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1 Introduction

Recently the evaluation of the QCD form factors at the three-loop level has attracted much

attention. The form factors constitute important building blocks for a number of physical

applications. Among them are the two-jet cross section in e+e− collisions, the Higgs-boson

production in the gluon fusion and the lepton pair production in proton collisions via the

Drell-Yan mechanism. The three-loop corrections to the form factors of the photon-quark

and the effective gluon-Higgs boson vertex appear after integrating out the heavy top-quark

loops. Let Γµ
q and Γµν

g be the corresponding vertex functions. Then the form factors are

defined by

Fq(q
2) = − 1

4(1 − ǫ)q2
Tr

(

q2/ Γµ
q q1/ γµ

)

, (1.1)

Fg(q
2) =

(q1 · q2 gµν − q1,µ q2,ν − q1,ν q2,µ)

2(1 − ǫ)
Γµν

g , (1.2)

where q1 and −q2 are the momenta of the incoming and outgoing particles (quarks, for the

case of Fq, and gluons, for the case of Fg), and q = q1 + q2 is the momentum transfer. Here

and below, if not stated otherwise, we put d = 4− 2ǫ. Within perturbative expansion, the

form factors take the form

Fx = 1 +
∑

n

(

αs

4π

)n (

µ2

Q2

)nǫ

F (n)
x , (1.3)

where Q2 = −q2, and x is either q(quark) or g(gluon). One deals with the three-loop order

and splits F
(3)
q into the singlet, fermionic and remaining gluonic part

F (3)
q = F (3),g

q + F
(3),nf
q +

∑

q′

Qq′F
(3),sing
q , (1.4)

where nf stands for the number of active quarks, and Qq is the charge of the quark q.

The pole parts of F
(3),g
q and F

(3)
g in ǫ were presented in eqs. (3.7) of ref. [1] and eqs. (9) of

ref. [2], respectively. The finite parts F
(3),g
q , F

(3),sing
q and F

(3)
g were presented in ref. [3].
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The integration-by-part reduction reduces the problem to the calculation of a small

number of master integrals. All the master integrals apart from three most complicated

master integrals contributing to the three-loop massless form factors have been evaluated

in [4, 5]. In fact, the word evaluated means here the evaluation up to the order of ǫ

which appears in the finite part of the form factors. Mathematically, this means the

evaluation up to transcendentality weight six. About one year ago, one of the three most

complicated master integrals (called A9,1 in [3–6]) and the pole parts of A9,4 and A9,2

(shown in figures 1 and 2 in the next section) were evaluated analytically, while the ǫ0

parts of A9,4 and A9,2 were evaluated numerically — see [3, 6]. Therefore, only the two

(apparently, most complicated) pieces of the whole family of three-loop massless form

factor master integrals are missing at the moment. Mathematically and aesthetically, it

is desirable to obtain completely analytic results, and this is the problem we are going to

solve in the present paper.

Recently, in ref. [7] a method of multiloop calculations based on the use of dimensional

recurrence relations (DRR) [8] and analytic properties of Feynman integrals as functions of

the parameter of dimensional regularization, d, has been suggested. In the present paper we

apply this method to evaluate, exactly in d, the master integrals contributing to massless

three-loop QCD form factors. Using the derived expressions, we obtain analytic results for

the missing two constants and thereby arrive at analytic expressions for the form factors.

The key point of the approach of ref. [7] is the analysis of the analytic properties of a

given integral in a basic stripe of the complex plane d. The proper choice of the master

integral, the basic stripe, and the summation factor can essentially simplify the analysis

reducing the number of (or totally fixing) the constants parametrizing the homogeneous

solution of DRR. The freedom of this choice, being an advantage, is also the only heuristic

part of the method. For the case of massive tadpoles, this choice is relatively simple due

to the possibility to get rid of the infrared and ultraviolet singularities by performing an

analysis in an infrared-safe region d ∈ (d0, d0 + 2) and raising, if necessary, the powers

of the massive denominators (see, e.g., example 2 in ref. [7]). For the case of massless

on-shell vertex integrals this recipe does not necessarily work because raising the powers

of the massless denominators also makes worse the infrared and collinear behavior of the

integral. Thus, in this case, one should rely on an analysis of the corresponding parametric

representation. A manual analysis of the parametric representation for the purpose of

revealing the position and the order of the poles can still be a very complicated problem

for the cases considered in this paper. Fortunately, the current version of the code FIESTA

based on sector decompositions provides the possibility to solve this problem automatically.

