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1 Introduction and summary

Quantum gauge theories with N = 2 supersymmetry appear to possess a rare feature of

getting more and more fascinating as the time flows by. Since the seminal solution of

Seiberg and Witten [1, 2], it is known that their solution is encoded in Seiberg-Witten

curves. The very existence of these curves inspired several important developments and

led to remarkable relations to other branches of physics and mathematics.

The first such branch is a theory of random partitions. In [3–7] it was shown

that Seiberg-Witten curves arise as limiting shapes of large ensembles of random two-

dimensional partitions. These partitions label instanton configurations, which are the only
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contributions to the gauge theory partition function computed by localization. To apply

localization techniques one has in fact to consider a more general setup, which, among

several other subtleties, involves a non-trivial spacetime metric called the Ω-background.

This background is characterized by two parameters ǫ1 and ǫ2. Ultimately one can ex-

plicitly write down partition functions of gauge theories Z, which now bear the name of

Nekrasov, and in particular they depend on ǫ1 and ǫ2. The information about the Seiberg-

Witten curve is encoded in the prepotential F0, which is the leading term of the free

energy F0 = − limǫ1,ǫ2→0 ǫ1ǫ2 log Z. In the special case ǫ1 = −ǫ2 = ~ the free energy has

the expansion

F = log Z =

∞
∑

g=0

Fg~
2g−2, (1.1)

and higher genus terms Fg are also associated to the ordinary Seiberg-Witten curve. For

arbitrary ǫ1, ǫ2 this expansion takes more general form and it is natural to expect that

it should be associated to some deformation of the Seiberg-Witten curve. As we explain

further there are strong indications that the non-commutative deformation arises in such

a general case.

Another class of systems, whose solutions are encoded in complex curves, are matrix

models, defined by matrix integrals

Z =

∫

DMe−
1
~
TrV (M). (1.2)

The integration measure can typically be diagonalized and expressed in terms of eigen-

values xi of matrices M . In case of hermitian matrices, such diagonalization results in

the Vandermonde determinant DM =
∏

i dxi
∏

i<j(xi − xj)
2. The solution of such ma-

trix integrals can also be expressed in the form (1.1), which is encoded in the underlying

spectral curve. One is therefore tempted to devise such (hermitian) matrix models, whose

spectral curves would be identified with Seiberg-Witten curves, and moreover the full so-

lutions (1.1) on both sides would match. Such a program was initiated by Dijkgraaf and

Vafa in [8, 9], where they related both systems by a chain of dualities which involved

topological string theory. The connection to topological strings is not a surprise: their

amplitudes also take form (1.1), and it is known that N = 2 theories can be engineered by

considering topological strings on non-compact Calabi-Yau manifolds [10], whose geometry

is encoded in yet another complex (B-model) curve [11]. This relation is exact, i.e. topo-

logical string partition functions agree with Nekrasov partition functions to all orders in

genus expansion [12, 13]. This agreement was also extended, in terms of refined topological

vertices [14, 15], to arbitrary values of ǫ1, ǫ2 in [16, 17].

However, the relation of Seiberg-Witten (and therefore topological strings) to matrix

models is in fact more subtle: while it was shown that the expansions (1.1) agree for the

lowest order terms F0, F1 even for simple polynomial potentials [18, 19], the agreement of

the full series (1.1) is much harder to achieve and depends on details of matrix potentials

V (M) [20]. Nonetheless, recently matrix models have been found [21, 22], which by the

very construction agree with the Nekrasov partition functions, and therefore automatically

lead to the identification of full expansions (1.1) on both sides.
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Recently the above web of dualities has been extended again, in a novel and surprising

direction: it was observed that Nekrasov partition functions agree with correlators in Li-

ouville theory [23]. In view of the connections described above, one might therefore expect

that there are connections between Liouville theory and matrix models. Such connections

have been proposed recently by Dijkgraaf and Vafa [24], in a way which extends their

earlier ideas mentioned above. We will discuss these relations more in what follows.

In the above web of dualities matrix model possess one peculiar feature. While the

amplitudes in gauge theories, topological strings,1 and Liouville theory depend in a natural

way on the two parameters ǫ1, ǫ2, it is not a priori clear how (or whether at all) the

dependence of the matrix integral (1.2) on ~ can be refined. Nonetheless, matrix models

are essential ingredients of all those dualities, and therefore they would appear incomplete

without such a refinement.

In this paper we show that such a refinement of matrix models indeed exists, and

it takes form of the so-called β-deformation. By explicit computation, we transform a

large class of Nekrasov partition functions into the form of β-deformed matrix models, i.e.

matrix models of the form (1.2), however with modified determinant [25–27]. In the four

dimensional case this determinant is given by

DM =
∏

i

dxi

∏

i<j

(xi − xj)
2β , (1.3)

and the exponent β captures the dependence on parameters of the Ω-background

β = −ǫ1

ǫ2
. (1.4)

Clearly the special case ǫ1 = −ǫ2 = ~, or β = 1, corresponds to the ordinary Vandermonde

determinant. We derive β-deformed matrix models for four- and five-dimensional U(n)

theories with massive hypermultiplets, as well as five-dimensional Chern-Simons terms. In

the five-dimensional case the determinant (1.3) is in addition deformed in the trigonometric

way. The generalization to six dimensions is straightforward, and results in the elliptic

deformation, similar as in [13, 22]. The methods which we use are essentially extension of

those introduced in [21, 22, 28]; for related developments see also [29–32].

It was already argued in [24] that refinement of matrix models should take such a

form, based on properties of the Ω background, as well as the example of the β-deformed

Gaussian matrix model. This Gaussian model is a special case of the Selberg integral, and

its exact value is known. However this example seems to relate only to four-dimensional

theories, and it is not clear how to extend it beyond the quadratic potential.

More precisely, the β-deformed matrix models in the form given above, arise in our

computation in the leading order in the expansion in one of the parameters, say ǫ2. The

β-deformation of the measure is extracted from the asymptotics of its yet more general

1Topological strings, as such, are defined for a single parameters gs = ǫ1 = −ǫ2. However their ampli-

tudes can be refined in a natural, combinatorial way to two parameters using the construction of refined

vertices [14, 15]. It is argued in [17], that for topological strings on toric Calabi-Yau manifolds which

engineer gauge theories, the amplitudes computed using these two vertices give the same results.
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form. In addition there is the whole subleading series in ǫ2, both in the measure, as well as

in the matrix model potential. This is analogous to the results in [21, 22, 28, 29] for β = 1,

where matrix potentials (but not the measure) included additional subleading series in ~.

An additional subtlety in the present β 6= 1 case is that these subleading terms cannot

be immediately symmetrized (in a sense which will be explained in what follows), which

makes their matrix model interpretation less clear. Nonetheless, we postulate that these

subleading terms are essentially inessential, and the knowledge of just the leading terms

should be sufficient to analyze the entire theory. This is so in matrix models corresponding

to β = 1 analyzed in [21, 22, 28]. A detailed explanation of this phenomenon is given

in [29], where analogous matrix models for Hurwitz numbers are derived. In these cases

the leading piece of the matrix model is sufficient to solve the whole matrix model, because

it encodes the spectral curve, and the knowledge of the spectral curve is sufficient to define

recursively symplectic invariants of Eynard and Orantin [33]. In case of curves arising in

the B-model topological strings, these symplectic invariants agree with Gromov-Witten

invariants [34, 35]. In fact, the results of [33] have been recently extended to the matrix

models for β-ensembles [26, 27]. We therefore suppose that similar scenario should hold in

the present case.

