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1 Introduction

The supercurrent multiplet [1] is a supermultiplet containing the energy-momentum tensor

and the supersymmetry current, and therefore it is of primary importance in the con-

text of supersymmetric field theories. In complete analogy with the energy-momentum

tensor, it is fruitful to view the supercurrent as the source of supergravity [2–4]. Given a

linearized off-shell formulation for N = 1 supergravity, the supercurrent conservation equa-

tion can be obtained by coupling the supergravity prepotentials to external sources and

then demanding the resulting action to be invariant under the linearized supergravity gauge

transformations. One of the prepotentials is always the gravitational superfield Hαα̇ [2]

which couples to the supercurrent Jαα̇. The gravitational superfield is accompanied by a

superconformal compensator. The latter is not universal and depends on the supergrav-

ity formulation chosen. The source associated with the compensator is sometimes called

a multiplet of anomalies, for its components include the trace of the energy momentum

tensor and the γ-trace of the supersymmetry current.

In the literature, there exist three standard supercurrent multiplets which correspond

to the (i) old minimal, (ii) new minimal and (iii) non-minimal off-shell formulations for

N = 1 supergravity (see, e.g., [5] for a review). The Ferrara-Zumino supercurrent [1] is

the most well-known multiplet. It is characterized by the conservation equation

D̄α̇J
(I)
αα̇ = DαX , D̄α̇X = 0 , (1.1)

and corresponds to the old minimal formulation for N = 1 supergravity [6–8] in which the

compensator is a chiral scalar σ [9]. On the other hand, the supercurrent corresponding to

the new minimal supergravity [10, 11] obeys the conservation law

D̄α̇J
(II)
αα̇ = χα , D̄α̇χα = 0 , Dαχα = D̄α̇χ̄

α̇ . (1.2)
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This equation reflects, in particular, the fact that the new minimal compensator, G, is real

linear [12–14]. The constraint on G is solved [15] by introducing a chiral spinor potential

ψα, by the rule

G = Dαψα + D̄α̇ψ̄
α̇ , D̄α̇ψβ = 0 . (1.3)

It is defined modulo gauge transformations of the form:

δψα = i D̄2DαK , K = K̄. (1.4)

The last equation in (1.2) is simply the manifestation of this gauge symmetry. Finally, the

supercurrent for the non-minimal supergravity [16, 17] is discussed briefly in [5], and it is

also reviewed, in a form that differs slightly from that given in [5], at the end of section 3.

Recently Komargodski and Seiberg [18], motivated by earlier discussions of the su-

percurrent multiplets in theories with Fayet-Iliopoulos terms [19–21], introduced a new

supercurrent with the following conservation law

D̄α̇J
(IV)
αα̇ = χα +DαX , D̄α̇χα = D̄α̇X = 0 , Dαχα = D̄α̇χ̄

α̇ . (1.5)

As pointed out in [18], such a supercurrent had been considered in the past in ref. [22]

where it had been ruled out as not having a conserved energy-momentum tensor. The

conclusion of [22] was shown in [18] to be incorrect by explicit component calculations. In

fact, the consistency of eq. (1.5) follows from the earlier analysis of supercurrents given

in [21] (see the discussion in section 3 below).

In this note, three new variant supercurrent multiplets are proposed. Our consideration

is based on the results of [23] where a classification of off-shell (3/2, 2) supermultiplets,

or linearized supergravity models, is given. Such models are described in terms of the

gravitational superfield Ha := Hαα̇ and some compensator(s). The latter may occur in one

of the following disguises: (i) a chiral scalar σ, D̄α̇σ = 0; (ii) a real linear superfield G,

Ḡ−G = D̄2G = 0, which is the gauge-invariant field strength of a chiral spinor potential,

eq. (1.3); (iii) another real linear superfield

F = Dαρα + D̄α̇ρ̄
α̇ , D̄α̇ρβ = 0 , (1.6)

possessing a different supergravity transformation law; (iv) a combination of such compen-

sators (say, a complex linear compensator Γ, which emerges in non-minimal supergravity,

can be represented as Γ = σ +G+ iF ). The linearized supergravity transformations are:

δHαα = D̄α̇Lα −DαL̄α̇ , (1.7a)