So, in order to apply the method of ref. [7] to the calculation of a given master integral,

we apply a complete set of various techniques:

(i) a reduction to master integrals by two alternative ways: by a code based on [9] and

the code called FIRE [10] to obtain DRR,

(ii) a sector decomposition [11–17] implemented in the code FIESTA [17, 18] to determine

the position and the order of the poles in the basic stripe,
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(iii) the method of Mellin-Barnes representation [19? –24] to fix the remaining constants

parametrizing the homogeneous solution (if any),

(iv) PSLQ [25] to guess the analytical expression for both the constants parametrizing the

homogeneous solution and for the ǫ-expansion of the master integral around d = 4.

As a result, we obtain representations for all master integrals in arbitrary d. The represen-

tations have the form of convergent series which allow, in particular, a fast high-precision

calculation of the ǫ-expansion around d = 4.

The paper is organized as follows. In the next section we present an example of the

calculation for the integral A7,2 and give exact results for this integral and for the lower

master integral A6,3. We also present analytical expressions for the ǫ-expansion of the

integrals A9,2 and A9,4.

In the conclusion, starting from results for the form factors of ref. [3] and substituting

the two constants by our analytic values, we present completely analytic expressions for

the finite parts of the form factors.

2 Master integrals for massless three-loop form factors

Master integrals naturally form a partially ordered set. One master integral is said to be

lower than the other master integral if the Feynman graph for the former can be obtained

by contracting some internal lines from the Feynman graph of the latter. This ordering

enables us to introduce the notion of complexity level of a given master integral which

is the maximal number of nested lower master integrals. Owing to this definition, the

master integrals with zero complexity level have no lower master integrals. The DRR for

such integral is obviously homogeneous and its explicit solution is expressed in terms of

Γ-functions. Moreover, it turns out that for three-loop on-shell massless vertex master

integrals any integral expressed in terms of Γ-functions has zero complexity level. We

expect this situation to be general.

Our primary goal is the calculation of the most complicated integrals, A9,2 and A9,4

which are the last integrals in figures 1 and 2. However, in order to be able to apply

the method of ref. [7] we have to know all lower master integrals which are shown in the

same figures. Four rows of diagrams in each figure correspond to complexity levels 0, 1, 2

and 3. Therefore, we start our calculation from the complexity level 1, then pass to the

complexity level 2 and, finally, calculate the two master integrals of complexity level 3. Let

us demonstrate an intermediate step of this procedure using the example of the integral

A7,2. We directly follow the path of ref. [7]:

1. There are four lower master integrals, A4, A5,1, A5,2, and A6,3. Three of them are

expressed in terms of Γ-functions, while the last one, A6,3, can be obtained using the
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A4 A5,1 A5,2

A7,2

A9,4

A6,1

A6,2 A6,3 A7,4

A7,5

Figure 1. Master integrals for A9,4.

same method with the final result conveniently represented as

A6,3(d) = A1,1
6,3(d)

∞
∑

k=0

A1,2
6,3(d + 2k) + A2

6,3(d) ,

A1,1
6,3(d) = − sin(πd)A2

6,3(d)

=
π4211−3d csc

(

3πd
2

)

csc
(

πd
2

)

(3d − 10)Γ
(

d − 5
2

)

Γ
(

d−1
2

) ,

A1,2
6,3(d) =

(7d − 18) sin
(

πd
2

)

Γ
(

d
2 − 1

)3

3π2(d − 3)Γ
(

3d
2 − 3

) . (2.1)

2. Here and in what follows, we omit, for brevity, a power-like dependence of the master

integrals on q2 + i0 which can easily be restored by power counting.

Using the FIESTA program we determine the position and the order of the poles

in the basic stripe which we choose as S = {d| Re d ∈ (4, 6]}. The syntax for
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A4 A5,1 A5,2

A6,2 A6,3

A5,3 A5,4

A7,1 A7,4A7,3

A7,2 A7,5 A8

A9,2

Figure 2. Master integrals for A9,2.

this analysis is SDAnalyze[U,F,h,degrees,order,dmin,dmax], where U and F are

the basic functions in the parametric integral corresponding to the given Feynman

integral, h is the number of loops, degrees are the indices, order is the required order

in ǫ and dmin and dmax are values of the real part of d that determine the basic stripe.

