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1 Introduction

How the Standard Model emerges in string theory is a long-standing question. In early

days of string theory, the heterotic string theory [1–3] was considered as a promising can-

didate for the fundamental theory which would provide a basis for model building. Its

miraculous anomaly cancellation allows only two choices (that is, E8 × E8 and SO(32))

of a consistent gauge group, and in Calabi-Yau compactifications (including orbifold and

other 1/4 supersymmetric compactifications in a broad sense) there appear variety of four-

dimensional supersymmetric standard-model-like theories with chiral generations. The

problem is, however, that the number of such possible compactifications seems too large [4]

to find natural necessity for our world to be as observed, despite the remarkable uniqueness

of the original theory.

In the late last century, a conceptually different approach was proposed to realize a

four-dimensional world by using D-branes in type II string theories. The key observation

is that two intersecting D-branes can support chiral fermions at the intersection [5]. Since

then many intersecting D-brane models have been built and discussed so far. We refer to

the articles [6, 7] for a review of these developments. Also, inspired by the discovery of

D-branes, brane-world models have also been extensively studied as a possible solution to

the hierarchy problem and in terms of cosmological model building [8–10].

In this paper, we propose a new brane-world set-up forE6 GUT model building by using

intersecting 5-branes in heterotic string theory. The 5-branes in heterotic string theory are,
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of course, not D-branes. They are NS5-branes [11–14], and unlike D-branes, they are not

described by open strings. What makes them hard to deal with is that, near the core of

the solution, the geometry is not AdS but an infinite throat where the dilaton diverges

linearly. Nevertheless, we can identify what low-energy excitations are on the brane by

investigating zero modes of the supergravity solution [15, 16]. It has been known for some

time that on a symmetric 5-brane [15, 16] there are 30 D = 6, N = 1 supermultiplet as

zero modes in either of E8 × E8 or SO(32) heterotic string theory. In fact, as we explain

in section 2, they can be regarded as certain Nambu-Goldstone modes associated with

various spontaneously broken symmetries of the theory. Therefore, we may expect that, as

pions are effectively described by the chiral model without detailed knowledge of QCD, the

zero modes on the heterotic 5-branes may also provide enough information for low-energy

model building, even though their microscopic description (such as little string theory) is

not fully understood. The existence of chiral zero modes is also consistent with the anomaly

cancellation against an anomaly inflow from the bulk.

In order to examine the zero modes on the intersecting system, we first construct an

intersecting 5-brane solution in the E8×E8 heterotic string theory by the so-called standard

embedding in the known smeared intersecting NS5-brane solution of type II theories. We

then study the zero modes of the relevant Dirac operator on this background. We show

that there exist three localized chiral zero modes, two of which are in the 27 representation

of E6, and one in the 27 representation. They give rise to net one 27 of massless chiral

fermions in the four-dimensional spacetime. Therefore, still being a toy model, this is the

first example of a brane set-up in heterotic string theory that supports four-dimensional

chiral matter fermions transforming as an E6 gauge multiplet.1

There is a good reason why we should study NS5-branes as a set-up for particle-

physics model building: They are T-dual to noncompact Calabi-Yau manifolds obtained

by blowing up an isolated singularity [17, 18]. For instance, parallel NS5-branes are known

to be T-dual to a multi-center Taub-NUT, or an An singularity which is obtained as a

limit of a Taub-NUT. Similarly, a system of two intersecting 5-branes is known to be T-

dual to a deformed conifold [19–23]. Therefore, the intersecting 5-brane background in

heterotic string theory may be regarded as a T-dual to a heterotic “compactification” on

the deformed conifold. While there are a variety of compact Calabi-Yau manifolds with

complicated structures, singularities may occur on a moduli space of any compact Calabi-

Yau, and the local structure of a singularity is universal and can be simple, no matter what

the rest of the manifold is. Therefore, the idea is that if a realistic GUT could be realized

on such a singularity, it would mean that our universe is not just a coincidence, as every

compact Calabi-Yau has a chance to realize the GUT on a part of it.

This work is a first step toward a brane realization of a realistic E6 GUT model in

string theory. The remainder of this paper is organized as follows: In section II, we give a

brief review of known 5-brane solutions in type II and heterotic supergravity theories. In

section III, we present a new proof of anomaly cancellation between those from the chiral

1This corrects the statement made in an earlier version of [53], in which it was erroneously conjectured

that the three supermultiplets would be of the same chirality.
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matter on the brane and the anomaly inflow into the brane in the E8×E8 heterotic theory.

In section IV, we construct an intersecting solution in the heterotic theory, and compute

explicitly the zero modes of the Dirac operator to find net 2−1 = 1 set of chiral zero modes

transforming as the 27 representation of E6. The last section is devoted to conclusions

and discussion.

2 Review of 5-brane solutions in heterotic string theory

We will focus on the E8×E8 heterotic string theory. The string-frame bosonic supergravity

Lagrangian is given, to O(α′) [24, 25], as

L =
1

2κ2

∫

d10x
√−ge−2φ

{

R(ω) − 1

3
HMNPH

MNP + 4(∂Mφ)2

−α′

(

1

30
Tr(FMNF

MN ) −RMNAB(ω+)RMNBA(ω+)

)}

. (2.1)

The convention we use in this paper is basically the one used in Callan-Harvey-Strominger’s

original paper [15, 16], and [25], to which the reader is also referred for the comparison

with other articles such as [24].