δσ = −
1

12
D̄2DαLα , (1.7b)

δG =
1

4
(DαD̄2Lα + D̄α̇D

2L̄α̇) =⇒ δψα =
1

4
D̄2Lα , (1.7c)

δF =
i

12
(DαD̄2Lα − D̄α̇D

2L̄α̇) =⇒ δρα =
i

12
D̄2Lα . (1.7d)

Here the gauge parameter Lα is an unconstrained spinor superfield. The analysis carried out

in [23] results in the following different models for linearized supergravity: (i) three minimal
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realizations with 12 + 12 off-shell degrees of freedom; (ii) three reducible realizations with

16 + 16 components; (iii) one non-minimal formulation with 20 + 20 components. These

seven supergravity models lead to different supercurrents. We discuss most of these models

and associated supercurrents, with the exception of the non-minimal case for which we do

not have anything new to say. It is useful to formulate the linearized supergravity actions

in terms of special N = 1 superprojectors [24, 25]; all relevant information about these

superprojectors is collected in the appendix.

2 Minimal supercurrents

It is natural to begin our analysis by considering the supercurrents corresponding to the

three minimal formulations with 12 + 12 off-shell degrees of freedom [23].

The linearized action for old minimal supergravity is well-known (see, e.g., [5]) and

has the form:

S(I) =

∫

d8z

{

Ha
2

(

−
1

3
ΠL

0 +
1

2
ΠT

3/2

)

Ha − i (σ − σ̄)∂aH
a − 3σσ̄

}

. (2.1)

We introduce couplings to external sources,

S(I) −→ S(I) −
1

2

∫

d8z Hαα̇Jαα̇ −
3

2

{
∫

d6z σX + c.c.

}

, (2.2)

and require invariance under the transformations (1.7a) and (1.7b). Then, it is a two-line

calculation to show that Jαα̇ and X have to obey the equation (1.1).

Given a chiral scalar Ξ, the supercurrent and the multiplet of anomalies can be trans-

formed as

δJαα̇ =
1

2
[Dα, D̄α̇](Ξ + Ξ̄) = i ∂αα̇(Ξ − Ξ̄) , δX =

1

4
Ξ , D̄α̇Ξ = 0 (2.3)

without changing the conservation equation (1.1). At the nonlinear supergravity level, such

an improvement corresponds (see, e.g., [26]) to the possibility of adding to the action a

‘non-minimal’ term of the form
∫

d8z E−1(Ξ + Ξ̄) , D̄α̇Ξ = 0 , (2.4)

which is a generalization of Rϕ2 in field theory in curved space.

Next, consider the linearized action for new minimal supergravity (see, e.g., [26])

S(II) =

∫

d8z

{

Ha
2

(

− ΠT
1/2 +

1

2
ΠT

3/2

)

Ha +
1

2
G[Dα, D̄α̇]Ha +

3

2
G2

}

, (2.5)

where the real linear compensator G should be represented in the form (1.3) implying gauge

invariance (1.4). Coupling it to external sources and imposing invariance under the gauge

transformations (1.4), (1.7a) and (1.7c) leads to the supercurrent (1.2).
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As is well known (see, e.g., [18] for a recent discussion), there exists a natural ambiguity

in the definition of J
(II)
αα̇ and χα. Given a U(1) current superfield, J , which is real linear

and contains a conserved vector among its components, the transformation

δJ
(II)
αα̇ =

[

Dα, D̄α̇

]

J , δχα =
3

2
D̄2DαJ , J − J̄ = D̄2J = 0 (2.6)

preserves the conservation equation (1.2).

The supercurrent (1.2) can be related to the Ferrara-Zumino one, eq. (1.1), if the chiral

spinor χα can be represented as

χα = −
1

4
D̄2DαV , V̄ = V , (2.7)

for some well-defined real scalar V . Then we can introduce

J
(I)
αα̇ := J

(II)
αα̇ +

1

6
[Dα, D̄α̇]V , X := −

1

12
D̄2V . (2.8)

It is easy to see that J
(I)
αα̇ and X obey the conservation equation (1.1).

There exists one more minimal 12/12 formulation for linearized supergravity, which

was proposed a few years ago [27]. The corresponding action is

S(III) =

∫

d8z

{

Ha
2

(

1

3
ΠL

1/2 +
1

2
ΠT

3/2

)

Ha + F∂aH
a +

3

2
F 2

}

. (2.9)

Here F is a real linear superfield that should be treated, similarly to G, as the gauge invari-

ant field strength of a chiral spinor superfield, eq. (1.6). Coupling this model to external

sources and imposing invariance under the gauge transformations (1.7a) and (1.7d), one

derives a new supercurrent characterized by the conservation equation:

D̄α̇J
(III)
αα̇ = i ηα , D̄α̇ηα = 0 , Dαηα = D̄α̇η̄

α̇ . (2.10)

Here the last equation expresses the fact that the chiral spinor potential associated with

F must appear in the action only via the gauge invariant field strength F .

