PUBLISHED FOR SISSA BY €) SPRINGER

I

RECEIVED: February 3, 2010
ACCEPTED: March 24, 2010
PUBLISHED: April 7, 2010

Analytic results for massless three-loop form factors

R.N. Lee,* A.V. Smirnov’ and V.A. Smirnov®
@ Budker Institute of Nuclear Physics and Novosibirsk State University,
630090, Novosibirsk, Russia

bScientific Research Computing Center, Moscow State University,
119992 Moscow, Russia

¢Skobeltsyn Institute of Nuclear Physics of Moscow State University,
119992 Moscow, Russia
E-mail: R.N.Lee@inp.nsk.su, asmirnov80@gmail. com,
smirnov@theory.sinp.msu.ru

ABSTRACT: We evaluate, exactly in d, the master integrals contributing to massless three-
loop QCD form factors. The calculation is based on a combination of a method recently
suggested by one of the authors (R.L.) with other techniques: sector decomposition imple-
mented in FIESTA, the method of Mellin-Barnes representation, and the PSLQ algorithm.
Using our results for the master integrals we obtain analytical expressions for two missing
constants in the e-expansion of the two most complicated master integrals and present the
form factors in a completely analytic form.
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1 Introduction

Recently the evaluation of the QCD form factors at the three-loop level has attracted much
attention. The form factors constitute important building blocks for a number of physical
applications. Among them are the two-jet cross section in e*e™ collisions, the Higgs-boson
production in the gluon fusion and the lepton pair production in proton collisions via the
Drell-Yan mechanism. The three-loop corrections to the form factors of the photon-quark
and the effective gluon-Higgs boson vertex appear after integrating out the heavy top-quark
loops. Let I'j and I'}” be the corresponding vertex functions. Then the form factors are
defined by
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where ¢; and —¢y are the momenta of the incoming and outgoing particles (quarks, for the
case of Fy, and gluons, for the case of Fy)), and ¢ = g1 + g2 is the momentum transfer. Here
and below, if not stated otherwise, we put d = 4 — 2e. Within perturbative expansion, the
form factors take the form

n 9\ NE
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where Q? = —¢?, and x is either ¢(quark) or g(gluon). One deals with the three-loop order
and splits Fq(g) into the singlet, fermionic and remaining gluonic part

B = F9 4+ F™ 43 QuF, (1.4)

q
where ny stands for the number of active quarks, and @, is the charge of the quark g.
The pole parts of Fq(3)’g and Fég) in € were presented in egs. (3.7) of ref. [1] and egs. (9) of
ref. [2], respectively. The finite parts Fq(3)’g , Fq(g)’smg and Ff') were presented in ref. [3].



The integration-by-part reduction reduces the problem to the calculation of a small
number of master integrals. All the master integrals apart from three most complicated
master integrals contributing to the three-loop massless form factors have been evaluated
in [4, 5]. In fact, the word evaluated means here the evaluation up to the order of €
which appears in the finite part of the form factors. Mathematically, this means the
evaluation up to transcendentality weight six. About one year ago, one of the three most
complicated master integrals (called Ag; in [3-6]) and the pole parts of Ag4 and Ags
(shown in figures 1 and 2 in the next section) were evaluated analytically, while the €
parts of Ag4 and Ago were evaluated numerically — see [3, 6]. Therefore, only the two
(apparently, most complicated) pieces of the whole family of three-loop massless form
factor master integrals are missing at the moment. Mathematically and aesthetically, it
is desirable to obtain completely analytic results, and this is the problem we are going to
solve in the present paper.

Recently, in ref. [7] a method of multiloop calculations based on the use of dimensional
recurrence relations (DRR) [8] and analytic properties of Feynman integrals as functions of
the parameter of dimensional regularization, d, has been suggested. In the present paper we
apply this method to evaluate, exactly in d, the master integrals contributing to massless
three-loop QCD form factors. Using the derived expressions, we obtain analytic results for
the missing two constants and thereby arrive at analytic expressions for the form factors.