The organization of this paper is as follows. In the reminder of this section we summa-

rize in detail our results, and discuss their relation to the AGT conjecture. In section 2 we

present Nekrasov partition functions in the form appropriate for our purposes. In section 3

we present a general scheme of deriving matrix models associated to Nekrasov partition

functions. In section 4 we provide such a derivation for four-dimensional theories. In

section 5 we provide a derivation for five-dimensional theories. In section 6 we discuss di-

rections for further studies. In appendices we present yet more details on Nekrasov partition

functions, explain manipulations with infinite sums, present various asymptotics necessary

to extract β-deformed measures, and provide a complete example of the subleading terms

in the four-dimensional matrix model potential.

1.1 Summary of the results

In this paper we find β-deformed matrix models, which encode Nekrasov partition functions

for theories U(n) gauge groups, with various matter contents and in various dimensions.

We find it convenient to rescale the constant in front of the potential in (1.2), and write

the β-deformed matrix models in the form

Z =

∫

MatnN

DMe
− 1

ǫ2
TrV (M)

, (1.5)

where M ∈ MatnN denotes nN × nN matrices from β-ensembles.

For four-dimensional theories, to the leading order in ǫ2, we find that the measure DM

involves the β-deformed Vandermonde determinant

DM =
∏

i

dxi

∏

i<j

(xi − xj)
2β , (1.6)

while four-dimensional potentials take form

V 4d(x) = tx + V 4d
vec(x) + V 4d

(anti)fund(x).
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The linear term tx encodes a dependence on the instanton counting parameter, while the

contributions from vector and hypermultiplets in the fundamental representations, to the

leading order in ǫ2, are given by

V 4d
vec(x) = 2

n
∑

l=1

(

(x − al) log(x − al) − (x − al)
)

,

V 4d
fund(x) =

Nf
∑

f=1

(

− (x − mf ) log(x − mf ) + (x − mf )
)

.

The expression for V 4d
antifund(x) is analogous to V 4d

fund(x), but with masses mf replaced by

ǫ1 + ǫ2 − mf . We note in particular that potentials for matter in (anti)fundamental repre-

sentation include Penner-like factors of the form
∑

f

mf log(x − mf ).

Analogous factors were obtained from completely different perspective by Dijkgraaf and

Vafa in [24]. While the arguments of logarithms in [24] were chosen, at least to some extent,

at will due to conformal invariance, in our case they are fixed as (x − mf ).

We also derive matrix models for 5-dimensional theories compactified on a circle of

radius R5. We usually suppress the dependence on this radius, and it can be reintroduced

by rescaling x and other parameters (such as al,mf ) by R5. The matrix models for five-

dimensional theories also take form (1.5), with the measure which involves, to the leading

order in ǫ2, the Vandermonde determinant with both trigonometric and β-deformation

DM =
∏

i

dxi

∏

i<j

(

2 sinh
xi − xj

2

)2β
. (1.7)

The five-dimensional potentials read

V 5d(x) = tx + V 5d
vec(x) + V 5d

(anti)fund(x).

The linear factor tx encodes in particular the dependence on the instanton counting pa-

rameter, while contributions from vector and hypermultiplets, to the leading order in ǫ2,

are given respectively by

V 5d
vec(x) =

n

2
x2 + 2

n
∑

l=1

Li2(e
−x+al),

V 5d
fund(x) =

∑

f

Li2
(

ex−mf

)

. (1.8)

The contribution for antifundamental matter V 5d
antifund(x) is related to V 5d

fund(x) as in the

four-dimensional case.

In five dimensions one can also introduce Chern-Simons terms, which are parametrized

by a single integer mCS. In this case we obtain multi-matrix models with additional linear

terms

V 5dCS = mCS

n
∑

l=1

(

al

N
∑

i=1

x
(l)
i

)

,
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where x
(l)
i represent eigenvalues of the l’th set of matrices.

We stress that all these potentials are the same as in the β = 1 case discussed in [21].

In the present case the only modification arises as the β-deformation of the Vandermonde

determinant.

1.2 Relation to the AGT conjecture

As we already mentioned, in [23] remarkable connections between four-dimensional Seiberg-

Witten theories and two-dimensional conformal field theories have been conjectured. This

observation was again motivated by properties of Seiberg-Witten curves: in [36] they were

related to other curves, whose gluing allows to construct more complicated gauge theories

from simpler ones, in a way analogous to the construction of conformal field theories on

arbitrary Riemann surfaces. Then direct comparison of certain quantities in several theories

from both these classes led to general conjectures. These quantities involve one-loop and

instanton parts of Nekrasov partition functions Z1−loop, Z inst on the Seiberg-Witten side,

and Liouville three-point functions CDOZZ
123 given by the DOZZ formula and conformal

blocks F34
12 on the CFT side.

In particular, under this correspondence, the central charge of the Liouville theory

c = 1 + 6

(

b +
1

b

)2

, b2 =
ǫ1

ǫ2
= −β,

is expressed in terms of the ratio of ǫ1 and ǫ2. In the special case ǫ1 = −ǫ2 = ~ we obtain

c = 1 and the Liouville theory reduces to the free fermion theory. Further aspects and

checks of this correspondence were discussed, among the others, in [37–49].

Dijkgraaf and Vafa proposed a derivation of this conjecture inspired by topological

string dualities and relation to matrix models [24]. A sequence of these dualities is shown

in figure 1. The top arrow represents the original AGT conjecture [23]. The bottom arrow

refers to general relations between topological strings and matrix models discovered by

Dijkgraaf and Vafa in [8, 9]. The crucial ingredient of their recent derivation [24] involves

engineering Calabi-Yau manifolds relevant for theories considered in [23], and is represented

by the vertical arrow on the left. The chain of dualities is completed by the arrow on the

right, representing the relation between matrix models and conformal field theories [50, 51].

In fact, to make this chain of dualities rigorous, several issues are still to be completed.

For example, the relation between matrix models and conformal field theories is known to

hold rigorously only in c = 1, or equivalently β = 1 case. Also the relations to topological

strings discussed in [24] were provided for β = 1 case, and their extension beyond this case

is more subtle. Let us also note, that various aspects of the matrix models proposed in [24]

were further analyzed in [45–49].

We wish to point out, that our present results can be regarded as an explicit realization

of a part of the program proposed in [24]. Our results are represented by the red arrow in

figure 1: we directly relate Nekrasov partition functions to β-deformed matrix models. As

argued earlier, we suppose that the leading form of these matrix models should be sufficient

to solve entire theory, due to powerful recursive relations found in [26, 27, 33]. (In fact, due

to equivalence of five-dimensional gauge theories and topological strings [12, 13, 16, 17],
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Figure 1. Dualities relevant to the AGT conjecture. The top grey arrow represents the original

AGT conjecture [23]. The other grey arrows represent a chain of dualities proposed by Dijkgraaf

and Vafa [24]. The red arrow represents our present explicit reformulation.

our results automatically realize the equivalence represented by the bottom arrow, which

therefore could also be drawn in red.)

