . Referring to figure 6, we consider the following three quantities. We denote by d1 the
difference between the smallest quasinormal frequency on the negative imaginary axis and
the origin, by d2 the distance between the first two poles on the imaginary axis and by d3,
the distance between the two off-axis poles in the first quadrant closest to the origin. In
figure 7(a), we demonstrate that as T is lowered, holding µ fixed, both d1 and d2 approach
zero, while d3 remains finite. Approaching T → 0 requires ever-more numerical precision,
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Figure 7. (a) Plots of d1 (red), d2 (blue) and d3 (green) as function of T/µ for ay. (b) Plots of d1,
d2 and d3 as function of T/µ for hx

y. In the range of T/µ ∈ [0.017, 0.091], the red and blue curves
almost overlap. The plots have been generated with M = 150.

but the plots suggest that d1 and d2 extrapolate to zero at T = 0. This is consistent with
the on-axis poles becoming the branch cut seen in the T = 0 theory, as one might expect.

6 Conclusions

In this paper, we considered a boundary field theory dual to the extremal Reissner-
Nordström AdS4 black hole, and analyzed the retarded two-point functions of the charge
vector current and energy-momentum (tensor) operators at finite frequency and momen-
tum. The operators Ĵy, T̂yt and T̂xy whose two-point functions we analyzed were in the
shear channel of the boundary field theory, whose dual bulk modes ay, hyt and hxy were
odd under parity, y → −y. We found that for generic momentum, the retarded correlators
of the aforementioned vector and tensor operators exhibit emergent scaling behavior at low
frequency. The operators Ĵy, T̂yt and T̂xy gave rise in the IR to two sets of scalar operators
O± with conformal dimensions δ±. The low frequency scaling exponents of the spectral
densities in the boundary theory depended only on δ− (or equivalently, ν−). We explored
the analytic structure of the retarded correlators for finite momentum and small frequency,
and argued that there should exist a branch cut in these correlators at the origin, as well
as a series of metastable modes corresponding to isolated poles in the lower half of the
complex frequency plane. Taking linear combinations of the dual bulk modes, we con-
structed the gauge invariant modes from which we were able to numerically compute the
spectrum of the (shear-type) electromagnetic and gravitational quasinormal frequencies of
the background. The numerical computations were in agreement with what we argued,
analytically, for the existence of the branch cut in the retarded correlators as well as their
poles being in the lower half of the complex frequency plane. Turning on temperature,
we numerically observed how the branch cut dissolves into a series of poles on the nega-
tive imaginary axis, and determined the corresponding dispersion constant of the leading
pole, in agreement with previous results. We performed the shear channel analyses in the
(2 + 1)-dimensional boundary theory. One can straightforwardly generalize the same type
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of analyses for higher dimensional boundary theories dual to extremal Reissner-Nordstrom
AdSd+1 black hole, and, not surprisingly, reach the same conclusions as we did for the case
of the (2 + 1)-dimensional boundary theory.

Although more involved, analyzing the retarded correlators of the operators in the
sound channel of the (2 + 1)-dimensional boundary theory can similarly be performed.
In the bulk, one deals with the modes which are even under the parity, y → −y: htt,
htx, hxx, hyy, at, ax. Taking linear combinations of these modes, one can construct two
gauge-invariant modes, and compute, either numerically or analytically for small w and
q , the spectrum of their quasinormal frequencies (having diagonalized the system of equa-
tions). The sound wave dispersion relation w = w(q) can then be determined from the
poles of, say, Gtt,tt(w , q) at small w and q . It is interesting to verify that w(q) → 0 as
q → 0. The analysis for the sound channel of the (2 + 1)-dimensional boundary will be
presented elsewhere.
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A Finite temperature equations

In the background of non-extremal Reissner-Nordström AdS4 black hole, the linearized
Einstein-Maxwell equations for the (odd-parity) modes hyt, hxy, ay take the form

f(r)
[
r4hy ′′t (r) + 4r3hy ′t(r) + 4Qr20L

2a′y(r)
]
− ωkL4hxy(r)− k2L4hyt(r) = 0, (A.1)

f(r)
[
r4f(r)hx′′y(r) +

[
r4f ′(r) + 4r3f(r)

]
hx′y(r)

]
+ ω2L4hxy(r) + ωkL4hyt(r) = 0, (A.2)

f(r)
[
r4f(r)L2a′′y(r) + r2L2

[
r2f ′(r) + 2rf(r)

]
a′y(r) +Qr20r

2hy ′t(r)
]

+L6
[
ω2 − f(r)k2

]
ay(r) = 0, (A.3)

Also, the constraint equation (the yr-component of the linearized Einstein equations) reads

r4ω hy ′t(r) + r4f(r)k hx′y(r) + 4Qr20L
2ω ay(r) = 0. (A.4)

In the above expressions, f(r) is given in (2.4) and has a single zero at the (outer) horizon
r0. Note that M = 1 +Q2.

In the non-extremal case, we choose to rescale ω and k by µ. The dimensionless
frequency and momentum, w and q , are defined in (3.4). Also, like the extremal case, we
work with the dimensionless radial coordinate u = r/r0. The gauge-invariant combinations
are given by the same expressions as in (3.11) and (3.12): X(u) = qhyt(u) + whxy(u) and
Y (u) = ay(u).
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At q = 0, hxy(u) becomes gauge-invariant. Also, the linearized Einstein-Maxwell
equations (A.1)–(A.4) give, in this case, two decoupled equations for hxy(u) and ay(u)

u4f(u)hx′′y(u) +
[
u4f ′(u) + 4u3f(u)

]
hx′y(u) +Q2 w

2

f(u)
hxy(u) = 0, (A.5)

u2f(u)a′′y(u) +
[
u2f ′(u) + 2uf(u)

]
a′y(u) +

Q2

u2

[
w

2

f(u)
− 4
u2

]
ay(u) = 0. (A.6)

For finite (non-zero) q , on the other hand, it can easily be worked out that the linearized
Einstein-Maxwell equations yield two coupled second-order differential equations for X(u)
and Y (u). Similar to the extremal case studied in the bulk of the paper, these equations
can be decoupled. We first define

Φ±(u) = −µ qf(u)u3

w2 − f(u)q2
X ′(u)− 2Q2

u

[
2f(u)q2

w2 − f(u)q2
+ ug±(q)

]
Y (u), (A.7)

where

g±(q) =
3
4

(
1 +

1
Q2

)1±

√
1 +

16
9

(
1 +

1
Q2

)−2

q2

 . (A.8)

The decoupled equations then read[
u2f(u)Φ′±(u)

]′ + [uf ′(u) +
Q2

u2f(u)
(
w

2 − f(u)q2
)
− 2Q2

u3
g±(q)

]
Φ±(u) = 0. (A.9)
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