As already seen in the above effective Lagrangian, particular combinations of the spin

connection ω and the antisymmetric three-formH play different roles in different places [24,

25]. In (2.1), the R2 term is the Riemann square made of the combination

ω+ ≡ ω +H. (2.2)

This combination also appears in the higher order terms in the effective action, and in the

Bianchi identity for the H field in the presence of flux:

dH = α′

(

tr(R(ω+) ∧R(ω+)) − 1

30
Tr(F ∧ F )

)

. (2.3)

On the other hand, another combination

ω− ≡ ω −H (2.4)

is relevant for the lowest order SUSY variation of the gravitino:

δψM =

(

∂M +
1

4
ω−M

ABΓAB

)

ǫ. (2.5)

Finally, the Dirac operator of the gaugino equation of motion has a combination ω − 1
3
H

as will be seen in a moment. The relations among the above three spin connections are

discussed in [26].
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2.1 The neutral solution

In the absence of the nonabelian gauge field, the following configurations solve the leading

order equations of motion:

gij = ηij (i, j = 0, 1, . . . , 5),

gµν = e2φδµν (µ, ν = 6, . . . , 9),

e2φ = e2φ0 +
nα′

x2
,

Hµνλ = −ǫµνλ
ρ∂ρφ, (2.6)

where

x2 ≡
9
∑

µ=6

(xµ)2. (2.7)

ǫµνλρ is the (undensitized) completely antisymmetric tensor. All other components of

H vanish.

The solution (2.6) may be regarded as representing the NS5-branes stacked on top of

each other in both type IIA and type IIB theories. It has a nonzero axion charge

1

2π2

∫

S3

H = nα′. (2.8)

n must be an integer. This is an everywhere smooth solution; x = 0 is an apparent

singularity as is verified by the coordinate transformation t ≡ lnx2 [15, 16]. The scalar

curvature and Riemann square (in the string frame) are both everywhere finite:

R =
6

nα′
· 1

(1 + x2

ρ2 )3
, (2.9)

RABCDR
ABCD =

12

n2α′2
·
1 + 4x2

ρ2 + 8(x2

ρ2 )2

(1 + x2

ρ2 )6
, (2.10)

where ρ2 ≡ e−2φ0nα′. The supergravity analysis is trusted if the string coupling is small

enough, and the metric varies slow enough:

e2φ ≪ 1, R≪ α′−1
. (2.11)

They are satisfied if

e2φ0 ≪ 1, ρ≪ |x|. (2.12)

When considered in heterotic string theory later, the parameter ρ corresponds to the

size of the instanton. Therefore, a small instanton means that the string coupling is ev-

erywhere large, and some nonperturbative phenomenon is known to occur [27, 28]. Even

though e−φ0 is large, the dilaton becomes large if one gets closer than the instanton size

to the brane. However, a close relative of the symmetric 5-brane has been obtained [29]

as a certain double scaling limit of a non-extremal solution, and it is known to have, as
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a part of its near-horizon geometry, a two-dimensional black hole rather than a linear-

dilaton throat geometry. CFT models inspired by this solution have been constructed [30].

(The worldsheet approach for 5-branes was originally mentioned in the second reference

of [11–13].)

The zero modes on this solution are a six-dimensional chiral (2, 0) matter supermulti-

plet in the IIA case, and nonchiral (1, 1) supermultiplet in the IIB case [15, 16]. This flip of

the chirality may be understood as a consequence of the T-duality to the ADE singularities.

2.2 The symmetric solution

Next we include a nonabelian gauge field in heterotic string theory. It is well known that

in order for the anomaly cancellation mechanism to work, the Bianchi identity must be

modified as we saw in (2.3) as to

dH = α′

(

tr(R(ω+) ∧R(ω+)) − 1

30
Tr(F ∧ F )

)

, (2.13)

where Tr is the trace in the adjoint representation of E8 × E8 or SO(32).

Since the neutral solution satisfies dH = 0 except at the brane position xµ = 0 where

the magnetic 5-brane charge is located, it remains a solution in heterotic theory only if

the right hand side vanishes. The most common way to achieve this is to set ω+ equal to

the gauge connection A. This may be called the “standard” embedding, but the point is

that, in the presence of nonzero H flux, what is embedded in the gauge connection is not

simply the spin connection ω, but the particular combination ω +H. What is nice about

this embedding is that some corrections of the supersymmetry variations to higher orders

in α′ vanish [24].

The spin connections computed in the neutral background (2.6) are found to be

ωµ
α

β = (δα
µδ

ν
β − δµβδ

αν)∂νφ. (2.14)

All other components vanish. The H field is written as2

Hµ
α

β = −ǫαβ
γδ δµγδ

ν
δ ∂νφ. (2.15)

Therefore ω+ is given by

ω+µ
αβ ≡ (ω +H)µ

αβ

= 2ρ2σαβ
µλ · xλ

x2(x2 + ρ2)
, (2.16)

where

σαβ
µλ ≡ δα

µδ
β
λ − 1

2
ǫαβ

γδ δ
γ
µδ

δ
λ, (2.17)

ρ2 ≡ e−2φ0nα′. (2.18)

2In these expressions no vielbein appears because the metric is diagonal and the scale factors cancel in

the present case.
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The tensor σαβ
µλ is anti-self-dual:

1

2
ǫαβ

γδ σ
γδ

µν = −σαβ
µν . (2.19)

Thus the SO(4) connection ω+ is anti-self-dual, which means that the structure group of

the bundle is reduced to SU(2) (“SU(2) structure” [31]). We then identify

Aαβ
µ = ω+µ

αβ , (2.20)

and assume all other components to be zero. This is the symmetric solution [15, 16]. In this

way, a part of the gauge connection acquires a nonzero background in an SU(2) subalgebra

of E8 × E8.

