
J
H
E
P
0
4
(
2
0
1
0
)
0
3
8

Published for SISSA by Springer

Received: February 9, 2010

Accepted: March 15, 2010

Published: April 9, 2010

Higgs-regularized three-loop four-gluon amplitude in

N = 4 SYM: exponentiation and Regge limits

Johannes M. Henn,a Stephen G. Naculich,b,1 Howard J. Schnitzerc,2 and

Marcus Spradlind,3

aInstitut für Physik, Humboldt-Universität zu Berlin,

Newtonstraße15, D-12489 Berlin, Germany
bDepartment of Physics, Bowdoin College,

Brunswick, ME 04011, U.S.A.
cTheoretical Physics Group, Martin Fisher School of Physics, Brandeis University,

Waltham, MA 02454, U.S.A.
dBrown University,

Providence, Rhode Island 02912, U.S.A.

E-mail: henn@physik.hu-berlin.de, naculich@bowdoin.edu,

schnitzr@brandeis.edu, spradlin@het.brown.edu

Abstract: We compute the three-loop contribution to the N = 4 supersymmetric Yang-

Mills planar four-gluon amplitude using the recently-proposed Higgs IR regulator of Alday,
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larization. In the latter two schemes, it is shown that the leading logarithmic (LL) behavior

of the amplitudes, and therefore the lowest-order approximation to the gluon Regge trajec-

tory, can be correctly obtained from the ladder approximation of the sum of diagrams. In
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in the LL approximation. We also compute the NLL and NNLL behavior of the L-loop

ladder diagram using Higgs regularization.

Keywords: Supersymmetric gauge theory, AdS-CFT Correspondence, NLO Computa-

tions, 1/N Expansion

ArXiv ePrint: 1001.1358
1Research supported in part by the NSF under grant PHY-0756518.
2Research supported in part by the DOE under grant DE-FG02-92ER40706.
3Research supported in part by the DOE under grant DE-FG02-91ER40688.

c© SISSA 2010 doi:10.1007/JHEP04(2010)038

mailto:henn@physik.hu-berlin.de
mailto:naculich@bowdoin.edu
mailto:schnitzr@brandeis.edu
mailto:spradlin@het.brown.edu
http://arxiv.org/abs/1001.1358
http://dx.doi.org/10.1007/JHEP04(2010)038


J
H
E
P
0
4
(
2
0
1
0
)
0
3
8

Contents

1 Introduction 1

2 Short review of dual conformal symmetry 5

3 Exponentiation of the four-gluon amplitude 10

3.1 Exponentiation in dimensional regularization 10

3.2 Exponentiation in Higgs regularization 11

4 Regge limit of the four-gluon amplitude 16

4.1 Regge limit in dimensional regularization 17

4.2 Regge limit in Higgs regularization 18

4.3 Regge limit in cutoff regularization 21

4.4 Scattering of massive particles and Regge behavior 23

5 Discussion 25

A Mellin-Barnes representations of the integrals 26

A.1 MB representation for the 3-loop ladder diagram 26

A.2 MB representation for the L-loop ladder diagram 29

A.3 MB representation for the tennis court diagram 30

A.4 Auxiliary formulae 32

B Numerical evaluation using sector decomposition 32

C Regge limit of the L-loop ladder diagram 33

1 Introduction

Recent years have witnessed significant advances in N = 4 supersymmetric Yang-Mills

theory (SYM) in four dimensions. The AdS/CFT conjecture relating N = 4 SYM theory

to maximally supersymmetric string theory on AdS5 × S5 reveals various integrable struc-

tures. One aspect of recent progress is a greater understanding of the structure of on-shell

scattering amplitudes, at both tree level and loop level. For example, based on an iterative

structure found at two loops [1], Bern, Dixon and Smirnov (BDS) conjectured an all-loop

form of the maximally-helicity-violating planar n-gluon amplitude [2], which is believed to

be correct for n = 4 and 5, but requires modification by a function of cross-ratios for six

or more gluons [3–7].

The simplicity of the BDS form for four- and five-gluon loop amplitudes arises from a

hidden symmetry of the planar theory, viz., dual conformal invariance [8]. Dual conformal
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symmetry is also present in the theory at strong coupling, and can be seen in a string theory

description of the scattering amplitudes, which are identified with Wilson loop expectation

values in a T-dual AdS space [9]. The dual conformal symmetry of scattering amplitudes

is understood as the usual conformal symmetry of the dual Wilson loops. In fact, this

scattering amplitude/Wilson loop relation extends to weak coupling as well [3, 10, 11] (for

reviews see [12, 13]).

The dual conformal symmetry is anomalous at loop level due to ultraviolet divergences

associated with the cusps of the Wilson loops (which correspond to infrared (IR) diver-

gences of the scattering amplitudes). Anomalous Ward identities can be derived for the

Wilson loop expectation values [14], whose solution is unique up to a function of conformal

cross-ratios. The BDS ansatz satisfies the anomalous Ward identity, therefore it is exact

for Wilson loops with four and five cusps, since there are no cross-ratios in these cases.

Assuming the Wilson loop/scattering amplitude duality, this implies the validity of the

BDS ansatz for four- and five-gluon amplitudes.

Dual conformal symmetry extends to a dual superconformal symmetry [15], which is

a symmetry of all tree-level amplitudes [15–17]. (This dual superconformal symmetry can

also be understood from the string theory point of view by means of fermionic T-duality [18–

20].) The dual superconformal symmetry combines with the conventional superconformal

symmetry of N = 4 SYM theory to form a Yangian symmetry [21]. The IR divergences of

the loop amplitudes, however, a priori destroy both the ordinary and dual superconformal

symmetries (and therefore the Yangian symmetry); this breakdown is explicitly seen in

dimensional regularization. Unlike the dual conformal symmetry, the breaking of the ordi-

nary conformal symmetry is not (yet) under control (see however refs. [22–24] for progress

in this direction), and so the role of the Yangian symmetry for loop amplitudes is unclear.

In practice, it is desirable to use a regulator that preserves as many symmetries as pos-

sible. Recently, Alday, Henn, Plefka, and Schuster (AHPS) presented a regulator which, in

contrast to dimensional regularization, leaves the dual conformal symmetry unbroken [25].

In this approach, the SYM theory is considered on the Coulomb branch where scalar vevs

break the gauge symmetry, causing some of the gauge bosons to become massive through

the Higgs mechanism. Planar gluon scattering amplitudes on this branch can be computed

using scalar diagrams in which some of the internal and external states are massive, regu-

lating the IR divergences of the scattering amplitudes (for earlier references see [9, 26–28]).

The diagrams remain dual conformal invariant, however, provided that the dual conformal

generators are taken to act on the masses as well as on the kinematical variables. The

diagrams that can appear in the scattering amplitudes are highly constrained by the as-

sumption of (extended) dual conformal symmetry. There is one point in moduli space for

which all the lines along the periphery of the diagrams have mass m, while the external

states and the lines in the interior of the diagram are all massless. This is believed to be

sufficient to regulate all IR divergences of planar scattering amplitudes. The original SYM

theory is then recovered by taking m small.

Using this Higgs regulator, AHPS computed the N = 4 SYM four-gluon amplitude at

one and two loops. They showed that the planar two-loop amplitude satisfies an iterative

relation analogous to the one that holds in dimensional regularization [1], and suggested
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that exponentiation might extend to higher loops in an analog of the BDS ansatz for the

four-gluon amplitude:

log M(s, t) = −
1

8
γ(a)

[

log2
( s

m2

)

+ log2
( t

m2

)

]

− G̃0(a)

[

log
( s

m2

)

+ log
( t

m2

)

]

+
1

8
γ(a)

[

log2
(s

t

)

+ π2
]

+ c̃(a) + O(m2) (1.1)

where M(s, t) is the ratio of the all-orders planar amplitude to the tree-level amplitude,

γ(a) is the cusp anomalous dimension (3.3), and G̃0(a) and c̃(a) are analogs of functions

appearing in the BDS ansatz in dimensional regularization (3.5). Let us emphasize that

the nontrivial content of the BDS ansatz is the statement about the finite terms; the IR

singular terms of the amplitude are expected to obey eq. (1.1) (or eq. (3.5)) on general

field theory grounds.1

In this paper, we explore whether eq. (1.1) continues to hold at three loops and beyond.

We compute the three-loop four-gluon amplitude using Higgs regularization, assuming that

only integrals invariant under (extended) dual conformal symmetry contribute. Mellin-

Barnes techniques are used to evaluate the integrals, some parts of which are computed

numerically. We numerically evaluate the results at a number of kinematic points, and

obtain explicit expressions in several kinematic limits (e.g., s = t and also the Regge limit

s ≫ t). In every case, our results confirm the expected exponential ansatz (1.1) at the

three-loop level.

An important difference between Higgs regularization and dimensional regularization

is that in the former, IR divergences take the form of logarithms of m2 whereas in the

latter, IR divergences appear as poles in ǫ, where D = 4 − 2ǫ. A consequence of this

is that, provided eq. (1.1) is valid, the L-loop amplitude in Higgs regularization may be

computed by simply exponentiating log M(s, t) without regard for the O(m2) terms since

they continue to vanish as m → 0 even when multiplied by logarithms of m2. In contrast,

the BDS ansatz in dimensional regularization (3.5) specifies log M(s, t) up to terms that

vanish as ǫ → 0. In exponentiating log M(s, t), these neglected terms can combine with

the IR poles to give rather complicated contributions to the IR-finite L-loop amplitude.

To put the matter the other way around, in order to test eq. (1.1) one need not

compute any O(m2) terms of the Higgs-regulated L-loop amplitudes because they can-

not make any contribution to the IR-finite part of log M(s, t), whereas to test the BDS

ansatz in dimensional regularization, one must compute O(ǫ) and higher terms in the

lower-loop amplitudes to obtain all the IR-finite contributions to log M(s, t). This is

one of several significant advantages that Higgs-regulated amplitudes have over their

dimensionally-regulated counterparts.

1In ref. [29] the transition from amplitudes in dimensional regularization to amplitudes where (part of)

the IR divergences are regulated by (small) masses was investigated. In this way, the log2(m2) and log(m2)

terms in eq. (1.1) can be understood as arising from a different multiplicative renormalization factor relative

to dimensional regularization. It is also conceivable that by adapting the formalism of ref. [29] to the present

case one could show that the terms finite as m2
→ 0 follow from the corresponding formula in dimensional

regularization. This would imply that the BDS ansatz can be stated in a scheme-independent way.
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A second major focus of this paper is the Regge behavior of planar N = 4 SYM

amplitudes using Higgs regularization. One motivation for this is that it presents a different

way of examining the iterative structure of the theory, in which some results can be obtained

to all orders. Equation (1.1) may be rewritten as

log M(s, t)=

[

−
1

4
γ(a) log

( t

m2

)

−G̃0(a)

]

log
( s

m2

)

−G̃0(a) log
( t

m2

)

+
π2

8
γ(a)+c̃(a)+O(m2)

(1.2)

in which the log2(s/m2) terms have cancelled2 to leave a single log(s/m2). Consequently,

M(s, t) exhibits exact Regge behavior

M(s, t) = M(t, s) = β(t)
( s

m2

)α(t)−1
(1.3)

where the all-loop-orders Regge trajectory is

α(t) − 1 = −
1

4
γ(a) log

( t

m2

)

− G̃0(a). (1.4)

The lowest order term of the trajectory, −a log(t/m2), gives rise to the leading log (LL)

behavior of the L-loop amplitude

M (L)(s, t) −→
s≫t

(−1)L

L!
logL

( t

m2

)

logL
( s

m2

)

(1.5)

in the Regge limit, whereas higher-order terms in the cusp anomalous dimension contribute

to the NLL (next-to-leading-log), NNLL, etc. pieces of the amplitude (see eq. (4.10)).

There is a subtle question of order of limits that appears when considering the Regge

limit. In fact there are two ways this limit can be taken. The first possibility (a) consists

in taking the limit m2 ≪ s, t first, and then taking the limit s ≫ t. This order is implicit

in eq. (1.2). The second possibility (b) consists in taking the limit s ≫ t,m2 first, and then

taking m2 ≪ t. A priori, it is not clear that the result will not depend on the way the

limit is taken. Explicit calculation shows that no such ambiguity arises for the integrals

appearing at one and two loops. At three loops, as we will show, the individual integrals

give different contributions in the two limits; the three-loop amplitude M (3)(s, t), however,

is unchanged.

It seems that both ways of taking the limit can be justified, with slightly different

interpretations.3 On the one hand, the Regge (a) limit seems more appropriate in order to

make contact with results in the massless theory. On the other hand, the Regge (b) limit

is natural for scattering amplitudes with masses (see ref. [36] and section 4.4 below).

We show in this paper that the leading log behavior (1.5) stems entirely from a single

scalar diagram, the vertical ladder, in the Regge (b) limit of the Higgs-regularized loop

expansion. (This contrasts with dimensional regularization, in which ladder diagrams

2A similar cancellation occurs in the Regge limit using dimensional regularization [10, 30–34].

