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1 Introduction

The gauge theory/gravity duality [1–4] is a powerful tool that may hold the key to unlocking

the mysteries of strongly-coupled field theory. Although the applicability of the duality has

so far been limited to theories with a high degree of symmetry, it is nonetheless important to

understand the strong-coupling regime of these theories fully, as they share many features

with QCD. A very important and phenomenologically relevant example of a system which

can be studied using the AdS/CFT correspondence is the quark-gluon plasma (QGP). This

system, which can be obtained as a result of the collision of two heavy nuclei, such as those

collisions achieved at RHIC, has shown tantalizing hints of ideal hydrodynamic behaviour

(for some review articles see [5–11]).
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On the other hand, if one applies the gauge theory/string theory duality to calculate

the hydrodynamic properties of the large N limit of an N = 4 supersymmetric Yang-Mills

plasma with gauge group SU(N), one finds results that may be close to those measured

for the QGP [5]. A lot of attention has therefore been devoted to the study of the various

transport coefficients of supersymmetric plasma in the hydrodynamic regime, in an effort

to more accurately model the behaviour of the quark-gluon plasma studied at RHIC. This

programme of approaching the real-world QGP using AdS/CFT techniques requires taking

into account many non-trivial aspects, such as the fact that the QGP contains fundamental

quarks, whereas N = 4 supersymmetric Yang-Mills theory only has fields in the adjoint

representation of the gauge group. Another major ingredient that must be included is going

beyond the infinite ’t Hooft parameter limit, as the QGP is governed by large yet finite

coupling. On the supergravity side, this corresponds to adding string-theoretic higher-

curvature corrections to the gravitational background.

The hydrodynamic regime describes the behaviour of plasma at distance scales ≫ 1/T ,

where T is the temperature of the plasma. One may choose to study plasma in the opposite

regime, namely for distance scales ≪ 1/T , by using a different physical probe. One can

deduce many useful properties of plasma by considering its response to a hard probe, such

as a photon or a parton. In this work we are concerned with Deep Inelastic Scattering (DIS)

in strongly-coupled N = 4 supersymmetric plasma at finite ’t Hooft coupling. As is well-

known, DIS is a key process for investigating hadronic structure. A lepton scatters from

a hadron through the emission of a virtual photon with four-momentum qµ. This photon

then probes the hadron structure at distances of order
√

1/q2, thus giving us valuable

information about the distribution of momenta amongst the various partons comprising the

hadron. The relevant quantity for studying deep inelastic scattering is the matrix element

of two electromagnetic currents inside the hadron. In particular, the hadronic tensor is

defined in terms of structure functions which can be extracted from the imaginary part of

the two-point function of the electromagnetic current.

There are two distinct regimes for this process, separated by the coupling strength of

the theory. At weak coupling the appropriate description is given by perturbative QCD.

The operator product expansion of the current-current correlator is dominated by twist-two

operators in the perturbative regime. On the other hand, at strong coupling, the operator

product expansion is dominated by double trace operators, and the process can be studied

using the gauge/string theory duality [12].

The situation for plasma is different but entirely analogous to that of scattering off

a single hadron. One may now view the scattering as taking place off “quasiparticles”

which constitute the plasma. Clearly, a knowledge of the structure functions governing

this process yields valuable information on the dynamics of plasma in an important regime

which is not probed in the hydrodynamic limit. In particular, deep inelastic scattering

in N = 4 SYM plasma at infinite ’t Hooft coupling has been reported in several recent

articles [13–21]. In the holographic dual description, finite ’t Hooft coupling corrections

to the structure functions of an N = 4 SYM plasma can be investigated by considering

the effect of higher-curvature terms on the vector fluctuations of the metric. This is the

subject of the present article.
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So far, the community has focussed a lot of its effort on finite ’t Hooft coupling cor-

rections to the transport properties of plasma in the hydrodynamic regime (see for in-

stance [22–31]). Such transport properties include the shear viscosity and the mass-density

diffusion constants, both of which can be obtained by studying tensor fluctuations of the

supergravity metric with higher-curvature corrections. One the other hand, the vector fluc-

tuations of the metric yield quantities such as the charge diffusion and conductivity. The

finite coupling corrections to these quantities have been considered so far only for the cases

where the additional curvature terms have been of mass-dimension four and six. The case

of N = 4 supersymmetric Yang-Mills plasma, where the stringy corrections are known, and

are found to yield dimension eight operators, has not been considered. Therefore, the for-

malism we develop below for computing the effect of these dimension eight corrections on

the vector fluctuations, can be applied to the computation of the charge conductivity and

diffusion constants for N = 4 supersymmetric Yang-Mills plasma with ’t Hooft coupling

corrections. In this paper, we are not concerned with the hydrodynamic regime, choosing

instead to focus on the effect of the finite coupling corrections on the structure functions of

the plasma. We will consider the effect of the corrections on the charge transport properties

in a future work [32].

Let us define the premise of the paper more carefully. We investigate the full effect

of the O(α′3) string theory corrections to the retarded correlators of the vector currents

associated with a gauged U(1) sub-group of the global R-symmetry group of N = 4

supersymmetric YM theory. This allows us to compute the structure functions Fs with

s = 1, 2 of a strongly-coupled N = 4 supersymmetric YM plasma with gauge group SU(N)

for finite values of the ’t Hooft coupling. The structure functions are extracted from the

imaginary part of the retarded current-current commutator

Rµν(q) = i

∫

d4x e−iq·x Θ(x0) < [Jµ(x), Jν(0)] > , (1.1)

where Θ(x0) is the Heaviside function, while Jµ(x) is the conserved current associated

with the gauged U(1) subgroup mentioned above. The expectation value is understood as

a thermal average over the statistical ensemble of an N = 4 SYM plasma at temperature T .

It is assumed that in this plasma the tensor Rµν(q) plays an analogous role as the hadronic

tensor does in deep inelastic scattering off a single hadron. In that case, the imaginary part

of the hadronic tensor allows us to extract the structure functions of the hadron, which in

perturbative QCD describe the partonic nature of the hadron.

The tensor structure of the retarded current-current commutator can be derived from

two properties: Jµ(x)-current conservation and Rµν(q) = Rνµ(−q), so that

Rµν(q) =

(

ηµν − qµqν
Q2

)

R1 +

[

nµ nν − n · q
Q2

(nµqν + nνqµ) +
qµqν
(Q2)2

(n · q)2
]

R2 , (1.2)

where the flat four-metric ηµν is chosen with mostly plus signature (−1, 1, 1, 1), while nµ

is the plasma four-velocity and Q2 is the virtuality, defined as Q2 = q2 − ω2. In the

plasma rest frame nµ = (1, 0, 0, 0). We have also defined qµ = (ω, 0, 0, q) as the momentum

transfer. Thus, q · n = −ω and this is a negative quantity.
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We define the DIS plasma structure functions as follows

F1(xB , Q
2) ≡ 1

2π
ImR1(xB , Q

2) , (1.3)

and

F2(xB , Q
2) ≡ −(n · q)

2πT
ImR2(xB , Q

2) . (1.4)

Notice that we have defined a new Bjorken variable which involves the temperature

xB = − Q2

2(q · n)T
=

Q2

2ωT
. (1.5)

This paper has two main results: the first is that the ’t Hooft coupling corrections to

the retarded current-current correlators for the electromagnetic U(1) group enhance the

plasma structure functions. This is the physical result of the formalism developed below,

as far as DIS is concerned.

On a more formal level, at distance scales ≪ 1/T , the computations reported here

imply that the higher-curvature O(α′3) operators affect the on-shell action of the vector

perturbations only through the correction to the metric. This applies to the full set of cor-

rections involving the metric and the Ramond-Ramond five-form field strength appearing

in type IIB supergravity. We show below that the corrections to the Maxwell equations

due to these terms only appear at very high powers of the radial coordinate u, so that their

effect vanishes at the boundary u→ 0.

The paper is organized as follows. In section 2 we briefly describe the basic action and

metric setup for the computation of the retarded current-current correlators at infinite

’t Hooft coupling. In section 3 we study the string theory corrections to the metric,

introducing also the ansatz for the vector fluctuations of the ten-dimensional metric and

the Ramond-Ramond five-form field strength. In section 4 we perform a detailed study of

the contributions of the type IIB string theory action at O(α′3) which contain the Ramond-

Ramond five-form field strength. In section 5 we derive the Maxwell equations for vector

fluctuations with the O(α′3) corrected metric. We then consider deep inelastic scattering

and explicitly show the enhancement of the longitudinal and transverse plasma structure

functions due to the mentioned string theory corrections. In the conclusions presented in

section 6 we discuss our results. The full expression of the C4 term when vector fluctuations

are included is presented in appendix A. In appendix B we provide a detailed analysis of

the equations of motion, along with the subtleties arising from the higher derivative terms

introduced by the higher-curvature corrections to the gauge field action. In appendices C

and D we give details of how to solve the equations of motion with finite ’t Hooft coupling

corrections for the high and low energy regimes respectively. For the later case the physical

interpretation is a multiple scattering series.

2 Infinite ’t Hooft coupling

At infinite ’t Hooft coupling, the string theory holographic dual to finite-temperature N = 4

SYM theory is the AdS-Schwarzschild black hole solution with a five-sphere as the internal
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space. This is a solution of type IIB supergravity with only the leading curvature terms,

namely the Einstein-Hilbert action coupled to the dilaton and the five-form field strength:

S10 =
1

2κ2
10

∫

d10x
√
−G

[

R10 −
1

2
(∂φ)2 − 1

4.5!
(F5)2

]

. (2.1)

It is easy to check that the solution of this system for a constant dilaton and N units of

five-form flux through the five-sphere is given by the metric

ds2 =
(πTR)2

u
(−f(u)dt2 + d~x2) +

R2

4u2f(u)
du2 +R2dΩ2

5 , (2.2)

where f(u) = 1 − u2 and R is the radius of the AdS5 and the five-sphere. In these

coordinates the AdS-boundary is at u = 0 while the black hole horizon is at u = 1. We

denote the AdS5 coordinates by the indices m, where m = {(µ = 0, 1, 2, 3), 5}.

The AdS/CFT correspondence stipulates that supergravity fields are dual to certain

field-theory operators. In this work we are concerned with the conserved current Jµ(x)

associated with a gauged U(1) subgroup of the SU(4) R-symmetry group possessed by

the N = 4 SYM theory [33]. The supergravity field corresponding to Jµ(x) is the s-wave

(massless) mode of the vector fluctuation about the background of eq. (2.2). More precisely,

we introduce off-diagonal fluctuations Gµa of the metric, where a is an index on the five-

sphere, and plug this fluctuating metric into the ten-dimensional action eq. (2.1), making

sure that we are picking a specific Abelian subgroup [34, 35]. We employ the following

ansatz for the perturbed metric [35–37], for a general case which includes the black brane

metric with obvious substitutions, where we have imposed that the internal metric is the

five-sphere

ds2 =

[

gmn +
4

3
R2AmAn

]

dxmdxn +R2 dΩ2
5

+
4√
3
R2
(

sin2 y1 dy3 + cos2 y1 sin2 y2 dy4 + cos2 y1 cos2 y2 dy5

)

Am dxm . (2.3)

We write the metric of the unit five-sphere as dΩ2
5 where

dΩ2
5 = dy2

1 + cos2 y1 dy
2
2 + sin2 y1 dy

2
3 + cos2 y1 sin2 y2 dy

2
4 + cos2 y1 cos2 y2 dy

2
5 .