In complete analogy with the new minimal supercurrent, there is a natural ambiguity

in the definition of J
(III)
αα̇ and ηα. Given a U(1) current superfield J, i.e. a real linear

superfield, the transformation

δJ
(III)
αα̇ = ∂αα̇J, δηα = −

1

4
D̄2DαJ , J − J̄ = D̄2

J = 0 (2.11)

preserves the conservation equation (2.10).

The supercurrent (2.10) can be related to the Ferrara-Zumino one, eq. (1.1), if ηα can

be represented in the form:

ηα = −
1

4
D̄2DαV , V̄ = V , (2.12)

for some well defined real scalar superfield V. If we now define

J
(I)
αα̇ := J

(III)
αα̇ − ∂αα̇V , X := −

i

4
D̄2

V , (2.13)

then J
(I)
αα̇ and X obey the conservation equation (1.1).

It should be pointed out that the linearized supergravity models (2.1), (2.5) and (2.9)

are dually equivalent [23].
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3 Reducible supercurrents

Let us turn to the derivation of supercurrents corresponding to the three models with

16 + 16 off-shell degrees of freedom [23]. As demonstrated in [23], such theories appear to

look like a sum of two of the three minimal models discussed in the previous section. Some

of these models are linearized versions of 16/16 supergravity [28, 29] which is known to

have no fundamental significance — it is just 12/12 supergravity coupled to matter [30].

Consider the type-IV model [23]

S(IV) =

∫

d8z

{

Ha
2

[

+ 8

(

α−
1

16

)

ΠL
0 − 24

(

α−
1

48

)

ΠT
1/2 +

1

2
ΠT

3/2

]

Ha

−12

[(

α−
1

16

)

(σ + σ̄) −

(

α−
1

48

)

G

]

[Dα, D̄α̇]Ha

+72

(

α−
1

16

)

σσ̄ + 36

(

α−
1

48

)

G2

}

, (3.1)

with α 6= 1
16 ,

1
48 a real parameter. This action is invariant under the gauge transforma-

tions (1.7a), (1.7b) and (1.7c). If one adds source terms to S(IV) for all the prepotentials

Hαα̇, σ and ψα and demands invariance under the gauge transformations, one immediately

arrives at the conservation equation (1.5).

The operator appearing in the first line of (3.1) can be rewritten as

8

(

α−
1

16

)

ΠL
0 − 24

(

α−
1

48

)

ΠT
1/2 = (α−

1

48
)

{

8ΠL
0 − 24ΠT

1/2

}

−
1

3
ΠL

0 . (3.2)

Using this representation in conjunction with eq. (A.3c), and also setting σ = 0 in (3.1),

one immediately arrives at the linearized action derived in subsection 5.2 of [18].

As shown in [18], there is a freedom in the definition of the triple (J
(IV)
αα̇ , χα,X)

appearing in the conservation equation (1.5). Given a real scalar U = Ū , the

improvement transformation

δJ
(IV)
αα̇ =

[

Dα, D̄α̇

]

U , δχα =
3

2
D̄2DαU , δX =

1

2
D̄2U (3.3)

preserves the defining relations (1.5).

It may happen that applying a finite transformation (3.3) results in χα = 0 or X = 0,

and thus the transformed supercurrent is type-I or type-II, respectively. This is exactly

what happens in the case of the free vector multiplet model with a Fayet-Iliopoulos term

studied in [19–21].1 The type-I supercurrent for this model [19]

J
(I)
αα̇ = 2WαW̄α̇ +

2

3
ξ[Dα, D̄α̇]V , X =

1

3
ξD̄2V (3.4)

is not gauge invariant, unlike the type-II supercurrent [20, 21]

J
(II)
αα̇ = 2WαW̄α̇ , χα = 4ξWα . (3.5)

1In the first version of [20], it was claimed that “no supercurrent supermultiplet exists for globally

supersymmetric gauge theories with non-zero Fayet-Iliopoulos terms.” This assertion was shown in [21] to

be erroneous. A correct analysis was presented in a revised version of [20].
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Here Wα = −1
4D̄

2DαV is the chiral field strength of a vector multiplet described by the

gauge prepotential V . The pairs (J
(I)
αα̇,X) and (J

(II)
αα̇ , χα) given are related to each other

through a special finite transformation (3.3) with U ∝ ξV . Applying instead the same

finite transformation but with a different overall coefficient leads to a type-IV supercurrent.