This is a supersymmetric configuration; a different combination

ω−µ
αβ ≡ (ω −H)µ

αβ

= 2ρ2σ̂αβ
µλ · xλ

x2(x2 + ρ2)
, (2.21)

σ̂αβ
µλ ≡ δα

µδ
β
λ +

1

2
ǫαβ

γδ δ
γ
µδ

δ
λ

is a self-dual connection, and hence belongs also to a (different) SU(2) subalgebra of SO(4).

This ensures that there is a Killing spinor for the gravitino SUSY variation

δψM =

(

∂M +
1

4
ω−M

ABΓAB

)

ǫ. (2.22)

On the other hand, the gaugino SUSY variation reads

δχαβ = −1

4
ΓMNFαβ

MNǫ, (2.23)

where the SO(4) matrix indices α, β are now understood as the SU(2) gauge indices. The

field strength Fαβ
MN involves the connection ω+ due to the embedding, and not ω−. However,

there is a following identity between the Riemann tensor made of the connection ω+ and

that made of ω−:

R(ω+)MNPQ = R(ω−)PQMN + (dH)MNPQ. (2.24)

Therefore, in the background where dH vanishes, the gaugino variation (2.23) amounts to

δχαβ = −1

4
ΓµνFαβ

µν ǫ

= −1

4
ΓµνR(ω+)µν

αβǫ

= −1

4
ΓγδR(ω−)αβ

γδǫ. (2.25)

Thus the Killing spinor ǫ for the gravitino variation (2.22) is automatically the Killing

spinor for the gaugino variation (2.23). (The dilatino variation equation must be checked

separately.) The SU(2) gauge connection Aαβ
µ (2.20) satisfies the lowest-order equation

of motion

∂ν

(√−ge−2φFµναβ
)

+
√−ge−2φ

(

[Aν , F
µν ]αβ −HµνρFαβ

νρ

)

= 0 (2.26)

as expected.
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2.3 Zero modes on the symmetric 5-brane

Let us consider zero modes existing on the symmetric 5-brane solution (2.6) with (2.20) [15,

16]. The obvious bosonic zero modes are the four translation moduli, and the instanton

size ρ modulus. Besides, there are other zero modes coming from infinitesimal global

gauge rotations of the instanton: By construction, the gauge fields have nonzero vacuum

expectation values in the four-dimensional space transverse to the 5-brane. They belong

to an SU(2) subalgebra of one of E8. The centralizer of SU(2) in E8 is E7, and the adjoint

248 is decomposed into a sum of representations of E7 × SU(2) as

248 = (133,1) ⊕ (56,2) ⊕ (1,3). (2.27)

133, the adjoint of E7, does nothing on the SU(2) background, while the other 56×2+1×
3 = 115 generators rotate the background, and hence give rise to zero modes. Thus, in all,

there are 4 + 1 + 115 = 120 bosonic zero modes on this background. Since the symmetric

solution is half BPS, they together with their superpartners constitute 30 D = 6, N = 1

hypermultiplets. The existence of the fermionic zero modes have also been confirmed by

the index theorem [32].

These zero modes can be regarded as Nambu-Goldstone modes associated with various

spontaneously broken symmetries of the theory [33]. Indeed, the four position moduli

above are the Nambu-Goldstone modes coming from the spontaneous broken translational

invariance due to the presence of the 5-brane. The size modulus corresponds to the broken

scale invariance. The remaining 115 moduli are also thought of as coming from how the

SU(2) subalgebra is embedded in the whole E8 Lie algebra; by “standard embedding” we

mean we choose some SU(2) in E8 and set the gauge connection for this SU(2) to be

equal to the (generalized) spin connection. But the choice of such an SU(2) is arbitrary,

and the original E8 symmetry is spontaneously broken. Incidentally, this way of counting

reproduces the correct instanton-number dependence of the dimensions of instanton moduli

in flat space, for all gauge groups, obtained by the index theorem [34].

But there is a puzzle here: Why aren’t they absorbed into the gauge bosons by the

Higgs mechanism? The gauge bosons in the transverse dimensions can be viewed as adjoint

Higgs fields from the brane, and the standard embedding amounts to giving vev’s to these

Higgs fields. Then small fluctuations around the vev’s are Nambu-Goldstone modes, which

are completely gauged away to leave, in ordinary gauge theories, a Proca Lagrangian for

massive vector fields. This is the standard Higgs mechanism in the textbook, and it is

interpreted to mean that the Nambu-Goldstone modes are “eaten” by the gauge bosons to

be their longitudinal degrees of freedom. So why are there such extra zero-mode degrees

of freedom left on the brane, other than those used as a part of massive vector bosons in

the bulk?

The resolution to this problem lies3 in the apparent breakdown of the gauge invari-

ance due to the Green-Schwarz counterterm BX8 ∼ −dBX7. In eliminating the small

fluctuations around the vev, both B and X7 also get transformed by the gauge transfor-

mation. The contribution from the variation of B is compensated by the one-loop anomaly

3We are grateful to H. Kawai, H. Kunitomo and N. Ohta for discussions on this issue.
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in the bulk [35], while that from X7 vanishes if there are no magnetic source of the B field

d2B = 0. In the present case, however, there is such a source d2B ∝ δ4(xµ), and therefore

the gauge variation of X7 gives rise to a change of the field configurations on the brane.