The key point of the approach of ref. [7] is the analysis of the analytic properties of a
given integral in a basic stripe of the complex plane d. The proper choice of the master
integral, the basic stripe, and the summation factor can essentially simplify the analysis
reducing the number of (or totally fixing) the constants parametrizing the homogeneous
solution of DRR. The freedom of this choice, being an advantage, is also the only heuristic
part of the method. For the case of massive tadpoles, this choice is relatively simple due
to the possibility to get rid of the infrared and ultraviolet singularities by performing an
analysis in an infrared-safe region d € (dy,dop + 2) and raising, if necessary, the powers
of the massive denominators (see, e.g., example 2 in ref. [7]). For the case of massless
on-shell vertex integrals this recipe does not necessarily work because raising the powers
of the massless denominators also makes worse the infrared and collinear behavior of the
integral. Thus, in this case, one should rely on an analysis of the corresponding parametric
representation. A manual analysis of the parametric representation for the purpose of
revealing the position and the order of the poles can still be a very complicated problem
for the cases considered in this paper. Fortunately, the current version of the code FIESTA
based on sector decompositions provides the possibility to solve this problem automatically.
So, in order to apply the method of ref. [7] to the calculation of a given master integral,
we apply a complete set of various techniques:

(i) a reduction to master integrals by two alternative ways: by a code based on [9] and
the code called FIRE [10] to obtain DRR,

(ii) a sector decomposition [11-17] implemented in the code FIESTA [17, 18] to determine
the position and the order of the poles in the basic stripe,



(iii) the method of Mellin-Barnes representation [197 —24] to fix the remaining constants

parametrizing the homogeneous solution (if any),

(iv) PSLQ [25] to guess the analytical expression for both the constants parametrizing the
homogeneous solution and for the e-expansion of the master integral around d = 4.

As a result, we obtain representations for all master integrals in arbitrary d. The represen-
tations have the form of convergent series which allow, in particular, a fast high-precision
calculation of the e-expansion around d = 4.

The paper is organized as follows. In the next section we present an example of the
calculation for the integral A7, and give exact results for this integral and for the lower
master integral Ags. We also present analytical expressions for the e-expansion of the
integrals Ag o and Ag 4.

In the conclusion, starting from results for the form factors of ref. [3] and substituting
the two constants by our analytic values, we present completely analytic expressions for
the finite parts of the form factors.

2 Master integrals for massless three-loop form factors

Master integrals naturally form a partially ordered set. One master integral is said to be
lower than the other master integral if the Feynman graph for the former can be obtained
by contracting some internal lines from the Feynman graph of the latter. This ordering
enables us to introduce the notion of complerity level of a given master integral which
is the maximal number of nested lower master integrals. Owing to this definition, the
master integrals with zero complexity level have no lower master integrals. The DRR for
such integral is obviously homogeneous and its explicit solution is expressed in terms of
I'-functions. Moreover, it turns out that for three-loop on-shell massless vertex master
integrals any integral expressed in terms of I'-functions has zero complexity level. We
expect this situation to be general.

Our primary goal is the calculation of the most complicated integrals, Ago and Ag4
which are the last integrals in figures 1 and 2. However, in order to be able to apply
the method of ref. [7] we have to know all lower master integrals which are shown in the
same figures. Four rows of diagrams in each figure correspond to complexity levels 0, 1, 2
and 3. Therefore, we start our calculation from the complexity level 1, then pass to the
complexity level 2 and, finally, calculate the two master integrals of complexity level 3. Let
us demonstrate an intermediate step of this procedure using the example of the integral
A7 9. We directly follow the path of ref. [7]:

1. There are four lower master integrals, A4, As1, As2, and Ag 3. Three of them are
expressed in terms of I'-functions, while the last one, Ag 3, can be obtained using the
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Figure 1. Master integrals for Ag 4.

same method with the final result conveniently represented as

As3(d) = Agi(d) D Agi(d +2k) + A 5(d),
k=0
d) = —sin(ﬂd)Ag,g,(d)
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d
Agi(d) = _23) : (2.1)

2. Here and in what follows, we omit, for brevity, a power-like dependence of the master
integrals on ¢? + i0 which can easily be restored by power counting.