Subleading-color corrections to the Regge trajectory in dimensional regularization were also considered

in ref. [34].
3There is an analogous question in dimensional regularization of whether to take ǫ → 0 or s ≫ t first [35],

but see the Erratum in v5.
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do not dominate in the Regge limit; the leading log behavior of the L-loop amplitude

receives contributions from most of the contributing diagrams. This might have significant

implications for recent discussions of multi-Regge behavior [35, 37–41].) We also compute

the NLL and NNLL terms of the L-loop vertical ladder diagram. Other Higgs-regularized

diagrams also contribute to the NLL, NNLL, etc. terms of the amplitude, although we do

not yet have an all-orders characterization of which diagrams contribute to each order in

the leading log expansion.

In ref. [42], the LL approximation to the gluon Regge trajectory was computed using

a ladder approximation and an alternative IR regulator, in which the external lines are

massless while all internal lines of the diagrams are given a common mass (which cuts

off the IR divergences).4 In the LL limit, this “cutoff regulator” yields results identical to

those found in this paper.5 The reason for this, as we will see, is that the LL approximation

to the vertical ladder is insensitive to the masses of the propagators constituting the rungs

of the ladder, and this is the only difference between the cutoff and Higgs regulators. We

also compute the NLL contribution to the L-loop vertical ladder diagram using the cutoff

regulator, which differs from the Higgs regulator by scheme-dependent constants.

The Regge (b) limit of the scattering amplitudes can be understood by performing

the Higgs regularization at a different point on the Coulomb branch of the theory. In

this case, the scattered particles are massive, whereas some of the internal lines remain

massless, eliminating the collinear but not the soft IR divergences. We suggest how the

Regge behavior of the four-point amplitude can be understood from the cusp anomalous

dimension of a Wilson line with a non-light-like cusp.

The paper is organized as follows: In section 2, we give a short review of dual conformal

symmetry. Exponentiation of the planar four-gluon amplitude in dimensional regularization

and in Higgs regularization are discussed in section 3, and the three-loop amplitude in Higgs

regularization is computed. The Regge limit of the planar four-gluon amplitude in several

regularization schemes is examined in section 4, and the first three terms in the leading

log expansion of the L-loop vertical ladder diagram are computed. Most of the technical

details are relegated to three appendices.

2 Short review of dual conformal symmetry

In this section we give a short review of dual conformal symmetry, with a particular focus on

four-gluon amplitudes. Hints for dual conformal symmetry first appeared as an observation

that the loop integrals contributing to planar four-gluon scattering amplitudes in N = 4

SYM theory have special properties when written in a dual coordinate space [8].

Let us recall that the full four-gluon amplitude can be decomposed in a trace basis, the

coefficients of which are referred to as color-ordered amplitudes [43–45]. The color-ordered

4This procedure is closely related to an off-shell regulator. If all physical states have a common mass m

arising from a conventional Higgs mechanism, then external lines with p2 = 0 are off-shell from this point

of view.
5The Higgs regulator considered in this paper does not seem directly applicable to computing the

subleading-color contributions of N = 4 SYM amplitudes, which are not dual-conformal-invariant, and

which involve non-planar diagrams. The cutoff regulator might be more suitable in this respect.
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planar (i.e., large N) amplitudes may be written in a loop expansion

A(pi, εi) =
∞
∑

L=0

aLA(L)(pi, εi) (2.1)

in the ’t Hooft parameter [2]

a ≡
g2N

8π2

(

4π e−γE
)ǫ

(2.2)

where γE is Euler’s constant, and ǫ = 1
2(4 − D) with ǫ < 0 to regulate IR divergences. In

N = 4 SYM theory, loop corrections to the four-gluon amplitude have the same helicity

dependence as the tree amplitude, so we factor out the tree amplitude to express the

amplitude as a function M(s, t) of the kinematic variables s = (p1 +p2)
2 and t = (p2 +p3)

2

only6

A(pi, εi) ≡ A(0)(pi, εi)M(s, t), M(s, t) = 1 +
∞
∑

L=1

aLM (L)(s, t) . (2.3)

At one loop, we have

M (1)(s, t) = −
1

2
I1(s, t) (2.4)

with the one-loop integral I1 given by

I1(s, t) =
(

eγEµ2
)ǫ
∫

dDk

iπD/2

(p1 + p2)
2(p2 + p3)

2

k2(k + p1)2(k + p1 + p2)2(k − p4)2
, (2.5)

where the external states are on-shell: p2
i = 0. After a change of variables to a dual

coordinate space [8, 46],

pµ
i = xµ

i − xµ
i+1 , x5 ≡ x1 , (2.6)

one obtains

I1(s, t) =
(

eγEµ2
)ǫ
∫

dDxa

iπD/2

x2
13x

2
24

x2
1ax

2
2ax

2
3ax

2
4a

, (2.7)

where now the on-shell conditions read x2
i,i+1 = 0. Note that this change of variables can

be most easily done in a graphical way (see figure 1). From eq. (2.7) one can see that

for D = 4 the integral would be invariant under conformal transformations in the dual

coordinate space [8, 46]; hence the name “dual conformal symmetry.” Due to infrared

divergences one cannot set D = 4, and hence the aforementioned symmetry is broken,

which is why such integrals were later called “pseudoconformal.” It was found that at least

up to four loops all integrals appearing in the four-particle scattering amplitude have this

property [10, 47]. All this hinted at some deeper underlying structure.

From the practical point of view, assuming that only pseudoconformal integrals con-

tribute to an amplitude proved to be a useful guiding principle7 (see e.g. refs. [5, 48]). On

the other hand, the inevitable breaking of the symmetry for D 6= 4 was not under control.

6In this paper, we follow the − + ++ metric conventions of ref. [25], so that s is negative for positive

CM energy. The amplitude M(s, t) will be real for s and t both positive.
7Note that there can be subtleties about which integrals should be called pseudoconformal (see

e.g. ref. [5]), having to do with the peculiarities of dimensional regularization/reduction.
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x1

x2

x3

x4
xa

p1p1

p2p2 p3p3

p4p4

k

Figure 1. One-loop scalar box diagram representing the on-shell integral (2.5) together with its

dual diagram (2.7). The numerator factor (p1 + p2)
2(p2 + p3)

2 = x2
13x

2
24 is not displayed.

This changed when it was realized that the (finite part of the) logarithm of the amplitude

satisfies certain anomalous Ward identities, which were initially derived for Wilson loops

and are conjectured to hold for scattering amplitudes as well. Assuming the Ward identi-

ties hold for the scattering amplitudes, they explain the correctness of the BDS ansatz for

four and five scattered particles [3, 14].

Initially dual conformal symmetry could be applied to the n-gluon amplitude Mn

for maximally-helicity-violating (MHV) amplitudes only, as can be seen from the fact

that the variables in eq. (2.6) do not carry helicity. In ref. [15], it was shown how to

incorporate the helicity information and to define dual (super)conformal symmetry for

arbitrary amplitudes, both MHV and non-MHV. The predictions of ref. [15] about how dual

conformal symmetry is realized at tree and loop level (through an anomalous Ward identity)

have by now been checked to one-loop order [49–52]. The status of dual superconformal

symmetry at loop level, which is related to the conventional superconformal symmetry, is

under investigation [22–24].

The symmetries mentioned above can also be seen at strong coupling using the

AdS/CFT correspondence. In a groundbreaking paper [9], a prescription for comput-

ing scattering amplitudes at strong coupling was given. There, a bosonic T-duality was

used that maps the original AdS space to a dual AdS space. Dual conformal symmetry

can then be identified with the isometries of the dual AdS space (up to the issue of reg-

ularization). It was later shown that the bosonic T-duality can be supplemented with a

fermionic T-duality [18–20], which leads to the counterpart of the dual superconformal

symmetry found in the field theory. The analysis of ref. [18] is valid to all orders in the

gauge coupling constant; however, just as in the field theory, introducing a regulator may

break the symmetry. It would be interesting to address this question in the string theory

approach. A somewhat related question is how the helicity dependence of the scattering

amplitudes is encoded in the string theory setup. (At strong coupling, it is argued to be

an overall factor, which can be ignored, but certainly this is not the case at lower orders

in the coupling constant.)
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In a recent paper [25], a new regularization of planar amplitudes inspired by the string

theory setup of refs. [9, 18] was advocated (see also refs. [26–28]). In the string theory,

besides the usual stack of N branes at z = 0 (z being the radial AdS coordinate, with

the AdS radius normalized to unity), M further branes are placed at distances zi = 1/mi.

The scattering takes place on the stack of M branes. In the field theory, this corresponds

to going to the Coulomb branch of N = 4 SYM. Specifically, one starts with a gauge

group U(N + M) and breaks it to U(N) × U(M) → U(N) × U(1)M . This leads to masses

|mi1 −mi2| for fields with labels in the U(M), masses |mi| for fields with mixed N,M gauge

labels, while the U(N) fields remain massless. We then consider the scattering of fields

with indices in the U(M) part of the gauge group and take N ≫ M . (In other words,

we drop all diagrams containing loops of particles with gauge indices M .) Therefore, the

internal labels will all be in the N part of the gauge group, while the particles running

along the perimeter of all Feynman diagrams will have mixed (M,N) labels, and hence will

have massive propagators. The latter make the integrals IR finite, and there is no need to

use dimensional regularization. Of course, strictly speaking one is considering a different

theory, but the original theory is approached in the small mass limit.8

The string theory setup suggests that the planar amplitudes defined in this way should

have an exact, i.e. unbroken, dual conformal symmetry. This is possible because there are

now additional terms in the dual conformal generators that act on the Higgs masses. These

additional terms come from the isometries of dual AdS space. At one loop, the integral (2.7)

is replaced by

I1(s, t;m1,m2,m3,m4) =

∫

d4xa

iπ2

(x2
13 + (m1 − m3)

2)(x2
24 + (m2 − m4)

2)

(x2
1a + m2

1)(x
2
2a + m2

2)(x
2
3a + m2

3)(x
2
4a + m2

4)
, (2.8)

now subject to the on-shell conditions x2
i,i+1 = −(mi − mi+1)

2, with the identification

m5 ≡ m1. As anticipated, I1 is annihilated by the extended form of dual conformal

transformations,9

K̂µ I1 = 0 , (2.9)

where

K̂µ =

4
∑

i=1

[

2xiµ

(

xν
i

∂

∂xν
i

+ mi
∂

∂mi

)

− (x2
i + m2

i )
∂

∂xµ
i

]

. (2.10)

Note that the integral is finite (for mi 6= 0), and the symmetry is exact (i.e. unbroken),

hence there is no anomaly term on the r.h.s. of eq. (2.9). From eq. (2.9) one can deduce

that the functional dependence of I1 is [25]

I1(s, t;m1,m2,m3,m4) = f(u, v), (2.11)

where

u =
m1m3

s + (m1 − m3)2
and v =

m2m4

t + (m2 − m4)2
. (2.12)

8Unfortunately, since the requirement of finiteness imposes keeping N ≫ M , one cannot reproduce the

non-planar scattering amplitudes of the original theory.
9This can be seen most easily by thinking of the masses mi as a fifth coordinate of the dual coordinates,

defining x̂M
i ≡ (xµ

i , mi), and considering conformal inversions in this five-dimensional space. For further

details, see ref. [25].

– 8 –



J
H
E
P
0
4
(
2
0
1
0
)
0
3
8

m1

m1

m2

m2

m3

m3 m4

mnmnp2
1 = −(m1 − m2)

2

p2
2 = −(m2 − m3)

2

p2
3 = −(m3 − m4)

2

p2
n = −(mn − m1)

2

. . .

Figure 2. Mass assignment of a generic planar diagram in the Higgs setup. The external lines

correspond to on-shell particles with p2
i

= −(mi −mi+1)
2. The internal dashed lines correspond to

massless particles. We call particles of mass |mi − mi+1| ‘light’ and particles of mass mi ‘heavy’

since the former become massless when we consider the equal mass case mi = m.

Similar restrictions hold for a higher number of external legs. This form of dual conformal

invariance in the field theory was checked for a particular four-scalar amplitude at one

loop [25]. There it was also shown that assuming this symmetry at two loops leads to an

iterative relation similar to that which holds in dimensional regularization.

In figure 2, we illustrate where the Higgs masses appear in a generic n-point integral

in this setup. Thanks to dual conformal symmetry, we can set all masses equal without

loss of generality, in which case all external particles are massless, the particles in the outer

loop of a diagram are massive, and all particles on the inside are massless.

One can in principle write down all dual conformal integrals at a given loop order and

for a given number n of external legs. The amplitude would then be given by a linear

combination of these integrals [10]

Mn = 1 +
∑

I

aL(I) c(I)I , (2.13)

where the sum runs over all dual conformal integrals10 I, with L(I) the loop order of

the integral, and c(I) a (rational) coefficient (a number in the case of MHV amplitudes).