Thus gauge transformations can not completely eliminate the fluctuations of the “Higgs”,

but local fluctuations are left on the brane.4

This phenomenon is known as anomaly inflow [36, 37], and the change of the brane

action is cancelled by, again, the one-loop effect of chiral fermions on the brane, which

are the superpartners of the bosonic zero modes. The gauge invariance of the total quan-

tum action is thus restored. In the next section, we will show the precise arithmetic of

the cancellation.5

3 Anomaly inflow and cancellation

We will show that the 30 hypermultiplets, 28 (=56 half-hypermultiplets) in the 56 rep-

resentation of E7 and two singlets (=4 half-hypermultiplets), precisely cancel the inflows

of the tangent bundle, E7 gauge and mixed anomalies via the Green-Schwarz mechanism.

The cancellation of anomalies on the gauge 5-brane [15, 16] in heterotic string theory was

already discussed in [38, 39]. Here we give a somewhat different proof of cancellation than

theirs in the case of the E8×E8 symmetric 5-brane. Although they should be basically the

same, ours is closely parallel to Mourad [40] and appears to be simpler. In particular, we

do not need to consider any current at infinity. We ignore the normal bundle connection

and write out only terms consisting of the tangent bundle and gauge connections.

The relevant anomaly polynomials are

Isinglet
8 =

1

2
Â(TΣ)

∣

∣

∣

∣

8

× 4

=
2

5760
(−4p2 + 7p2

1), (3.1)

I56

8 =
1

2
Â(TΣ)tr56e

iF

∣

∣

∣

∣

8

=
28

5760
(−4p2 + 7p2

1) +
1

96
p2
1tr56F

2 +
1

48
tr56F

4, (3.2)

and

X8 =
1

24

(

1

8
trR4 +

1

32
(trR2)2 − 1

240
trR2Tr248F

2 +
1

24
Tr248F

4 − 1

7200
(Tr248F

2)2
)

=
1

192
(−4p2 + 7p2

1) +
1

2880
p2
1Tr248F

2 +
1

576
Tr248F

4 − 1

24 · 7200(Tr248F
2)2. (3.3)

4In contrast, zero modes coming from an abelian gauge field in other theories (such as type IIA theory [15,

16] and D = 5 supergravity [54]) are not pure gauge rotations.
5The anomaly inflow argument in the next section is not intended to establish the net chirality in

four dimensions, but only to confirm that the gauge rotation moduli are certainly not absorbed by the

Higgs mechanism.
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Since the gauge symmetry is broken from E8 to E7, we rewrite the traces in the represen-

tations of E8 to those of E7. The following formulas are useful [41]:

Tr248F
2 = (Tr133 + 2tr56)F

2

= 5tr56F
2, (3.4)

Tr248F
4 = (Tr133 + 2tr56)F

4

=
1

4
(tr56F

2)2. (3.5)

Tr133F
2 = 3tr56F

2,

Tr133F
4 =

1

6
(tr56F

2)2,

tr56F
4 =

1

24
(tr56F

2)2. (3.6)

Therefore

X8 =
1

192
(−4p2 + 7p2

1) +
1

242
p2
1tr56F

2 +
1

4 · 242
(tr56F

2)2 − 1

12 · 242
(tr56F

2)2. (3.7)

They add up to

Isinglet
8 + I56

8 −X8 =
1

3 · 242
(3p1 + tr56F

2)(12p1 + tr56F
2). (3.8)

Note that the number (thirty) of hypermultiplets is precisely the one which can cancel

out the p2 term, otherwise the sum of anomalies does not factorize and the Green-Schwarz

mechanism does not apply. Since

12p1 + tr56F
2 = 6

(

−trR2 +
1

30
Tr248F

2

)

, (3.9)

which is proportional to the anomalous part of the heterotic Bianchi identity, the sum (3.8)

is cancelled by introducing a Green-Schwarz counterterm on the brane as in [40].
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5-brane1 © © © © © ©
5-brane2 © © © © © ©

Table 1. Dimensions in which the 5-branes stretch.

4 Intersecting 5-branes in heterotic string theory

4.1 Intersecting neutral 5-branes

We will now consider a system of two intersecting NS5-branes. We start with the neutral

smeared solution [42, 43]:

ds2 =
∑

i,j=0,7,8,9

ηijdx
idxj + h(x1)2

∑

µ,ν=1,2

δµνdx
µdxν + h(x1)

∑

µ,ν=3,4,5,6

δµνdx
µdxν ,

e2φ = h(x1)2,

Hµνλ =











h′

2
(= ξ|x1|′

2
) if (µ, ν, λ) = (2, 3, 4),(2, 5, 6) or their even permutation,

−h′

2
(= − ξ|x1|′

2
) if (µ, ν, λ) = (2, 4, 3),(2, 6, 5) or their even permutation,

0 otherwise,

(4.1)

where

h(x1) = h0 + ξ|x1|. (4.2)

All other components of HMNL vanish. h0 and ξ are real constants. The prime ′ denotes

the differentiation with respect to x1, and |x1|′ is therefore a step function. This is a

solution to equations of motion of the leading-order NSNS-sector Lagrangian in type II

theories:

LNS =
1

2κ2

∫

d10x
√−ge−2φ

(

R(ω) − 1

3
HMNPH

MNP + 4(∂Mφ)2
)

. (4.3)

The solution describes a pair of intersecting NS5-branes stretching in dimensions as shown

in table 1. These branes are delocalized in the x2, x3, x4, x5 and x6 directions. Conse-

quently, the solution depends only on x1, and hence the name “smeared solution”.