Using the FIESTA program we determine the position and the order of the poles
in the basic stripe which we choose as S = {d| Red € (4,6]}. The syntax for
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Figure 2. Master integrals for Ag ».

this analysis is SDAnalyze[U,F,h,degrees,order,dmin,dmax], where U and F are
the basic functions in the parametric integral corresponding to the given Feynman
integral, h is the number of loops, degrees are the indices, order is the required order
in € and dmin and dmax are values of the real part of d that determine the basic stripe.
The output lists the values of d where the given Feynman integral can have poles.
This feature appeared in the second version of FIESTA, but was not documented
in [18] because testing was still in progress. So, after applying this procedure to A7 >
we see! that the integral has simple poles at d = 14/3,5,16/3,6.

n fact, the overall factor T'(a — hd/2) where a is the sum of the indices is not taken into account by
FIESTA but this can easily be done because the corresponding poles are explicit. Let us emphasize that
FIESTA can report also on some fictitious poles. This can happen when contributions of individual sectors
do have some additional poles which cancel in the sum. However, FIESTA itself can be used further to
check whether the poles are indeed present or not.



3. The dimensional recurrence reads?

A772(d + 2) == C7,2(d)A7,2 (d) (22)
+C673(d)A673(d) + 6572(d)A5,2 (d) + C5,1(d)A5,1(d) + C4(d)A4(d)

where ¢,, are some rational functions of d presented in the appendix.
4. Using the explicit form of the coefficient ¢72(d), we choose the summing factor as

(d—3)cos (75') cos (5 = 5') cos (3 + §) T (3 = 9)

S (d) = by (2.3)

Passing to the function A7 5(d) = ¥(d)A72(d), we obtain the following equation
Aza(d+2) = A7(d) + Ao 3(d) + A5 2(d) + A5 1 (d) + Aa(d), (2.4)

where A,(d) = 2(d + 2)¢,(d) A, (d). The general solution can easily be constructed
using the explicit form of the integrals A4, As 1, As2, and Ag 3:

Ara(d) = w(z)+ Y [Asald =2 = 20) + sy (d— 2 = 20) + A3 5(d — 2 — 20)]
=0
—> A d+2lZA12d+21+2/<: > Ay(d+210), (2.5)
=0 k=0 =0

where z = explind].

5. The function ¥(d) has simple zeros at d = 14/3,5,16/3, therefore, A7 5(d) is regular
everywhere in .S except the point d = 6, where it has a simple pole. Besides, from
the explicit form of the summing factor and from the parametric representation of
A72(d) it is immediately clear that A7 5(d) grows slower than any positive (negative)
power of |z| when Imd — —oo ( Imd — +00). This fixes w(z) up to a function

a + ag cot <72T(d - 6)) (2.6)

6. In order to fix the two remaining constants, we use data obtained from the Mellin-
Barnes representation of A7 »(d) which can easily be obtained from the general Mellin-
Barnes representation for the non-planar on-shell vertex diagram (see, e.g., Chap. 4
of [23, 24]):

B )T (4= 1)°T(d — 3)T(—21)T(—29)T (2 + 1)?
Arald) = oy // r(32d —5)D(2d — T)T(d — 2 — 4)

I(4-2-2) <3d >

X Tr —29—06|T(z1+2+1)'(d—21 —220—5
(% 2 —5) 5 T2 (z1 4+ 22 + 1I( 1 — 22 —5)
3d 3d

XF<2—21—22—6>F<—2—|—Zl—|—22—|-7>d21d22. (27)

2We use the integration measure d?k/(in?/?) per loop.



Using the codes of refs. [21, 22], at d = 6 — 2¢ and d = 5 — 2 we
straightforwardly obtain

i + O() Aro(5 — 2€) = ”5/2+0(0) (2.8)
15552¢ € 72 AV €)=

Using these two values and also taking into account the fact that the singularities of

A772(6 - 26) =

the inhomogeneous part should be cancelled, we obtain
w(z) = 73 tan(w _7Td> _7T3tan<7r_7rd> B 73 tan(ﬂd—i— 7T>
20v/5 10 2 36 6 2 205 2 10
+7T3 tom <7Td N 7T> n 3 ot <7Td> n 1373 cot <7Td>
36 , 2 6 ] 60 X 2 ] 180 2
T Toow 0 T T
+20\/5c0t<5— 2)—20\/500‘5(2 —|—5>. (2.9)
Egs. (2.5), (2.9), and (2.3) determine our final expression for A7 (d).