Further restrictions result from the requirement that the diagrams must arise from a scat-

10Here we mean dual conformal integrals in the sense of the Higgs regulator of ref. [25], not the off-shell

regulator of ref. [10].
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tering process; for example, at two loops, the one-loop integral (2.8) cannot appear squared.

Moreover, there are restrictions on the number of propagators and numerator factors. Fi-

nally, integrals that would be formally dual conformal invariant but are divergent despite

the introduction of the Higgs regulator should not appear [10].

3 Exponentiation of the four-gluon amplitude

In this section, we recall the exponentiation of the four-point amplitude of N = 4 SYM

theory, first using dimensional regularization to regulate the IR divergences, and then using

the Higgs regularization described in section 2.

3.1 Exponentiation in dimensional regularization

On the basis of ref. [1], Bern, Dixon, and Smirnov conjectured [2] that the dimensionally-

regularized all-loop orders amplitude (2.3) satisfies

log M(s, t) =

∞
∑

ℓ=1

aℓ
[

f (ℓ)(ǫ)M (1)(s, t; ℓǫ) + C(ℓ) + O(ǫ)
]

(3.1)

where M (1)(s, t) is given by eq. (2.4), ǫ = 1
2(4 − D), and

f (ℓ)(ǫ) =
1

4
γ(ℓ) +

1

2
ǫ ℓ G

(ℓ)
0 + ǫ2f

(ℓ)
2 (3.2)

with the cusp γ(ℓ) and collinear G
(ℓ)
0 anomalous dimensions [53] given by11

γ(a) =

∞
∑

ℓ=1

aℓγ(ℓ) = 4a − 4ζ2a
2 + 22ζ4a

3 + · · · (3.3)

G0(a) =

∞
∑

ℓ=1

aℓG
(ℓ)
0 = −ζ3a

2 +

(

4ζ5 +
10

3
ζ2ζ3

)

a3 + · · · (3.4)

The constants C(ℓ) and f
(ℓ)
2 and the O(ǫ) terms in eq. (3.1) are not known a priori. The

BDS ansatz (3.1) may be re-expressed as

log M(s, t)=

∞
∑

ℓ=1

aℓ

[

−
γ(ℓ)

4(ℓǫ)2
−
G

(ℓ)
0

2ℓǫ

][

(

µ2

s

)ℓǫ

+

(

µ2

t

)ℓǫ
]

+
γ(a)

8

[

log2
(s

t

)

+
4

3
π2

]

+c(a)+O(ǫ)

(3.5)

where [2]

c(a) =

∞
∑

ℓ=1

aℓc(ℓ) =

∞
∑

ℓ=1

aℓ

[

−
2f

(ℓ)
2

ℓ2
+ C(ℓ)

]

= −
π4

120
a2 +

(

341

216
ζ6 −

17

9
ζ2
3

)

a3 + · · · (3.6)

Overlapping soft and collinear IR divergences are responsible for the 1/ǫ2 pole in eq. (3.5).

11We use the notation of ref. [2]. Note that γ(a) = 2Γcusp(a), where Γcusp(a) is also widely used in

the literature.
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While the BDS ansatz (3.5) implies that the IR-finite part of the logarithm of the

amplitude is simply expressible in terms of log(s/µ2) and log(t/µ2) and a set of constants

γ(ℓ), G
(ℓ)
0 , and c(ℓ), the same is not true of the L-loop amplitudes M (L)(s, t) themselves.

For example, eq. (3.5) implies [1]

M (2)(s, t) =
1

2

[

M (1)(s, t)
]2

−
γ(2)

8ǫ2
−

G
(2)
0

2ǫ
+

γ(2)

8ǫ

[

log
( s

µ2

)

+ log
( t

µ2

)

]

(3.7)

+
G

(2)
0

2

[

log
( s

µ2

)

+log
( t

µ2

)

]

−
γ(2)

4
log
( s

µ2

)

log
( t

µ2

)

+
π2

6
γ(2) + c(2) + O(ǫ) .

Because of interference between the positive and negative powers of ǫ in
[

M (1)(s, t)
]2

, the

O(ǫ−1) and O(ǫ0) terms [54] in M (2)(s, t) depend on more complicated functions (polylog-

arithms) of s and t, which are present in the O(ǫ) and O(ǫ2) terms [1] of M (1)(s, t). In

general M (L)(s, t) will receive contributions from the coefficients of positive powers of ǫ in

all lower-loop amplitudes.

3.2 Exponentiation in Higgs regularization

The Higgs mechanism reviewed in section 2 can be used as a gauge-invariant regulator

of the IR divergences in the planar massless theory, with the IR divergences appearing

as log(m2) terms in the amplitude, and any terms that vanish as m → 0 are dropped.

One could ask whether, when regulated in this way, the four-point loop amplitude satisfies

iterative relations similar to the BDS ansatz for the dimensionally-regulated amplitude. In

ref. [25], it was suggested that the analog of eq. (3.5) is

log M(s, t) = −
1

8
γ(a)

[

log2
( s

m2

)

+ log2
( t

m2

)

]

− G̃0(a)

[

log
( s

m2

)

+ log
( t

m2

)

]

+
1

8
γ(a)

[

log2
(s

t

)

+ π2
]

+ c̃(a) + O(m2) (3.8)

where γ(a) is the cusp anomalous dimension (3.3), and G̃0(a) and c̃(a) are the analogs of

G0(a) and c(a), but need not be the same functions since they are scheme-dependent [25].

Overlapping soft and collinear IR divergences12 are responsible for the double logarithms

in eq. (3.8).

The L-loop amplitudes M (L)(s, t) are obtained by exponentiating eq. (3.8). In contrast

to dimensional regularization, there is no interference between the IR-divergent log(m2)

terms and the O(m2) terms in eq. (3.8) since such terms vanish for m → 0 order by order

in the coupling constant. Hence the amplitudes are simply expressed in terms of products

of log(s/m2) and log(t/m2) and a set of constants γ(ℓ), G̃
(ℓ)
0 , and c̃(ℓ). For comparison with

later calculations, we explicitly write the predictions for the first few loop amplitudes, with

12In section 4.4, we will see that only soft divergences contribute in the Regge limit, giving a single

logarithmic divergence.
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u ≡ m2/s and v ≡ m2/t,

M (1) = − log(v) log(u) +
1

2
π2 + O(m2) , (3.9)

M (2) =
1

2
log2(v) log2(u) −

(

1

2
π2 +

1

4
γ(2)

)

log(v) log(u)

+G̃
(2)
0 [log(u) + log(v)] +

(

1

8
π4 +

1

8
π2γ(2) + c̃(2)

)

+ O(m2) , (3.10)

M (3) = −
1

6
log3(v) log3(u) +

(

1

4
π2 +

1

4
γ(2)

)

log2(v) log2(u)

−G̃
(2)
0

[

log2(v) log(u) + log(v) log2(u)
]

−

(

1

8
π4 +

1

4
π2γ(2) + c̃(2) +

1

4
γ(3)

)

log(v) log(u)

+

(

1

2
π2G̃

(2)
0 + G̃

(3)
0

)

[log(u) + log(v)]

+

(

1

48
π6 +

1

16
π4γ(2) +

1

2
π2c̃(2) +

1

8
π2γ(3) + c̃(3)

)

+ O(m2) , (3.11)

where we have explicitly set γ(1) = 4 and G̃
(1)
0 = c̃(1) = 0.

The dual-conformal integrals that contribute through two loops are (see figures 1 and 3)

M(s, t) = 1 −
a

2
I1(s, t,m

2) +
a2

4

[

I2(s, t,m
2) + I2(t, s,m

2)
]

+ O(a3) . (3.12)

These integrals were computed in ref. [25], and the exponential ansatz (3.8) was verified

to two-loop order. To determine the values of the constants in eqs. (3.9) and (3.10), it is

sufficient to evaluate eq. (3.12) at s = t. Defining x ≡ m2/s = m2/t, one finds [25]

I1(x) = 2 log2(x) − π2 + O(x), (3.13)

I2(x) = log4(x) −
2

3
π2 log2(x) − 4ζ3 log(x) +

1

10
π4 + O(x). (3.14)

As discussed in ref. [25], these are consistent with eqs. (3.9) and (3.10) provided

γ(a) = 4a−4ζ2a
2 +O(a3), G̃0(a) = −ζ3a

2 +O(a3), c̃(a) =
π4

120
a2 +O(a3). (3.15)

The expression for γ(a) is consistent with eq. (3.3).

We now test exponentiation (3.8) at the three-loop level, i.e., the prediction (3.11).

Since an explicit calculation of higher-loop amplitudes using the Higgs regulator is not

(yet) available, we will start from the assumption (2.13) that only dual-conformal integrals

contribute. Equation (2.13) requires two ingredients: the set of dual-conformal integrals

and their coefficients. In order to identify the allowed set of dual conformal integrals it is

helpful to use the dual notation and graphs introduced in section 2. (For more details and

examples, see refs. [8, 10, 47, 48, 55].)

There are four dual conformal integrals that can in principle appear [55] in a four-point

three-loop amplitude: I3a, I3b, I3c, and I3d. The first two, depicted in figure 3, are natural
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I2 I3a I3b

Figure 3. Two- and three-loop four-point dual conformal diagrams. I2 and I3a are ladder diagrams;

I3b is the tennis-court diagram. Numerator factors (including a loop-momentum-dependent factor

for the tennis court) are omitted. See eqs. (A.20) and (A.23) for explicit formulae for the integrals.

I3c I3d

Figure 4. Three-loop four-point dual conformal diagrams, with numerator factors omitted. Both

integrals require a factor of m2 in the numerator in order to be dual-conformally-invariant.

dual conformal analogs of the integrals appearing in the three-loop amplitude computed in

dimensional regularization [2]. The last two, depicted in figure 4, are absent in dimensional

regularization. We will assume that these are the only integrals required in the Higgs

regularization, with the same coefficients as in the dimensional regularization result. In

general it is not valid to take a result computed in one regularization and transpose it to

a different regularization; here this procedure can be justified a posteriori (as we discuss

below) by imposing that the IR singular terms of the amplitude obey the relation eq. (3.8)

as required on general field theory grounds.13

Given these assumptions we write

M (3)(s, t) = −
1

8

[

I3a(s, t,m
2) + I3a(t, s,m

2) + 2 I3b(s, t,m
2) + 2 I3b(t, s,m

2)
]

. (3.16)

In appendix A, Mellin-Barnes (MB) representations for the integrals appearing in eq. (3.16)

are derived. The small m2 limit of these MB integrals is extracted using the same method

13It would be desirable to determine the coefficients of these integrals using a unitarity-based method. In-

deed, once a basis of integrals has been established, in our case using dual conformal symmetry, (generalized)

unitarity cuts are a powerful tool to compute the coefficients of the integrals (see e.g. refs. [48, 56–59]).
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as in ref. [25]. At the kinematic point s = t, we find

I3a(x) =
17

90
log6(x) +

1

9
π2 log4(x) −

8

3
ζ3 log3(x) (3.17)

−64.93939402 log2(x) − 200.29103 log(x) − 196.597 + O(x) ,

I3b(x) =
43

180
log6(x) −

2

9
π2 log4(x) −

8

3
ζ3 log3(x) (3.18)

+37.8813132 log2(x) + 113.11769 log(x) + 90.0915 + O(x) ,

where the decimal coefficients are approximations obtained by numerical integration of

MB integrals. We find that the three-loop amplitude (3.16) at s = t is consistent with the

exponential ansatz (3.11) provided that

γ(3) ≈ 23.81111114 ± 10−8, G̃
(3)
0 ≈ 2.68887 ± 10−5, c̃(3) ≈ −9.249 ± 10−3 . (3.19)

together with eq. (3.15). We note that γ(3) ≈ 22ζ4 is indeed the correct three-loop cusp

anomalous dimension (3.3).

Having obtained the coefficients from the s = t case, we are now in a position to test

the full consistency of eq. (3.16) with eq. (3.11). In order to do this, we have evaluated the

coefficients of the small m2 expansion of the integrals I3a and I3b numerically for various

values of the kinematical variables s, t. We have found agreement with eq. (3.11) within

the numerical accuracy of the calculation.

We assumed above that the coefficients of the integrals I3c and I3d vanish in Higgs

regularization, as they do in dimensional regularization. We have nevertheless evaluated

these integrals in the small m2 limit using MB methods, and found that

I3c(u, v) = 56.23 + O(m2) (3.20)

I3d(u, v) = −17.32 log(v) − 62 + O(m2) (3.21)

so that, if present, they could be simply accommodated in the BDS ansatz at three loops

by redefining14 G̃
(3)
0 and c̃(3) in eq. (3.11). We will therefore not discuss them further in

this paper.

Equation (3.11) predicts the three-loop amplitude for arbitrary values of u and v. We

would like to present a further test of eq. (3.11) in the limit s ≫ t, i.e. u ≪ v. This is

Regge limit (a) discussed in the introduction. In order to find formulas for our integrals

in Regge limit (a), we perform the small m2 and subsequently the u ≪ v limit in the MB

integrals. In this way, we obtain an expression in terms of powers of log(u) and log(v),

whose kinematic-independent coefficients are either numbers or (relatively simple) MB

integrals. Where necessary we evaluate the latter numerically.