4.2 Brane tension and the harmonic function

The coefficient ξ in the definition of the harmonic function h(x1) is related to the tension

of the brane. To see this, let us consider Einstein’s equation in the Einstein frame:

(RE)A
B − 1

2
δA

BRE − TA
B =















0 (A,B = 1, 2),

+ h′′

2h
5
2

(A,B = 3, 4, 5, 6),

+ h′′

h
5
2

(A,B = 0, 7, 8, 9),

(4.4)

−TA
B = −1

2
∂Aφ∂

Bφ− e−φHACDH
BCD +

1

2
δB
A

(

1

2
(∂φ)2+

1

3
e−φH2

)

.

(4.5)
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The fact that the right hand side of (4.4) does not vanish implies that the action must

include δ-function like brane-energy terms:

LE =
1

2κ2

√
−GRE + LE(φ,H) − V

√

−G5-brane1

∏

µ′=1,2,3,4

δ(xµ′

)

− V
√

−G5-brane2

∏

µ′′=1,2,5,6

δ(xµ′′

), (4.6)

where V is the brane tension. LE(φ,H) is the Lagrangian for the φ and H fields in the

Einstein frame, which contributes to the energy-momentum tensor TA
B in (4.4). The brane

metrics are defined as

(G5-brane1)i′j′ = Gi′j′(x
µ′

= 0) (i′, j′ = 0, 5, 6, 7, 8, 9; µ′ = 1, 2, 3, 4),

(G5-brane2)i′′j′′ = Gi′′j′′(x
µ′′

= 0) (i′′, j′′ = 0, 3, 4, 7, 8, 9; µ′′ = 1, 2, 5, 6). (4.7)

What we see here is a no-cosmological-constant analogue of the Randall-Sundrum (RS)

models [9, 10], and the intersecting nature of the solution is reflected in the two different

brane-energy terms. After delocalizations:

∏

µ′=2,3,4

δ(xµ′

) → 1,

∏

µ′′=2,5,6

δ(xµ′′

) → 1, (4.8)

the inclusion of these terms matches (4.4) if

ξ = −κ2V h
5

2

0 . (4.9)

Since eφ = h(x1), the sign of ξ strongly affects the dilaton profile. (If ξ = 0, the solution

is reduced to a flat Minkowski space.) We consider the following two cases separately:

• If ξ > 0 as in figure 1, the brane tension is negative. It is doubtful whether such

an object may consistently exist in heterotic string theory. Also, if ξ > 0, the string

coupling becomes stronger as one goes away from the branes, which is puzzling. Thus

we consider another option.

• If ξ < 0 as in figure 2, the brane has a positive tension. The function h(x1), and

hence the string coupling, is now convex upwards in x1. It decreases linearly from a

positive value h0, to necessarily cross the x1 axis, where the string coupling becomes

zero. Beyond that point, h(x1) becomes negative, which is inconsistent. Thus we

identify this point as the “end of the world”; one can send this point infinitely far

away6 by the coordinate transformation

z = −sign(x1) log
h(x1)

h0

, (4.10)

6Of course, this is just a change of a coordinate, and hence does not change the geodesic distance. Also

it is not smooth at x
1 = 0 (z = 0), and gives rise to an extra delta function in the second derivative.
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Figure 1. h(x) with ξ > 0. The brane tension is negative. Also, the string coupling becomes

stronger as one goes away from the branes.

(a) (b)

Figure 2. h(x) with ξ < 0. (a) The brane has a positive tension. The string coupling decreases

linearly from a positive value h0, to necessarily cross the x1 axis, where the string coupling becomes

zero. We identify this point as the “end of the world”. (b) By a change of the coordinate the points

x = ±h0

|ξ| are mapped to z = ±∞. The profile of h(x(z)) becomes similar to the warp factor of the

RS II model.

where z is the new coordinate. Then the function h(x1), which is the string cou-

pling and a typical warp factor for the relatively transverse dimensions, is expressed

simply as

h = h0 e
−|z|. (4.11)

Apparently, this looks similar to the RS II model [10], but there are the following

differences: The first is that we have no bulk cosmological constant. Instead, we have the

dilaton and axion fields (and also the nonabelian gauge fields after the standard embedding)

which balance gravity. Secondly, as we see in a moment, there exist chiral zero modes on

the branes, which are in the 27 representation of E6. This is not an assumption but a

logical consequence of string theory. The final difference is in the warp factor. Unlike the

RS models, our four-dimensional metric is not warped at all in the string frame.7 It would

7More curiously, although the branes have a positive tension as we have derived (4.9), the 4D metric is

inversely warped (like near the negative tension brane in the RS I model [9]) in the Einstein frame.
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be interesting to examine whether gravity or gauge field is localized, but in this paper we

will focus only on the localization of chiral fermions.

4.3 Intersecting 5-branes in heterotic string theory

We now construct an intersecting solution in the E8 × E8 heterotic string theory by the

standard embedding, similarly to the previous parallel brane case.

The (generalized) spin connections of the neutral intersecting background are com-

puted as

(ω ±H)µ=1
α

β = 0,

(ω ±H)µ=2
α

β =
h′

h















−1
1

±1
2

∓1
2

±1
2

∓1

2















,

(ω ±H)µ=3
α

β =
h′

2h
3

2











−1
∓1

1
±1











,

(ω ±H)µ=4
α

β =
h′

2h
3

2











−1
±1

∓1
1











,

(ω ±H)µ=5
α

β =
h′

2h
3

2











−1
∓1

1
±1











,

(ω ±H)µ=6
α

β =
h′

2h
3

2











−1
±1

∓1
1











. (4.12)

The gauge connections are obtained by identifying

Aαβ
µ = (ω +H) αβ

µ . (4.13)
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The result is

A αβ
µ=1 = 0,

A αβ
µ=2 =

h′

h





−s
1
2
s

1
2
s



 =
h′

h

(

−3λ3 +
√

3λ8

4

)

⊗ s,

A αβ
µ=3 =

h′

2h
3

2

( −1
1

)

=
h′

2h
3

2

(−iλ2) ⊗ 1,

A αβ
µ=4 =

h′

2h
3

2

( −s
−s

)

=
h′

2h
3

2

(−λ1) ⊗ s,

A αβ
µ=5 =

h′

2h
3

2

( −1

1

)

=
h′

2h
3

2

(−iλ5) ⊗ 1,

A αβ
µ=6 =

h′

2h
3

2

( −s
−s

)

=
h′

2h
3

2

(−λ4) ⊗ s, (4.14)

where λi’s (i = 1, . . . , 8) are the Gell-Mann matrices and 1 ≡
(

1
1

)

, s ≡ iσ2 =
(

1
−1

)

.