The output lists the values of d where the given Feynman integral can have poles.

This feature appeared in the second version of FIESTA, but was not documented

in [18] because testing was still in progress. So, after applying this procedure to A7,2

we see1 that the integral has simple poles at d = 14/3, 5, 16/3, 6.

1In fact, the overall factor Γ(a − hd/2) where a is the sum of the indices is not taken into account by

FIESTA but this can easily be done because the corresponding poles are explicit. Let us emphasize that

FIESTA can report also on some fictitious poles. This can happen when contributions of individual sectors

do have some additional poles which cancel in the sum. However, FIESTA itself can be used further to

check whether the poles are indeed present or not.
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3. The dimensional recurrence reads2

A7,2(d + 2) = c7,2(d)A7,2(d) (2.2)

+c6,3(d)A6,3(d) + c5,2(d)A5,2(d) + c5,1(d)A5,1(d) + c4(d)A4(d)

where cn are some rational functions of d presented in the appendix.

4. Using the explicit form of the coefficient c7,2(d), we choose the summing factor as

Σ (d) =
(d − 3) cos

(

πd
2

)

cos
(

π
6 − πd

2

)

cos
(

πd
2 + π

6

)

Γ
(

5d
2 − 9

)

Γ
(

d
2 − 2

)2 . (2.3)

Passing to the function Ã7,2(d) = Σ(d)A7,2(d), we obtain the following equation

Ã7,2(d + 2) = Ã7,2(d) + Ã6,3(d) + Ã5,2(d) + Ã5,1(d) + Ã4(d) , (2.4)

where Ãn(d) = Σ(d + 2)cn(d)An(d). The general solution can easily be constructed

using the explicit form of the integrals A4, A5,1, A5,2, and A6,3:

Ã7,2(d) = ω(z) +
∞
∑

l=0

[

Ã5,2(d − 2 − 2l) + Ã5,1(d − 2 − 2l) + Ã2
6,3(d − 2 − 2l)

]

−
∞
∑

l=0

Ã1,1
6,3(d + 2l)

∞
∑

k=0

A1,2
6,3(d + 2l + 2k) −

∞
∑

l=0

Ã4(d + 2l), (2.5)

where z = exp[iπd].

5. The function Σ(d) has simple zeros at d = 14/3, 5, 16/3, therefore, Ã7,2(d) is regular

everywhere in S except the point d = 6, where it has a simple pole. Besides, from

the explicit form of the summing factor and from the parametric representation of

A7,2(d) it is immediately clear that Ã7,2(d) grows slower than any positive (negative)

power of |z| when Im d → −∞ ( Im d → +∞). This fixes ω(z) up to a function

a1 + a2 cot
(π

2
(d − 6)

)

(2.6)

6. In order to fix the two remaining constants, we use data obtained from the Mellin-

Barnes representation of A7,2(d) which can easily be obtained from the general Mellin-

Barnes representation for the non-planar on-shell vertex diagram (see, e.g., Chap. 4

of [23, 24]):

A7,2(d) =
1

(2π)2

∫ ∫

Γ
(

d
2 − 2

)

Γ
(

d
2 − 1

)2
Γ(d − 3)Γ(−z1)Γ(−z2)Γ(z2 + 1)2

Γ(d − 2)Γ
(

3d
2 − 5

)

Γ(2d − 7)Γ(d − z1 − 4)

× Γ
(

d
2 − z1 − 2

)

Γ
(

3d
2 − z1 − 5

)Γ

(

3d

2
− z2 − 6

)

Γ(z1 + z2 + 1)Γ(d − z1 − z2 − 5)

×Γ

(

3d

2
− z1 − z2 − 6

)

Γ

(

−3d

2
+ z1 + z2 + 7

)

dz1 dz2 . (2.7)

2We use the integration measure ddk/(iπd/2) per loop.
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Using the codes of refs. [21, 22], at d = 6 − 2ǫ and d = 5 − 2ǫ we

straightforwardly obtain

A7,2(6 − 2ǫ) = − 41

15552ǫ
+ O(ǫ0), A7,2(5 − 2ǫ) = −π5/2

24ǫ
+ O(ǫ0). (2.8)