Specifically, one can consider the following one-parameter family of supercurrents:

J
(IV)
αα̇ = 2WαW̄α̇ + 2kξ[Dα, D̄α̇]V , χ(IV)

α = 4(1 − 3κ)ξWα , X(IV) = κξD̄2V , (3.6)

with κ a numerical coefficient. The supercurrents (3.4) and (3.5) correspond to the choices

κ = 1/3 and κ = 0, respectively. Transformation (3.6) was essentially behind the analysis

in [21].

Let us turn to the type-V model [23]

S(V) =

∫

d8z

{

Ha
2

[

− 2

(

β −
1

12

)

ΠL
0 − 2

(

β −
1

4

)

ΠL
1/2 +

1

2
ΠT

3/2

]

Ha

−6

[

i

(

β −
1

12

)

(σ − σ̄) +

(

β −
1

4

)

F

]

∂aH
a

−18

(

β −
1

12

)

σσ̄ − 9

(

β −
1

4

)

F 2

}

, (3.7)

with β 6= 1
4 ,

1
12 a real parameter. This action is invariant under the gauge transforma-

tions (1.7a), (1.7b) and (1.7d). It leads to the supercurrent equation

D̄α̇J
(V)
αα̇ = i ηα +DαX , D̄α̇ηα = D̄α̇X = 0 , Dαηα = D̄α̇η̄

α̇ . (3.8)

Similarly to the situation of the type-IV supercurrent, there is a freedom in the definition

of the triple (J
(V)
αα̇ , ηα,X) appearing in the conservation equation (1.5). Given a real scalar

U = Ū, the transformation

δJ
(V)
αα̇ = ∂αα̇U, δηα = −

1

4
D̄2DαU , δX =

i

4
D̄2

U (3.9)

preserves the conservation equation (3.8).

It remains to consider the type-VI model [23]

S(VI) =

∫

d8z

{

Ha
2

[

− 2

(

γ −
1

4

)

ΠL
1/2 − 6

(

γ −
1

12

)

ΠT
1/2 +

1

2
ΠT

3/2

]

Ha

+3

(

γ −
1

12

)

G[Dα, D̄α̇]Ha − 6

(

γ −
1

4

)

F∂aH
a

+9

(

γ −
1

12

)

G2 − 9

(

γ −
1

4

)

F 2

}

, (3.10)

for a real parameter γ 6= 1
4 ,

1
12 . This action is invariant under the gauge transforma-

tions (1.7a), (1.7c) and (1.7d). It leads to the conservation law

D̄α̇J
(VI)
αα̇ = χα + i ηα , D̄α̇χα = D̄α̇ηα = 0 ,

Dαχα − D̄α̇χ̄
α̇ = Dαηα − D̄α̇η̄

α̇ = 0 . (3.11)
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This supercurrent can be related to the Ferrara-Zumino one, eq. (1.1), if the chiral spinors

χα and ηα are represented as U(1) field strengths2

χα = −
1

4
D̄2DαV , V̄ = V , (3.12a)

ηα = −
1

4
D̄2DαV , V̄ = V , (3.12b)

for some well-defined real scalars V and V. Then we can introduce

J
(I)
αα̇ := J

(VI)
αα̇ +

1

6
[Dα, D̄α̇]V − ∂αα̇V , X := −

1

12
D̄2(V + 3i V) . (3.13)

It is easy to see that J
(I)
αα̇ and X obey the conservation equation (1.1).

The conservation law (3.11) is, in fact, related to that corresponding to the supercurrent

in the non-minimal supergravity (see, e.g., [5]). The latter is

D̄α̇J
(VII)
αα̇ = −

1

4
D̄2ζα −

1

4

n+ 1

3n+ 1
DαD̄β̇ ζ̄

β̇ , D(αζβ) = 0 , (3.14)

n is a real parameter, n 6= −1/3, 0.3 Setting here n = −1 leads to (3.11).

The models (3.1), (3.7) and (3.10) are equivalent, since they are related to each other

by superfield duality transformations given in [23]. The real linear superfields G and F can

be dualized into a chiral scalar and its conjugate. After doing so, one will end up with a

sum of the old minimal action and that for a free chiral scalar (the latter being decoupled

from the supergravity prepotentials).