Let us first collect the results for the one- and two-loop diagrams [25]. The one-loop

box diagram gives

lim
u≪v

lim
u,v≪1

I1(u, v) = log(u)

[

2 log(v) + O(v)

]

+

[

− π2 + O(v)

]

+ O(u) . (3.22)

14Such a change could be detected when checking eq. (3.8) at higher orders in perturbation theory.
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For the two-loop horizontal ladder diagram (cf. figure 3), one has

lim
u≪v

lim
u,v≪1

I2(u, v) = log(u)

[

4

3
log3(v) +

4

3
π2 log(v) + O(v)

]

(3.23)

+

[

−
1

3
log4(v) − 2π2 log2(v) − 4ζ3 log(v) −

7

15
π4 + O(v)

]

+ O(u) ,

while for the two-loop vertical ladder

lim
u≪v

lim
u,v≪1

I2(v, u) = log2(u)

[

2 log2(v) + O(v)

]

+ log(u)

[

−
4

3
log3(v) −

8

3
π2 log(v) − 4ζ3 + O(v)

]

(3.24)

+

[

1

3
log4(v) + 2π2 log2(v) +

2

3
π4 + O(v)

]

+ O(u) .

Substituting these results into eq. (3.12), we find agreement with eqs. (3.9) and (3.10) with

the coefficients given in eq. (3.15). (The limit u ≪ v does not affect the form of eqs. (3.9)

and (3.10).)

We now turn to the three-loop diagrams. For the three-loop horizontal ladder diagram

(cf. figure 3), we obtain15

lim
u≪v

lim
u,v≪1

I3a(u, v)=log(u)

[

4

15
log5(v)+

8

9
π2 log3(v)+

28

45
π4 log(v)+O(v)

]

+

[

−
7

90
log6(v)−

7

9
π2 log4(v)−

8

3
ζ3 log3(v)−

58

45
π4 log2(v)−35.786 log(v)−323.7+O(v)

]

+ O(u) , (3.25)

while for the vertical three-loop ladder, we obtain

lim
u≪v

lim
u,v≪1

I3a(v, u) = log6(u)

[

1

90
+ O(v)

]

+ log5(u)

[

−
2

15
log(v) + O(v)

]

+ log4(u)

[

2

3
log2(v) +

2

9
π2 + O(v)

]

+ log3(u)

[

−
4

9
log3(v) −

16

9
π2 log(v) + O(v)

]

+ log2(u)

[

2π2 log2(v) − 8ζ3 log(v) +
44

45
π4 + O(v)

]

(3.26)

+ log(u)

[

2

15
log5(v) + 8ζ3 log2(v) −

74

45
π4 log(v) + 75.717 + O(v)

]

+

[

−
2

45
log6(v) −

1

3
π2 log4(v) −

8

3
ζ3 log3(v) − 111.5 log(v) + 141.2 + O(v)

]

+ O(u) .

15The coefficients of the π4 terms were obtained numerically, and replaced by their probable rational

equivalents.
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For the tennis court diagram in the orientation shown in figure 3 we find,

lim
u≪v

lim
u,v≪1

I3b(u, v) = log6(u)

[

−
1

90
+ O(v)

]

+ log5(u)

[

2

15
log(v) + O(v)

]

+ log4(u)

[

−
2

3
log2(v) −

2

9
π2 + O(v)

]

+ log3(u)

[

16

9
log3(v) +

16

9
π2 log(v) + O(v)

]

+ log2(u)

[

−
4

3
log4(v) − 4π2 log2(v) −

44

45
π4 + O(v)

]

(3.27)

+ log(u)

[

1

3
log5(v) +

20

9
π2 log3(v) − 8ζ3 log2(v) +

20

9
π4 log(v) − 24.8863 + O(v)

]

+

[

1

180
log6(v) +

16

3
ζ3 log3(v) −

13

45
π4 log2(v) + 111.499 log(v) − 206.1 + O(v)

]

+ O(u) ,

while for the tennis court in the transposed orientation, we obtain

lim
u≪v

lim
u,v≪1

I3b(v, u) = log6(u)

[

1

180
+ O(v)

]

+ log5(u)

[

−
1

15
log(v) + O(v)

]

+ log4(u)

[

1

3
log2(v) +

1

9
π2 + O(v)

]

+ log3(u)

[

−
8

9
log3(v) −

8

9
π2 log(v) + O(v)

]

+ log2(u)

[

4

3
log4(v) +

8

3
π2 log2(v) +

22

45
π4 + O(v)

]

(3.28)

+ log(u)

[

−
8

15
log5(v) −

8

3
π2 log3(v) −

8

5
π4 log(v) + O(v)

]

+

[

1

18
log6(v) +

5

9
π2 log4(v) −

8

3
ζ3 log3(v) +

14

15
π4 log2(v) − 24.888 log(v) + 280.8 + O(v)

]

+ O(u) .

Plugging these into eq. (3.11), we see that the log6(u), log5(u), and log4(u) terms cancel,

and that the log3(u), log2(u), log(u), and log0(u) terms of eq. (3.11) are reproduced using

the coefficients given in eqs. (3.15) and (3.19).

In summary, we used the assumption of extended dual conformal symmetry to restrict

the integrals allowed to appear in the three-loop four-point amplitude to I3a, I3b, I3c, and

I3d. We then successfully checked the consistency of this assumption with the exponen-

tial ansatz (3.11). The first test consisted in computing the small m2 expansion of the

amplitude, and numerically comparing to eq. (3.11) for various values of the kinematical

variables u and v. The second test consisted in comparing our result to eq. (3.11) in the

limit u ≪ v.

4 Regge limit of the four-gluon amplitude

In this section, we examine the four-point amplitude M(s, t) in the Regge limit s ≫ t > 0.

(Recall that M(s, t) is real in this kinematic region (see footnote 6). The “physical” Regge

limit, −s ≫ t > 0, differs from this by an imaginary contribution.) First we review the

situation for dimensional regularization, and then we reexamine the Regge limit using Higgs

regularization and cutoff regularization. The divergence structure of the Regge limit can

also be understood via the scattering of massive particles.
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4.1 Regge limit in dimensional regularization

We recall that in dimensional regularization the Regge form of M(s, t) is [10, 30–34]

M(s, t) = β(t)
(s

t

)α(t)−1
(4.1)

where the trajectory function is16

α(t) − 1 =

∞
∑

ℓ=1

aℓ

[

γ(ℓ)

4ℓǫ
+

G
(ℓ)
0

2

]

(

µ2

t

)ℓǫ

+ O(ǫ) (4.2)

and the form of the residue β(t) may be found in ref. [32, 34].

The form of eq. (4.1) suggests that the IR-finite contribution to the L-loop amplitude

M (L)(s, t) grows as logL(s) in the Regge limit. This conclusion, however, is not quite

warranted because the neglected O(ǫ) and higher terms could in principle conspire with

the pole terms to yield higher powers of log(s). Nevertheless, it was shown that this does

not occur at least through three loops [34], and that the L-loop amplitude in fact grows as

logL(s). It is not unreasonable to hope that this should hold to all orders.

On the other hand, it is definitely not true that the individual L-loop diagrams con-

tributing to M (L)(s, t) are bounded by logL(s) in the Regge limit. As an explicit counterex-

ample, consider the Regge limit of the contributions to the three-loop amplitude, keeping

only terms of order log3(s/t) or higher:

I3a(s, t) =O(L), (4.3)

I3a(t, s) =

(

µ2

t

)3ǫ [
1

ǫ3

(

−L3
)

+
1

ǫ2

(

1

12
L4

)

+
1

ǫ

(

1

60
L5 +

25π2

36
L3

)

+ O(ǫ0)

]

+ O(L2),

I3b(s, t) =

(

µ2

t

)3ǫ [
1

ǫ3

(

−
1

3
L3

)

+
1

ǫ2

(

−
1

12
L4

)

+
1

ǫ

(

−
1

60
L5−

13π2

36
L3

)

+O(ǫ0)

]

+O(L2),

I3b(t, s) =

(

µ2

t

)3ǫ [
1

ǫ3

(

1

6
L3

)

+
1

ǫ2

(

1

24
L4

)

+
1

ǫ

(

1

120
L5 +

13π2

72
L3

)

+ O(ǫ0)

]

+ O(L2)

where we have denoted L ≡ log(s/t). Combining these contributions using eq. (3.16), we

obtain the Regge limit of the three-loop amplitude

M (3)(s, t) =

(

µ2

t

)3ǫ [
1

6ǫ3
−

π2

24ǫ
+ O(ǫ0)

]

L3 + O(L2) (4.4)

but it is clear that the Regge behavior comes from no single diagram, and in fact a cancel-

lation of higher powers of log(s/t) occurs among the various contributing diagrams. This

means that in dimensional regularization, it is very difficult to ascertain the Regge behavior

of M (L)(s, t) by considering the Regge behavior of individual diagrams.

In the next section, we will compare this to the Regge limit in Higgs regularization. As

was noted in the introduction, there is a subtlety, namely that the Regge limit of individual

diagrams can depend on the order in which the various limits are taken. As we will see in

the next section, with one way of taking the limits, the leading Regge behavior of the L-loop

amplitude is determined by a single contributing diagram, the vertical ladder diagram.

16The tree amplitude supplies another power of s/t so that, in the Regge limit, the color-ordered amplitude

A(pi, εi) goes as (s/t)α(t).
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4.2 Regge limit in Higgs regularization

The conjectured exponentiation eq. (3.8) of the four-point amplitude in Higgs regularization

can be rewritten as

log M(s, t)=−
1

4
γ(a)log

( t

m2

)

log
( s

m2

)

−G̃0(a)

[

log
( t

m2

)

+log
( s

m2

)

]

+
π2

8
γ(a)+c̃(a)+O(m2)

(4.5)

As pointed out in section 3, in Higgs regularization we may simply exponentiate eq. (4.5)

to obtain the four-point amplitude. Moreover, eq. (4.5) implies that the amplitude is Regge

exact,17 up to terms that vanish as m2 → 0:

M(s, t) = β(t)
( s

m2

)α(t)−1
+ O(m2) (4.6)

with

α(t) − 1 = −
1

4
γ(a) log

( t

m2

)

− G̃0(a) , (4.7)

β(t) = exp

[

−G̃0(a) log
( t

m2

)

+
π2

8
γ(a) + c̃(a)

]

. (4.8)

The −1
4γ(a) log(t/m2) piece of the trajectory α(t) agrees with the conjecture in eq. (2.18) of

ref. [42], but in addition there is a contribution from the analog of the collinear anomalous

dimension.

Equation (4.5) implies that the leading-log (LL) behavior of the L-loop amplitude is

given by

M (L)(s, t) −→
s≫t

(−1)L

L!
logL

( t

m2

)

logL
( s

m2

)

. (4.9)

In fact we can use eq. (4.5) to organize the L-loop amplitude in a leading-log expansion

in log(s/m2), with LL, NLL, and NNLL terms given by (recalling that u ≡ m2/s and

v ≡ m2/t)

M (L) =

[

1

L!
(− log v)L

]

logL(u)

+

[(

π2

2(L − 1)!
+

γ(2)

4(L − 2)!

)

(− log v)L−1 +
G̃

(2)
0

(L − 2)!
(− log v)L−2

]

logL−1(u)

+

[

−
G̃

(2)
0

(L − 2)!
(− log v)L−1

+

(

8c̃(2) + π4 + π2γ(2)

8(L − 2)!
+

2γ(3) + π2γ(2)

8(L − 3)!
+

(γ(2))2

32(L − 4)!

)

(− log v)L−2

+

(

2G̃
(3)
0 +π2G̃

(2)
0

2(L − 3)!
+

γ(2)G̃
(2)
0

4(L − 4)!

)

(− log v)L−3+
(G̃

(2)
0 )2

2(L − 4)!
(− log v)L−4

]

logL−2(u)

+O(logL−3(u)) (4.10)

17Equation (4.6) could also be rewritten with s and t exchanged, due to the s ↔ t symmetry of eq. (4.5).
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where we have explicitly set γ(1) = 4 and G̃
(1)
0 = c̃(1) = 0. In fact we have already tested

the validity of this expansion through three loops in section 3 by evaluating the integrals

that contribute to the amplitudes in a leading log expansion.

As discussed in the introduction, however, there is a subtlety in how one evaluates

the leading log expansion of the integrals contributing to the four-point amplitude. One

approach, which we term (a), is to first evaluate all the integrals in the small m2 limit, and

subsequently to take the limit s ≫ t. This is what has been done for all integrals up to this

point in the paper. In this section, we will explore another approach, which we call (b),

in which we evaluate the s ≫ t limit of the integrals first, for finite m2, and subsequently

take the small m2 limit of the coefficients of the leading log expansion. We will find that,

although the intermediate details differ, the final result is still given (at least through three

loops) by eq. (4.10).