The explicit expressions (4.12) show that both of ω± are SU(3) connections (“SU(3)

structure” [31]). As we did in section II for the symmetric 5-brane, we have embedded

ω+ into the gauge connection A. Then the Bianchi identity is reduced to dH = 0, and

the solution (4.1) is consistent with it. This time a certain SU(3) piece of the E8(×E8)

gauge connection is given a nonzero expectation value. On the other hand, the fact that

ω− ∈ SU(3) implies that the Killing spinor equations for the gravitino variation (2.22)

as well as, as explained before, the gaugino variation (2.22) have a common single Killing

spinor. It can be checked that this also satisfies the equation for the dilatino SUSY variation

to lowest order:

δλ =

(

−1

4
ΓM∂Mφ+

1

24
ΓMNPHMNP

)

ǫ = 0. (4.15)

Thus the background (4.1) together with (4.14) preserve 1/4 of supersymmetries. It also

satisfies the equations of motion (2.26) as it should.

4.4 Zero modes as Nambu-Goldstone modes on the intersecting 5-branes

In the previous subsection we have constructed a smeared solution which describes in-

tersecting 5-branes in the E8 × E8 heterotic string theory to leading order in α′, via the

standard embedding, similarly to the way we obtain the symmetric 5-brane. In that case,

the connection ω+ embedded was in SU(2), and the unbroken gauge symmetry was the

centralizer E7. In the present intersecting case, the connection embedded into E8 is in

SU(3), and therefore the unbroken gauge symmetry is E6. The adjoint representation of

E8 is decomposed into

248 = (78,1) ⊕ (27,3) ⊕ (27,3) ⊕ (1,8) (4.16)
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(a) (b)

Figure 3. Broken generators which give rise to zero modes. (a) The single 5-brane case. (b) The

intersecting case.

as representations of the subalgebra E6 × SU(3). Since the E8 ×E8 gauge field AM has by

construction a vev in SU(3), the latter three gauge rotations are the moduli (Figure 3).

Let us focus on the E6 non-singlet moduli. As we saw in the symmetric 5-brane in

the previous sections, spontaneously broken generators in (27,3) ⊕ (27,3) give rise to

Nambu-Goldstone bosons, each of which has one bosonic degree of freedom. On the other

hand, since a D = 4, N = 1 chiral supermultiplet needs two bosonic degrees of freedom,

the Nambu-Goldstone bosons which transform as 27 and 27 must be combined to form a

single N = 1 chiral supermultiplet. That is, the E6 non-singlet moduli form three chiral

supermultiplets in the 27 (or 27, but not both) representation of E6.

At first sight, one might think that the argument above would be contradictory to

the well-known fact in Calabi-Yau compactifications that the number of chiral generations

are determined by the Dirac index, in which the same decomposition (4.16) is used and

one triplet of zero modes together corresponds to one supermultiplet, and is not counted

as three. Of course, it is not a contradiction, because what we consider here is not the

fermionic zero modes of the Dirac operator, but bosonic zero modes of the gauge fields. As

we discussed in the previous sections, they are not removed by gauge transformations, and

necessarily exist to cancel the anomaly inflow into each of the two intersecting 5-branes.

Each of small gauge rotation generators in (27,3) ⊕ (27,3) ⊕ (1,8) is an independent

generator and gives rise to an independent zero mode. We also recall that exactly the same

way of counting was done in the parallel symmetric 5-brane case, and was indeed consistent

with the index analysis [32].

However, it is premature to conclude that these three bosonic zero modes in the (27,3)

representation imply three generations, because we have not yet examined the chiralities

of their superpartners. We will do this in the next section. In fact, we will see that one

of the three possesses the opposite chirality to that the other two have, and hence there is

net one generation.
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4.5 Explicit computation of chiral zero modes

The ten-dimensional heterotic gaugino equations of motion reads

/D

(

ω − 1

3
H,A

)

χ− ΓMχ∂Mφ+
1

8
ΓMγAB(FAB + F̂AB)

(

ψM +
2

3
ΓMλ

)

= 0, (4.17)

where

D

(

ω − 1

3
H,A

)

χ ≡
(

∂M +
1

4

(

ωM
AB − 1

3
HM

AB

)

ΓAB + adAM

)

χ. (4.18)

χ is in the adjoint 248 representation of E8, and adAM · χ ≡ [AM , χ]. If ψM = 0 and

λ = 0, it is simplified to

/D

(

ω − 1

3
H,A

)

χ− ΓMχ∂Mφ = 0. (4.19)

Further, if we set χ̃ ≡ e−φχ, then this is equivalent to [26]

/D

(

ω − 1

3
H,A

)

χ̃ = 0. (4.20)

Since there are no nontrivial backgrounds for the four-dimensional i = 0, 7, 8, 9 direc-

tions,

Γi∂iχ̃+ ΓµDµ

(

ω − 1

3
H,A

)

χ̃ = 0. (4.21)

If χ̃ = χ̃4D ⊗ χ̃6D, the second term is regarded as the mass term for the four-dimensional

spinor χ̃4D. We are interested in the zero modes of this Dirac operator ΓµDµ(ω − 1
3
H,A).