Furthermore, the relation to Liouville theory might be completed due to the equivalence

of non-commutative (or quantum) curves arising on both sides. It was proposed in [23] how

to associate a quantum curve to the Liouville theory. This curve is given by the operator

equation

x2 = T (z),

where T (z) is the Liouville energy-momentum tensor, and it is supposed to encode the data

of the Liouville theory. On the other hand, the non-commutative spectral curves have been

recently associated to β-deformed matrix models in [26, 27], and it was shown how to gen-

eralize to this case the recursion relations familiar from the β = 1 case [33]. Even though

matrix models considered in [26, 27] have only polynomial potentials, one might hope to

extend those results to the potentials which we obtain here. In such case, analogous non-

commutative curves might be associated to our matrix models. The adventage of such an

approach would be twofold. Firstly, the corresponding non-commutative symplectic invari-

ants should hopefully agree with refined Seiberg-Witten and (for five-dimensional theories)

refined Gromov-Witten invariants. This would provide more rigorous proof of the AGT

conjecture. Secondly, this would provide a concrete proposal for the non-commutative gen-

eralization of the Seiberg-Witten curve — i.e. if such a generalization exists, it is natural

to expect that it should agree with the (non-commutative) matrix model curve, similarly

as in β = 1 case [34]. It would be very interesting to understand such a generalization of
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the Seiberg-Witten curve purly from the gauge theory perspective, as well as from its em-

bedding in string theory. In this regard we note that yet another form of quantum curves

have been considered in the context of Seiberg-Witten theories in [52, 53], which have a

string theory interpretation in terms of intersecting D4- and D6-branes. Supposedly those

curves should also be related to the non-commutative curves mentioned above, and the

B-field present in the intersecting brane system would provide physical reason for the non-

commutativity. The relations between matrix models and non-commutative curves are dis-

cussed also in [45]. Connections between all these issues are currently under investigation.

2 N = 2 theories and Nekrasov partition functions

Partition functions for N = 2 theories were derived by Nekrasov using localization tech-

niques in [3] and analyzed further in great detail, among the others, in [4–6, 16, 17, 23].

They consists of the one-loop and instanton part. In this paper we consider only instanton

parts, and refer to them simply as (Nekrasov) partition functions.

Partition functions for U(n) theories can be viewed as a generalization of the Plancherel

measure to the case of n sets of partitions [4, 21]. They are given by a sum over a set of

n partitions λ
(l)
i , with l = 1, . . . , n labeling various partitions and index i > 0 denoting

the i’th row of a given partition. These partition functions depend the scalar vevs al via

alk = al − ak, the dynamically generated scale or other counting parameter Λ, and the

parameters of the Ω-background ǫ1, ǫ2. We also introduce

β = −ǫ1

ǫ2
(2.1)

which will play an important role from the matrix model perspective. Of course a de-

pendence on masses mf arises in theories with Nf massive hypermultiplets. We introduce

also

bl =
al

ǫ2
, Mf =

mf

ǫ2
.

In five-dimensional theories there is also a dependence on the radius of the fifth dimension

R5, which we usually suppress. It can be reintroduced by rescaling quantities which appear

in our final expressions by R5.

The tuples of partitions label various instanton configuration, and from the localization

perspective the corresponding contributions are naturally expressed in terms of so-called

arm-lengths and leg-lengths of boxes in these partitions [3–6]. These expressions are sum-

marized in the appendix A. However these expressions can also be written purely in terms

of the length of rows of these partitions, which is more useful from the perspective of puta-

tive matrix models we are after. As reviewed in the appendix A, in this form the instanton
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partition functions for vector and (anti)fundamental multiplets read

Z4d =
∑

~λ=(λ(1),...,λ(n))

Λ2n|~λ|Z4d
~λ,vec

Z4d
~λ,(anti)fund

,

Z4d
~λ,vec

=
1

ǫ
2n|~λ|
2

∏

(l,i)6=(k,j)

Γ(λ
(l)
i − λ

(k)
j + β(j − i) + blk + β)

Γ(λ
(l)
i − λ

(k)
j + β(j − i) + blk)

Γ(β(j − i) + blk)

Γ(β(j − i) + blk + β)
(2.2)

Z4d
~λ,fund

=

n
∏

l=1

Nf
∏

f=1

∏

i=1

Γ(λ
(l)
i + bl − Mf − iβ + 1)

Γ(bl − Mf − iβ + 1)
(2.3)

where |~λ| =
∑n

l=1

∑

i |λ
(l)
i |. The contribution to Z4d

~λ,antifund
is analogous as to Z4d

~λ,fund
, but

with mf replaced by ǫ1 + ǫ2 − mf .

In the five-dimensional case we introduce

q = eǫ2 , t = e−ǫ1 , Ql = eal ≡ eǫ2bl , Ql,k = eal−ak ≡ eǫ2blk . (2.4)

The partition functions read (again see the appendix A)

Z5d =
∑

~λ=(λ(1),...,λ(n))

Λ2n|~λ|Z5d
~λ,vec

Z5d
~λ,(anti)fund

Z5dCS
~λ,mCS

,

Z5d
~λ,vec

=
1

ǫ
2n|~λ|
2

∏

(l,i)6=(k,j)

(Ql,kq
λ
(l)
i −λ

(k)
j tj−i; q)∞

(Ql,kq
λ
(l)
i −λ

(k)
j tj−i+1; q)∞

(Ql,kt
j−i+1; q)∞

(Ql,ktj−i; q)∞
(2.5)

Z5d
~λ,fund

=

n
∏

l=1

Nf
∏

f=1

∏

i=1

(qbl−Mf−iβ+1; q)∞

(qλ
(l)
i +bl−Mf−iβ+1; q)∞

(2.6)

Z5dCS
~λ,mCS

=
n
∏

l=1

Q
−mCS|λ

(l)|
l q

−mCS||λ(l)||2

2 t
mCS||λ(l),t||2

2 (2.7)

where ||λ|| =
∑

i λ
2
i . The contributions for hypermultiplets in antifundamental represen-

tations Z4d
~λ,antifund

arise analogously as in the four-dimensional case. The term Z5d
~λ,mCS

encodes Chern-Simons terms which may arise in the five-dimensional case, and which are

parametrized by a single integer mCS; such Chern-Simons contribution vanish in the four-

dimensional limit.

More generally, one can also consider contributions from matter in bifundamental or

adjoint representations. The generalization of matrix models presented here to those cases

is not difficult, and we leave it for future work. In principle, extending our methods to

bifundamental matter would lead to multi-matrix models, while analysis of adjoint matter

would generalize the results of [22].

We therefore focus on contributions for vector and (anti)fundamental multiplets, as

well as Chern-Simons terms. To sum up, we note that the partition functions given above

– 9 –
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can be written, up to inessential constant factors, in a unified way as

Z =
∑

~λ=(λ(1),...,λ(n))

Λ2n|~λ|Zvec Z(anti)fund ZCS
mCS

,

Zvec =
∏

(l,i)6=(k,j)

f
(

λ
(l)
i − λ

(k)
j + β(j − i) + blk + β

)

f
(

λ
(l)
i − λ

(k)
j + β(j − i) + blk

)

f
(

blk + β(j − i)
)

f
(

blk + β(j − i) + β
) (2.8)

Zfund =

n
∏

l=1

Nf
∏

f=1

∏

i=1

f(λ
(l)
i + bl − Mf − iβ + 1)

f(bl − Mf − iβ + 1)
(2.9)

where, respectively in the four- and five-dimensional case, the function f(x) takes the form

f4d(x) = Γ(x), f5d(x) =
1

(qx; q)∞
. (2.10)

In five dimensions the Chern-Simons term Z5dCS
mCS

can also be expressed purely in terms of

the lengths λ
(l)
i , which we will discuss in more detail in section 5. In the four-dimensional

case we simply put Z4dCS
mCS

= 1.

3 Matrix model representation

Nekrasov partition functions involve sums over n-tuples of partitions λ(l). In the previous

section we expressed these sums purely in terms of the lengths of rows of these partitions

λ
(l)
i . In this section we reinterpret these lengths as eigenvalues of matrices in certain

ensembles. We follow the general strategy presented in [21, 22, 28]. In this section we

do not consider Chern-Simons terms in five-dimensional case, or assume that mCS = 0

in (2.7). Arbitrary mCS will be considered in section 5.2.