For one and two loops, we have verified that both methods (a) and (b) yield the same

results for the integrals namely, eqs. (3.22), (3.23), and (3.24). At three loops, however,

the results begin to differ. The three-loop horizontal ladder diagram (cf. figure 3), gives18

lim
u,v≪1

lim
u≪v

I3a(u, v) = log(u)

[

4

15
log5(v) +

8

9
π2 log3(v) +

28

45
π4 log(v) + O(v)

]

(4.11)

+

[

−
7

90
log6(v)−

7

9
π2 log4(v)−

8

3
ζ3 log3(v)+

58

45
π4 log2(v)−35.786 log(v)−323.7+O(v)

]

+O(u) ,

which in fact agrees with eq. (3.25). The vertical three-loop ladder, however, gives in the

(b) limit

lim
u,v≪1

lim
u≪v

I3a(v, u) = log3(u)

[

4

3
log3(v) + O(v)

]

(4.12)

+ log2(u)

[

−
8

3
log4(v) −

10

3
π2 log2(v) − 8ζ3 log(v) + O(v)

]

+ log(u)

[

34

15
log5(v) +

64

9
π2 log3(v) + 8ζ3 log2(v) +

34

15
π4 log(v) + 75.717 + O(v)

]

+

[

−
34

45
log6(v)−

35

9
π2 log4(v)−

8

3
ζ3 log3(v)−

176

45
π4 log2(v)−111.504 log(v)−363.4+O(v)

]

+ O(u) .

In the other way (a) of taking the limit, the leading term goes as log6(u). For the tennis

18The coefficients of the π4 terms were obtained numerically, and replaced by their probable rational

equivalents.
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court diagram in the orientation shown in figure 3 we obtain

lim
u,v≪1

lim
u≪v

I3b(u, v) = log2(u)

[

4

3
log4(v) +

4

3
π2 log2(v) + O(v)

]

(4.13)

+ log(u)

[

−
9

5
log5(v) −

44

9
π2 log3(v) − 8ζ3 log2(v) −

76

45
π4 log(v) − 24.886 + O(v)

]

+

[

43

60
log6(v)+

32

9
π2 log4(v)+

16

3
ζ3 log3(v)−

143

45
π4 log2(v)+111.499 log(v)+298.5+O(v)

]

+ O(u) ,

while for the tennis court in the transposed orientation, we obtain

lim
u,v≪1

lim
u≪v

I3b(v, u) = log(u)

[

8

15
log5(v) +

8

9
π2 log3(v) +

16

45
π4 log(v) + O(v)

]

(4.14)

+

[

−
3

10
log6(v)−

11

9
π2 log4(v)−

8

3
ζ3 log3(v)−

46

45
π4 log2(v)−24.888 log(v)+28.5+O(v)

]

+ O(u) .

Thus, the form of the leading log expansion of the three-loop integrals depends on the

order in which the limits are taken.

Despite the different expressions for the individual integrals, we find that the three-

loop amplitude itself is the same in both Regge (a) and (b) limits. Plugging the expressions

above into eq. (3.16), we find that the expression (3.11) is reproduced, using the coefficients

in eqs. (3.15) and (3.19), just as when we evaluated the integrals in the other order of limits.

In section 4.4, we give an heuristic argument which helps to explain why the Regge limit

of the amplitude should be independent of the order in which the limits are taken.

A significant difference between these two approaches is that while, in the Regge (a)

limit, most of the diagrams contribute to the leading log term (4.9) of the amplitude (as

is also the case in dimensional regularization), in the Regge (b) limit, only one diagram,

the vertical ladder, contributes to the leading-log behavior of the amplitude in the Regge

limit. Using

M (L) =

(

−
1

2

)L
[

ILa(v, u) + (all other L−loop diagrams)
]

(4.15)

one can show that the leading log behavior of the L-loop amplitude (4.9) can be wholly

accounted for by the vertical L-loop ladder diagram ILa(v, u), suggesting that all other

diagrams are subdominant (i.e., grow no faster than logL−1(s)) in the Regge (b) limit. Using

the methods of ref. [36], we derive in appendix C the LL, NLL, and NNLL contributions
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of the vertical L-loop diagram, obtaining

lim
u,v≪1

lim
u≪v

ILa(v, u) =
2L

L!
logL u logL v

−
2L

(L − 1)!
logL−1 u

[

1

3
(L − 1) logL+1 v + (L + 2)ζ2 logL−1 v + (L − 1)ζ3 logL−2 v

]

+
2L

(L − 2)!
logL−2 u

[

10L2 − 14L + 3

180
logL+2 v +

(L + 1)2

18
π2 logL v

+
L(L − 2)

3
ζ3 logL−1 v +

(L + 3)(5L + 2)

360
π4 logL−2 v +

L − 2

6
(L + 1.826)π2ζ3 logL−3 v

+
(L − 2)(L − 3)

2
ζ2
3 logL−4 v

]

+ O(logL−3 u) . (4.16)

It is clear from comparing eqs. (4.10) and (4.16) that other diagrams begin to contribute

at the NLL order. It is difficult, however, to use the methods of ref. [36] to estimate the

leading logarithmic growth for the other diagrams due to the presence of numerator factors

in the integrals. (It would be interesting to extend the methods of ref. [36] to these cases.)

We suspect that only a small subset of the allowed L-loop diagrams contribute to the NLL

terms of M (L); it would be nice to characterize which.

4.3 Regge limit in cutoff regularization

Mandelstam [60] has given certain criteria for establishing whether Reggeization occurs,

i.e. whether an elementary field in a Lagrangian field theory lies on a Regge trajectory or

not. It depends on a “counting procedure,” which must be carried out separately for each

field of the Lagrangian, where for renormalizable theories one simply does the counting

at j = 0, 1/2, or 1 to consider the issue. It has been shown [61–63] that the elementary

fields of renormalizable Yang-Mills gauge theories lie on a Regge trajectory if the theory

has a mass gap, where theories with a Higgs mechanism provide a case in point. These

arguments are purely local in nature, in that the trajectory of a gluon passes through j = 1

at the mass of the particle, but no global information about the trajectory is provided in

this construction.

In addition to the “counting criteria,” a certain factorization condition among the

helicity matrices of the scattering process must be satisfied if the Reggeization is to take

place. This requirement results from the solution of the unitarity-analyticity equations

satisfied by the scattering amplitude analytically continued in angular momentum. As a

result an integral equation must be satisfied, where the potential V is the inhomogeneous

term in the integral equation. If V is taken to be the kinematical-singularity-free, partial-

wave projection of the Born approximation helicity amplitude, the solution to the integral

equation provides an analytic form for the Regge trajectory which is equivalent to the LL

approximation to the trajectory function.19

Given this background, in ref. [42] the Regge limit of the ladder approximation for the

color-ordered, tree-approximation-stripped amplitude was considered, with cutoff regular-

ization (i.e., all the propagators in the loop integrals are given a mass m) for gluon-gluon

19See section 2 of ref. [64].
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scattering in N = 4 SYM. It was shown that

M(s, t) −→
s≫t

β(t)
( s

m2

)α(t)−1
, (4.17)

where

α(t) = 1 − a log
( t

m2

)

+ O(a2) . (4.18)

Hence eq. (4.18) agrees with eq. (4.8) to lowest order in the coupling. The reason for this

is that, as we saw above, (1) the leading log contribution to the L-loop amplitude in the

Regge (b) limit in Higgs regularization comes from the vertical ladder diagram alone, and

(2) as we show in appendix C, the LL contribution of the vertical ladder is independent

of the masses of the propagators of the rungs of the ladder, which is the only difference

between the Higgs- and cutoff-regulated diagrams.

In ref. [42] it was conjectured that with the cutoff regularization

α(t) = 1 −
1

4
γ(a) log

( t

m2

)

, (4.19)

which satisfies

α(m2) = 1 , (4.20)

as required by general principles. Note that eq. (4.19) coincides with eq. (4.8) from the

Higgs regularization up to a scheme-dependent constant, which begins at O(a2).

While Higgs and cutoff regulators yield identical results at the leading log level, one

could ask whether they differ at the subleading log level. Consider the diagrams that

contribute to the two-loop amplitude (3.12). Whereas in Higgs-regularization the middle

line is massless, in the cutoff scheme, all internal propagators have a uniform mass m.20

To compute the two-loop diagram with uniformly massive propagators, more MB integrals

are needed relative to the Higgs-regulated case. For example, a naive use of AMBRE [65]

yields a nine-fold MB representation. Using the methods described in appendix A, we have

written down a seven-fold MB representation, from which we extract the following results

in the Regge (b) limit u ≪ v ≪ 1:

lim
u,v≪1

lim
u≪v

I2; cutoff (u, v) = log(u)

[

4

3
log3(v) +

4

3
π2 log(v) + 4ζ3 + O(v)

]

+ O(log0(u)) ,

lim
u,v≪1

lim
u≪v

I2; cutoff (v, u) = log2(u)

[

2 log2(v) + O(v)

]

(4.21)

+log(u)

[

−
4

3
log3(v)−

8

3
π2 log(v)+

4

3
ζ3+O(v)

]

+O(log0(u)) .

Comparing this with eqs. (3.23) and (3.24), we see that the ζ3 coefficients in the log(u)

terms are changed. There are presumably also changes in the uncomputed log0(u) terms.

We can also compute the NLL terms of the cutoff-regulated L-loop vertical ladder

diagram. The calculation of appendix C is unchanged, except that the middle rungs of

20Note that, in contrast with dimensional or Higgs regularization, it is not clear whether other integrals

might not also contribute in cutoff-regularization, as could happen when one goes off-shell.
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the (2 + 2ǫ)-dimensional diagrams depicted in figure 9 become massive. As a result, the

integral B2 in eq. (C.25), for example, is changed to

e−2ǫγE B2; cutoff = 4 log2 u + ǫ

[

10

3
log3 u +

4

3
π2 log u −

4

3
ζ3

]

+ . . . (4.22)

as a consequence of which we have

lim
u,v≪1

lim
u≪v

ILa; cutoff (v, u) =
2L

L!
logL u logL v

−
2L

(L − 1)!
logL−1 u

[

1

3
(L − 1) logL+1 v + (L + 2)ζ2 logL−1 v −

1

3
(L − 1)ζ3 logL−2 v

]

+ O(logL−2 u) (4.23)

which should be compared with eq. (4.16).

4.4 Scattering of massive particles and Regge behavior

In this section, we present a different approach which helps to explain why we obtained

the same three-loop amplitude from eq. (3.16) in both Regge (a) and (b) limits, despite

the fact that the contributing integrals (3.25)–(3.28) and (4.11)–(4.14) differ so drastically

from one another.

Consider the four-point amplitude on the Coulomb branch of N = 4 SYM theory, as

reviewed in section 2, with the scattered particles satisfying the on-shell conditions

p2
i = −(mi − mi+1)

2 . (4.24)

Recall that the assumption of dual conformal symmetry implies that the amplitude is a

function of two variables u and v, defined in eq. (2.12). In previous sections of this paper, we

considered the equal mass case, mi = m, so that u = m2/s and v = m2/t, and the external

states are massless p2
i = 0. The Regge limit s ≫ t ≫ m2 corresponds to u ≪ v ≪ 1.

In this section, we consider instead the two mass case, m1 = m3 = m and m2 = m4 =

M , which implies p2
i = −(M − m)2, and (cf. eq. (2.12))

u =
m2

s
and v =

M2

t
. (4.25)

Dual conformal symmetry implies that the Regge limit u ≪ v ≪ 1 can be attained by

choosing m2 ≪ M2 ≪ s, t, so that the on-shell condition becomes p2
i ≈ −M2. This

corresponds to the scattering of particles of mass M by the exchange of particles of much

lighter mass m. See figure 5(a) for the one-loop contribution to this scattering. At higher

loops, massless particles will also be exchanged in the interior of the diagram; see figure 5(b)

for a sample higher-loop diagram.

As was discussed in the introduction and in section 4 it is important to specify in

which order the Regge limit is taken. In this section, we will first take m2 small for fixed

M2, s, and t. This corresponds to the first part of Regge limit (b), namely, u → 0, i.e.,

u ≪ v and u ≪ 1. Later in this section, we will take M2 ≪ s, t, which corresponds to
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(a) (b)

p1

p2 p3

p4

Figure 5. (a) One-loop scattering of massive particles. (b) Sample higher-loop diagram. Fat

lines and thin lines denote particles of mass M and m, respectively. Dashed thin lines denote

massless particles.

the second part (v ≪ 1). The amplitudes discussed above have soft IR divergences (as

m → 0), but no collinear divergences, so the double logarithms log2(m2) characteristic of

overlapping divergences are absent, leaving only single logarithms log(m2). At one loop

one can show that

M (1)(u, v) −→
u→0

−
1

2
(log u) Γcusp(a, θ)

∣

∣

1−loop
+ O(u0) (4.26)

where Γcusp(a, θ) is the cusp anomalous dimension [66–69] of a Wilson line with a non-light-

like cusp, and with θ being the (Minkowskian) cusp angle defined by cosh θ = p2 · p3/M
2.