Also, we use the reduction ansatz for the five-form field strength F5 = G5 + ∗G5, where:

G5 = − 4

R
ǫ5 +

R3

√
3

(

3
∑

i=1

dµ2
i ∧ dφi

)

∧ ∗F2 , (2.4)

while F2 = dA is the Abelian field strength and ǫ5 is the volume form of the five-dimensional

metric of the AdS-Schwarzschild black hole. The Hodge dual ∗ is taken with respect to

the ten-dimensional metric, while ∗ denotes the Hodge dual with respect to the 5D metric

piece of the black hole. In addition

µ1 = sin y1 , µ2 = cos y1 sin y2 , µ3 = cos y1 cos y2 , (2.5)

φ1 = y3 , φ2 = y4 , φ3 = y5 . (2.6)
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Inserting the above ansätze for the type IIB supergravity fields into the zeroth-order super-

gravity action of eq. (2.1) and discarding all the higher (massive) Kaluza-Klein harmonics

of the five-sphere, we are then left with the following action for the zero-mode Abelian

gauge field Am:

S = − N2

64π2R

∫

d4x du
√−g gmp gnq Fmn Fpq , (2.7)

where the Abelian field strength is Fmn = ∂mAn − ∂nAm, the partial derivatives are ∂m =

∂/∂xm, while xm = (t, ~x, u), with t and ~x = (x1, x2, x3) refer to the Minkowski coordinates,

and g ≡ det(gmn), where the latter is the metric of AdS-Schwarzschild black hole.

The equations of motion derived from the above action are just the Maxwell equations

for the bulk five-dimensional Abelian gauge fields Am on the AdS-Schwarzschild spacetime

eq. (2.2). By studying the bulk solutions of these equations subject to certain boundary

conditions that we will specify shortly, we can obtain the retarded correlation functions [38,

39] of the operator Jµ(x). At the level of this section, these correlators would pertain to

the infinite ’t Hooft coupling limit. Our aim is to obtain the leading coupling-constant

dependence of these correlators. We now describe how this is achieved.

3 The O(α′3) string theory corrections

We would like to derive the leading order α′-corrected action for the vector fluctuations

of the metric. The higher-curvature corrections on the supergravity side correspond to

finite-coupling corrections in the field theory. In other words, for any given field-theoretic

observable O, we can write a series O0 +O1/λ
n1 + · · · , where λ is the ’t Hooft coupling, and

n1 is a positive number which indicates that the lowest order correction to the result at infi-

nite coupling O0 need not begin at order one. The inclusion of higher-derivative corrections

to the supergravity must take place at the level of the ten-dimensional action, through the

evaluation of stringy corrections to eq. (2.1). The leading corrections were found to begin

at O(α′3). There is a large volume of literature on these corrections, and the initial appli-

cation to holography was at zero temperature [40], where the metric was found to remain

AdS5 × S5, verifying certain non-renormalization theorems of CFT correlators. At finite

temperature [41, 42], much of the work focussed on the corrections to the thermodynamics

of the black hole. The corrections were then revisited in references [43–45], where the

computation of the α′-corrected metric was improved and attempts were made to address

the issue of the completeness of the corrections at leading order in α′. More recently, the

conjectured lower bound for the ratio of the shear viscosity to the entropy of any mate-

rial [46, 47],1 has prompted interest in the higher curvature corrections to the supergravity

duals of gauge theories, primarily in the spin-2 sector of the fluctuations [22, 26]. In [27, 50]

the higher curvature corrections to the dual of N = 4 SYM were parsed thoroughly to de-

termine how they affect the metric. Our case is slightly more complicated, because we

must use the corrected metric as our background and must also evaluate the action for

the vector fluctuations of the metric, thereby obtaining the corrected Lagrangian for the

1More recent studies have shown that the conjectured universal lower bound does not hold when certain

higher-derivative corrections are included. For a discussion see [48, 49] and references therein.
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field Aµ. There are therefore two distinct parts to the calculation: the first part consists of

obtaining the minimal gauge-field kinetic term using new perturbed and corrected metric

and five-form ansätze. The second part of the computation consists of obtaining the correc-

tions to the gauge field Lagrangian coming directly from the higher-derivative operators.

The reason why these two steps are distinct is that the first step will require insertion of

the corrected perturbation ansätze into the minimal 10D supergravity two-derivative part

eq. (2.1). The second step requires insertion of the uncorrected perturbation ansätze into

the higher-curvature terms in ten dimensions.

The corrections to the 10D action are given by [27]

Sα′

10 =
R6

2κ2
10

∫

d10x
√
−G

[

γe−
3

2
φW4 + · · ·

]

, (3.1)

where γ encodes the dependence on the ’t Hooft coupling λ through the definition γ ≡
1
8 ξ(3) (α′/R2)3, with R4 = 4πgsNα

′2. Setting λ = g2
YMN ≡ 4πgsN , γ becomes

γ ≡ 1

8
ξ(3)

1

λ3/2
. (3.2)

The W4 term is a dimension-eight operator, and is given by

W4 = Chmnk Cpmnq C
rsp

h Cq
rsk +

1

2
ChkmnCpqmnC

rsp
h Cq

rsk , (3.3)

where Cq
rsk is the Weyl tensor. The dots in eq. (3.1) denote extra corrections containing

contractions of the five-form field strength F5, which we can schematically write as γ(C3T +

C2T 2 + CT 3 + T 4), where C is the Weyl tensor and T is a tensor found in [27] and

composed of certain combinations of F5. The authors of [27] showed that the metric

itself is only corrected by W4, essentially due to the vanishing of the tensor T on the

uncorrected supergravity solution. After taking into account the contribution of this term

to the Einstein equations, one finds the corrected metric [41, 42, 44]

ds2 =
(r0
R

)2 1

u

(

−f(u)K2(u) dt2 + d~x2
)

+
R2

4u2f(u)
P 2(u) du2 +R2L2(u) dΩ2

5 , (3.4)

where

K(u) = exp [γ (a(u) + 4b(u))] , (3.5)

P (u) = exp [γ b(u)] , (3.6)

L(u) = exp [γ c(u)] . (3.7)

and

a(u) = −1625

8
u2 − 175u4 +

10005

16
u6 , (3.8)

b(u) =
325

8
u2 +

1075

32
u4 − 4835

32
u6 , (3.9)

c(u) =
15

32
(1 + u2)u4 . (3.10)
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Notice that r0 is related to the temperature by

r0 =
πTR2

(1 + 265
16 γ)

, (3.11)

so that there is a hidden but important γ-dependence inside r0. The reader should be

aware that there is some confusion in the literature regarding the α′-corrected metric, and

we refer the reader to [42] for a discussion. We use the metric of [42], and our conventions

follow theirs’ closely, with the obvious change of coordinate u = r20/r
2.

Now that we know the corrected metric, we are able to obtain the minimal kinetic term

of the U(1) gauge field. To this end, we must construct the corrected versions of eq. (2.3)

and eq. (2.4) and insert them into the two-derivative supergravity action eq. (2.1). The

metric ansatz we use is that of eq. (2.3) with the appropriate corrected substitutions, and

the imposition R → RL(u) to take account of the non-factorisability of the corrected

metric. As for the ansatz for F5 we use the fact that we are only interested in the terms

which are quadratic in the gauge-field perturbations in order to define the following ansatz,

which is a direct extension of the unperturbed ansatz of eq. (2.4)

G5 = − 4

R
ǫ+

R3L(u)3√
3

(

3
∑

i=1

dµ2
i ∧ dφi

)

∧ ∗F2 . (3.12)

Note that we are not interested in the part of G5 which does not contain the vector

perturbations. This part is denoted by ǫ, and only contributes to the potential of the

metric, and is thus accounted for by the use of the corrected metric in the computation.

Therefore, the only difference between this ansatz and the uncorrected one as far as the

gauge field is concerned is the warp factor L(u), which starts at O(u4) and will be seen to

drop out of all of our results. Inserting the metric ansatz and the F5 ansatz into the action

eq. (2.1), we obtain the kinetic term for the gauge field Am, as expected:

S = − N2

64π2R

∫

d4x du
√−g L7(u) gmp gnq Fmn Fpq , (3.13)

where the dependence on the dimensionless factor L(u) is acquired by the proper reduction

from ten dimensions [52], and ultimately arises as a consequence of the non-factorisability

of the corrected metric [42]. The determinant factor
√−g refers to the five-dimensional

part of the 10D metric of eq. (2.3), and all 5D indices are raised and lowered by that metric.

We have thus completed the first step in our programme, that of obtaining the minimal

gauge kinetic term from the two-derivative supergravity action. The next step is to obtain

the effect of the eight-derivative corrections of eq. (3.1). Concretely, we must determine the

five-dimensional operators that arise once the perturbed metric and five-form field strength

ansätze are inserted into eq. (3.1). Crucially, we are able to use the uncorrected ansätze

eq. (2.3) and eq. (2.4) in this step, because using the corrected ones results in terms of even

higher order in γ. The salient point to take from the discussion in the next section is that a

simple operator analysis together with an analysis of the equations of motion reveals that

the contributions arising directly from the ten-dimensional higher-curvature operators will

– 8 –
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not contribute to the on-shell action in this work. We explain this important statement in

the next section, where we also introduce the explicit expressions for the ten-dimensional

eight-derivative corrections.

4 The higher-curvature operators

We first introduce the explicit expressions of the eight-derivative corrections. In addition

to W4 = C4, we have the terms that we denoted above by γ(C3T + C2T 2 + CT 3 + T 4).