Using these two values and also taking into account the fact that the singularities of

the inhomogeneous part should be cancelled, we obtain

ω(z) =
π3

20
√

5
tan

(

π

10
− πd

2

)

− π3

36
tan

(

π

6
− πd

2

)

− π3

20
√

5
tan

(

πd

2
+

π

10

)

+
π3

36
tan

(

πd

2
+

π

6

)

+
π3

60
cot3

(

πd

2

)

+
13π3

180
cot

(

πd

2

)

+
π3

20
√

5
cot

(

π

5
− πd

2

)

− π3

20
√

5
cot

(

πd

2
+

π

5

)

. (2.9)

Eqs. (2.5), (2.9), and (2.3) determine our final expression for A7,2(d).

Two remarks are in order. First, our choice of the summing factor, the basic stripe

and the master integral itself (we could have considered instead, e.g., an integral with some

denominators squared and/or with numerators) may be not the most optimal one. With

some other choice, we might have been able to fix the homogeneous part of the solution

entirely within the method. However, given the number of the integrals to be considered

and the absence of the general recipe for this choice, it was much more convenient to use in

such cases additional data from Mellin-Barnes representations. In fact, for other integrals

the number of the constants to be fixed was not greater than two.

The second remark concerns the double sum in eq. (2.5). Making a shift k → k − l,

we obtain the following triangle sum with the factorized summand:
∞
∑

l=0

Ã1,1
6,3(d + 2l)

∞
∑

k=l

A1,2
6,3(d + 2k) . (2.10)

The factorized form of the summand essentially simplifies the numerical calculation of the

sum, making it possible to organize the calculations without nested do-loops. Proceeding

in the same way for the rest of the integrals, we finally obtain general expressions for A9,4

and A9,2. The resulting representations for arbitrary d are too lengthy to be presented

here and can be obtained upon request from the authors. We present here only analytical

results for the expansion of these two integrals around d = 4 which are most interesting

for physical applications. The expansion for A9,4 reads

A9,4(4 − 2ǫ) = e−3γEǫ

{

− 1

9ǫ6
− 8

9ǫ5
+

[

1 +
43π2

108

]

1

ǫ4
+

[

109ζ(3)

9
+

14

9
+

53π2

27

]

1

ǫ3

+

[

608ζ(3)

9
− 17 − 311π2

108
− 481π4

12960

]

1

ǫ2

+

[

−949ζ(3)

9
− 2975π2ζ(3)

108
+

3463ζ(5)

45
+ 84 +

11π2

18
+

85π4

108

]

1

ǫ

+

[

434ζ(3)

9
− 299π2ζ(3)

3
− 3115ζ(3)2

6
+

7868ζ(5)

15

−339 +
77π2

4
− 2539π4

2592
− 247613π6

466560

]

+ O(ǫ)

}

, (2.11)
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For A9,2, we arrive at the following result:

A9,2(4 − 2ǫ) = e−3γEǫ

{

− 2

9ǫ6
− 5

6ǫ5
+

[

20

9
+

17π2

54

]

1

ǫ4

+

[

31ζ(3)

3
− 50

9
+

181π2

216

]

1

ǫ3

+

[

347ζ(3)

18
+

110

9
− 17π2

9
+

119π4

432

]

1

ǫ2

+

[

−514ζ(3)

9
− 341π2ζ(3)

36
+

2507ζ(5)

15
− 170

9
+

19π2

6
+

163π4

960

]

1

ǫ

+

[

1516ζ(3)

9
− 737π2ζ(3)

24
− 29ζ(3)2 +

2783ζ(5)

6

−130

9
+

π2

2
− 943π4

1080
+

195551π6

544320

]

+ O(ǫ)

}

. (2.12)

3 Conclusion

Eqs. (2.11) and (2.12) enable us to present completely analytic results for the three-loop

corrections to the form factors defined by eqs. (1.1)–(1.4). Starting from eqs. (8)–(10) of

ref. [3] and taking into account our analytic values of the ǫ0 terms in (2.11) and (2.12) we

obtain the following analytic expressions:

F
(3),g+nf
q

∣

∣

∣

fin
= C3

F

[

2669ζ(3)+
61π2ζ(3)

6
− 1826ζ(3)2

3
+

4238ζ(5)

5
− 53675

24
− 13001π2

72

+
12743π4

1440
− 9095π6

54432

]

+CAC2
F

[

−96715ζ(3)

18
+

23π2ζ(3)

27
+

1616ζ(3)2

3

−46594ζ(5)

45
+

37684115

5832
+

664325π2

1944
− 1265467π4

77760
− 18619π6

272160

]

+C2
ACF

[

1341553ζ(3)

486
− 355π2ζ(3)

27
− 1136ζ(3)2

9
+

2932ζ(5)

9
− 52268375

13122

−383660π2

2187
+

152059π4

19440
− 769π6

5103

]

+C2
F nfT

[

−2732173

1458
− 45235π2

486

+
102010ζ(3)

81
+

8149π4

3888
− 343π2ζ(3)

27
+

556ζ(5)

45

]

+CACF nfT

[

17120104

6561
+

442961π2

4374
− 90148ζ(3)

81
− 1093π4

486
+

368π2ζ(3)

27

−416ζ(5)

3

]

+CF n2
fT 2

[

−2710864

6561
− 124π2

9
+

12784ζ(3)

243
− 83π4

1215

]

, (3.1)
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F (3)
g

∣

∣

∣

fin
= C3

A

[

−68590ζ(3)

243
+

77π2ζ(3)

108
− 1766ζ(3)2

9
+

20911ζ(5)

45
+

14474131

13122

+
307057π2

8748
+

8459π4

38880
− 22523π6

58320

]

+C2
AnfT

[

−10021313

6561
− 37868π2

2187
− 1508ζ(3)

27
+

437π4

1080
− 439π2ζ(3)

27
+

6476ζ(5)

45

]

+CF CAnfT

[

−155629

243
− 41π2

9
+

23584ζ(3)

81
− 8π4

45
+16π2ζ(3)+

64ζ(5)

9

]

+C2
F nfT

[

608

9
+

592ζ(3)

3
−320ζ(5)

]

+CF n2
fT 2

[

42248

81
− 32π2

9
− 2816ζ(3)

9

−112π4

135

]

+CAn2
fT 2

[

2958218

6561
+

152π2

81
+

47296ζ(3)

243
+

797π4

1215

]

, (3.2)

where CF = (N2
c − 1)/(2Nc), CA = Nc, T = 1/2 and dabcdabc = (N2

c − 1)(N2
c − 4)/Nc.

We are confident that this technique can be applied to analytically evaluate master

integrals appearing in various physical problems.
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A Coefficients in (2.2)

The coefficients of the dimensional recurrence relation for A7,2 have the form

c7,2 = − 8(d − 4)2(d − 3)

5(d − 2)(d − 1)(5d − 18)(5d − 16)(5d − 14)(5d − 12)
,

c6,3 = − (3d − 10)
(

483d4 − 5996d3 + 27684d2 − 56272d + 42432
)

20(d − 2)2(d − 1)(2d − 5)(5d − 18)(5d − 16)(5d − 14)(5d − 12)
,

c5,2 = −(d − 3)[15(d − 4)(d − 2)2(d − 1)(2d − 5)(3d − 10)(3d − 8)(5d − 18)]−1

×[(5d − 16)(5d − 14)(5d − 12)]−1
[

12447d7 − 256626d6 + 2261972d5

−11052152d4 + 32339200d3 − 56684032d2 + 55123200d − 22947840
]

,

c5,1 = −
[

60(d − 4)(d − 2)2(d − 1)(2d − 5)(3d − 10)(5d − 18)(5d − 16)
]−1

× [(5d − 14)(5d − 12)]−1 [

18909d7 − 384006d6 + 3329804d5

−15982952d4 + 45870976d3 − 78731008d2 + 74846208d − 30412800
]

,

c4 = −
[

90(d − 3)(d − 2)2(d − 1)(3d − 10)(3d − 8)(5d − 16)
]−1

× [(5d − 14)(5d − 12)]−1 [

38619d6 − 651987d5 + 4575500d4

−17083884d3 + 35791888d2 − 39892032d + 18478080
]

. (A.1)
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