To start with, we truncate the sums over partitions in Nekrasov partition functions,

to sums over partitions with at most N non-zero rows. After several manipulations we will

find a matrix model representation of Nekrasov partition functions in the large N limit of

ensuing expressions. Having fixed N , we introduce

h
(l)
i = λ

(l)
i − i + N + bl, (3.1)

as shown in figure 2. In terms of these variables, the expressions (2.8) and (2.9) take

respectively the form

Zvec =
∏

(l,i)6=(k,j)

f
(

h
(l)
i − h

(k)
j + (i − j)(1 − β) + β

)

f
(

h
(l)
i − h

(k)
j + (i − j)(1 − β)

)

f
(

blk + β(j − i)
)

f
(

blk + β(j − i) + β
) , (3.2)

Zfund =
n
∏

l=1

Nf
∏

f=1

N
∏

i=1

f(h
(l)
i − Mf − N + i(1 − β) + 1)

f(bl − Mf − iβ + 1)
. (3.3)

The first important observation is that the above expressions can be written in terms

of a single set of variables obtained from concatenation of sequences h(l)

li=1,...,nN = (h
(n)
1 , . . . , h

(n)
N , . . . . . . , h

(1)
1 , . . . , h

(1)
N ). (3.4)
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Figure 2. Translation of λ
(l)
i ’s to h

(l)
i ’s and li’s, which will be reinterpreted as matrix eigenvalues.

The leg-length and arm-length of given box (in black) are defined respectively as the number of

boxes to the right, and above this box (in yellow).

Assuming that al’s are decreasing and in sufficiently large distances from each other, the

sequence li=1,...,nN is decreasing. As shown in appendix B, the expressions (3.2) and (3.3),

for arbitrary f (not necessarily of the form (2.10)), can now be written as

Zvec =
(f(β)

f(0)

)nN
nN
∏

i6=j

f
(

li − lj + (imod N − jmod N )(1 − β) + β
)

f
(

li − lj + (imod N − jmod N )(1 − β)
) × (3.5)

×
n
∏

l=1

nN
∏

i=1

f
(

− (li − bl + (imod N − N)(1 − β))
)

f
(

li − bl + (imod N − N)(1 − β) + β
) , (3.6)

Zfund =

Nf
∏

f=1

nN
∏

i=1

f(li − Mf − N + imod N (1 − β) + 1)

f(bl − Mf − imod Nβ + 1)
(3.7)

where imod N ≡ imod N . Moreover, as li are expected to be large, we introduce rescaled

variables

xi = ǫ2li. (3.8)

Now we wish to reinterpret the above expressions as partition functions of β-deformed

matrix models, with li’s playing the role of eigenvalues. As we show below, the functions

f(x) indeed have a form relevant for such an interpretation, at least in the leading expansion

in ǫ2. As we will see, the subleading terms in such an expansion depend not only on

variables li, but also imod N . This makes matrix interpretation of those subleading terms

less clear, however, as explained before, they should be inessential to the solution of our

matrix models. We also note, that such dependence on i in the subleading terms does not

arise in the β = 1 case, see also [21, 22].

To relate the above expressions to matrix models, in what follows we will perform the

following steps:

1. Reinterpret the factor (3.5) in Z~λ,vec
involving differences (li − lj) = (xi − xj)/ǫ2 as

the (possibly deformed) Vandermonde determinant

– 11 –
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2. Reinterpret other factors (3.6), (3.7), etc., involving just a single li = xi/ǫ2, as con-

tributions to the potentials Vvec, Vfund, etc., by writing them in the form

exp

[

− 1

ǫ2

nN
∑

i=1

(

Vvec(xi) + Vfund(xi) + . . .
)

]

(3.9)

3. Introduce an auxiliary function fpoles(x), which has simple poles at all integer values

of the argument

4. Replace the summation over sequences of li by the sum over all li using symmetriza-

tion, and subsequently by the integration over xi = ǫ2li over a contour C which

encircles a (part of) real axis:

∑

l1>l2>...>lnN

. . . −→ 1

(nN)!

∑

l1,l2,...,lnN

. . . −→ 1

(nN)!

∮

C
dnNx

nN
∏

i=1

fpoles(xi) . . . (3.10)

Then, in the leading expansion in ǫ2, the resulting expressions have the form of the eigen-

value representation of matrix integrals. In the following sections we discuss this program

separately for four- and five-dimensional theories.

4 Matrix models for four-dimensional theories

In this section we reinterpret four-dimensional Nekrasov partition functions as matrix mod-

els in the leading expansion in ǫ2, and discuss the example of SU(2) theory with two

fundamentals and two antifundamentals.

4.1 Derivation of matrix models

Here we follow the steps 1 − 4 listed in the previous section, and apply them to four-

dimensional Nekrasov partition functions.

1. The factor (3.5) for the four-dimensional theory is realized in terms of f4d(x) = Γ(x)

functions (2.10). This factor is therefore a ratio of gamma functions. Here comes the

crucial observation: the relation to the β-Vandermonde arises from the asymptotics

of the ratio of gamma functions (C.4) presented in appendix C.2. As we expect li, lj
to be large, we can make the following identification between (C.4) and the arguments

of f4d

z = li − lj , α = (imod N − jmod N )(1 − β), β ≡ β. (4.1)

Therefore, expressing this expansion in terms xi introduced in (3.8), we get

nN
∏

i6=j

Γ
(

li−lj+(imod N − jmod N )(1−β)+β
)

Γ
(

li−lj+(imod N − jmod N )(1−β)
) = ǫ−βnN

2

nN
∏

i6=j

(xi−xj)
β

(

1+O
(

ǫ2

xi − xj

))

.

(4.2)
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As presented in appendix C.2, the subleading terms are of the form

O
(

ǫ2

xi − xj

)

=
∞
∑

k=1

Ck(β, α)
ǫk
2

(xi − xj)k
.

We note that the dependence on the coefficient α = (imod N−jmod N )(1−β) is encoded

only in higher order coefficients Cn(β, α). Note that these coefficients vanish in the

β = 1 case. This is why no ~-deformation of the measure was observed in [21, 22].

2. Using the expansion of the logarithm of the gamma function (C.1), the remaining

factors from Z4d
vec, given in (3.6) with f4d(x) = Γ(x), can be interpreted as contri-

butions to the potential in (3.9). The full form of V 4d
vec(x) is given in (D.1). To the

leading order in ǫ2 it reads

V 4d
vec(x) = 2

n
∑

l=1

[

(x − al) log(x − al) − (x − al) + O(ǫ2)
]

. (4.3)

The same potentials were obtained in the leading order in the β = 1 case in [21]. As

explained earlier, such leading contributions should be sufficient to get the spectral

curve of the matrix model, and subsequently solve it. In fact the subleading terms,

for general β, do not depend only on λ
(l)
i , but also explicitly on (imod N), therefore

they cannot be simply symmetrized and their matrix model interpretation is less

clear. Nonetheless, as an example we present the full form of V 4d
vec(x) in appendix D.

Similarly as above, we also get the contribution for fundamental multiplets

V 4d
fund(x;m) =

Nf
∑

f=1

[

− (x − mf ) log(x − mf ) + (x − mf ) + O(ǫ2)
]

, (4.4)

and we omit the constant factors of the form
∏

l,i,f Γ(bl − Mf − iβ + 1) which can

be absorbed into the normalization of Z. The contribution for antifundamentals is

obtained by the substitution mf → ǫ1 + ǫ2 − mf . We note that the potentials for

the fundamental matter include Penner-like factors of the form mf log(x−mf ) which

appeared in the work of Dijkgraaf and Vafa [24]. Such terms also arise in matrix

models for 2* theories analyzed in [22].

3. As in [21, 22, 28], in the four-dimensional case we introduce the function

f4d
poles(x) = −xΓ(−x)Γ(x)e−iπx =

πe−iπx

sin(πx)
,

with simple poles at all integer values of its argument. Upon integration along the

contour C encircling [b1,∞[ part of the real axis, this function can be used to pick

up all integer values of h
(l)
i ∈ [b1,∞[.