4 Discussion

In this paper we considered six different realizations for the supercurrent multiplet. All

of them are consistent, that is contain a conserved energy-momentum tensor and a super-

symmetry current. This follows from the fact that all the multiplets were read off from the

actions invariant under linearized supergravity transformations, eqs. (1.7a)–(1.7d), gener-

ated by an unconstrained parameter Lα(x, θ, θ); the linearized general coordinate and local

supersymmetry transformations are part of the gauge freedom. In other words, there is

no need to carry out a component analysis of the supercurrent in order to check that the

energy-momentum tensor and the supersymmetry current are conserved.

The type-III supergravity formulation, eq. (2.9), possesses quite interesting proper-

ties [23]. However, its extension beyond the linearized approximation is not known. This

means that the supercurrent multiplets (J
(III)
αα̇ , ηα), (J

(V)
αα̇ , ηα,X) and (J

(VI)
αα̇ , ηα, χα) are of

purely academic interest, at least at present.

Komargodski and Seiberg [18] demonstrated that there exist interesting supersymmet-

ric theories4 for which the Ferrara-Zumino supercurrent (1.1) is not well defined. They

2Given an an unconstrained chiral spinor λα, D̄β̇λα = 0, it can be represented in the form λa = χα+i ηα,

where χα and ηα are given by eqs. (3.12a) and (3.12b), respectively.
3The constraint on ζα in (3.14) is solved by ζα = DαW , for some complex superfield W which is not

always a well-defined local operator.
4Such theories include (i) N = 1 nonlinear sigma-models with a non-exact Kähler form; (ii) models

with Fayet-Iliopoulos terms.

– 7 –



J
H
E
P
0
4
(
2
0
1
0
)
0
2
2

also showed that the type-IV supercurrent, eq. (1.5), always exists. Does that mean that

it is necessary to develop an off-shell supergravity formulation that automatically leads

to the type-IV supercurrent? In our opinion, the answer is no. It is well known that

any N = 1 supergravity-matter system (including the new minimal and non-minimal

supergravity theories) can be realized as a coupling of the old minimal supergravity to

matter [26, 31]. Keeping in mind this general result, and the fact that the supercurrent

multiplet is the source of supergravity, it is more appropriate to re-formulate the conclu-

sion of [18] in a more positive form: the Ferrara-Zumino supercurrent (1.1) always exists,

modulo an improvement transformation of the form:

J
(I)
αα̇ → J

(I)
αα̇ +

[

Dα, D̄α̇

]

U , X → X +
1

2
D̄2U , Ū = U . (4.1)

Such an improvement results in the conservation law (1.5), in which χα = 3
2D̄

2DαU .
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A Superprojectors

The gravitational superfield can be represented as a superposition of SUSY irreducible

components,

Ha =

(

ΠL
0 + ΠL

1/2 + ΠT
1 + ΠT

1/2 + ΠT
3/2

)

Ha , (A.1)

by making use of the relevant superprojectors [23, 25]

ΠL
0Ha = −

1

32
2−2∂a{D

2, D̄2}∂cH
c , (A.2a)

ΠL
1/2Ha =

1

16
2−2∂aD

δD̄2Dδ∂cH
c , (A.2b)

ΠT
1/2Ha =

1

3!8
2

−2∂ β
α̇ [DβD̄

2Dδ∂ β̇
(α Hδ)β̇ +DαD̄

2Dδ∂ β̇
(β Hδ)β̇ ] , (A.2c)

ΠT
1Ha =

1

32
2−2∂ β

α̇ {D2, D̄2}∂ β̇
(α Hβ)β̇ , (A.2d)

ΠT
3/2Ha = −

1

3!8
2−2∂ β

α̇ DγD̄2D(γ∂
β̇

α Hβ)β̇ . (A.2e)

Here the superscripts L and T denote longitudinal and transverse projectors, while the

subscripts 0, 1/2, 1, 3/2 stand for superspin. One can readily express the action in terms of

the superprojectors. It is a D-algebra exercise to show

DγD̄2DγHa = −82(ΠL
1/2 + ΠT

1/2 + ΠT
3/2)Ha , (A.3a)

∂a∂
bHb = −22(ΠL

0 + ΠL
1/2)Ha , (A.3b)

[Dα, D̄α̇][Dβ ,Dβ̇]Hb = +2(8ΠL
0 − 24ΠT

1/2)Ha . (A.3c)
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