The tensor C is the Weyl tensor, and it only depends on the metric. The six-tensor T is

defined in terms of the self-dual field F+ = (1 + ∗)F5/2 via

TABCDEF = i∇AF
+
BCDEF +

1

16

[

F+
ABCMNF

+
DEF

MN − 3F+
ABFMNF

+
DEC

MN
]

, (4.1)

where there is implicit antisymmetry in [A,B,C] and [D,E,F ] in addition to symmetry

under the interchange [A,B,C] ↔ [D,E,F ]. Note that for the purposes of this section

we write the ten-dimensional indices in capital letters, reserving small caps for the AdS-

Schwarzschild coordinates, and denoting the coordinates of the five-sphere by indices with

a tilde ã. The six-tensor T is a complicated object in terms of its index structure, but

it is a rather simple object when viewed from the point-of-view of the 5D effective field

theory obtained upon integrating out the sphere. The sheer size of the six-tensor T means

that it is very difficult (impossible) to compute its contribution to the 5D gauge field

Lagrangian directly. We will therefore adopt a different approach below. We are interested

in evaluating CABCD and TABCDEF on the perturbed ansätze eq. (2.4) and eq. (2.3). We

write the two tensors CABCD and TABCDEF as

CABCD = C
(0)
ABCD + C

(1)
ABCD + C

(2)
ABCD ,

TABCDEF = T (0)
ABCDEF + T (1)

ABCDEF + T (2)
ABCDEF , (4.2)

where the superscript (i) on each term in the right hand side of this equation denotes the

power of Fab contained within that term, where Fab is the field strength of the U(1) gauge

field. A crucial property of the six-tensor TABCDEF is that it vanishes when evaluated

on the uncorrected F5 and GMN with no vectorial perturbations. In other words, T (0)

is zero. Given that we are only interested in operators which are quadratic in Fab, we

can then completely discard the operators CT 3 + T 4, which is a massive simplification.

We then focus on the terms given by γ(C4 + C3T + C2T 2). We first note that C4 only

contains the metric and no factors of the F5 ansatz. Our strategy will be to discuss the

terms C3T + C2T 2 and draw general conclusions about the 5D operators that can arise

from them. We will then compute C4 explicitly using the metric ansatz, and show that it

confirms our conclusions about the expected class of operators. This is not a surprising

outcome in a certain sense: the terms containing T are nothing but the supersymmetric

completion of the C4 term. Our final conclusion will be that these operators all come in

with a very high power in u, the radial coordinate. Given that the holographic partition

function is evaluated in the ultraviolet, i.e. in the limit u→ 0, we can prove that the only

contributing operator is the minimal kinetic term of eq. (3.13).
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The important point to remember in the following analysis is that we use the uncor-

rected metric and five-form ansätze. This has crucial consequences, the first being that the

Weyl tensor factorizes on the unperturbed metric because the latter is a direct product.

Moreover, the five-sphere has vanishing Weyl tensor. In addition, the tensor TMNPQRS is

such that terms with one AdS index and five internal S5 indices are zero, and terms with

one internal index and five AdS indices are also zero. Finally, the fact that we are only

interested in terms that have two factors of Fij , where the latter is the U(1) gauge field

strength, simplifies the analysis considerably. The final deduction that we require below

is that the terms coming from T (1,2) will give rise to five-dimensional operators composed

solely of gab, Fij , ∇kFij and the five-dimensional Levi-Civita tensor ǫabcde, where all the

indices are AdS-Schwarzschild indices. This is a direct consequence of the ansatz for T (1,2):

at most it has two-derivatives, and at least one of them must reside in the field strength

Fij . Therefore, we cannot obtain terms that go like Rij, the Ricci tensor of the AdS-

Schwarschild space, or like Rijkl, because both of these require two derivatives acting on

the metric components. This will become clear when we discuss the details of the analysis.

4.1 C2T 2 terms

In this section we will examine the ten-dimensional eight-derivative terms and determine

the five-dimensional gauge-field and gravity operators that will result upon dimensional

reduction. The approach is based on a counting of the derivative terms and symmetries of

each particular term. Let us begin with the C2T 2 term. According to [50] there are eight

of these terms, with different Lorentz contractions. They are given by:

C2T 2 = CABCD CABCE TDGFHIJ TEFGHIJ (4.3)

+ (CABCD CABEF TCDGHIJ TEFGHIJ + CABCD CAECF TBEGHIJ TDFGHIJ

+CABCD CAECF TBGHDIJ TEGHFIJ)

+ [CABCD CAEFG TBCEHIJ TDFHGIJ + CABCD CAEFG TBCEHIJ TDHIFGJ

+CABCD CAEFG TBCFHIJ TDEHGIJ + CABCD CAEFG TBCHEIJ TDFHGIJ ] + h.c.

where we have neglected the numerical coefficients of the terms and left the metric tensors

implicit. We are only interested in operators quadratic in the gauge-field Aa. Immediately

it follows that the only contribution can arise via [C(0)]2[T (1)]2, so that all of the metric

factors and the Weyl factors are non-fluctuating. There are two types of contributions:

those with only Fij and those with Fij and ∇kFij .

4.1.1 C2T 2 terms with no ∇F+

The first term (see [50]) is given by

C2T 2 =
30240

86016
GKA

(0) G
BL
(0)G

MC
(0) G

NF
(0) G

PH
(0) G

GQ
(0) G

IR
(0)G

JS
(0) C

(0)
ABC

D C
(0)
KLM

E T (1)
DGFHIJ T (1)

ENPQRS .

(4.4)

The two-tensor Gka
(0)G

bl
(0)G

mc
(0)C

(0)
abc

d C
(0)
klm

e = C
(0)
abc

d Cabce
(0) is diagonal and has no S5 indices.

The entries are of the form (u5, u5, u5, u5, u6). Therefore, if we want to consider the five-

dimensional gauge-invariant operators coming from the above equation, then it is clear that
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the C
(0)
abc

d Cabce
(0) term gives us simply Ĉlmn

i Ĉ lmnj, where Ĉ is the Weyl tensor evaluated on

the AdS-Schwarzschild space only. Now, the remaining piece is

GNF
(0) G

PH
(0) G

GQ
(0) G

IR
(0)G

JS
(0)T

(1)
DGFHIJ T (1)

ENPQRS .

The factors of T (1) can only give Fij and Gkl, where everything now is in the AdS-

Schwarzschild space. Therefore the two operators that can be obtained after integrating

out the S5 from this piece are simply

Ĉlmn
i Ĉ lmnj gpr FirFjp , (4.5)

and

Ĉlmn
i Ĉ lmnjgijF

2 . (4.6)

Schematically, the contribution of such operators is u4(u2F 2
xz + u3F 2

xu).

This manner of computation can then be extended to all of the ten-dimensional oper-

ators of the form C2T 2. For example, the next term in the list is given by is

C2T 2 = GGK
(0) G

HL
(0) G

IM
(0) G

JN
(0) C

(0)
AB

CD CABEF
(0) T (1)

CDGHIJ T (1)
EFKLMN . (4.7)

To get the contribution of this operator to the five-dimensional effective theory we must

enumerate the various types of operators coming from two factors of Fij and as many factors

of the metric as we need, as well as the factor C
(0)
st

ij Cstkl
(0) , evaluated in AdS-Schwarzschild.

These will have the form

Ĉst
ij Ĉstkl FijFkl , Ĉst

ij Ĉstkl gik gjl F
2 , Ĉst

ij Ĉstklgik g
mn FjnFlm , (4.8)

where we have used the fact that Cijkl
2 = C

(0)
st

ij Cstkl
(0) obeys Cijkl

2 = Cklij
2 =

−Cjikl
2 = −Cijlk

2 . The contribution of these operators is again of the schematic

form u4(u2F 2
xz + u3F 2

xu).

The final type of term is that given by

C2T 2 = GLH
(0) G

IM
(0) G

JN
(0) C

(0)
A

BCD CAEFG
(0) T (1)

BCEHIJ T (1)
DLMFGN . (4.9)

We must now enumerate all the operators that will contain the six-tensor C
(0)
a

bcd Caefg
(0) and

two factors of Fij and all the necessary metric factors. For example, we have

Ĉa
bcd Ĉaefg gcf gdg Fbm gmn Fne . (4.10)

Again, the explicit u-dependence of this operator is of the same form as that of the previ-

ous two.

4.1.2 C2T 2 terms with ∇F+

Let us extend this kind of analysis to the term in T (1) which goes like ∇F+. In this case, we

can now build operators from Fij and ∇kFij . The analysis then follows exactly as before.

For example, from the Weyl tensor with two up indices, we obtain

[C2
(0)]

AB(T (1)T (1))ab −→ Ĉlmn
i Ĉ lmnjgbf gcg ∇i Fbc ∇jFfg . (4.11)
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One can check that this operator gives us terms like u7(∂2
zAx)2. We also get u8(∂z∂uAx)2,

and u9(∂2
uAx)2. In principle, we may also have terms that involve the Levi-Civita tensor,

such as

Ĉlmn
i Ĉ lmnj gij ǫabcde ∇aF bc F de . (4.12)

The point here is that these operators enter with a very high power dependence in u. The

reason is that we need at least five factors of gab to contract the indices, which then means

that this operator will enter with at least u9 in its coefficient, rendering it harmless.

Also, there are now terms with odd numbers of derivatives acting on the gauge field.

These come from the connection piece in the covariant derivative ∇. For example, from

the above operator we have

Ĉlmn
i Ĉ lmnj gbf gcg Γs

ab Fsc ∇jFfg . (4.13)

This term then gives us contributions of the form u7∂zAx ∂u∂zAx. Of course, we may have

other contractions amongst the terms, but the overall effect is the same. The crucial point

is the high power of u which enters into these higher derivative operators. Another operator

is given by

Ĉlmn
i Ĉ lmnj gij g

ab gcf gdg ∇aFcd ∇bFfg . (4.14)

A simple counting of powers of u reveals that these two operators contribute at the

same order.

Consider now the contribution of the C2
(0) term with four indices up. One may be

tempted to think that the u-dependence drops, but that is not the case. Consider for

example a situation where the contractions are such that we have the following operator

Ĉst
ij Ĉstkl gab ∇aFij ∇bFkl . (4.15)

By direct computation of Ĉst
ij Ĉstkl, we may show that the contributions of this operator

enter at the same power in u. Again, operators with the Levi-Civita tensor are not ruled

out, so we may obtain

Ĉst
ij Ĉstkl ǫabcij ∇aF bc Fkl . (4.16)

The index contractions imply that the least power with which this operator contributes

is then u9, as before. The same argument follows for the contribution of C2
(0) with six

indices up.

4.2 C3T terms

The C3T term is uniquely given by

C3T = CJKMN CKL
RS CJ

PLQ TMNPQRS + h.c. . (4.17)

The compactification of this term will receive two types of contributions. In the first, all

the gauge-field dependence will reside in T . This term is then written as C3
(0)T (2), where

T (2) here denotes the part of T containing two powers of the gauge field. The other type

of contribution will be that where the quadratic dependence on the gauge field is shared

between the C3 factor and the T tensor, and we denote this by C(1)C2
(0)T (1). We begin

with the former.
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4.2.1 C3
(0)T (2)

This term is given by

C3T = CJKMN CKL
RS CJ

PLQ T (2)
MNPQRS . (4.18)

Again, the vanishing of the Weyl tensor on the S5 means that the compactification of

this term is straightforward. The Weyl tensors simply go to the AdS ones, so that all the

indices in the above expression become AdS indices. Moreover, T (2) cannot contain pieces

of the form ∇F , as is clear from the definition of the tensor T . Thus, the T (2) piece is

restricted to providing two factors of Fij , as well as factors of the metric tensor. A simple

five-dimensional operator resulting from the compactification would then be

Ĉjkmn Ĉj
plqĈkl

rs gmp grq gns F
2 . (4.19)

The resulting contribution is then u6(u2F 2
xz + u3F 2

xu). Another operator is given by

Ĉjkm
s Ĉj

plqĈkl
rs FmrFpq . (4.20)

We find this to be given by u8(F 2
xz + uF 2

xu), exactly as for the previous operator. There

are many other contractions for the indices inside this operator, but they all contribute at

the same order in u.