4. Finally we replace the summation over li by the integration over xi according

to (3.10). This leads to the following expression

Z4d =

∫

MatnN

DMe
− 1

ǫ2
TrV 4d(M)

, DM =
∏

i

dxi

∏

i<j

(xi − xj)
2β , (4.5)
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Figure 3. Matrix model potential for the pure SU(2) Seiberg-Witten theory.

where M ∈ MatnN represents nN × nN matrix form the β-ensemble, and the

measure DM involves the β-deformed Vandermonde determinant in the leading

order in ǫ2. Similarly, to the leading order the potential is given by

V 4d(x) = tx + V 4d
vec(x) + V 4d

fund(x;m)

where we included the linear term arising from the instanton counting parameter

Λ. The contributions from vector and fundamental multiplets are given respectively

in (4.3) and (4.4). The example of a potential for pure SU(2) theory is given in

figure 3.

4.2 Example — SU(2) theory with 4 hypermultiplets

SU(2) theory with 4 hypermultiplets is a simple and important example relevant for the

AGT correspondence. Let us denote masses of two fundamental multiplets by m1,m2, and

two antifundamental ones by −m3,−m4. We also put a1 = −a2 = a. Then the matrix

model for this theory is given by (4.5), with the potential which can be written as

V 4d
SU(2),Nf=4 = x log

(x − a)2(x + a)2

(x − m1)(x − m2)(x − m3)(x − m4)
− a log

x − a

x + a
+

+

4
∑

f=1

mf log(x − mf ).

The logarithmic Penner-like terms in the second line appear similarly in [24]. As dis-

cussed in [23], to obtain the instanton contribution to the SU(n) theory, apart from setting

a1 = −a2 one still has to isolate the appropriate U(1) factor. It would be interesting to

understand if such factors play any role from the matrix model perspective. Nonetheless,

we suppose we can treat them as an overall contribution, without changing the form of the

matrix model.
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5 Matrix models for five-dimensional theories

In this section we derive matrix models for five-dimensional theories. To start with, we

follow the steps 1 − 4 from the previous section, in case with mCS = 0. Next we discuss

arbitrary mCS, which corresponds to turning on Chern-Simons terms.

5.1 Theories with fundamental matter

Here we again follow the steps 1 − 4 listed in the previous section, now in the context of

five-dimensional theories.

1. The factor (3.5) for four-dimensional theory is realized in terms of f5d(x) = (qx; q)−1
∞

functions (2.10). With analogous identification as in (4.1), expressing the result in

terms of xi variables (3.8), and using the asymptotics (C.5) we get

nN
∏

i6=j

(

qli−lj+(imod N−jmod N )(1−β); q
)

∞
(

qli−lj+(imod N−jmod N )(1−β)+β ; q
)

∞

≃
nN
∏

i6=j

(1 − exi−xj)β . (5.1)

Up to the overall phase factor, this can be written as

nN
∏

i<j

(

2 sinh
xi − xj

2

)2β
. (5.2)

2. The remaining factors from Z5d
vec, given in (3.6) with f5d(x) = (qx; q)−1

∞ , can be

written as in (3.9). Using the notation of the quantum dilogarithm (C.2), and then

the asymptotics (C.3), this leads to the expression

n
∏

l=1

nN
∏

i=1

g(q−li+bl−(imod N−N)(1−β))

g(qli−bl+(imod N−N)(1−β)+1)
≃

n
∏

l=1

nN
∏

i=1

e
1
ǫ2

(

Li2(exi−al)−Li2(e−xi+al)
)

where xi = ǫ2l2. From the inversion relation for the dilogarithm

Li2(z) + Li2(z
−1) = −1

2
(log z)2 +

π2

3
− iπ log z,

we get, for the U(n) theory, up to constant and imaginary factors and to the leading

order in ǫ2

V 5d
vec(x) =

n

2
x2 + 2

n
∑

l=1

Li2
(

e−x+al
)

. (5.3)

This potential agrees with results of [21].2 In a similar way, the contributions from

fundamental multiplets (3.7) give

V 5d
fund(x) =

∑

f

Li2
(

ex−mf

)

. (5.4)

2The opposite sign of x in the exponent appears due to a different convention q = e
ǫ2 here, versus

q = e
−gs in [21].
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3. The quantum dilogarithm (C.2) vanishes, g(qh) = 0, for h a positive integer. At such

points its derivative is

g′(qh) = −g(1)2eiπhq−h(h−1)/2

qh(1 − qh)g(q−h)
.

Therefore the following function has simple poles with residue 1 for x = qh with

h ∈ N

f5d
poles(x) = − g(1)2e−

iπ
gs

log xe
(log x)2

2gs

(1 − x)
√

xg(x)g(x−1)
.

Written in the exponential form, it contributes only a linear term in x to the poten-

tial [21, 28].

4. Finally we get

Z5d =

∫

MatnN

DMe
− 1

gs
TrV 5d(M)

, DM =
∏

i

dxi

∏

i<j

(

2 sinh
xi − xj

2

)2β
. (5.5)

Now the measure is given by the Vandermonde determinant which is both β-deformed

and sinh-deformed, while the potential reads

V 5d(u) = tx + V 5d
vec(x) + V 5d

fund(x),

where we again included the linear term arising from instanton counting parameter

Λ, as well as f5d
poles(x). The contributions for vector multiplet and hypermultiplet are

given respectively in (5.3) and (5.4).

5.2 Chern-Simons terms and more general Calabi-Yau manifolds

In five-dimensional theories one can also include Chern-Simons terms [54, 55] of the form
∫

cijk Ai ∧ Fj ∧ Fk,

with indices labeling vector multiplets. It turns out that there is only a discrete consistent

choice of cijk and they are labeled by a single integer mCS . Five-dimensional theories with

these Chern-Simons terms are also equivalent to topological string theory on appropri-

ate toric Calabi-Yau manifolds [10]. In this context the constants cijk translate to triple

intersection numbers of these manifolds. This dictionary was discussed in detail in [21].

The equivalence between Nekrasov partition functions, with ǫ1 = −ǫ2 = ~, and topo-

logical string amplitudes computed from the topological vertex has been explicitly checked

in [12]. It turns out that this equivalence extends also to the case of arbitrary ǫ1, ǫ2. It was

proposed that topological string amplitudes in this case should be refined to two parameters

(q = eǫ2, t = e−ǫ1) in terms of the refined topological vertices [14, 15]. In [16, 17] it has been

checked that such refined amplitudes indeed reproduce Nekrasov partition functions and

the results for both vertices agree, and the consistent refinement of the Chern-Simons terms

has also been found. It was shown that the refined Chern-Simons terms take form [16, 17]

Z5dCS
~λ,mCS

(q, t) =

n
∏

l=1

(

Q
|λ(l)|
l q

||λ(l)||2

2 t−
||λ(l),t||2

2

)−mCS

,
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where ||λ|| =
∑

i λ
2
i . This can be written explicitly in terms of the lengths of rows

Z5dCS
~λ,mCS

(q, t) =
n
∏

l=1

(

Q
|λ(l)|
l

(q

t

)

||λ(l)||2

2
t

1
2
κ

λ(l)

)−mCS

=

=
n
∏

l=1

Q
−mCS|λ

(l)|
l e−

1
2
mCSǫ2

P

i

(

(λ
(l)
i )2+βλ

(l)
i (1−2i)

)

(5.6)

where κλ = λi(λi + 1 − 2i) = ||λ||2 − ||λt||2. Therefore, this expression can be written in

terms of h
(l)
i using (3.1).