It is plausible that the leading behavior for all loops is

M(u, v) −→
u→0

exp

{

−
1

2
(log u) Γcusp(a, θ) + O(u0)

}

. (4.27)

Next, we take the further limit M2 ≪ t, i.e., v ≪ 1. In this limit, the cusp anomalous

dimension goes to [70]

Γcusp(a, θ) −→
v→0

(log v) Γcusp(a) + O(v0) , (4.28)

where θ ≈ − log v and Γcusp(a) = γ(a)/2. Accepting the conjectured eq. (4.27), one obtains

in the Regge limit

lim
u,v≪1

lim
u≪v

M(u, v) = exp

{

−
1

2
(log u)(log v)Γcusp(a) + · · ·

}

. (4.29)

Since we have taken the limits in the order u ≪ 1 with v fixed, followed by v ≪ 1, this

is Regge limit (b) as defined in the introduction. Note that we arrive in this way at the

same (leading log) result as eq. (4.5), which was obtained in Regge limit (a), i.e., taking u,

v ≪ 1 first, followed by u ≪ v. This helps to explain why we obtained the same three-loop

amplitude from eq. (3.16) in the two Regge limits, despite the fact that the contributing

integrals had different forms in these two limits.
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It is also noteworthy that eq. (4.29) directly exhibits the single log behavior expected

of the Regge limit, without the cancellation of double logs that occurs in taking the Regge

limit (4.5) of the exponential ansatz (3.8).

5 Discussion

In this paper we have tested various conjectures and issues related to the Higgs regula-

tor scheme proposed in ref. [25] for N = 4 SYM theory. The assumption of exact dual

conformal symmetry enabled us to compute the four-gluon scattering amplitude in the

planar limit to three-loop accuracy. Our results are consistent, in various limits, with

an analog of the BDS conjecture proposed for the Higgs-regulated four-gluon amplitude,

with the same value (to three loops) of the cusp anomalous dimension as that found in

dimensional regularization. This is as expected since the cusp anomalous dimension is

IR-scheme-independent.

The Regge limit of the four-point function was considered in various IR regulator

schemes. It was shown that the leading log behavior of the Regge trajectory is determined

by the sum of vertical ladder graphs for the Higgs regulator and for a cut-off regulator.21

This contrasts with dimensional regularization, where no single set of diagrams dominates

at any order of perturbation theory. Further one may associate the perturbative expan-

sion for the cusp anomalous dimension with the NLL, NNLL, · · · approximations to the

gluon Regge trajectory. A particular dual conformal mass assignment allows one to obtain

directly the single logarithmic behavior of the Regge trajectory, without the necessity of

cancellation of log2 terms.

We also found in the course of this work that Higgs-regulated amplitudes lead to

more efficient integral representations (i.e., fewer MB parameters) than more generic (e.g.,

cutoff-regulated) schemes.

There are several issues deserving further attention. It would be useful to extend the

methods of ref. [36] to determine the Regge limits of diagrams involving non-trivial (i.e.,

loop-momentum-dependent) numerator factors. It would also be interesting to determine

whether there is a simple characterization of the subset of L-loop diagrams that contribute

to the NLL, NNLL, · · · terms in the L-loop amplitude in the Regge limit.

Overall, we have seen that the Higgs regulator for planar N = 4 SYM amplitudes has

a number of advantages over other regulators.
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(a) (b)

x1 x1

x2 x2

x3 x3

x4 x4x5

x5

x6

x6

x7

x7

Figure 6. Diagrams of two dual conformal integrals at three loops. Thick lines correspond to

massive propagators, thin lines to massless ones. The xi are dual coordinates. Figure (a) shows the

three-loop ladder diagram, with a factor of s3t = (x2
13)

3x2
24 removed. Figure (b) shows the tennis

court diagram, with a factor of st2 removed and a numerator x2
17 + m2 not shown in the diagram.

A Mellin-Barnes representations of the integrals

In this section we derive Mellin-Barnes (MB) representations for the integrals considered

in the paper. In doing so we follow the loop-by-loop approach advocated in refs. [73, 74].

In this approach, one successively derives MB representations for one-loop subintegrals.

Remarkably, the Higgs masses can be incorporated rather naturally into this procedure.

Tools that we have found useful are the Mathematica packages MB [71] and AM-

BRE [65]. The latter can also be used to derive MB representations. Of course, one can

sometimes find MB representations involving fewer MB integrals by going through the

derivation by hand. Since the number of integrals we need is rather small we have followed

the latter strategy. We present details of the derivation below, since the essential steps

when deriving MB representations for higher-loop or higher-point integrals are the same.

It is interesting to note that using a uniform cut-off (i.e., giving a mass to all propaga-

tors of the integral) makes the resulting MB representations considerably more intricate,

and one needs more MB parameters.

A.1 MB representation for the 3-loop ladder diagram

Let us consider the three-loop ladder depicted in figure 6a,

I3a = s3 t

∫

d4x5d
4x6d

4x7

(iπ2)3
(P25,m P15,m P35,m P56 P36,m P16,m P67 P37,m P17,m P47,m)−1 .

(A.1)

Here Pij,m = x2
ij + m2 and xi is the dual notation introduced in section 2. In the massless

case, it is possible to derive a convenient MB representation by successively doing the loop

integrations [73, 74]. As we will see presently, the same strategy also works well in the
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massive case. We begin with the x5 subintegral

I
(1)
3a =

∫

d4x5

iπ2
(P15,m P25,m P35,m P56)

−1 (A.2)

where

I3a = s3 t

∫

d4x6d
4x7

(iπ2)2
I
(1)
3a (P36,m P16,m P67 P37,m P17,m P47,m)−1 . (A.3)

Introducing α parameters (see for example ref. [74]), we obtain

I
(1)
3a =

∫ ∞

0

dαi δ(
∑

αi − 1)

[α1α3s + α6 (α1P16,m + α2P26,m + α3P36,m) + (α1 + α2 + α3)2m2]2
. (A.4)

Note that the range of the sum in the delta function can be chosen arbitrarily. Here, it is

convenient to choose
∑3

i=1 in order to simplify the m2 term. Performing the α6 integration,

we obtain

I
(1)
3a =

∫ 1

0

dαi δ(
∑3

i=1 αi − 1)

(α1P16,m + α2P26,m + α3P36,m)(α1α3s + m2)
. (A.5)

To perform the remaining integrations over the α parameters, we introduce three MB

parameters. Using eqs. (A.39) and (A.40), we obtain

I
(1)
3a =

∫

dzi

(2πi)3
Γ(−z1)Γ(−z2)Γ(−z3)Γ(1 + z1 + z3)Γ(1 + z2) (m2)−1−z2

×

∫

dαi δ(

3
∑

i=1

αi − 1) (α1α3s)
z2(α2P26,m)−1−z1−z3(α1P16,m)z1(α3P36,m)z3 . (A.6)

The parameter integrals are now easily done with the help of (A.43), leading to

I
(1)
3a =

∫

dz1,2,3

(2πi)3
f (1)(z1, z2, z3) sz2(m2)−1−z2(P26,m)−1−z1−z3(P16,m)z1(P36,m)z3 , (A.7)

where

f (1)(z1, z2, z3) = Γ(−z1)Γ(−z2)Γ(−z3)Γ(1 + z1 + z3)Γ(1 + z2)

×
Γ(−z1 − z3)Γ(1 + z2 + z1)Γ(1 + z2 + z3)

Γ(2(1 + z2))
. (A.8)

Plugging (A.7) into (A.3), we obtain

I3a = s3 t

∫

dz1,2,3

(2πi)3
f (1)(z1, z2, z3) sz2(m2)−1−z2

∫

d4x7

iπ2
I
(2)
3a (P37,m P17,m P47,m)−1 ,

(A.9)

where I
(2)
3a is the integral over x6:

I
(2)
3a =

∫

d4x6

iπ2
(P26,m)−1−z1−z3(P16,m)−1+z1(P36,m)−1+z3(P67)

−1

=

∫ ∞

0

dαi δ(
∑

αi − 1)α−z1
1 α−z3

3 αz1+z3
2

[α1α3s + α7 (α1P17,m + α2P27,m + α3P37,m) + (α1 + α2 + α3)2m2]2

×
1

Γ(1 − z1)Γ(1 − z3)Γ(1 + z1 + z3)
(A.10)
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This is a generalization of the integral considered before with more general powers of the

propagators. The calculation is completely analogous, and we obtain

I
(2)
3a =

∫

dy1,2,3

(2πi)3
f (2)(z1,2,3; y1,2,3) sy2 (m2)−1−y2 (P17,m)y1 (P37,m)y3 (P27,m)−1−y1−y3 ,

(A.11)

with

f (2)(z1,2,3; y1,2,3) =
Γ(−y1)Γ(−y2)Γ(−y3)Γ(1 + y1 + y3)Γ(1 + y2)

Γ(1 − z1)Γ(1 − z3)Γ(1 + z1 + z3)

×
Γ(1 − z1 + y1 + y2)Γ(z1 + z3 − y1 − y3)Γ(1 − z3 + y2 + y3)

Γ(2(1 + y2))
. (A.12)

At this point we note that, for a ladder diagram with more rungs, the next subintegral

would be of the same type as the preceding one (up to a change of labels of MB parameters),

see figure 7. In the next section, we will use this iterative structure to write down a MB

parametrization for the L-rung ladder with L arbitrary.

Coming back to the three-loop ladder, we are left with the final integration over x7,

namely

I3a = s3 t

∫

dz1,2,3

(2πi)3
dy1,2,3

(2πi)3
f (1)(z1,2,3) f (2)(z1,2,3; y1,2,3) sz2+y2(m2)−2−z2−y2 I

(3)
3a , (A.13)

where

I
(3)
3a =

∫

d4x7

iπ2
(P27,m)−1−y1−y3 (P17,m)−1+y1 (P37,m)−1+y3 (P47,m)−1 . (A.14)

Introducing parameter integrals we have

I
(3)
3a =

1

Γ(1 − y1)Γ(1 + y1 + y3)Γ(1 − y3)

∫ ∞

0

dβi δ(
∑

βi − 1)β−y1
1 βy1+y3

2 β−y3
3

[β1β3s + β2β4t + (β1 + β2 + β3 + β4)2m2]2
.

(A.15)

Obviously, here it is convenient to choose
∑

=
∑4

i=1. Introducing two more MB parame-

ters, we find

I
(3)
3a =

∫

dz4,5

(2πi)2
f (3)(y1,2,3; z4,5) sz4 tz5 (m2)−2−z4−z5 , (A.16)

where

f (3)(y1,2,3; z4,5) =
Γ(−z4)Γ(−z5)Γ(2 + z4 + z5)

Γ(1 − y1)Γ(1 − y3)Γ(1 + y1 + y3)

×
Γ(1 + z5)Γ(1 + y1 + y3 + z5)Γ(1 − y1 + z4)Γ(1 − y3 + z4)

Γ(2(2 + z4 + z5))
. (A.17)

Putting everything together we arrive at the final result (relabelling z4,5 → z7,8 and y1,2,3 →

z4,5,6)

I3a =

∫

dz1,2,3,4,5,6,7,8

(2πi)8
f (1)(z1,2,3) f (2)(z1,2,3; z4,5,6)f

(3)(z4,5,6; z7,8)

(

m2

s

)−3−z2−z5−z7
(

m2

t

)−1−z8

.

(A.18)
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1

111

1

11 11

1

1 1 1

1
+

z 1
+

z 3
1 − z1

1 − z3

1
+

y 1
+

y 3

1 − y1

1 − y3

. . . . . .
∝
∫ dy1,2,3

(2πi)3
f (2)(zi; yi)(

s
m2 )y2×

Figure 7. Diagrammatic representation of the iteration used to derive the L-loop MB represen-

tation for the ladder integral. Fat lines correspond to massive propagators, thin lines to massless

ones. The numbers indicate the powers of the propagators. One can see that after removing a rung

of the ladder (by introducing three Mellin-Barnes integrals) we obtain an integral of the same type,

and the procedure can be iterated.

In eq. (A.18) the integration contours are chosen parallel to the imaginary axis, with the

real parts of the integration variables defined such that all arguments of the Γ functions

have positive real part. An allowed choice is

z1 = −
1

2
, z2 = −

1

4
, z3 = −

1

4
, z4 = −

3

4
, z5 = −

1

16
, z6 = −

15

32
, z7 = −

9

32
, z8 = −

13

32
.

(A.19)

A.2 MB representation for the L-loop ladder diagram

As was noted in the previous section, one can straightforwardly write down an iterated

MB formula for the L-loop ladder diagram. The decisive step is illustrated in figure 7. Let

us define

ILa =sL t

∫ L+4
∏

j=5

(

d4xj

iπ2

)

(P25,mP15,mP35,m)−1
L+3
∏

j=5

(Pj,j+1P1,j+1,mP3,j+1,m)−1 (P4,L+4,m)−1 .