4.2.2 C(1)C
2
(0)T

(1)

First, write the following shorthand notation for the contraction of three Weyl tensors

CJK
C

N CJE
LQCKLH

S = [C3
(0)]C

N
E

Q
H

S . (4.21)

In these terms the gauge-field dependence enters directly into the Weyl tensor itself. These

are in principle very complicated terms. This can be schematically written as

GCM
(0) G

EP
(0) G

HR
(0)

[

[C(1)C(0)C(0)]C
N

E
Q

H
S +[C(0)C(1)C(0)]C

N
E

Q
H

S +[C(0)C(0)C(1)]C
N

E
Q

H
S
]

T (1)
MNPQRS . (4.22)

where for example we have for the second term:

GCM
(0) G

EP
(0) G

HR
(0)

[

C(0)C(1)C(0)

]

C
N

E
Q

H
S = GCM

(0) G
EP
(0) G

HR
(0) C

JK
(0) C

N C
(1)
JE

LQC
(0)
KLH

S . (4.23)

We raise the indices and consider the tensor CJKM
(0) S C

(1)
J

PLQC
(0)
KL

RS . The indices J , M ,

N , L, R, S are all AdS indices. To get a non-zero result, we then require that both P and

Q are internal or AdS indices. But the tensor C
(1)
J

PLQ is off-diagonal, and so P and Q

cannot be AdS indices. Therefore, we can write the contribution of this term as

Cjkm
(0) sC

(1)
j

p̃lq̃C
(0)
kl

rs T
(1)
mnp̃q̃rs . (4.24)

where p̃ and q̃ are internal S5 indices. Examining the tensor C
(1)
j

p̃lq̃, we find that it only

has first derivatives of the gauge field Aa. We must now determine what manner of AdS-

Schwarzschild tensors can come from C
(1)
j

p̃lq̃ upon integrating out the five-sphere. The
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fact that C
(1)
j

p̃lq̃ contains two internal indices means that the only available tensor is again

simply of the form glaFja. For example, we cannot obtain R̂laFja because this one contains

three derivatives, but the maximum number of derivatives contained in the Weyl tensor

is two.

From the T (1)
mnp̂q̂rs term we get the usual suspects, namely terms like Fij and Gab. In

principle, we may obtain terms of the form ǫabcde∇aF bc as well. For example, we have

the operator:

Ĉjkmn Ĉkl
rs gla gnr Faj Fms . (4.25)

We may also have an operator like

Ĉjkmn Ĉkl
rs gla gnrFaj ǫmsdef ∇dF ef . (4.26)

The latter operator actually contributes at a very high order in u, because of the factors

of the metric which contract the Levi-Civita tensor with the ∇F tensor.

4.3 The contribution of the operators as a series in u

Having determined the form of the five-dimensional operators descending from the eight-

derivative corrections to type IIB supergravity, we are able to compute their contribution to

the gauge-field Lagrangian explicitly. Given that the relevant quantity as far as holography

is concerned is the on-shell action evaluated on the boundary of the space, it is sufficient

to exhibit the low-u dependence of the contributions. We find the following terms:

u6(∂αAβ)2 + · · · + u7(∂uAβ)2

+u7(∂αAβ)(∂u∂γAβ) + u7(∂α∂γAβ)2

+u8(∂uAβ)(∂u∂uAβ) + · · · + u8(∂α∂uAβ)2 + · · · + u9(∂2
uAβ)2 + · · · (4.27)

where the · · · denote terms which have coefficients that contain a higher u-dependence.

The notation here is such that Greek indices α, β, γ denote the four-dimensional Minkowski

slices of the AdS-Schwarzschild space, i.e. the directions t, x, y, z. The crucial point is

that the inclusion of these terms does not affect the on-shell action of perturbations whose

typical length scale is much smaller than 1/T , as we discuss in the next section.

5 The corrected equations of motion

We have argued above that inserting the perturbed metric and five-form field strength

into the eight-derivative corrections results in a slew of operators for the gauge field, all

of which contain at least two factors of the gauge field strength Fab and two factors of

the AdS-Schwarzschild Weyl tensor Ĉa
bcd. In a certain sense the higher dimensionality

of the corrections is then replaced by high dependence on the radial coordinate u. In

principle, we should be able to organize the result of the dimensional reduction of the

O(α′3) corrections into a series of eight-derivative gauge invariant operators quadratic

in Fmn with fixed coefficients, in the manner of [29, 30]. However, whereas the latter

references consider operators that are at most carrying six derivatives, our case goes up to
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eight derivatives, and the large number of such distinct operators, coupled with the sheer

size of the expression produced even just by the C4 correction (see appendix A), means that

such a programme is unfeasible. We therefore rely on the results of the previous section,

considering the terms with the lowest u-dependence. Let us illustrate the behaviour of these

terms schematically: the action in the presence of the corrections at small u is given by

action ∝
∫

d4x du
1

2u3

[

−u2 (∂tAx)2 + u2 (∂iAx)2 +
4u3r20
R4

(∂uAx)2

+γB1u
9
(

∂2
uAx

)2
+ γB2u

8
(

∂2
uAx

)

(∂uAx) + · · ·
]

, (5.1)

where the first line is the contribution of the minimal F 2 kinetic term, and the terms with

coefficients Bi arise directly from the eight-derivative term itself, with the dots denoting

extra terms arising from the eight-derivative corrections but containing less u-derivatives

(the terms considered here are the most problematic). Due to the high positive power

of u in the terms coming from SC,T , we find that none of the terms produced affect the

solutions of the equations of motion in the ultraviolet. They all enter with at least u6 in

their coefficient, rendering them irrelevant at small u. To see this, recall that the relevant

quantity for holography is the on-shell action evaluated at the boundary of the space u = 0.

Now, it is easy to show that the gauge field must behave like Aa = a+ b u+ c u log(u)+ · · ·
near the boundary, because the ultraviolet boundary is a regular singular point of the

equations of motion, with indices σ = 0, 1. If we take this form and plug it into eq. (5.1),

and then take the limit u→ 0, the only contributing terms will be those coming from the

minimal kinetic term. We refer the reader to appendix B for more details of this argument,

and a thorough examination of the equations of motion. Further, this conclusion means

that we may eliminate all terms of O(u4) or higher from L(u), P (u) and K(u) as defined in

eq. (3.4), as they will not contribute to the on-shell action. The effect of this is dramatic:

it means that for the purposes of this computation we can assume that the corrected

metric is factorisable, because L(u) = 1 + O(u4), and therefore drops out of the entire

computation. A final important observation is that the overarching SU(4) gauge symmetry

of the vector fluctuations ensures that, at least at quadratic order in the Lagrangian, no

mixing with other fluctuations can occur. For fields which are sourced by the O(α′3)

corrections themselves, any effect on our calculations will contribute to even higher power

of α′ and therefore does not enter into what follows [27].

The upshot of the preceding arguments is that we may compute the equations of

motion solely using the minimal F 2 term and the corrected metric, retaining only O(u2)

corrections in the functions P (u), K(u) and setting the warp factor L(u) to one, as it is

given by 1 + O(u4) + · · · . Given these enormous simplifications, we may now present the

corrected equations of motion for the gauge fields. We first fix the gauge Au = 0, and

choose the perturbation as a plane-wave propagating in the x3-direction [14]. Thus, an

appropriate ansatz for the gauge field is

Aµ(t, ~x, u) = e−iωt+iqx3 Aµ(u) . (5.2)
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The equations derived from eq. (2.7) are then given by

̟A′
0 + κ f K2(u)A′

3 = 0 , (5.3)

A′′
i +

f ′

f
A′

i + ∂u

(

log

[

K(u)L7(u)

P (u)

])

A′
i +

[

̟2 − κ2 f K2(u)

u f2K2(u)

]

P 2(u)Ai = 0 , (5.4)

A′′
0 + ∂u

(

log

[

L7(u)

P (u)K(u)

])

A′
0 −

κ

u f
P 2(u) (κA0 +̟A3) = 0 . (5.5)

where we have defined ̟ = ωR2/(2r0) and κ = qR2/(2r0). Defining ã(u) ≡ A′
0(u) we may

recast eq. (5.5) into

ã′′ +
(u f)′

u f
ã′ + ∂u

(

log
L7(u)

P 3(u)K(u)

)

ã′ +
P 2(u)

u f2

(

̟2 − κ2 fK2(u)

K2(u)

)

ã

+
P 2(u)

uf
∂u

(

uf

P 2(u)
∂u log

[

L7(u)

P (u)K(u)

])

ã = 0 . (5.6)

In order to solve the above equations we have to impose certain boundary conditions.

For the non-vanishing U(1) gauge fields we have generic boundary conditions at u = 0.

Specifically, from eq. (5.5) we obtain

lim
u→0

[u ã′(u)] = κ (κA0 +̟A3)|u=0 = κ2AL(0) . (5.7)

On the other hand, at u = 1 the appropriate boundary condition that must be imposed is

equivalent to selecting only solutions that describe waves going into the black hole, such

that there is no reflection off the horizon [38, 39]. At zero temperature, this condition is

consistent with the requirement of regularity of the solutions at the AdS horizon u→ ∞.

Once we know the solutions of the equations of motion, the next step is to evaluate

the on-shell action by inserting the solutions into eq. (2.7), which, after integration on u

and using the boundary conditions above, gives 2

Son−shell = − N2 r20
16π2R4

∫

d4x
[

ã
(

A0 +
̟

κ
A3

)

|u=0 −Ai ∂uAi(u)|u=0

]

. (5.8)

Defining the on-shell action density

Son−shell =

∫

d4x Ŝon−shell , (5.9)

one may now obtain the desired current-current correlator by differentiating with respect

to the boundary value of the gauge field Aµ ≡ Aµ(u = 0), so that

Rµν =
∂2Ŝon−shell

∂Aµ ∂Aν
. (5.10)

The results of this section can therefore be used to compute the fully-corrected solution

of the equations of motion for the gauge fields Aµ at order O(α′3), in any desired regime

2We remind the reader that, following the prescription of [14, 38, 51], we have dropped the contribution

to the on-shell action coming from the horizon at u = 1.
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of the parameters of the system, provided that the length scale of the perturbation is

much smaller than 1/T . By holography, this enables us to obtain the behaviour of the

electromagnetic current-correlator at finite ’t Hooft coupling. We now proceed to solve

the equations of motion of the gauge fields in the regime appropriate for deep inelastic

scattering.