Nonetheless, the resulting expression cannot be interpreted as a one-matrix model for

non-zero mCS. This is so, because each set of h
(l)
i is coupled to different al through the term

Q
−mCS|λ

(l)|
l . Therefore the symmetrization (3.10) cannot be performed for the entire set of

li’s, but only within each set l(k−1)N+1, . . . , lkN . In consequence we obtain the n-matrix

model, with n sets of eigenvalues x
(l)
i = ǫ2h

(l)
i , and with the leading contribution to the

potential of the linear form

V 5dCS = mCS

n
∑

l=1

(

al

N
∑

i=1

x
(l)
i

)

. (5.7)

We also note, that while it is straightforward to include the quadratic terms appearing in

the last exponent in (5.6), they cannot be reinterpreted as the contribution to the potential

of a matrix model due to an explicit dependence on i. Happily these terms are subleading

in ǫ2. Therefore (5.7) is the only leading contribution to the matrix model potential V 5dCS,

and this is the same as in ǫ1 = −ǫ2 = ~ case discussed in [21].

5.3 Relation to other deformations

We found that in five dimensional theories, in the leading ǫ2 expansion, the Vandermonde

determinant takes a form of a sinh-deformation (5.2), familiar from [13, 21, 22, 28]. In the

context of matrix models related to Nekrasov partition functions, another — seemingly un-

related — deformation was postulated in [47], which amounts to replacing the β-deformed

Vandermonde determinant by

V̂ q
β =

N
∏

I<J

λ2β
I

(

λI

λJ
q−β; q

)

∞
(

λI

λJ
qβ; q

)

∞

. (5.8)

The identification λI = qlI makes contact with our notation. As discussed in [47] the

integral3

Sq(α1, α2, β; z) =

∫ N
∏

I=1

dqλI V̂ q
β (z − λIq

−1/2)λ
−2αI/ǫ1
I

(λIq
α2/ǫ1; q)∞

(λIq−α2/ǫ1 ; q)∞
,

which includes this supposed deformed determinant, reproduces Nekrasov partition func-

tion for SU(2) theory with four fundamentals, with a special choice of parameters α3 =

3Note a different sign convention ǫ1,2 → ε1,2 = −ǫ1,2 in [47].
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−ǫ1/2. This expression is in fact a Jackson integral, i.e. a discrete integral defined by
∫

dqxf(x) = (1 − q)
∑∞

k=0 f(qk)qk, which reproduces Riemann integral in q → 1 limit.

The value of the above integral can be expressed in terms of q-deformed Jack or Jacobi

polynomials.

We now note several similarities between these expressions and matrix models discussed

in this paper. Firstly, the discreteness in variables λI in the Jackson integral is of similar

kind as the discreteness of eigenvalues in our matrix models discussed in previous sections.

Secondly, we observe that the deformation (5.8) is closely related to the determinant-like

expression arising explicitly from rewriting Nekrasov partition function, given in (5.1).

Indeed, both expressions differ by terms of the form (imod N − jmod N )(1 − β) in (5.1),

which from our perspective get multiplied by ǫ2 and are subleading. Up these terms, the

form of both expressions in the asymptotic form (C.5) is the same, and in particular they

both lead to the sinh-deformed Vandermonde (5.2) in the leading order. The insertions

of (λIq
±α2/ǫ1; q)∞ in the integral Sq(α1, α2, β; z) are given by the same infinite products

as contributions from vector- and fundamental multiplets in (3.6) and (3.7) with f5d(x) =

(x; q)−1
∞ . This suggests, that one might indeed express matrix models for Nekrasov partition

functions, to all orders in ǫ2 deformation, in terms of Jack or Jacobi polynomials.

Moreover, it was suggested in [47] that the deformation of the measure to the five-

dimensional case could be related to the q-deformed Virasoro algebra considered in [44].

If this is indeed the case, it would be interesting to see how such an algebra manifests

on the level of our matrix models. For example, in the standard formulation of matrix

models, the loop equations are equivalent to Virasoro constraints. These constraints can

be written in terms of operators which satisfy the Virasoro algebra and annihilate the

matrix model partition function. It is interesting whether a similar structure arises in the

q-deformed case. It is also tempting to extend such a deformation of Virasoro algebra to

the six-dimensional case.

Certain deformations of Virasoro algebra are also related to the so-called Q-bosons and

Q-fermions, and Q-deformed boson-fermion correspondence. These objects also arise in the

context of topological strings [56]. Even though in this case the role of the deformation

is different, i.e. it plays a role of the Kähler parameter, it would be interesting to study if

there are some relations between these both deformations of the Virasoro algebra.

6 Further research

In this paper we derived matrix models for β-ensembles, which encode the instanton part

of Nekrasov partition functions. This is just the first of several steps which should be

completed. Most of all, it is important to analyze these models using matrix model tech-

niques and confirm the relation to Seiberg-Witten theories from this perspective. Typical

matrix model analysis involves finding the spectral curve and solving the loop equations.

In the present case this is entirely non-trivial: as shown in [26, 27], matrix models for

β-ensembles lead to non-commutative spectral curves. Moreover the form of our potentials

is more complicated than the polynomial potentials analyzed in [26, 27], and therefore the

entire theory has still to be extended. Apart from general interest, the ultimate goal of
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this program, as explained in the introduction, would be to provide more rigorous proof of

the AGT conjecture.

Even though our models share several similarities (deformed measures, Penner-like

potentials) with matrix models discussed in [24, 46, 47], there are also some differences.

Apart from the Penner-like terms, our potentials include additional contributions. Some

parameters arise on different footing: for example the instanton counting parameter Λ is

encoded in the linear term in our models, while in [24] is appears under the logarithm.

It would be important to elucidate these discrepancies. It is also important to extend

our analysis to bifundamental fields and quiver gauge theories, and correspondingly Toda

systems. Matrix models for such six-dimensional theories, with elliptic deformations, can

also be written down explicitly.

It would also be interesting to reexpress our results as matrix models in terms of Jack

or Jacobi polynomials. Supposedly, the issue of symmetrization of the subleading terms

should not arise in this case. Nonetheless, to the leading order such putative matrix models

must agree with ours, and they should lead to the same (non-commutative) spectral curve

and the entire solution.

Assuming that the dualities discussed in the introduction indeed hold, it is important

to understand how various features of gauge theories and Liouville theories manifest in

terms of our matrix models. One should understand the role of the one-loop part of the

Nekrasov partition functions, as well as the decoupling of the U(1) factor, which play an

important role in the AGT conjecture. Some other such features include: the relation to the

q-deformed Virasoro algebra (discussed briefly in section 5.3), extension of this relation to

the six-dimensional elliptic case (and finding appropriate more general deformation of the

Virasoro algebra), interpretation of recursion relations between conformal blocks, matrix

model interpretation of surface and loop operators discussed in [42, 43], and many others.

Finally, it is desirable to elucidate physical and mathematical interpretation of our

matrix models. Physically, it is tempting to connect our results to phenomena involving

D-branes and geometric transitions, underlying the whole Dijkgraaf-Vafa program [8, 9, 24].

Mathematically, our results hint into new structures hidden in instanton moduli spaces,

which underlie the localization program of Nekrasov [3–6].