The SO(6) gamma matrices in the chiral representation are

γ1 = σ2 ⊗ 1 ⊗ 1,

γ2 = σ1 ⊗ σ1 ⊗ 1,

γ3 = σ1 ⊗ σ2 ⊗ 1,

γ4 = σ1 ⊗ σ3 ⊗ σ1,

γ5 = σ1 ⊗ σ3 ⊗ σ2,

γ6 = σ1 ⊗ σ3 ⊗ σ3. (4.22)

The six-dimensional chiral operator is

γ♯ ≡ −iγ1γ2 · · · γ6

= σ3 ⊗ 1⊗ 1. (4.23)

For SO(9, 1) gamma matrices, we take

Γa = γa
4D ⊗ 18 (a = 0, 7, 8, 9),

Γα = γ♯
4D ⊗ γα (α = 1, . . . , 6), (4.24)
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where γa
4D’s (a = 0, 7, 8, 9) are the ordinary SO(3, 1) gamma matrices in the chiral repre-

sentation:

γ0
4D = iσ2 ⊗ 1,

γ7
4D = σ1 ⊗ σ1,

γ8
4D = σ2 ⊗ σ2,

γ9
4D = σ3 ⊗ σ3,

γ♯
4D ≡ −iγ0

4Dγ
7
4Dγ

8
4Dγ

9
4D

= σ3 ⊗ 1. (4.25)

The ten-dimensional chirality is

Γ11 ≡ −Γ0Γ7Γ8Γ9 · Γ1 · · ·Γ6

= γ♯
4D ⊗ γ♯

= (σ3 ⊗ 1) ⊗ (σ3 ⊗ 1⊗ 1). (4.26)

Now we consider the Dirac equation

ΓµDµ

(

ω − 1

3
H,A

)

χ̃ = 0. (4.27)

The 16-component SO(9, 1) (Majorana-)Weyl spinor χ (or χ̃) is decomposed in terms of

SO(3, 1) and SO(6) spinors as

16 = (2+,4+) ⊕ (2−,4−), (4.28)

where the subscripts are the SO(3, 1) and SO(6) chiralities, γ♯
4D and γ♯, respectively. Since

χ̃ is Majorana (but complex in this representation), the (2+,4+) and (2−,4−) components

are not independent but are transformed each other by a charge conjugation.

As ΓµDµ(ω − 1
3
H,A) is SO(3, 1) diagonal, it is enough to consider

γµDµ

(

ω − 1

3
H,A

)

χ̃6D = 0, (4.29)

with the understanding that each component of χ̃6D is accompanied by a two-component

SO(3, 1) Weyl spinor with a correlated chirality (γ♯
4Dγ♯ = +1).

On the other hand, we are interested in the gaugino zero modes in (27,3) or (27,3) in

the decomposition E8 ⊃ E6 × SU(3) of 248. The gauge connections AM take only nonzero

values in the SU(3) subalgebra, and we look for the zero modes χ̃6D transforming as a

triplet, either 3 or 3, of SU(3).

Since γα’s are in the form:

γ1 =

(

−i1 ⊗ 1

−i1 ⊗ 1

)

,

γα̃ =

(

γ̃α̃

γ̃α̃

)

(α̃ = 2, . . . , 6), (4.30)
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and ω αβ
µ , H αβ

µ and A αβ
µ all vanish if µ = 1, (4.29) is reduced to two independent differ-

ential equations

i

h

d

dx1
χ̃+

6D +M+χ̃+
6D = 0, (4.31)

i

h

d

dx1
χ̃−

6D −M−χ̃−
6D = 0, (4.32)

where χ̃±
6D is the upper and lower components having definite chiralities:

χ̃6D =

(

χ̃+
6D

χ̃−
6D

)

. (4.33)

χ̃+
6D (χ̃−

6D) is a 4 SO(6) Weyl spinor, and each of the four components is a triplet of SU(3).

Thus M+ (M−) is a (4 × 3 =) 12-by-12 matrix, given explicitly by

(

M−

M+

)

≡ h′

h2













































0 0 0 0 − 3i

2
− i

4
0 − i

4

0 0 0 0 − i

4
− 3i

2
− i

4
0

0 0 0 0 0 − i

4
− 3i

2
− i

4

0 0 0 0 − i

4
0 − i

4
− 3i

2
3i

2
− i

4
0 − i

4
0 0 0 0

− i

4

3i

2
− i

4
0 0 0 0 0

0 − i

4

3i

2
− i

4
0 0 0 0

− i

4
0 − i

4

3i

2
0 0 0 0























⊗ 13

+























0 0 0 0 − sλ4

2

−sλ1−λ5

2

−2λ2−sλ9

4
0

0 0 0 0
λ5−sλ1

2

sλ4

2
0

−2λ2−sλ9

4

0 0 0 0
2λ2−sλ9

4
0

sλ4

2

sλ1+λ5

2

0 0 0 0 0
2λ2−sλ9

4

sλ1−λ5

2
− sλ4

2

− sλ4

2

−sλ1−λ5

2

−2λ2−sλ9

4
0 0 0 0 0

λ5−sλ1

2

sλ4

2
0

−2λ2−sλ9

4
0 0 0 0

2λ2−sλ9

4
0

sλ4

2

sλ1+λ5

2
0 0 0 0

0
2λ2−sλ9

4

sλ1−λ5

2
− sλ4

2
0 0 0 0













































,

(4.34)

where λ9 ≡ 3λ3 +
√

3λ8. In identifying the spin connection as an SU(3) gauge connection,

s =
(

1
−1

)

can either be mapped to i, or to −i, and depending on this choice, the SU(3)

gauge connection matrix becomes one in the 3 representation, or in the 3 representation.