5.1 Solving the bulk equations

At this point we need to solve the Maxwell equations for the bulk U(1) gauge field. To

avoid confusion, we define κ0 = q/2πT and ̟0 = ω/2πT . The quantities denoted with a

subscript 0 are those corresponding to the case where O(α′3) corrections are not considered

(i.e. infinite ’t Hooft coupling limit). It is also convenient to define K2 = κ2 −̟2 (recall

that the virtuality Q is given by Q2 = q2 − ω2, so K = QR2/(2r0)). We also define

K2
0 = κ2

0−̟2
0 = Q2/(2πT )2. It is then convenient to recast the EOMs as a time-independent

Schrödinger-like equation3

ψ′′ − V (u)ψ = 0 . (5.11)

For this purpose we define the function ψ(u) = Ω(u) ã(u) and by choosing

Ω(u) =

[

u f(u)L7(u)

P 3(u)K(u)

]1/2

, (5.12)

we obtain the Schrödinger-like equation (5.11) with the potential given by

V (u) =
Ω′′(u)

Ω(u)
−
{

P 2(u)

uf
∂u

(

uf

P 2(u)
∂u log

[

L7(u)

P (u)K(u)

])

+
P 2(u)

u f2

(

̟2 − κ2 fK2(u)

K2(u)

)}

.

(5.13)

Let us firstly try to intuitively understand the relation between the gravity and field theory

descriptions by analyzing the parametric dependence of the potential barrier given by

the above potential. There are special regions of parameter space for which the physical

behaviour is rather distinct, and they are distinguished by the following ratio, which we

denote by rq, and which is defined in terms of the physical dimensionfull quantities of the

plasma, namely ω, q and T :

rq =
κ0

K3
0

=
q/2πT

(Q/2πT )3
=

κ

K3

(

1 + γ
265

16

)2

. (5.14)

In figure 1 we plot the O(α′3)-corrected potential barrier V (u) as a function of the vari-

able u, for different parametric values of the ratio rq and different values of the ’t Hooft

coupling, as explained below. We also plot the potential barrier for the same values of this

ratio without string theory corrections, thus allowing us to see the effect of finite coupling

explicitly. In the limit of infinite coupling, the potential becomes

lim
λ→∞

V (u) =
1

u(1 − u2)2

[

− 1

4u
(1 + 6u2 − 3u4) + K2

0 − κ2
0 u

2

]

. (5.15)

3We here neglect the terms in the Lagrangian coming from the higher-derivative corrections, as they do

not influence the final result.
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Figure 1. The potential barrier for the A0 gauge field. In each figure there are three different

values for the ’t Hooft coupling, i.e. λ→ ∞, 50 and 10, indicated by solid, dashed and dotted lines,

respectively. Figures 1.a, 1.b and 1.c correspond to different values of the parameters rq and κ0. In

figure 1.a rq = 1.14 and κ0 = 20; in figure 1.b rq = 1.539 and κ0 = 27; while in figure 1.c rq = 1.71

and κ0 = 30. K0 has been set to 3
√

3/2 for all curves.
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The potential barrier for the longitudinal mode A0 without α′ corrections is plotted with

a solid line. We can distinguish among three possible parametric situations in terms of

the ratio rq. In the first case (figure 1.a) the ratio rq is 1.14, which gives a non-vanishing

potential barrier. This case corresponds to intermediate energies where the structure func-

tions of deep inelastic scattering are expected to be very small. For extremely large values

of λ the ”tunneling effect” through the potential barrier is very small. For finite values of

λ the height of the potential barrier decreases, depending on the actual value of λ, thus

enhancing the tunneling effect as the value of the ’t Hooft coupling decreases. In fact, we

have used the values λ = 50 (dashed line) and λ = 10 (dotted line) to show explicitly this

effect in each figure. In the figure 1.b rq = 1.539 and we see that for this limiting case the

height of the barrier vanishes for λ→ ∞. Figure 1.c shows the potential for rq = 1.71. This

case corresponds to the high energy scattering process, where the potential barrier disap-

pears and the wave can propagate all the way towards the black hole horizon and can thus

be absorbed. This implies that the retarded current-current correlation function acquires

an imaginary part thereby giving non-vanishing structure functions. We confirm that the

O(α′3)-corrections to the potential decrease the height of the barrier independently of the

κ/K3 values. This enhances the probability of complete propagation of the wave to the

black hole horizon, therefore increasing the imaginary part of the tensor Rµν as the value of

λ decreases. Notice that for the above figures we have used the values λ = 50 which gives

γ ≃ 0.00042, while for λ = 10 it gives γ ≃ 0.00474. In addition, the height of the barrier

is very sensitive to the value of the ’t Hooft coupling as can be seen from the figures.

We now focus on the transverse modes Ai(u). From equation (5.4), we can define

φ(u) = Σ(u)Ai(u) , (5.16)

where

Σ(u) =

(

K(u)L7(u) f

P (u)

)1/2

. (5.17)

Proceeding as in the previous case, we obtain a time-independent Schrödinger-like equation

for Ai

φ′′(u) − V (u)φ(u) = 0 , (5.18)

where the potential is

V (u) =
Σ′′

Σ
− P 2(u)

u f2

(

̟2 − κ2 fK2(u)

K2(u)

)

, (5.19)

which for λ→ ∞ reduces to

lim
λ→∞

V (u) =
K2

0 − u
(

uκ2
0 + 1

)

u (u2 − 1)2 . (5.20)

In figure 2 we display the potential barrier for the transverse modes Ai. From top to

bottom, these figures correspond to the ratios rq = 1.14, 1.539 and 1.71, respectively. In

each figure we have three curves corresponding to λ→ ∞ (solid line), λ = 50 (dashed line)

and λ = 10 (dotted line) as in figure 1. It is clear that we again have a reduction in the

barrier height for decreasing λ, which implies an enhancement of the structure functions.

– 19 –



J
H
E
P
0
4
(
2
0
1
0
)
0
1
2

0.2 0.4 0.6 0.8 1.0
u

-300

-200

-100

100

200

300
V

2. a

0.2 0.4 0.6 0.8 1.0
u

-300

-200

-100

100

200

300
V

2. b

0.2 0.4 0.6 0.8 1.0
u

-300

-200

-100

100

200

300
V

2. c

Figure 2. The potential barrier for the transverse modes Ai(u). In each figure there are three

different values for the ’t Hooft coupling, i.e. λ → ∞, 50 and 10, indicated by solid, dashed and

dotted lines, respectively. Figures 2.a, 2.b and 2.c correspond to different values of the parameters

rq and κ0. In figure 2.a rq = 1.14 and κ0 = 20; in figure 2.b rq = 1.539 and κ0 = 27; while in figure

2.c rq = 1.71 and κ0 = 30. K0 has been set to 3
√

3/2 for all curves.
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Having physically motivated the expected enhancement in our results, we now com-

pute the current-current correlation functions, reading off the structure functions from the

imaginary parts. Interestingly, one can consider two different parametric regimes.

Let us briefly study the low energy regime, leaving details of the computation to the

appendix C. We focus on the parametric region where κ ≪ K3, which is equivalent to

the low temperature regime qT 2 ≪ Q3. In addition, by restricting the radial coordinate

u to a small region 0 ≤ u ≤ 1/K2 ≪ 1, equations (5.4) and (5.6) can be solved in

perturbation theory. The physical interpretation is given by a multiple scattering series at

low energy [14].

The on-shell 5D action of eq. (5.9) together with the on-shell action density (5.8) can

be split into two terms:

Son−shell = S
(0)
on−shell + S

(1)
on−shell , (5.21)

where S
(0)
on−shell is the zero temperature contribution to the on-shell action, while the other

term is proportional to T 4. Thus, within the parametric region mentioned above and with

the regularization scheme used in [14] the on-shell action becomes

S
(0)
on−shell = − N2

64π2
log

(

Q2

Λ2

)

[

(q A0 + ωA3)2 −Q2 AT · AT

]

u=0
, (5.22)

where Λ is a regulator in the gauge theory. As expected, this expression is not corrected by

the effect of the O(α′3) term in the 10D action. Therefore, the corresponding expression

for the retarded current-current correlator at zero temperature gets no α′-corrections. For

R
(0)
µν we obtain

R(0)
µν =

N2Q2

32π2
log

(

Q2

Λ2

) (

ηµν − qµqν
Q2

)

, (5.23)

which is real. These are indeed the expected results since at zero temperature the AdS5×S5

metric is left uncorrected by the higher derivative corrections to the classical supergravity

action [40].

The second term in the on-shell action above is

S
(1)
on−shell ≃

N2π2T 4

30

q2

Q6
(1 + 15γ)

[

(q A0 + ωA3)2 +
3

2
Q2 AT · AT

]

u=0

. (5.24)

We thus see that R
(1)
µν is corrected at finite ’t Hooft coupling. The α′-corrections do not

introduce an imaginary part into the retarded current-current correlator for low energies

and, therefore, the plasma structure functions in the present regime vanish4.

In the next section we explore the role of the α′-corrections in the high energy regime,

where deep inelastic scattering is expected to occur.

5.2 High-energy scattering

In this section we consider the high energy regime where κ ≫ K3. We examine the

equations of motion of the gauge fields, and we keep only the leading terms in an expansion

4There is, however, a very small contribution to the structure functions in this regime which is due to

the “barrier tunneling” effect, which is similar to the contribution reported in [14].
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in powers of u. The idea is to compute the corrections to the equations of motion in a

double expansion in u and γ, simultaneously applying the condition κ≫ K3. This is easy

to do in practice, and a quick calculation reveals that the corrected equations of motion

are given by

a(u)′′ +

[

1

u
+ O(u)

]

a′(u) +

([

1 +
325

4
γ

]

κ2u+ O(u2)

)

a(u) = 0 , (5.25)

and

∂u
2Ai(u) +

([

1 +
325

4
γ

]

κ2u+ O(u2)

)

Ai(u) = 0 . (5.26)

The analysis is then simplified considerably if one defines the variable k = (1 + γ 325/8)κ,

where it is crucial to keep in mind the relations κ = qR2/(2r0) and r0 = πTR2/(1 +

γ 265/16).

Let us first consider the solution of eq. (5.25). Defining ξ = (2/3)ku3/2, we find that

the general solution is given by a(ξ) = c1J0(ξ)+c2N0(ξ). To fix the constants c1,2, we must

impose the appropriate boundary conditions. At the U.V. we have the generic Dirichlet

condition demanded by AdS/CFT. At the I.R. we must impose the incoming wave boundary

condition. One notices that an important simplification occurs [14]: it is the fact that this

infrared b.c. can be imposed at relatively small values of u ≪ 1. The argument is that,

at high energies, the absence of a potential barrier means that there is no mechanism to

generate reflected waves at intermediate values of u < 1, since it would necessarily describe

reflection off the black hole. We proceed as follows: notice firstly that although u ≪ 1

the argument of the Bessel functions is large since ξ = (2/3)ku3/2 and k ≫ K3, for all

the values far beyond the peak of the potential u ≫ u0 ≈ 1/k2/3. In that region one can

asymptotically expand the Bessel functions and get: J0(ξ) ≈
√

2/(πξ) cos(ξ − π/4) and

N0(ξ) ≈
√

2/(πξ) sin(ξ − π/4). Remembering the time-dependence e−iωt, we see that the

solution becomes an outgoing wave if c1 = −ic2. We prove this statement in appendix D.