(A.20)

The MB formula we obtain is (3L − 1)-fold and is given by (for L > 1)

ILa =

∫ L−1
∏

j=1

(

dz
(j)
1,2,3

(2πi)3

)

dz4,5

(2πi)2

(

m2

s

)−L−
PL−1

j=1 z
(j)
2 −z4

(

m2

t

)−1−z5

×f (1)(z
(1)
1,2,3)

L−2
∏

j=1

f (2)(z
(j)
1,2,3; z

(j+1)
1,2,3 ) f (3)(z

(L−1)
1,2,3 ; z4,5) . (A.21)

For completeness, we also give a formula for L = 1,

I1a = I1 =

∫

dz1,2

(2πi)2
u−1−z1v−1−z2

Γ(−z1)Γ
2(1 + z1)Γ(−z2)Γ

2(1 + z2)Γ(2 + z1 + z2)

Γ(4 + 2z1 + 2z2)
(A.22)

which is equivalent but more symmetric than the one given in ref. [25].
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A.3 MB representation for the tennis court diagram

The procedure above can be repeated for the tennis court diagram (figure 6b), which is

given by

I3b = s t2
∫

d4x5d
4x6d

4x7

(iπ2)3
P17,m (P25,m P15,m P57 P56 P16,m P46,m P67 P27,m P37,m P47,m)−1 .

(A.23)

A new feature of the tennis court is the presence of a numerator required by dual conformal

symmetry. It is possible to treat this numerator as a propagator with negative power.

However, this would require an analytical continuation, for example in the dimension of

the integral, D → 4−2ǫ. Since our integral is finite in four dimensions, we find it preferable

to perform the calculation in such a way that all steps can be done in four dimensions. This

can be achieved by carrying out the two-loop ladder subintegral first (integrations over x5

and x6). The numerator will then combine in a natural way with a propagator obtained

from this subintegral, allowing us to use a simple formula for the final integration over x7.

As was explained above, we start by computing the subintegral I
(1)
3b defined by

I
(1)
3b =

∫

d4x5

iπ2
(P25,m P15,m P57 P56)

−1 (A.24)

where

I3b = s t2
∫

d4x6d
4x7

(iπ2)2
P17,m I

(1)
3b (P16,m P46,m P67 P27,m P37,m P47,m)−1 . (A.25)

It can be written as

I
(1)
3b =

∫ ∞

0

dαi δ(α1 + α2 − 1)

[(P17,mα1 + P27,mα2)α7 + (P16,mα1 + P26,mα2)α6 + P67α6α7 + m2]2
. (A.26)

The integrals over α6 and α7 are done using eq. (A.42). Introducing two further MB

integrals to factorize both b and c in eq. (A.42), we arrive at

I
(1)
3b =

∫

dz1,2,3

(2πi)3
(m2)−1−z1 f

(1)
3b (P16,m)z1−z3 (P27,m)z1−z2 (P17,m)z2 (P26,m)z3 (P67)

−1−z1

(A.27)

with

f
(1)
3b = Γ2(1 + z1)Γ(−z2)Γ(−z3)Γ(−z1 + z2)Γ(−z1 + z3)

×
Γ(1 + z1 + z2 − z3)Γ(1 + z1 − z2 + z3)

Γ(2(1 + z1))
. (A.28)

Next, we want to carry out the x6 integration in eq. (A.23). We define

I3b ≡ s t2
∫

d4x7

iπ2

dz1,2,3

(2πi)3
f

(1)
3b (m2)−1−z1(P17,m)1+z2(P27,m)−1+z1−z2(P37,m)−1(P47,m)−1I

(2)
3b .

(A.29)
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Collecting all propagators involving x6 in eqs. (A.23) and (A.27) we have

I
(2)
3b =

∫

d4x6

iπ2
(P67)

−2−z1 (P16,m)−1+z1−z3 (P26,m)z3 (P46,m)−1 (A.30)

=
1

Γ(2+z1)Γ(1−z1+z3)Γ(−z3)

∫

dαi δ(
∑

1,2,4 αi− 1)α−z1+z3
1 α−1−z3

2 α1+z1
7

[tα2α4+(P17,mα1+P27,mα2+P47,mα4)α7+m2]2

=
Γ(−z1)

Γ(1 − z1 + z3)Γ(−z3)

∫ 1

0
dαi δ





∑

1,2,4

αi − 1



 α−z1+z3
1 α−1−z3

2 ×

×(tα2α4 + m2)z1 (P17,mα1 + P27,mα2 + P47,mα4)
−2−z1 . (A.31)

This is almost identical to an integral considered earlier for the ladder diagrams. Introduc-

ing MB parameters z4,5,6 we find

I
(2)
3b =

∫

dz4,5,6

(2πi)3
f

(2)
3b tz4 (m2)z1−z4 (P17,m)z5 (P27,m)z6 (P47,m)−2−z1−z5−z6 , (A.32)

with

f
(2)
3b =

Γ(−z4)Γ(−z1 + z4)Γ(−z5)Γ(−z6)Γ(2 + z1 + z5 + z6)

Γ(2 + z1)Γ(1 − z1 + z3)Γ(−z3)Γ(2(−z1 + z4))
×

×Γ(1 − z1 + z3 + z5)Γ(−z3 + z4 + z6)Γ(−1 − z1 + z4 − z5 − z6) . (A.33)

Finally, we carry out the remaining integration over x7,

I
(3)
3b ≡

∫

d4x7

iπ2
(P17,m)1+z2+z5 (P27,m)−1+z1−z2+z6 (P37,m)−1 (P47,m)−3−z1−z5−z6 .(A.34)

Up to a relabelling, this is the integral I
(2)
3a of eqn (A.14). Hence we have

I
(3)
3b =

∫

dz7,8

(2πi)2
f

(3)
3b sz7 tz8 (m2)−2−z7−z8 , (A.35)

with

f
(3)
3b =

Γ(−z7)Γ(−z8)Γ(2 + z7 + z8)

Γ(1 − y1)Γ(1 − y3)Γ(1 + y1 + y3)Γ(2(2 + z7 + z8))
×

×Γ(1 + z7)Γ(1 + y1 + y3 + z7)Γ(1 − y1 + z8)Γ(1 − y3 + z8) . (A.36)

Here we have swapped s and t with respect to (A.16) and y1 ≡ −2 − z1 − z5 − z6 and

y3 ≡ z1 − z2 + z6. Collecting all factors we obtain our final expression for the tennis

court diagram

I3b =

∫

dz1,2,3,4,5,6,7,8

(2πi)8

(

m2

s

)−1−z7
(

m2

t

)−2−z4−z8

f
(1)
3b f

(2)
3b f

(3)
3b . (A.37)

An allowed set of real parts for the integration variables is given by

z1 = −
11

16
, z2 = −

1

2
, z3 = −

7

16
, z4 = −

1

8
, z5 = −

9

8
, z6 = −

3

32
, z7 = −

13

32
, z8 = −

1

2
.

(A.38)

– 31 –



J
H
E
P
0
4
(
2
0
1
0
)
0
3
8

A.4 Auxiliary formulae

Here we collect some auxiliary formulae that were used in the derivations above. It is

understood that the formulae below should be used within their region of validity, i.e. the

real parts of the arguments of the Γ functions should be chosen positively.

(a + b)−λ =
1

Γ(λ)

∫

dz2

(2πi)
Γ(−z2)Γ(λ + z2)a

z2b−λ−z2 , (A.39)

(a + b + c)−λ =
1

Γ(λ)

∫

dz1dz3

(2πi)2
Γ(−z1)Γ(−z3)Γ(λ+z1+z3) az1 bz3 c−λ−z1−z3 ,

(A.40)
∫ ∞

0
dxxz1(a + bx)z2 = a1+z1+z2b−1−z1

Γ(1 + z1)Γ(−1 − z1 − z2)

Γ(−z2)
, (A.41)

∫ ∞

0

dx dy

(a + bx + cy + dxy)2
= (2πi)−1

∫

dz(ad)z(bc)−1−zΓ2(−z)Γ2(1 + z) , (A.42)

∫ 1

0

N
∏

i=1

dαiα
qi−1
i δ



1−
N
∑

j=1

αj



=
Γ(q1) . . . Γ(qN )

Γ(q1+. . . qN)
. (A.43)

B Numerical evaluation using sector decomposition

Here we present an alternative, semi-numerical approach for evaluating the small m2 expan-

sion of integrals that is independent of the various MB representations derived above. We

use the availability of powerful numerical algorithms for the calculation of the ǫ-expansion

of parameter integrals [72, 75]. The expansion is done analytically, and only the coefficients

of the poles are evaluated numerically. Therefore, this method avoids the problematic large

logarithms that would appear in a direct numerical integration.

In order to use these algorithms, we need to reformulate our problem as a calculation

of the ǫ-expansion of some parameter integral. Consider a generic four-dimensional L-loop

diagram containing a propagators, where propagators with indices i ∈ M have mass m2,

and all other propagators are massless.22 Then, the Feynman representation reads [74]

I = Γ(a − 2L)

∫

dαi δ

(

1 −
∑

i

αi

)

Ua−2L−2

[

V (s, t) + Um2
∑

i∈M

αi

]2L−a

(B.1)

where U and V (s, t) are polynomials in the αi (see ref. [74] for more details).

We introduce one Mellin-Barnes parameter in order to separate off the mass depen-

dence,

I =

∫

dz

2πi
Γ(−z)Γ(a − 2L + z)m2z f(s, t, z) , (B.2)

f(s, t, z) =

∫

dαi δ

(

1 −
∑

i

αi

) (

∑

i∈M

αi

)z

Ua−2L−2+z V (s, t)2L−a−z , (B.3)

22Modifications are necessary for the case of integrals with numerator factors.
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with 2L − a < Re(z) < 0. Note that f(s, t, z) is very similar to a dimensionally-regulated

massless Feynman diagram of the same topology.23

Since we want to determine the behavior of I as m2 → 0 it is convenient to shift the

integration contour in z to positive values of Re(z). In doing so, one picks up a residue

from the pole at z = 0, and it is clear that the logarithms in m2 will come from (minus)

this residue.

I = −Residue
[

Γ(−z)Γ(a − 2L + z)m2z f(s, t, z)
]

∣

∣

∣

∣

z=0

+ O(m2) . (B.4)

The value of the latter can be obtained from the expansion of Γ(−z)Γ(a− 2L + z)m2z and

f(s, t, z) about z = 0. Therefore, in order to compute I up to and including order log0(m2),

we need to evaluate f(s, t, z) to order z0. Note that we do not need terms that vanish as

z → 0. The coefficients of this expansion can be computed numerically using ref. [72].

We have tested this method for the two-loop ladder and found agreement with the

result of ref. [25]. The method is also applicable to three-loop integrals but requires more

computer time and memory.

C Regge limit of the L-loop ladder diagram

In the two- and three-loop amplitudes considered in this paper, we see that the leading log

behavior in the Regge (b) limit (see discussion in the introduction and in section 4) arises

from the vertical ladder diagram. In this appendix, we will compute the first three leading

terms in the Regge limit (b) of the ladder integral, employing an approach that was used

in ref. [36].

The s ≫ t limit of the vertical ladder is equivalent to the t ≫ s limit of the horizontal

ladder, and this is what we will now examine. The horizontal ladder diagram corresponds

to the integral

ILa = sL t

∫ L+4
∏

j=5

(

d4xj

iπ2

)

(P25,mP15,mP35,m)−1
L+4
∏

j=6

(Pj−1,jP1,j,mP3,j,m)−1 (P4,L+4,m)−1

(C.1)

where all the internal propagators are massless while the propagators on the periphery of

the diagram have mass m. For each of the propagators, we use (1/P ) = i
∫∞

0 dα exp(−iαP )

to obtain

ILa = i3L+1 sL t

∫ ∞

0

L
∏

k=0

dαk

L
∏

l=1

dβl dγl

∫ L+4
∏

j=5

(

d4xj

iπ2

)

× (C.2)

× exp

[

−iα0P25,m− i

L−1
∑

k=1

αkPk+4,k+5− iαLP4,L+4,m− i

L
∑

l=1

(βlP1,l+4,m+γlP3,l+4,m)

]

.

23A. Zhiboedov has independently written down a similar formula at one loop which exhibits the relation

between massive and massless Feynman integrals (private communication).
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Recalling that Pij,m = x2
ij + m2, we express the exponent as

− i
(

xT ·A · x − 2 BT · x + C + m2σ
)

(C.3)

where x = (x5, · · · , xL+4). We now integrate over x to obtain

ILa = iL+1 sL t

∫ ∞

0

L
∏

k=0

dαk

L
∏

l=1

dβl dγlA
−2 exp

[

−i(C − BT ·A−1 ·B + m2σ)
]

. (C.4)

Setting x2
12 = x2

23 = x2
34 = x2

41 = 0, one has

C − BT ·A−1 · B = s
Ds

A
+ t

Dt

A
, where s = x2

13 and t = x2
24 . (C.5)

Putting everything together, we have

ILa = iL+1 sL t

∫ ∞

0

L
∏

k=0

dαk

L
∏

l=1

dβl dγlA
−2 exp

[

−it
Dt

A
− iJ

]

, J = s
Ds

A
+ m2σ (C.6)

where A, Ds, Dt, and σ are polynomials of degree L, L + 1, L + 1, and 1 in the α, β and

γ’s. These polynomials may be constructed using graphical rules [36, 74].