A More on Nekrasov partition functions

In general, instanton parts of Nekrasov partition functions take the form

Z =
∑

~λ=(λ(1),...,λ(n))

Λ2n|~λ|Z~λ,vec
Z~λ,(anti)fund

Z~λ,adj
Z~λ,bifund

ZCS
~λ,mCS

,

where the summation extends over n sets of two-dimensional partitions λ(l), |~λ| =
∑

l,i λ
(l)
i

is the total number of boxes in a given set of such partitions, and Λ represents appro-

priate instanton counting parameter (i.e. dynamically generated scale in asymptotically

free theories, or appropriately renormalized bare coupling in conformal theories). Z~λ,vec
,

Z~λ,(anti)fund
, Z~λ,adj

, Z~λ,bifund
and ZCS

~λ,mCS
represent respectively contributions from vector
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multiplets, hypermultiplets in the (antifundamental or) fundamental representation, hyper-

multiplets in the adjoint representation, in the bifundamental representation, and (trivial

in four-dimensional theories) Chern-Simons terms. These terms depend on the Coulomb

branch parameters al and masses of matter fields mf . The form of these terms depends

also on the gauge group [7]. In this paper we focus on the U(n) gauge groups, so we

write below explicit expressions only in this case. The form of all these terms depends also

on the dimensionality of the spacetime: five- and six dimensional terms are respectively

trigonometric and elliptic generalizations of the four-dimensional ones [5, 6, 13]. The con-

tribution for antifundamental hypermultiplets Z~λ,antifund is related to that of fundamental

ones Z~λ,fund
by replacement of mf by ǫ1 + ǫ2 − mf , so usually we write down explicitly

only the latter ones. The contribution from adjoint or bifundamental hypermultiplets is

not considered to much extent in this paper. To find the total partition function one has

to insert into the above sum the appropriate number of these terms, corresponding to the

field contents of the theory of interest.

There are several representations of Nekrasov partition functions which are somehow

scattered through literature, see e.g. [3–6, 16, 17, 23]. We discuss them briefly below. The

representation which is most useful to construct our matrix models, discussed as the third

one, appears to be used the least often.

Firstly, various factors Z~λ,... introduced above can be written as product over all boxes

in partitions λ(l). In case of vector, bifundamental or adjoint multiplets these products

involve the arm-length aλ(l)(�) = λ
(l)
i − j and the leg-length lλ(l)(�) = λ

(l),t
j − i (shown

in figure 2) of each box � = (i, j) ∈ λ(l). The explicit form of these expressions is nicely

summarized e.g. in [23]. As they are not very useful for our purposes, we just just recall as

an example that the contribution from fundamental hypermultiplets in the four-dimensional

case takes the form [23]

Z4d
~λ,fund

=
n
∏

l=1

∏

�=(i,j)∈λ(l)

(

al + iǫ1 + jǫ2 − m
)

,

while vector multiplets in the five-dimensional case contribute [17]

Z5d
~λ,vec

=

n
∏

l,k=1

1
∏

�∈λ(l)

(

1 − qa
λ(l) (�)tlλ(l)(�)+1Ql,k

)
∏

�∈λ(k)

(

1 − q−a
λ(k)(�)−1t−l

λ(k)(�)Ql,k

)
.

The second form of Nekrasov partition functions involves lengths of rows of parti-

tions λ(l), as well as transposed partitions λ(l),t. In particular, the contribution for vector

multiplets reads [4]

Z4d
~λ,vec

=
∏

l,k;i,j

al − ak + ǫ1(i − 1) + ǫ2(−j)

al − ak + ǫ1(i − λ
(k),t
j − 1) + ǫ2(λ

(l)
i − j)

,

while several equivalent forms of the five-dimensional contribution can be found in [17]. The

contribution for Chern-Simons terms in five-dimensional theories (discussed in section 5.2)

reads

Z5dCS
~λ,mCS

=

n
∏

l=1

Q
−mCS|λ

(l)|
l q

−mCS||λ(l)||2

2 t
mCS||λ(l),t||2

2 ,
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and this is trivial in the four-dimensional case.

The third form of Nekrasov partition functions involves just lengths of rows λ
(l)
i and

their differences. In such a form, the four-dimensional contributions for vector and funda-

mental multiplets read [4]

Z4d
~λ,vec

=
1

ǫ
2n|~λ|
2

∏

(l,i)6=(k,j)

Γ(λ
(l)
i − λ

(k)
j + β(j − i) + blk + β)

Γ(λ
(l)
i − λ

(k)
j + β(j − i) + blk)

Γ(β(j − i) + blk)

Γ(β(j − i) + blk + β)
(A.1)

Z4d
~λ,fund

= =

n
∏

l=1

∏

i=1

Γ(λ
(l)
i + bl − M − iβ + 1)

Γ(bl − M − iβ + 1)
, (A.2)

while those in five dimensions [17, 47]

Z5d
~λ,vec

=
∏

(l,i)6=(k,j)

(Ql,kq
λ
(l)
i −λ

(k)
j tj−i; q)∞

(Ql,kq
λ
(l)
i −λ

(k)
j tj−i+1; q)∞

(Ql,kt
j−i+1; q)∞

(Ql,ktj−i; q)∞
(A.3)

Z5d
~λ,fund

=

n
∏

l=1

Nf
∏

f=1

∏

i=1

(qbl−Mf−iβ+1; q)∞

(qλ
(l)
i +bl−Mf−iβ+1; q)∞

(A.4)

The form of the five-dimensional terms is in fact subtle, and depends on the operator to

which the localization formula is applied. The more often encountered form involving sinh

functions arises in case of the computation of the index of the Dirac operator, while the

above form would correspond to the index of the Dolbeault operator. We find the above

form more convenient, and the difference between the formulas involving sinh functions

amounts simply to a redefinition of the linear term in the potential of matrix models which

we find. From the geometric engineering viewpoint one could in fact consider various

blow-ups representing matter multiplets, however we restrict only to the simplest case

given above.

B Rewriting the sums

For an arbitrary function f , we wish to rewrite the contributions from the vector multiplet,

given in (3.2)

Zvec =
∏

(l,i)6=(k,j)

f
(

h
(l)
i − h

(k)
j + (i − j)(1 − β) + β

)

f
(

h
(l)
i − h

(k)
j + (i − j)(1 − β)

)

f
(

blk + β(j − i)
)

f
(

blk + β(j − i) + β
) , (B.1)

in a form suitable for matrix model interpretation. To start with, we restrict to two sets

of partitions, n = 2. In this case we denote the 2-tuple of partitions as

(λ, µ) ≡ (λ(1), λ(2)) = ~λ,

and instead of general (3.1) we introduce

hi ≡ h
(1)
i = λi − i + N + b1, ki ≡ h

(2)
i = µi − i + N + b2. (B.2)
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Then (B.1) takes the form

Zn=2 = ZhhZkkZhkZkh. (B.3)

where the consecutive terms arise respectively from the products in (B.3) over l = k = 1,

l = k = 2, (l = 1, k = 2) and (l = 2, k = 1), which we consider now one by one.

Firstly we consider Zhh, which reads

Zhh =
∏

i6=j

f
(

hi − hj + (i − j)(1 − β) + β
)

f
(

hi − hj + (i − j)(1 − β)
)

f
(

β(j − i)
)

f
(

β(j − i) + β
) ≡ Z<

hh Z>
hh, (B.4)

and Z<
hh and Z>

hh correspond to products with, respectively, i < j and i > j. We consider

first Z<
hh and split the product into three parts: 1 ≤ i < j ≤ N , (1 ≤ i ≤ N,N < j), and

N < i < j. This leads to

Z<
hh =

N
∏

i<j

f
(

hi − hj + (i − j)(1 − β) + β
)

f
(

hi − hj + (i − j)(1 − β)
) ×

×
N
∏

i=1

∞
∏

i=1

f
(

hi − b1 + (i − N)(1 − β) + jβ + β
)

f
(

hi − b1 + (i − N)(1 − β) + jβ
)

f(βj)

f(βj + β)

)

=

=

(

N
∏

i<j

f
(

hi − hj + (i − j)(1 − β) + β
)

f
(

hi − hj + (i − j)(1 − β)
)

)(

N
∏

i=1

f(β)

f
(

hi − b1 + (i − N)(1 − β) + β
)

)

,

where we used
∏∞

j=1
f(x+jβ+β)

f(x+jβ) = 1
f(x+β) . In the same way we get

Z>
hh =

(

N
∏

i>j

f
(

hi−hj +(i−j)(1 − β)+β
)

f
(

hi−hj+(i−j)(1−β)
)

)(

N
∏

i=1

f
(

−(hi−b1+(i−N)(1−β))
)

f(0)

)

. (B.5)

The factor Zkk can be written in the same way as above, with hi and b1 replaced

respectively by ki and b2

Zkk ≡ Z<
kk Z>

kk = Z<
hh Z>

hh

∣

∣

∣

hi→ki,b1→b2
.