We have thus fixed the ratio of c1 to c2, and the magnitude of the latter is then fixed by

the U.V. boundary condition. The same arguments can be applied to solve the equation

of Ai, as explained in [14].

We finally have that the solutions for equations (5.25) and (5.26) which obey the

incident-wave condition at the black hole horizon u = 1 and the conditions demanded by

the AdS/CFT correspondence at the boundary u = 0 are given by [14]

a(u) = −iπ
3
k2H

(1)
0

(

2

3
ku3/2

)

AL(0) , (5.27)

and

Ai(u) =
iπ

Γ(1/3)

(

k

3

)1/3 √
uH

(1)
1/3

(

2

3
ku3/2

)

AT (0) , (5.28)

where H
(1)
ν (x) is the first Hankel function defined by H

(1)
ν (x) = Jν(x) + iYν(x), where

Jν , Yν are the usual Bessel functions of order ν. The next step is to evaluate the on-shell

action for these field configurations. Using the following form for the action density

Ŝon−shell = − N2 r20
16π2R4

[

ã
(

A0 +
̟

κ
A3

)

|u=0 −Ai ∂uAi(u)|u=0

]

, (5.29)
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we obtain

Ŝon−shell = − N2 r20
48π2R4

(5.30)
{

k2

[

2

(

ξE + ln

(

k

3

))

− iπ

]

A2
L(0) +

9π

Γ2(1/3)

(

k

3

)2/3 [ 1√
3
− i

]

A2
T (0)

}

,

where ξE is the Euler-Gamma function ξE = 0.57 · · · . Remembering that

F1 =
1

2π
ImR1 , (5.31)

we can express the structure function F1 in terms of the physical momentum q and the

temperature T , obtaining

F1 ≃
(

1 +
5

8
ξ(3)λ−3/2

)

3N2T 2

16Γ2(1/3)

( q

6πT

)2/3
, (5.32)

where λ is the ’t Hooft couppling and ξ(3) ≈ 1.20. Observe that our result is enhanced

in comparison with the zero-order result of [14]. From this we can define the transverse

structure function as FT ≡ 2xBF1, where xB = Q2/(2ωT ).

Now, we can similarly obtain the longitudinal structure function FL

FL ≃
(

1 +
325

32
ξ(3)λ−3/2

)

N2Q2xB

96π2
, (5.33)

which is related to F2 through FL ≡ F2 − 2xBF1, where

F2 =
(−n · q)

2πT
ImR2 =

ω

2πT
ImR2 . (5.34)

The parametric estimates of the above equations are similar to those of [14] where they do

not include finite ’t Hooft coupling corrections. Thus, in our case we have

FT ∝
(

1 +
5

8
ξ(3)λ−3/2

)

N2T 2

xB

(

x2
BQ

2

T 2

)2/3

, (5.35)

FL ∝
(

1 +
325

32
ξ(3)λ−3/2

)

N2T 2

xB

(

x2
BQ

2

T 2

)

. (5.36)

We see that in the small-xB regime at xB ≪ T/Q, FL ≪ FT . As in [14], this result looks

quite different from the results of DIS from a single hadron at weak and strong coupling,

where in the high energy limit the transverse and longitudinal structure functions are

parametrically of the same order.

6 Conclusions

In this work we have investigated the behaviour of holographic vector current-current

correlators when the leading higher derivative corrections to the low energy type IIB su-

pergravity are included. These corrections enter at order γ ∝ α′3, and are built out of
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both the metric and the five-form field strength. The metric at leading order in γ is not

corrected by the higher-derivative terms containing F5, but only by the γ C4 term.

By considering vector perturbations of the metric and the five-form field strength

around the corrected AdS-Schwarzschild background, we derive the modified Maxwell equa-

tions for the Abelian gauge field which is dual to the vector current of a gauged U(1)

subgroup of the R-symmetry group of N = 4 SYM at finite temperature.5 Although the

higher curvature corrections induce a large number of additional operators to the gauge

field Lagrangian (i.e. additional to the minimal kinetic term), a careful examination re-

veals that these operators enter with very high powers of the radial coordinate u (u6 or

higher). Given that the on-shell action for the gauge field reduces to a boundary term to be

evaluated in the ultraviolet u→ 0, we thus find that the direct effect of the extra operators

vanishes on-shell. The net result is that the influence of the higher-curvature string theory

corrections is indirect, and is effected by the modification to the metric only. We would

like to emphasize this result: the higher derivative operators induced in five dimensions

do not affect the on-shell action in the high energy (scattering) regime. The latter is only

affected by the modifications of the metric through the minimal gauge-field kinetic term.

It is interesting to emphasize the distinct effects of the two sets of O(α′3) corrections.

On the one hand, there is the γW4 = γC4 term which only involves the Weyl tensor

and thus the metric. This term couples to the Einstein equations so that its presence

modifies the metric, yielding the corrections computed in [41, 42]. The supersymmetric

completion of the C4 term brings a full set of O(α′3) corrections which contain the Ramond-

Ramond five-form field strength, as discussed above. These do not modify the background

metric, as discussed in [27, 50]. Now, studies have shown that the corrections to the AdS

metric are actually universal,6 that is to say, independent of the internal manifold [28].

To be precise, the corrected AdS metric can be derived from a unique 5D Lagrangian

which is independent of the internal compactification manifold (see [28] for details). The

consequences of this for quantities which depend on tensor fluctuations (such as the shear

viscosity) is that the finite-coupling corrections to these quantities are also universal. The

consequences for vectorial perturbations are intriguing but more subtle: at high energy

for the vector fluctuations of the supergravity background, we have argued that the full

set of ten-dimensional higher-curvature terms only produce an indirect effect on the on-

shell action for the gauge fields, through the corrected metric. Given that the latter is

universal, one may be tempted to then declare universality of the corrections to the high

energy vector-current correlators, which is obviously a very interesting result. However,

this is reliant on a certain caveat, which we must clarify: the reason why the 5D operators

induced by the O(α′3) do not affect our calculations is that they contained at least two

powers of the AdS-Schwarzschild Weyl tensor, so that they entered with high powers of

the radial coordinate u, rendering them irrelevant at the U.V. Given that the tensor T
contains at most one derivative of the gauge kinetic term F , we may phrase the caveat

5For the zero temperature case one recovers the results of the low energy type IIB supergravity, i.e.

when no α
′ corrections are included. This is in full agreement with expectations, since at zero temperature

the system reduces to the simpler AdS5 × S
5 metric solution.

6We thank the referee for raising this important point.
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in the following way: if the O(α′3) corrections can be shown to only yield 5D operators

that are of the same mass dimension or higher (i.e. dimension eight or higher, such as

C2F 2, C2(∇F )2), then the corrections to the structure functions computed above are indeed

universal. In the case of N = 4 SYM we are able to show that this is in fact true, but

we were aided by the simplicity of S5, and the fact that it has vanishing Weyl tensor,

so that all of the higher-derivative operators we found contained at least two powers of

the AdS-Schwarzschild Weyl tensor, and were thus irrelevant. Moreover, the tensor T
vanishes for the unperturbed AdS-Schwarzschild ×S5 background, which also simplified

our analysis considerably and eliminated a large class of five-dimensional operators. To

prove universality of the structure functions, one would have to show that this also occurs

for other internal manifolds, generalizing our work in the manner of [28]. This analysis is

beyond the scope of this paper, but is certainly worth pursuing. We speculate that the likely

outcome would be universality of the vector-current correlators, as it seems unlikely that

the tensorial corrections are universal, and the vectorial ones not. It would be interesting

for the compactification to be performed for a more general class of internal manifolds, to

see if this conjecture is correct.

We have applied our results to compute the structure functions governing deep inelastic

scattering off an N = 4 SYM plasma. We have found an enhancement of all of the

relevant structure functions. The same trend is found in deep inelastic scattering off a

single hadron [12]. Particularly, in reference [12] the structure functions were obtained

from string calculations in different Bjorken parameter (x) regimes as a function of the ’t

Hooft coupling. For instance, for the parametric region x≪ 1/
√
λ the structure functions

F1 and F2 behave as 1/
√
λ.

On the other hand, a comparison of the plasma structure functions with the results for

an N = 4 SYM plasma at weak ’t Hooft coupling is not straightforward. For instance, in

the high energy regime, a pertubative quantum field theory calculation yields the following

behaviour of the trace of the retarded current-current correlator at weak coupling [33]

∼ λN2T 2
(

log λ−1/2 + O(1) + O(λ)
)

. (6.1)

This function increases from small values of the ’t Hooft coupling, reaches a maximum,

and then decreases for larger values of λ. In fact for large values of the ’t Hooft coupling

this expression is not reliable, and so a comparison between this result and the ones we

obtain at strong coupling in eqs. (5.35) and (5.36) is not conclusive.

There are other interesting applications that can be addressed with the results obtained

here. Among them would be a computation of the leading ’t Hooft coupling corrections

to the electric conductivity and the charge diffusion constant of strongly-coupled N = 4

SYM. We will report on these issues in a forthcoming paper [32].
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A Vector fluctuations and the W4-term

The fluctuation ansatz of eq. (2.3) and that of eq. (2.4) ensure that we pick a specific U(1)

subgroup of the SU(4) R-symmetry group of the dual field theory. Plugging the ansätze into

the two-derivative Lagrangian of type IIB supergravity gives the gauge kinetic term for the

U(1) field, as explained in section 5. The substitution of the ansatz into the eight-derivative

operators of eq. (3.1) results in a large expression, which, in principle, can be placed into

a series of higher-derivative operators quadratic in the U(1) field strength Fmn (we have

ignored operators with higher factors of the field strength, as they do not contribute to

the linearized equations of motion), as we discussed in section 5. Unfortunately, such a

scheme is made prohibitively difficult by the sheer size of the expression. We here include

the expression obtained when the metric ansatz is inserted into the C4 term, to confirm

the arguments of section 5. Setting Au = 0 using the gauge symmetry, we first decompose

the W4 term as follows,

W4 =
u6

6π6f(u)2R8T 6
[Wxx +Wyy +Wtt +Wzz +Wzt] , (A.1)

where Wαβ contains only the quadratic combination AαAβ. Observe that, at least for the