Two remarks are in order. First, our choice of the summing factor, the basic stripe
and the master integral itself (we could have considered instead, e.g., an integral with some
denominators squared and/or with numerators) may be not the most optimal one. With
some other choice, we might have been able to fix the homogeneous part of the solution
entirely within the method. However, given the number of the integrals to be considered
and the absence of the general recipe for this choice, it was much more convenient to use in
such cases additional data from Mellin-Barnes representations. In fact, for other integrals
the number of the constants to be fixed was not greater than two.

The second remark concerns the double sum in eq. (2.5). Making a shift k — k — [,
we obtain the following triangle sum with the factorized summand:

o o

> Agy(d+20)) " Aga(d +2k). (2.10)

=0 k=l
The factorized form of the summand essentially simplifies the numerical calculation of the
sum, making it possible to organize the calculations without nested do-loops. Proceeding
in the same way for the rest of the integrals, we finally obtain general expressions for Ag 4
and Ago. The resulting representations for arbitrary d are too lengthy to be presented
here and can be obtained upon request from the authors. We present here only analytical
results for the expansion of these two integrals around d = 4 which are most interesting
for physical applications. The expansion for Ag 4 reads

1 8 43727 1 109¢(3) 14  537%] 1
Agg(4—2) = e 3B ° 1
9a(d—2¢) =e { 96 9e5+[ * 108]64 [ 9 9 " 27 |8
[ 1172 4817%] 1
N 608g(3)_17_3 w2 481x
9 108 12960 | €2
[ 949¢(3)  297572¢(3)  3463((5) 1172 8574] 1
— — 84
+_ 9 T T A T ST
N [434¢(3)  29972¢(3)  3115((3)? N 7868¢(5)
9 3 6 15
777? 25397t 2476137
—339 - - O 2.11
Ty 2592 466560] (6)}’ (2.11)



For Ag 2, we arrive at the following result:

2 5 20 17721 1
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i30 2 0437% 19555176
" " W} 0(6)}. (2.12)

3 Conclusion

Eqs. (2.11) and (2.12) enable us to present completely analytic results for the three-loop
corrections to the form factors defined by egs. (1.1)—(1.4). Starting from eqs. (8)—(10) of
ref. [3] and taking into account our analytic values of the €® terms in (2.11) and (2.12) we
obtain the following analytic expressions:
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where Cp = (N2 —1)/(2N,), C4 = N., T = 1/2 and d®¢d®¢ = (N? — 1)(N2? — 4)/N..
We are confident that this technique can be applied to analytically evaluate master
integrals appearing in various physical problems.
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A Coefficients in (2.2)

The coeflicients of the dimensional recurrence relation for A7 > have the form
B 8(d — 4)%(d — 3)
5(d — 2)(d —1)(5d — 18)(5d — 16)(5d — 14)(5d — 12)’
(3d — 10) (483d* — 5996d> + 27684d? — 56272d + 42432)
20(d — 2)2(d — 1)(2d — 5)(5d — 18)(5d — 16)(5d — 14)(5d — 12)’

s = —(d—3)[15(d — 4)(d — 2)*(d — 1)(2d — 5)(3d — 10)(3d — 8)(5d — 18)] !
x[(5d — 16)(5d — 14)(5d — 12)] " [12447d" — 256626d° + 2261972d”
—11052152d* + 32339200d° — 56684032d° + 55123200d — 22947840]

cs1 = — [60(d — 4)(d — 2)*(d — 1)(2d — 5)(3d — 10)(5d — 18)(5d — 16)] "

x [(5d — 14)(5d — 12)] ™" [18909d" — 384006d° + 3329804d°
—15982952d* + 45870976d° — 787310084 + 74846208d — 30412800] ,
¢y = —[90(d — 3)(d — 2)%(d — 1)(3d — 10)(3d — 8)(5d — 16)] "
x [(5d — 14)(5d — 12)] " [38619d° — 651987d° + 45755004
—17083884d° + 357918884 — 398920324 + 18478080 . (A1)

Cr2 =

c6,3 =

References

[1] S. Moch, J.A.M. Vermaseren and A. Vogt, The quark form factor at higher orders,
JHEP 08 (2005) 049 [hep-ph/0507039] [SPIRES].


http://dx.doi.org/10.1088/1126-6708/2005/08/049
http://arxiv.org/abs/hep-ph/0507039
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0507039

2]

[3]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

S. Moch, J.A.M. Vermaseren and A. Vogt, Three-loop results for quark and gluon form
factors, Phys. Lett. B 625 (2005) 245 [hep-ph/0508055] [SPIRES].