Next we consider Zhk, which we write as

Zhk =
∏

i6=j

f
(

hi − kj + (i − j)(1 − β) + β
)

f
(

hi − kj + (i − j)(1 − β)
)

f
(

β(j − i) + b12

)

f
(

β(j − i) + β + b12

) ≡ Z=
hk Z<

hk Z>
hk. (B.6)

The three factors Z=,<,>
hk on the right correspond respectively to i = j, i < j and i > j,

and similar manipulations as above lead to the following results

Z=
hk =

(

N
∏

i=1

f
(

hi − ki + β
)

f
(

hi − ki

)

)(

f(b12)

f(b12 + β)

)N

,

Z<
hk =

(

N
∏

i<j

f
(

hi − kj + (i − j)(1 − β) + β
)

f
(

hi − kj + (i − j)(1 − β)
)

)(

N
∏

i=1

f(b12 + β)

f
(

hi − b2 + (i − N)(1 − β) + β
)

)

,

Z>
hk =

(

N
∏

i>j

f
(

hi − kj + (i − j)(1 − β) + β
)

f
(

hi − kj + (i − j)(1 − β)
)

)(

N
∏

i=1

f
(

− (ki − b1 + (i − N)(1 − β))
)

f(b12)

)

.
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Note that in the overall product of these three factors, all terms which involve f(b12) and

f(b12 + β) cancel.

The factor Zkh can be obtained from Zhk by the substitution hi ↔ ki and b1 ↔ b2

Zkh ≡ Z=
kh Z<

kh Z>
kh = Z=

hk Z<
hk Z>

hk

∣

∣

∣

hi↔ki,b1↔b2
.

The expression (B.3) is a product of the above factors, and from their form it is clear

that it easily generalizes to arbitrary n: one has just to consider the analogous factors as

above for all possible pairs (l, k), with l, k = 1, . . . , n. This expression has also a simpler

representation in terms of

li=1,...,nN := (h
(n)
1 , . . . , h

(n)
N , . . . . . . , h

(1)
1 , . . . , h

(1)
N ) ⇔ l(k−1)N+i := h

(n−k+1)
i .

In this notation, and denoting imod N ≡ imod N , the expression (B.1) for arbitrary n takes

the form

Zvec =

(

f(β)

f(0)

)nN nN
∏

i6=j

f
(

li − lj + (imod N − jmod N )(1 − β) + β
)

f
(

li − lj + (imod N − jmod N )(1 − β)
) ×

×
n
∏

l=1

nN
∏

i=1

f
(

− (li − bl + (imod N − N)(1 − β))
)

f
(

li − bl + (imod N − N)(1 − β) + β
) . (B.7)

C Asymptotics

C.1 Asymptotics of gamma function and quantum dilogarithm

The following expansion of the logarithm of the gamma function holds [57]

log Γ(z) = −1

2
log |z| + z log |z| − z +

1

2
log 2π +

∞
∑

n=1

B2n

2n(2n − 1)z2n−1
. (C.1)

We also consider the asymptotics of the quantum dilogarithm, in the notation of [21, 28]

written as

g(z) =
∞
∏

i=1

(

1 − 1

z
qi

)

=

(

q

z
; q

)

∞

, (C.2)

where the q-Pochhammer symbol is

(z; q)∞ =
∞
∏

i=0

(1 − zqi).

For q = eǫ2 we have

log g(z) =
1

ǫ2

∞
∑

m=0

Li2−m

(

1

z

)

Bm

m!
(−ǫ2)

m. (C.3)
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C.2 Asymptotics of the ratio of gamma functions

The asymptotics

Γ(z + α + β)

Γ(z + α)
= zβ

(

1 +

∞
∑

n=1

Cn(β, α)z−n

)

(C.4)

was derived in [58]. The first term of this expansion [57] can be obtained from the Stirling

formula, though to get the entire expansion requires more work. The coefficients Cn are

given by

Cn(β, α) =

n
∑

m=0

(

β − m

n − m

)

Am(β)αn−m,

where coefficients Am satisfy the recursion formula

An(α) =
1

n

n−1
∑

m=0

(

α − m

n − m + 1

)

Am(α),

and we also set C0 = 1. From this prescription one can find

C1(β, α) =
1

2
β(β +2α− 1), C2(β, α) =

1

12

(

β

2

)

(

(β− 2)(3β − 1)+12α(β +α− 1)
)

, etc.

One can also write

Cn(β, α) =
cn

Γ(β − n + 1)
,

where cn are given in terms of the generating function

Γ(1 + β)e(α+β)t(et − 1)−1−β ≡
∞
∑

n=0

cntn−1−β.

C.3 Asymptotics of the ratio of quantum dilogarithms

In the five-dimensional case we also need the following asymptotics

(zqα; q)∞
(zqα+β ; q)∞

≃ (1 − z)β , (C.5)

which can be found explicitly e.g. in [59]. This formula is closely related to the ratio of

q-gamma functions Γq(x). The function Γq is defined as

Γq(x) = (1 − q)1−x (q; q)∞
(qx; q)∞

,

and it is known that

lim
q→1

Γq(x) = Γ(x).

This function can also be expressed as the q-hypergeometric function. One can find the

asymptotics (C.5) using the q-analogue of the Stirling formula for q-gamma function, which

is derived in [60] (see also [61]).
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D Matrix model potentials

As explained in the introduction, our methods allow to get the leading ǫ2 terms of matrix

model potentials. These leading contributions should be sufficient to get the spectral

curve of the matrix model, and subsequently solve it. The subleading terms, for general

β, depend not only on λ
(l)
i , but also explicitly on (imod N). Therefore they cannot be

simply symmetrized and their matrix model interpretation is less clear. Nonetheless, for

completeness, we write down the full form of the four-dimensional potential (4.3) arising

from Z4d
~λ,vec

. Up to the symmetrization of eigenvalues it reads:

V 4d
vec(x) =

n
∑

l=1

[

− 2
(

x − al + ǫ2(imod N − N)(1 − β)
)

+

+
(

x − al + ǫ2(imod N − N)(1 − β)
)

×
×
(

log
(

x − al + ǫ2(imod N − N)(1 − β)
)

+

+ log
(

x − al + ǫ2(imod N − N)(1 − β) + ǫ2β
)

)

+

+
ǫ2

2
log
(

x − al + ǫ2(imod N − N)(1 − β)
)

+

−ǫ2

2
log
(

x − al + ǫ2(imod N − N)(1 − β) + ǫ2β
)

+

−ǫ2β + ǫ2β log
(

x − al + ǫ2(imod N − N)(1 − β) + ǫ2β
)

+

+

∞
∑

i=1

Biǫ
2i
2

2i(2i − 1)

(

1
(

x − al + ǫ2(imod N − N)(1 − β)
)2i−1

+

+
1

(

x − al + ǫ2(imod N − N)(1 − β) + ǫ2β
)2i−1

)

]

(D.1)

This form arises from asymptotics presented in the appendix C, and contributions for other

factors are analogous.
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