C4 term computed here, the Ax and Ay perturbations do not mix with any others, so that

symmetry entails that Wyy can be obtained from Wxx simply by replacing Ax → Ay in the

latter. In what follows we denote the various derivatives acting on gauge fields using the

notation A
(l,m,n)
µ (u) = ∂l

t∂
m
z ∂

n
uAµ(t, z, u). In this appendix we exhibit the results for Wxx

and Wtt by way of illustrating the type of operators that are induced. For Wxx we obtain:

Wxx =
(

64π4T 4uf(u)2
(

78u4 − 67u2 + 14
)

A(0,0,1)
x (u)2 + 528π4T 4u3f(u)4A(0,0,2)

x (u)2

+16π2T 2f(u)2
(

7u2 − 12
)

A(0,1,0)
x (u)2 − 704π2T 2uf(u)3A(0,1,0)

x (u)A(0,1,1)
x (u)

−384π2T 2u2f(u)3A(0,1,1)
x (u)2 − 120π2T 2u2f(u)3A(0,0,2)

x (u)A(0,2,0)
x (u)

+16π2T 2
(

21u4 − 45u2 + 16
)

A(1,0,0)
x (u)2 + 33uf(u)2A(0,2,0)

x (u)2

+96uf(u)A(1,1,0)
x (u)2 − 128π2T 2u2f(u)2A(1,0,1)

x (u)2

−64π2T 2uf(u)
(

u2 + 3
)

A(1,0,0)
x (u)A(1,0,1)

x (u) + 33uA(2,0,0)
x (u)2

+2uf(u)
[

68π2T 2uf(u)A(0,0,2)
x (u) + 15A(0,2,0)

x (u)
]

A(2,0,0)
x (u)

+16π2T 2uf(u)
{

f(u)
[

4π2T 2uf(u)
(

28−53u2
)

A(0,0,2)
x (u)+5

(

7u2−4
)

A(0,2,0)
x (u)

]

−
(

12 − 37u2
)

A(2,0,0)
x (u)

}

A(0,0,1)
x (u)

)

. (A.2)
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For the contribution quadratic in At, we get

Wtt = 384π2T 2 u2 f2(u)A
(0,1,1)
t (u)2 + 7uf(u)A

(0,2,0)
t (u)2 + 33uA

(1,1,0)
t (u)2

+228π2T 2u2f(u)A
(1,0,1)
t (u)2 − 912π4T 4u3f(u)3A

(0,0,2)
t (u)2

+960π4T 4uf(u)2
(

7u2 − 2
)

A
(0,0,1)
t (u)2 + 184π2T 2u2f2(u)A

(0,2,0)
t (u)A

(0,0,2)
t (u)

+64π2T 2u
[

f(u)(5 − 7u2)A
(0,1,0)
t (u)A

(0,1,1)
t (u)

+5
(

−12π2T 2uf(u)A
(0,0,2)
t (u) +A

(0,2,0)
t (u)

)

A
(0,0,1)
t (u)

]

. (A.3)

The other contributions are similar in structure, so we shall not present them here.

B The equations of motion

As we saw in the last section, the eight-derivative O(α′3) corrections introduce a multitude

of higher derivative operators, and we must take account of them properly to solve the

equation of motion within perturbation theory. The situation is entirely analogous to that

studied by Buchel, Liu and Starinets in [22]. In that paper, the authors were concerned

with the tensor perturbations of the metric, but the logic is the same. When we derive

the equations of motion from an action which contains higher derivative terms like A′′
xA

′′
x,

dangerous boundary terms like δA′
x and δA′′

x will be introduced. These threaten to ruin the

consistency of the variational principle, necessitating the addition of boundary localized

terms that ensure that all variations are simply proportional to δAx, so that the Dirichlet

problem is well-posed. Such an idea is familiar from Einstein gravity, where the problem

is made consistent by adding the exterior curvature term. In our case, as in [22], we must

add boundary terms by hand to make the variational procedure consistent. At the end of

the day, these terms do not contribute to the physical answers we seek in this work, as will

become clear shortly.

To see how this works in detail, it is convenient to introduce the Fourier transform of

the field Ax

Ax(t, ~x, u) =

∫

d4k

(2π)4
e−iωt+iqz Ak(u) . (B.1)

Upon inserting this into the total action for the gauge field Ax (i.e. the action containing

both the two derivative term F 2 and the higher-curvature terms in the appendix above),

we obtain the expression:

Stotal = − N2r20
16π2R4

∫

d4k

(2π)4

∫ 1

0
du
[

γAWA′′
kA−k + (B1 + γBW )A′

kA
′
−k

+γCWA′
kA−k + (D1 + γDW )AkA−k + γEWA′′

kA
′′
−k + γFWA′′

kA
′
−k

]

. (B.2)

The coefficients B1 and D1 arise directly from the minimal kinetic term F 2. The subscript

W indicates that the particular coefficient comes directly from the eight-derivative correc-

tions. Moreover, B1 and D1 contain some γ-dependence, but they are non-vanishing in

the γ → 0 limit, while every other coefficient vanishes in that limit. We will discuss the
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explicit form of the various coefficients shortly. First, we remark that upon varying the

action of eq. (B.2), we obtain the equations of motion:

AA′′
k +CA′

k + 2DAk − ∂u

(

2BA′
k +CAk + FA′′

k

)

+ ∂2
u

(

AAk + 2EA′′
k + FA′

k

)

= 0 , (B.3)

where B = B1 + γBW and so on. We may write this equation in the form

A′′
k + p1A

′
k + p0Ak = O(γ) , (B.4)

where we have moved all γ-dependence to the right. A careful examination of the variation

of eq. (B.2) then convinces us that in order to remove all dangerous variations to order γ2

we must add the boundary term

Sb = − N2r20
16π2R4

∫

d4k

(2π)4

∫ 1

0
du ∂u

[

− γAW AkA
′
−k (B.5)

+γEW

(

p1A
′
k + 2p0Ak

)

A′
−k − γ

FW

2
A′

kA
′
−k

]

.

After appending this necessary term to the action eq. (B.2), we may then write the action as

Stotal = − N2r20
16π2R4

∫

d4k

(2π)4

∫ 1

0
du

[

1

2
A−kLAk + ∂uΦ

]

. (B.6)

where LAk = 0 is simply the equation of motion of eq. (B.3), and Φ is a boundary term.

Upon evaluating the on-shell action, the only surviving term is the boundary term, as we

expect from holography. This is given by

Φ = (B −A)A′
kA−k +

1

2
(C −A′)AkA−k

−E′A′′
kA−k + EA′′

kA
′
−k − EA′′′

k A−k + E
(

p1A
′
k + 2p0Ak

)

A′
−k −

F ′

2
A′

kA−k . (B.7)

Therefore, the strategy is to solve the equation of motion eq. (B.3), then insert the solution

into the action, which leaves us only with the boundary term Φ. This is what was done

in the main text of the paper, with massive simplifications arising from the fact that the

only term which contributes to the boundary action is B1 from the first term of eq. (B.7).

This is because the coefficients AW , BW , CW , EW and FW all have high positive powers

of u, which, coupled with the regularity of the solutions of Ak(u) at u = 0, means that

their contribution to the boundary term vanishes. Let us now list the various coefficients

used in this section, for the contribution of C4 calculated in the previous appendix. First

we have the coefficients with no γ-dependence p0 and p1, given by

p0 =
̟2

0 − f(u)κ2
0

uf2(u)
and p1 =

f ′(u)

f(u)
, (B.8)

where ̟0 = ω/(2πT ) and κ0 = q/(2πT ). For the coefficients originating from the F 2 term

in the action of the gauge field, we obtain

B1 =
K(u)f(u)L7(u)

P (u)
,

D1 = −K(u)P (u)L7(u)

[

̟2 − f(u)K2(u)κ2

uf(u)K2(u)

]

, (B.9)
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where ̟ = ωR2/(2r0) and κ = qR2/(2r0). For the terms originating from the higher

curvature term in the action, we have the following expressions, here evaluated only for

the C4 operator, retaining only the Ax fluctuation:

AW = −2

3
u5
[

15f(u)κ2
0 + 17̟2

0

]

,

BW = −4

3
u4
[

(14 − 67u2 + 78u4) − 8u̟2
0 − 24uf(u)κ2

0

]

,

CW = − 4u4

3f(u)

[

3f(u)(3u2 − 8)κ2
0 − 41u2̟2

0

]

,

DW = − u3

3f2(u)

[

33uf2(u)κ4
0 + 33u̟4

0 + 126uf(u)κ2
0̟

2
0

+4f2(u)(7u2 − 20)κ2
0 + 4(16 − 45u2 + 21u4)̟2

0

]

,

EW = −11u6f2(u) ,

FW =
4

3
u5f(u)(53u2 − 28) . (B.10)

We remind the reader that although we have computed these coefficients explicitly only for

the C4 operator (see appendix A), the full set of 10D eight-derivative terms are expected

to have the same leading power dependence in u, as explained in section 4. To demonstrate

that none of these coefficients contribute to the on-shell action, we write Ak = A0 + γA1,

in order to solve the equations of motion perturbatively in γ. Now, the equation of motion

for A0 is then simply given by

A′′
0 + p1A

′
0 + p0A0 = 0 . (B.11)

This equation has a regular singular point at u = 0, with indices σ = 0, 1. Expanding

around the point u = 0, we can therefore write a general solution of the equation in the

form A0 = a + bu + cu log(u) + · · · . Now, because we are only interested in the on-shell

action to O(γ), and given that AW , BW , CW ,DW , EW , FW in eq. (B.7) all start at O(γ),

it is clear that the only term contributing to the on-shell action is B1A
′
k A−k. We must

however also show that the solution of the equation of motion of A1 in the ultraviolet region

is unaffected by the terms AW , BW , CW ,DW , EW , FW . Plugging the ansatz Ak = A0+γA1

into the EOM of eq. (B.3), we get the equation of motion of A1 as

∂u

[

2B1|γ→0A
′
1

]

− 2D1|γ→0A1 = V (A0) . (B.12)

where

AW A′′
0 + CWA′

0 + 2 ((D1 −D1|γ→0) +DW )A0

−∂u

(

2(B1 −B1|γ→0)A′
0 + 2BWA′

0 + CWA0 + FWA′′
0

)

+∂2
u

(

AWA0 + 2EWA′′
0 + FWA′

0

)

= V (A0) . (B.13)

We are only interested in the solution of A1 in the region of small u. Taking into account

the power dependence of the coefficients AW , BW , CW ,DW , EW , FW and the behaviour of

A0 near the boundary, we find that the only contributing factors in the potential V (A0) are
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those given by 2 ((D1 −D1|γ→0))A0 − ∂u (2(B1 −B1|γ→0)A′
0. We have therefore showed

that the only relevant terms are B1 and D1, both of which arise from the minimal kinetic

operator F 2. This completes the analysis for Ax. The exercise is entirely analogous for the

other fluctuations.

C High-energy scattering

In this section, we examine the solution of the equations of motion of the gauge fields in the

high energy regime κ≫ K3. Obviously, we would ideally like to solve the equations in the

full regime of u and for any energy range, but this is clearly not possible for two reasons.