P.A. Baikov, K.G. Chetyrkin, A.V. Smirnov, V.A. Smirnov and M. Steinhauser, Quark and
gluon form factors to three loops, Phys. Rev. Lett. 102 (2009) 212002 [arXiv:0902.3519]
[SPIRES].

T. Gehrmann, G. Heinrich, T. Huber and C. Studerus, Master integrals for massless
three-loop form factors: one-loop and two-loop insertions, Phys. Lett. B 640 (2006) 252
[hep-ph/0607185] [SPIRES].

G. Heinrich, T. Huber and D. Maitre, Master integrals for fermionic contributions to
massless three-loop form factors, Phys. Lett. B 662 (2008) 344 [arXiv:0711.3590)
[SPIRES].

G. Heinrich, T. Huber, D.A. Kosower and V.A. Smirnov, Nine-propagator master integrals
for massless three-loop form factors, Phys. Lett. B 678 (2009) 359 [arXiv:0902.3512)
[SPIRES].

R.N. Lee, Space-time dimensionality D as complex variable: calculating loop integrals using
dimensional recurrence relation and analytical properties with respect to D,
Nucl. Phys. B 830 (2010) 474 [arXiv:0911.0252] [SPIRES].

0.V. Tarasov, Connection between Feynman integrals having different values of the
space-time dimension, Phys. Rev. D 54 (1996) 6479 [hep-th/9606018] [SPIRES].

R.N. Lee, Group structure of the integration-by-part identities and its application to the
reduction of multiloop integrals, JHEP 07 (2008) 031 [arXiv:0804.3008] [SPIRES].

A.V. Smirnov, Algorithm FIRE — Feynman Integral REduction, JHEP 10 (2008) 107
[arXiv:0807.3243] [SPIRES].

T. Binoth and G. Heinrich, An automatized algorithm to compute infrared divergent
multi-loop integrals, Nucl. Phys. B 585 (2000) 741 [hep-ph/0004013] [SPIRES].

T. Binoth and G. Heinrich, Numerical evaluation of multi-loop integrals by sector
decomposition, Nucl. Phys. B 680 (2004) 375 [hep-ph/0305234] [SPIRES].

T. Binoth and G. Heinrich, Numerical evaluation of phase space integrals by sector
decomposition, Nucl. Phys. B 693 (2004) 134 [hep-ph/0402265] [SPIRES).

G. Heinrich, Sector decomposition, Int. J. Mod. Phys. A 23 (2008) 1457 [arXiv:0803.4177]
[SPIRES].

C. Bogner and S. Weinzierl, Resolution of singularities for multi-loop integrals,
Comput. Phys. Commun. 178 (2008) 596 [arXiv:0709.4092] [SPIRES].

C. Bogner and S. Weinzierl, Blowing up Feynman integrals,
Nucl. Phys. Proc. Suppl. 183 (2008) 256 [arXiv:0806.4307] [SPIRES].

A.V. Smirnov and M.N. Tentyukov, Feynman integral evaluation by a sector decomposition
approach (FIESTA), Comput. Phys. Commun. 180 (2009) 735 [arXiv:0807.4129] [SPIRES].

A.V. Smirnov, V.A. Smirnov and M. Tentyukov, FIESTA 2: parallelizeable multiloop
numerical calculations, arXiv:0912.0158 [SPIRES).

V.A. Smirnov, Analytical result for dimensionally reqularized massless on-shell double box,
Phys. Lett. B 460 (1999) 397 [hep-ph/9905323] [SPIRES].