To explore the t ≫ s limit of the horizontal ladder diagram, it is useful to perform the

Mellin transform [36]

M(ǫ) =

∫ ∞

0

dτ

τ ǫ
ILa (C.7)

with respect to τ = t/m2. This gives

M(ǫ) = τ (is)L (im2)ǫ Γ(1 − ǫ)F (ǫ) (C.8)

where

F (ǫ) =

∫ ∞

0

L
∏

k=0

dαk

L
∏

l=1

dβl dγlD
ǫ−1
t A−1−ǫ e−iJ . (C.9)

The large τ behavior of ILa is determined by the behavior of M(ǫ) near ǫ = 0. However,

F (ǫ) diverges at ǫ = 0, since Dt =
∏L

k=0 αi, so we need to do a Laurent expansion about

ǫ = 0. First we integrate by parts with respect to each of the αi to obtain

F (ǫ) =
1

ǫL+1

∫ ∞

0

L
∏

k=0

(−dαk)

L
∏

l=1

dβl dγl

(

L
∏

k=0

αk

)ǫ
∂L+1

∂α0 · · · ∂αL

(

e−iJ

A1+ǫ

)

(C.10)

where we have taken ǫ > 0 so that the surface terms at αk = 0 vanish. Then writing

(

L
∏

k=0

αk

)ǫ

= 1 +

[

L
∑

i=0

αǫ
i − (L + 1)

]

+





∑

i<j

(αiαj)
ǫ − L

L
∑

i=0

αǫ
i +

1

2
L(L + 1)



 + O(ǫ3)

(C.11)
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(a) (b)

s

t

. . . . . .

Figure 8. Factorization of the LL order contribution to the Regge limit t ≫ s of the horizontal

L-loop ladder integral (a) into (2 + 2ǫ)-dimensional bubble integrals (b).

we obtain

F (ǫ)=
1

ǫL+1







K+

[

L
∑

i=0

Ki−(L + 1)K

]

+





∑

i<j

Kij−L

L
∑

i=0

Ki+
1

2
L(L + 1)K



+O(ǫ3)







(C.12)

where we have performed (most of) the integrations over αi

K =

∫ ∞

0

L
∏

l=1

dβl dγl

(

e−iJ

A1+ǫ

)

∣

∣

∣

∣

∣

αk=0

Ki =

∫ ∞

0

L
∏

l=1

dβl dγl dαi ǫ αǫ−1
i

(

e−iJ

A1+ǫ

)

∣

∣

∣

∣

∣

αk=0,k 6=i

Kij =

∫ ∞

0

L
∏

l=1

dβl dγl dαi dαj ǫ2 αǫ−1
i αǫ−1

j

(

e−iJ

A1+ǫ

)

∣

∣

∣

∣

∣

αk=0,k 6=i,j

. (C.13)

The integrals in this equation may be interpreted as arising from (various deformations of)

a horizontal L-loop ladder diagram in d = 2 + 2ǫ dimensions [74]. The rungs with αk = 0

are contracted to a point (and the corresponding propagator omitted), and the rungs with

factors ǫαǫ−1
i correspond to propagators raised to the power ǫ. Because most of the αk

are set to zero, the L-loop diagram separates into a product of smaller diagrams, and the

integrals factorize. For example, when all αk = 0, we have

A =

L
∏

l=1

(βl + γl),
Ds

A
=

L
∑

l=1

βlγl

βl + γl
, σ =

L
∑

l=1

(βl + γl), (C.14)

so K separates into a product of one-loop bubble diagrams (cf. figure 8)

K =
[

(is)ǫ−1B1

]L
(C.15)

where the one-loop bubble is defined as

B1 ≡ s1−ǫ

∫

d2+2ǫx5

iπ1+ǫ

1

P15,mP35,m
= (is)1−ǫ

∫ ∞

0

dβdγ

(β + γ)1+ǫ
exp

[

−is
βγ

β + γ
− im2(β + γ)

]

.

(C.16)
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T1 T2B2 B3

ǫ ǫǫǫǫǫ

Figure 9. Integrals arising in the computation of the Regge limit of the horizontal L-loop ladder

integral to NNLL order. The integration is in 2 + 2ǫ dimensions.

If we are only interested in the leading log (LL) behavior as t ≫ s, we may set ǫ → 0,

so that only the first term in eq. (C.12) contributes, and B1 becomes a two-dimensional

diagram. This was noted on p. 134 of ref. [36]. (See also chapter 8 of ref. [76].) Moreover,

in this limit, the masses of the rungs of the original ladder diagram do not affect the result.

Hence, in the LL limit, there is no distinction between the Higgs regulator considered here

and the cutoff regulator considered in ref. [42].

Taking into account the factorization of the integrals in eq. (C.12), we obtain

F (ǫ) =

(

iǫ−1B1

)L

ǫL+1

{

1 +
[

2t1 + (L − 1)b2 − (L + 1)
]

+
[

2t2 + t1
2 + 2(L − 2)t1b2

+(L − 2)b3 +
1

2
(L − 2)(L − 3)b2

2 − 2Lt1 − L(L − 1)b2 +
1

2
L(L + 1)

]

}

(C.17)

with

t1 =

(

Γ(1 + ǫ)

(is)ǫ

)

T1

B1
, b2 =

(

Γ(1 + ǫ)

(is)ǫ

)

B2

B2
1

t2 =

(

Γ(1 + ǫ)

(is)ǫ

)2 T2

B2
1

, b3 =

(

Γ(1 + ǫ)

(is)ǫ

)2 B3

B3
1

(C.18)

where T1, B2, T2, and B3 are the (2 + 2ǫ)-dimensional diagrams shown in figure 9, and

defined by

T1 ≡ s

∫

d2+2ǫx5

iπ1+ǫ

1

P15,mP35,m(P25,m)ǫ

B2 ≡ s2−ǫ

∫

d2+2ǫx5

iπ1+ǫ

∫

d2+2ǫx6

iπ1+ǫ

1

P15,mP16,mP35,mP36,m(P56)ǫ

T2 ≡ s2

∫

d2+2ǫx5

iπ1+ǫ

∫

d2+2ǫx6

iπ1+ǫ

1

P15,mP16,mP35,mP36,m(P25,mP56)ǫ
(C.19)

B3 ≡ s3−ǫ

∫

d2+2ǫx5

iπ1+ǫ

∫

d2+2ǫx6

iπ1+ǫ

∫

d2+2ǫx7

iπ1+ǫ

1

P15,mP16,mP17,mP35,mP36,mP37,m(P56P67)ǫ
.

These integrals can be evaluated using MB techniques.

First consider the more general integral
∫

ddx5

iπd/2
(P13)

a− d
2 (P15,m)−a1 (P25,m)−a2 (P35,m)−a3 =

∫

dz

(2πi)
g1(a1, a2, a3; d; z)u−z−a+ d

2

(C.20)
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where a = a1 + a2 + a3 and u = m2/s and

g1(a1, a2, a3; d; z) =
Γ(−z)Γ(a − d

2 + z)Γ(a1 + z)Γ(a3 + z)

Γ(a1)Γ(a3)Γ(2z + a)
. (C.21)

We will also need

∫

ddx5

iπd/2
(P13)

a− d
2 (P15,m)−a1 (P35,m)−a3 (P65)

−a6

=

∫

dz1 dz2 dz3

(2πi)3
g2(a1, a3, a6; d; zi) (P13)

−z1−z3 (P16,m)z1 (P36,m)z3 u−z−a+ d
2 (C.22)

where a = a1 + a3 + a6 and z = z1 + z2 + z3 and

g2(a1, a3, a6; d; zi) =
Γ(−z1)Γ(−z2)Γ(−z3)

Γ(a1)Γ(a3)Γ(a6)
Γ(a −

d

2
+ z)× (C.23)

×
Γ(a1+z1+z2)Γ(a3+z2+z3)Γ(a6+z1+z3)Γ(d − a − a6 − z1 − z3)

Γ(a1+a3+z+z2)Γ(d − a)
.

Then we may write

B1 =

∫

dz

(2πi)
g1(1, 0, 1; 2 + 2ǫ; z)u−1+ǫ−z ,

T1 =

∫

dz

(2πi)
g1(1, ǫ, 1; 2 + 2ǫ; z)u−1−z ,

B2 =

∫

d4z

(2πi)4
g2(1, 1, ǫ; 2 + 2ǫ; z1,2,3) g1(1 − z1, 0, 1 − z3; 2 + 2ǫ; z4)u−2+ǫ−z2−z4 ,

T2 =

∫

d4z

(2πi)4
g2(1, 1, ǫ; 2 + 2ǫ; z1,2,3) g1(1 − z1, ǫ, 1 − z3; 2 + 2ǫ; z4)u−2−z2−z4 ,

B3 =

∫

d7z

(2πi)7
g2(1, 1, ǫ; 2 + 2ǫ; z1,2,3) g2(1 − z1, 1 − z3, ǫ; 2 + 2ǫ; z4,5,6)

× g1(1 − z4, 0, 1 − z6; 2 + 2ǫ; z7)u
−3+ǫ−z2−z5−z7 . (C.24)

Note that some of the MB representations above require an analytic continuation to

ǫ ≈ 0. In some cases this may reduce the number of MB integrals. Expanding around

ǫ = 0 (after having taken the analytic continuation where required) and then expanding in
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small u we find24

e−ǫγE B1 = −2 log u + ǫ

[

− log2 u −
1

3
π2

]

+ ǫ2

[

−
1

3
log3 u −

1

6
π2 log u + 4ζ3

]

+ . . .

e−ǫγE T1 = −2 log u + ǫ

[

1

2
log2 u −

2

3
π2

]

+ ǫ2

[

1

2
π2 log u + 8ζ3

]

+ . . .

e−2ǫγE B2 = 4 log2 u + ǫ

[

10

3
log3 u +

4

3
π2 log u + 4ζ3

]

+ǫ2

[

5

3
log4 u + π2 log2 u + 4ζ3 log u +

2

15
π4

]

+ . . . (C.25)

e−2ǫγE T2 = 4 log2 u + ǫ

[

1

3
log3 u + 2π2 log u + 4ζ3

]

+ ǫ2

[

5

24
log4 u +

31

90
π4

]

+ . . .

e−3ǫγE B3 = −8 log3 u + ǫ

[

−
28

3
log4 u − 4π2 log2 u − 16ζ3 log u

]

+

+ǫ2

[

−
94

15
log5 u −

38

9
π2 log3 u − 20ζ3 log2 u −

34

45
π4 log u − 44.705

]

+ . . .

Combining eqs. (C.8), (C.17), (C.18), and (C.25), we obtain

M(ǫ) = τ
(−2)L

ǫL+1

{

1 + ǫ

[

L − 1

3
logL+1 u +

L + 2

6
π2 logL−1 u + (L − 1)ζ3 logL−2 u

]

+ǫ2

[

10L2 − 14L + 3

180
logL+2 u +

(L + 1)2

18
π2 logL u +

L(L − 2)

3
ζ3 logL−1 u

+
(L + 3)(5L + 2)

360
π4 logL−2 u +

L − 2

6
(L + 1.826)π2ζ3 logL−3 u

+
(L − 2)(L − 3)

2
ζ2
3 logL−4 u

]

+ O(ǫ3)

}

. (C.26)

To take the inverse Mellin transform, we use [36]

M(ǫ) =
1

ǫn+1
=⇒ I =

1

n!

logn τ

τ
(C.27)

so that the first three leading log terms of the ladder diagram are given by

lim
u,v≪1

lim
v≪u

ILa(u, v) =
2L

L!
logL v logL u

−
2L

(L − 1)!
logL−1 v

[

1

3
(L − 1) logL+1 u + (L + 2)ζ2 logL−1 u + (L − 1)ζ3 logL−2 u

]

+
2L

(L − 2)!
logL−2 v

[

10L2 − 14L + 3

180
logL+2 u +

(L + 1)2

18
π2 logL u

+
L(L − 2)

3
ζ3 logL−1 u +

(L + 3)(5L + 2)

360
π4 logL−2 u +

L − 2

6
(L + 1.826)π2ζ3 logL−3 u

+
(L − 2)(L − 3)

2
ζ2
3 logL−4 u

]

+ O(logL−3 v) (C.28)

where we recall that v = m2/t = 1/τ . This result is used in section 4.

24The coefficients of the π4 terms were obtained numerically, and replaced by their probable rational

equivalents.
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