The first is that the equations are made tremendously complicated by the finite coupling

corrections, and the second reason is that we do not know the full set of finite-coupling

corrections with their exact coefficients. These obstacles are all surmountable, and this is

the aim of this appendix. We are able to overcome these difficulties once we recognize two

important observations, the first being that the part of the solution of the equations we

actually require is that in the U.V. region u ≪ 1. The second observation is that we may

take the C4 contribution of eq. (B.10) as typical of the corrections, because the supersym-

metric completion of this contribution will only serve to correct the numerical coefficients

in eq. (B.10). The crucial point, which we used liberally in the main body of the paper, is

that the supersymmetric completion to the C4 term enters with the same u-dependence.

Taking these two observations on board, we can then use the WKB approximation to solve

the equations of motion in three regimes of u: the u ≪ 1 regime, the intermediate u re-

gion, and the near-horizon region u ∼ 1. The strategy will be to use the matching of the

solutions to show that the boundary condition c1 = −ic2 of section 5.2 is justified. By

doing this, we show that the effect of the horizon can be included in the U.V. solution

without knowing the full form of the corrections, as argued in section 5.2. We thus show

that the U.V. solution can then be treated in isolation from the rest, and therefore that the

structure functions are derivable without the exact need for the knowledge of the behaviour

of the corrections in the infrared. Note that for the purposes of this section we will only

consider the Ax perturbation, but extending our discussion to the other perturbations is

straightforward.

We will use the results and notation of the preceding appendix in this section. In

particular, we use C4 contribution in eq. (B.10), augmented with a constant α, which will

allow us to trace the effect of eq. (B.10) in what follows. Taking this contribution into

account, the equations of motion are then given by:

AA′′
k +CA′

k + 2DAk − ∂u

(

2BA′
k +CAk + FA′′

k

)

+ ∂2
u

(

AAk + 2EA′′
k + FA′

k

)

= 0 , (C.1)

where the functions A,B,C · · · are defined in the preceding appendix. We remind the

reader that the requirement of κ ≫ K3 is equivalent to setting κ ≈ ̟. First we look at

the near-horizon region u ∼ 1. It turns out that in this region, as expected, we obtain

an outgoing wave and an ingoing wave as solutions of the equation. The frequency of the

solution is untouched by the finite-coupling corrections: this observation was made by many

authors with regard to scalar, vectorial and tensorial perturbations of the supergravity
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solution [26, 29, 31], and is expected to actually hold at any order in α′ (we also examine

this issue in forthcoming work). Picking the ingoing wave condition, we obtain the solution

A>
k = c3(1 − u)−iq/(4πT ) , (C.2)

where q, T are the physical momentum and temperature respectively. Solving the equation

of motion in the near-boundary region u≪ 1, we obtain the following solution:

A<
k (ξ) = ξ1/3

(

c1J1/3(ξ) + c2N1/3(ξ)
)

, (C.3)

with

ξ = (2/3)ku3/2 and k =

(

1 +
915

16
γ

)

q

2πT
, (C.4)

where we have expanded the equations in a power series in u, as appropriate for the small u

region. We now require the solution for the intermediate-u region, and for this we utilize the

WBK method, as described in [13]. We cast the eq. (C.1) in the form of the Schrödinger

equation, to order γ, writing φ(u) = ΣAk, so that φ(u)′′ − V (u)φ = 0. The forms of

Σ(u) and V (u) are very complicated, and so we do not include them here. Instead, in

figure 3 we show the behaviour of V (u) for this situation. Particularly, the three curves

correspond to the values rq = 1.14, κ0 = 20 and K0 = 3
√

3/2 for these parameters. The

solid line shows the behaviour for infinite ’t Hooft coupling, the dashed line indicates the

case for λ = 50 with the metric corrections only (these two curves are the same as shown

in figure 2.a). The dotted line in figure 3, also for λ = 50, shows the potential when both

the metric corrections and the corrections from the C4 term are both included as given

in equation (C.1). Crucially, we can see that the behaviour of this last curve is smooth,

and that in the I.R. it decreases even faster than the curve with only metric corrections

(the dashed). We view this as a strong indication that the potential in the I.R. is always

smooth and well-behaved. We emphasize that the supersymmetric completion of the C4

contribution will only correct the O(1) coefficients in eq. (B.10), and we do not expect this

to alter any of the arguments presented here. In any case, we only require the form of

the intermediate-region solution in the u ≫ 0 and u ≪ 1, so that we can carry out the

matching to A>
k and A<

k . Defining σ(u) =
∫ u
0

√

−V (u′)du′, we obtain the solution in the

intermediate region

A=
k (u) =

1

Σ(u)|
√

σ′(u)|
(

c4e
iσ(u) + c5e

−iσ(u)
)

. (C.5)

Now that we have obtained Ak in the three required regions, we apply the matching as

follows: we firstly require that for u ≫ 0 we have equality of A=
k (u) and A>

k . Expanding

A=
k (1 − x) for x≪ 1, we obtain the schematic behaviour

A=
k (1 − x) ∼ c4x

−iq/(4πT ) + c5x
+iq/(4πT ) + · · · . (C.6)

We need to match this to A>
k (1−x) = c3x

−iq/(4πT ), and so it must be that c5 = 0. This is

identical for the behaviour without corrections. We must now match the solutions A=
k (u)

and A<
k (u) for the region u≪ 1. We have the behaviour

A=
k (u) ≈ c̃4

u1/4

(

1 +
2

3
iku3/2 + 276αu2

)

+ · · · . (C.7)
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Figure 3. The potential barrier for the Ax gauge field. The infinite ’t Hooft coupling limit is

indicated by a solid line, while the dashed and dotted lines have λ = 50. We have used rq = 1.14,

κ0 = 20 and K0 = 3
√

3/2 for all three curves. The dashed line only contains metric corrections

while the dotted line includes both metric and the C4 corrections of eq. (B.10).

Note that the coefficient α of the contribution of eq. (B.10) does not affect the solution at

its lowest power of u, as expected from the general arguments presented above. Therefore,

regardless of the exact form of eq. (B.10) the effect occurs at too high a power of u. As for

the A<
k (u) in the large ξ region, we obtain the expansion

A<
k (u) ≈

√

2

πu1/2

(

2k

3

)−1/6

× (C.8)

×
(

1

2
(c1 − ic2)ei(

2

3
ku3/2−5π/12) +

i

2
(c1 + ic2)e−i( 2

3
ku3/2−5π/12)

)

+ · · · .

A simple analysis of these two limits then reveals that in order to match A=
k (u) to A>

k we

must have c1 = −ic2, as argued in the main body of the paper. The intuitive reason is that

any other choice would mean there is some reflection off the black-hole horizon, which is

physically unacceptable. We have thus shown that the condition c1 = −ic2 can be applied

at small values of u without worrying about the detailed behaviour at the horizon, as long

as the boundary condition at the horizon corresponds to no reflection. This simplification

is precisely due to the fact that we work in the high-energy regime, where the potential

becomes irrelevant for the computation. In the low-energy (hydrodynamic) regime, we

expect this to no longer apply.

D Scattering at low energy and finite ’t Hooft coupling

In this appendix we perform the analysis of the EOMs for low energies, κ ≪ K3, which is

equivalent to considering the low temperature regime qT 2 ≪ Q3 when the virtuality Q2

is fixed. For the small u region 0 ≤ u ≤ 1/K2
0 ≪ 1, together with the assumption that
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Ai κ
2
0 ≫ 2A′

i and similarly for a, in the limit λ→ ∞, equations (5.4) and (5.6) become

A′′
i − K2

0

u
Ai = −κ2

0 uAi , (D.1)

and

a′′ +
1

u
a′ − K2

0

u
a = −κ2

0 ua . (D.2)

Now, consider the case when the ’t Hooft coupling is finite. Within the same level of ap-

proximation as before, and within the parametric region 0 ≤ u ≤ 1/K2 ≪ 1, equations (5.4)

and (5.6) become

A′′
i − K2

u
Ai = −

(

1 +
325

4
γ

)

κ2 uAi , (D.3)

and

a′′ +
1

u
a′ − K2

u
a = −

(

1 +
325

4
γ

)

κ2 ua . (D.4)

The next step is to solve these equations in perturbation theory. For that purpose it is

convenient to define ξ = 2K u1/2, so that the equations (D.3) and (D.4) become

(

d2

dξ2
+

1

ξ

d

dξ
− 1 − 1

ξ2

)

h(ξ) = −
(

1 +
325

4
γ

) (

κ2 ξ4

16K6

)

h(ξ) , (D.5)

and
(

d2

dξ2
+

1

ξ

d

dξ
− 1

)

a(ξ) = −
(

1 +
325

4
γ

) (

κ2 ξ4

16K6

)

a(ξ) , (D.6)

respectively, where in equation (D.5) we have redefined Ai(ξ) = Ai(0) ξ h(ξ).

In order to study these equations perturbatively, let us begin with equation (D.5). The

zeroth order solution is h(0)(ξ) = K1(ξ), where K1 is the modified Bessel function of order

one. The function ξ h(0)(ξ) approaches one at the AdS boundary. The general solution is

given as a sum of the general solution of the homogeneous ordinary differential equation

and the convolution of the Green’s function with the source of equation (D.5)

h(ξ) = h(0)(ξ) −
∫ ∞

0
dξ′G(ξ, ξ′)

(

1 +
325

4
γ

) (

κ2 ξ′4

16K6

)

h(ξ′) , (D.7)

where G(ξ, ξ′) is the Green’s function corresponding to the differential operator of eq. (D.5)

with appropriate boundary conditions. This is the same Green’s function as given in [14].

The O(u)-perturbation theory solution for the transverse modes can be expressed as

Ai(u) = A
(0)
i (u) +A

(1)
i (u), where

A
(0)
i (u) = 2KAi(0)u1/2 K1[2K u1/2] , (D.8)

A
(1)
i (u) = Ai(0)

κ2

5K4

(

1 +
325

4
γ

)

u . (D.9)

For small values of u, we can expand the modified Bessel function. Thus we obtain

A
(0)
i (u) ≃ Ai(0) (1 + uK2 [logK2 − 1 + log u+ 2 ξE ]) , (D.10)
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where ξE is the Euler-Gamma function which is 0.57 · ··.
The solution for the longitudinal modes in perturbation theory can be expressed as

a(u) = a(0)(u) + a(1)(u), where

a(0)(u) = −2κ2AL(0)K0[2K u1/2] , (D.11)

a(1)(u) = −2AL(0)
κ4

15K6

(

1 +
325

4
γ

)

. (D.12)

For small values of u we can expand the modified Bessel function as follows

a(0)(u) ≃ κ2AL(0) [log K2 + log u+ 2 ξE ] . (D.13)

Inserting these approximations for the transverse and longitudinal components of the gauge

fields into the on-shell action, we obtain the results for the low energy scattering presented

in section 5.1.
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