,10,


http://dx.doi.org/10.1016/j.physletb.2005.08.067
http://arxiv.org/abs/hep-ph/0508055
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0508055
http://dx.doi.org/10.1103/PhysRevLett.102.212002
http://arxiv.org/abs/0902.3519
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0902.3519
http://dx.doi.org/10.1016/j.physletb.2006.08.008
http://arxiv.org/abs/hep-ph/0607185
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0607185
http://dx.doi.org/10.1016/j.physletb.2008.03.028
http://arxiv.org/abs/0711.3590
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0711.3590
http://dx.doi.org/10.1016/j.physletb.2009.06.038
http://arxiv.org/abs/0902.3512
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0902.3512
http://dx.doi.org/10.1016/j.nuclphysb.2009.12.025
http://arxiv.org/abs/0911.0252
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0911.0252
http://dx.doi.org/10.1103/PhysRevD.54.6479
http://arxiv.org/abs/hep-th/9606018
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9606018
http://dx.doi.org/10.1088/1126-6708/2008/07/031
http://arxiv.org/abs/0804.3008
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0804.3008
http://dx.doi.org/10.1088/1126-6708/2008/10/107
http://arxiv.org/abs/0807.3243
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0807.3243
http://dx.doi.org/10.1016/S0550-3213(00)00429-6
http://arxiv.org/abs/hep-ph/0004013
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0004013
http://dx.doi.org/10.1016/j.nuclphysb.2003.12.023
http://arxiv.org/abs/hep-ph/0305234
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0305234
http://dx.doi.org/10.1016/j.nuclphysb.2004.06.005
http://arxiv.org/abs/hep-ph/0402265
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0402265
http://dx.doi.org/10.1142/S0217751X08040263
http://arxiv.org/abs/0803.4177
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0803.4177
http://dx.doi.org/10.1016/j.cpc.2007.11.012
http://arxiv.org/abs/0709.4092
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0709.4092
http://dx.doi.org/10.1016/j.nuclphysBPS.2008.09.113
http://arxiv.org/abs/0806.4307
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0806.4307
http://dx.doi.org/10.1016/j.cpc.2008.11.006
http://arxiv.org/abs/0807.4129
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0807.4129
http://arxiv.org/abs/0912.0158
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0912.0158
http://dx.doi.org/10.1016/S0370-2693(99)00777-7
http://arxiv.org/abs/hep-ph/9905323
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/9905323

[20] J.B. Tausk, Non-planar massless two-loop Feynman diagrams with four on-shell legs,
Phys. Lett. B 469 (1999) 225 [hep-ph/9909506] [SPIRES].

[21] M. Czakon, Automatized analytic continuation of Mellin-Barnes integrals,
Comput. Phys. Commun. 175 (2006) 559 [hep-ph/0511200] [SPIRES].

[22] A.V. Smirnov and V.A. Smirnov, On the resolution of singularities of multiple Mellin-Barnes
integrals, Eur. Phys. J. C 62 (2009) 445 [arXiv:0901.0386] [SPIRES].

[23] V.A. Smirnov, Evaluating Feynman integrals, Springer Tracts Mod. Phys. 211 (2004) 1
[SPIRES].

[24] V.A. Smirnov, Feynman integral calculus, Springer, Berlin Germany (2006), pag. 283
[SPIRES].

[25] H.R.P. Ferguson, D.H. Bailey and S. Arno, Analysis of PSLQ, an integer relation finding
algorithm, Math. Comput. 68 (1999) 351.

— 11 —


http://dx.doi.org/10.1016/S0370-2693(99)01277-0
http://arxiv.org/abs/hep-ph/9909506
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/9909506
http://dx.doi.org/10.1016/j.cpc.2006.07.002
http://arxiv.org/abs/hep-ph/0511200
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0511200
http://dx.doi.org/10.1140/epjc/s10052-009-1039-6
http://arxiv.org/abs/0901.0386
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0901.0386
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=STPHB,211,1
http://spires/find/hep/www?irn=6927351
http://dx.doi.org/10.1090/S0025-5718-99-00995-3

	Introduction
	Master integrals for massless three-loop form factors
	Conclusion
	Coefficients in (2.2)

		2010-04-07T14:36:13+0200
	Preflight Ticket Signature