As we already mentioned, χ̃+
6D and χ̃−

6D are not independent; we have only to solve the

equation (4.31), and the solutions to (4.32) may then be obtained by a charge conjugation.

To solve (4.31), we diagonalize M+ to obtain its eigenvalues. Let iλ be an eigenvalue

of the constant matrix
(

h′

h2

)−1

M+, and ψλ(x1) be the corresponding eigenfunction, then

they satisfy

i

h
ψ′

λ + iλ
h′

h2
ψλ = 0. (4.35)

This is solved to give

ψλ(x1) = const.(h(x1))−λ. (4.36)
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Thus, for each eigenvalue, there exists a zero mode of the Dirac operator. Since ξ is negative

for positive tension, if λ < 1, the mode is localized near x1 = 0, while if λ ≥ 1, it is not

localized, being either non-normalizable or localized rather at “infinity” x1 = ±h0

|ξ| .

The list of eigenvalues of
(

h′

h2

)−1

M+ is as follows: If s = +i, the eigenvalues are

{

2i,
3i

2
,
3i

2
, i,−i, i, i, i, 3i

2
,
3i

2
,
7i

2
,
7i

2

}

, (4.37)

while if s = −i, they are

{

2i,
3i

2
,
3i

2
, i, 2i, 4i, 2i, 2i,− i

2
,− i

2
,
3i

2
,
3i

2

}

. (4.38)

We can clearly see an asymmetry between (4.37) and (4.38), in particular that the

former has only one negative (times imaginary unit) eigenvalue, while the latter has two

negative eigenvalues. Assuming that the branes have positive tension so that the function

h(x) has the profile shown in figure 2, these are the only modes whose profiles have a

peak at x1 = 0 or z = 0 in the coordinate (4.10). The same is also true for the original

gaugino variable χ = hχ̃ (although the modes with λ = +1 then become constant). This

result implies that there are indeed three localized modes, and two of them are in one (say,

(27,3)) representation, and the rest belongs to the other ((27,3)) representation.

5 Conclusions and discussion

In this paper, we have shown that there exist three localized zero modes as D = 4, N = 1

supermultiplets on the system of two intersecting 5-branes in the E8 ×E8 heterotic string

theory. By using the standard embedding in the known smeared solution, we have con-

structed a heterotic background and explicitly solved the Dirac equation on this back-

ground. We have found that two of them are in the 27 representation of E6, and one in

the 27 representation. They give rise to net one 27 of massless chiral fermions in the four-

dimensional spacetime. This is the first example of a brane set-up in heterotic string theory

that supports, after compactifying some of the transverse dimensions, four-dimensional chi-

ral matter fermions transforming as an E6 gauge multiplet.8

Intuitively, the chirality flip of one of the three zero modes can be understood as

follows: the further one goes away from the intersection to the x3 or x4 direction along one

5-brane, the less one feels the effect of the other brane, and in the end one would observe

as if there were only a single symmetric 5-brane. The gauge connection then becomes

smaller than SU(3), and approaches to SU(2). As we have seen in the previous sections,

the zero modes on a single 5-brane are 30 six-dimensional supermultiplets, which are of

course nonchiral as four-dimensional supermultiplets upon a dimensional reduction. They

are regarded as two of the three columns and rows shown figure 3(b), and have opposite

chiralities. Similarly, if one goes away from the intersection to the x5 or x6 direction, one

will observe a reduction of the gauge connection from SU(3) to a different SU(2), and will

8It would be interesting to study this set-up from the dual M-theory point of view.
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see, again, a pair of nonchiral zero modes which correspond to different pair of columns and

rows in figure 3(b). Therefore, since there are only three sets of zero modes, the chirality

of one of them must be opposite to that of the other two.

It is worth mentioning that this chirality flip also agrees with the analysis of Kähler

coset sigma models [44, 45]. In general, the dynamics of Nambu-Goldstone modes is de-

scribed by a low-energy sigma model action constructed as a group coset associated with

the corresponding spontaneously broken symmetries. In the N = 1 supersymmetric case,

the target space must be Kähler. E8/[E6×SU(3)] is not a Kähler coset; no wonder because

this is not the moduli space of the intersecting 5-branes (since the adjoint of SU(3) also

belongs to the moduli). On the other hand, there are Kähler cosets which contain three

27’s of E6. They are E8/[E6×SU(2)×U(1)] and E8/[E6×U(1)2]. It turns out that, in both

cases, the chirality of one of three supermultiplets are opposite to the other two.9 Although

neither of them coincides exactly with the moduli space of the intersecting 5-branes, this

is just what we have encountered in the present analysis and may be regarded at least as

a suggestive fact.

It will be extremely interesting if this set-up could be used to realize the E6 grand

unification scenario [46, 47] by using branes [48–51] in string theory. For this purpose, we

need to generalize it to a more realistic brane system which supports three generations.

In principle, one could do this by replacing one of the single 5-brane with three 5-branes

and consider the intersection with the other 5-brane. This is also suggested by the study

of duality between the orbifolded or generalized conifold and a system of intersecting NS5-

branes [52]. We hope to report on this issue in the near future.
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