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1 Introduction

The AdS/CFT correspondence (or its generalizations) [1–4] holographically relates weakly

coupled string theory in a particular background to a strongly coupled (’t Hooft coupling

λ = g2
YMN ≫ 1) relativistic conformal field theory (or gauge theory). This is useful as

it gives a computational handle on the otherwise hard to access strongly coupled gauge

theory from supergravity. Indeed, such a strong-weak duality has been, in recent years,

proved to be instrumental for a better understanding of various transport properties of

certain strongly coupled systems like quark gluon plasma (QGP) produced in heavy ion

collision (for reviews see [5–9]). Apart from nuclear physics strongly coupled CFT’s also

appear in atomic and condensed matter physics and more recently the holographic ideas

have been applied to these systems as well. For example, peculiar strong coupling behavior

like quantum Hall effect, Nernst effect, high temperature superconductors, and quantum

phase transitions in certain strongly correlated electron systems can be understood at least

qualitatively by using the holographic dual descriptions involving gravity [10–18].

In the examples mentioned above the CFT’s were mainly of relativistic in nature. How-

ever, for the application to most condensed matter systems, it is useful to find holographic

descriptions of CFT’s which are non-relativistic [19–21]. These systems sometimes can be

produced in the laboratory and indeed there exist such a strongly coupled non-relativistic

system, namely, the cold fermions at unitarity (for review see [22, 23]) which can be un-

derstood using gravity/NRCFT correspondence, if the proper gravity dual for this system

can be found [24–27]. Motivated by the possible realizations of strongly coupled CFT’s

in the laboratory there have been attempts to construct the gravity duals in the form of

non-relativistic branes in string theory [28]. The near horizon geometry of these branes will

have the isometry same as the non-relativistic conformal (Schrodinger) symmetry of the

boundary theory and using the gravity/NRCFT correspondence one can get a handle on

the non-relativistic strongly coupled CFT from the weakly coupled string theory or gravity.

In this paper we construct the non-relativistic non-extremal (D1, D3) bound state

solution of type IIB string theory. We will use the standard procedure of Null Melvin

Twist [26–29] to construct such a solution. A particular low energy limit, known as the
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decoupling limit, of a stack of coincident (D1, D3) brane bound state system gives rise

to a non-commutative Yang-Mills (NCYM) theory on the boundary [30–32]. It is known

that the D1-branes in the world-volume of D3-branes in the decoupling limit produces

a large magnetic or B-field asymptotically and this is the source of a space-space non-

commutativity in the world-volume directions of D3-brane [30]. The same decoupling

limit for the stack of coincident non-relativistic (D1, D3) bound state system will give

rise to a non-relativistic, NCYM theory on the boundary. We will compute the drag

force [5, 33] experienced by an external quark moving through this background of hot non-

relativistic, NCYM plasma. In this picture an external quark is represented by the end

point of a fundamental string attached to the boundary carrying a fundamental charge

under a gauge group and is infinitely massive [34–37]. The external quark loses its energy

as the string attached to it trails back and imparts a drag force on it. We will compute

this drag force when the quark moves along one of the non-commutative directions for

a sufficiently long time. We find that when the boundary theory is both non-relativistic

and non-commutative, it is difficult to write the expression of the drag force in a closed

form. So, we will get the expression in various limiting cases to show the interplay of

the non-relativistic and non-commutative effect. When the parameter characterizing the

non-commutativity is small, we find that there is no upper bound for the velocity. On the

other hand, when the non-commutativity parameter is large the velocity of the quark can

not be arbitrarily large in contrast to what is expected of a non-relativistic theory. We will

express the drag force in terms of the parameters of the YM theory, namely, the ’t Hooft

parameter, the temperature, the chemical potential and the non-commutativity parameter

in the various limiting cases. Finally, we will formally integrate the drag force expression to

compute the momentum or energy loss [33] of the quark moving in the hot non-relativistic

NCYM theory.

This paper is organized as follows. In the next section we discuss the Null Melvin

Twist on the non-extremal (D1, D3) bound state system of type IIB string theory and also

the decoupling limit. In section 3, we calculate the drag force on a heavy quark moving

through the hot non-relativistic NCYM plasma and discuss the various limits to understand

the general drag force expression in the various corners of the solution space. We conclude

in section 4.

2 Null Melvin twist on non-extremal (D1, D3) bound state solution

The non-extremal (D1, D3) bound state configuration of type IIB string theory is given

as [38–40],

ds2 = H− 1
2

[

−f(dx0)2 + (dx1)2 +

(

H

F

)

(

(dx2)2 + (dx3)2
)

]

+ H
1
2
[

f−1dr2 + r2dΩ2
5

]

e2φ = g2
s

H

F
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B[2] = tan θF−1dx2 ∧ dx3, A[2] = − 1

gs
sin θ coth ϕF−1dx0 ∧ dx1

F[5] = − 1

gs
cos θ coth ϕ

(

H

F

)

∂rH
−1dx0 ∧ dx1 ∧ dx2 ∧ dx3 ∧ dr (2.1)

where the various functions appearing in the solution (2.1) are defined as,

f = 1 − r4
0

r4
, H = 1 +

r4
0 sinh2 ϕ

r4
, F = 1 +

r4
0 cos2 θ sinh2 ϕ

r4
(2.2)

Note that the metric in the above is given in the string frame. The dilaton φ is non-constant

and gs is the string coupling. The 5-form field strength1 and A[2] tell us the presence of

D3 and D1 branes in the solution respectively. The non-zero NSNS B[2] field is due the

non-threshold nature of the bound state (D1, D3). It is clear from the solution (2.1)

that D3-branes are lying along x1, . . . , x3, whereas D1-branes are lying along x1. The

angle θ measures the relative numbers of D3-branes and D1-branes and is defined as,

cos θ = N/
√

N2 + M2, where N is the number of D3-branes and M is the number of D1-

branes per unit co-dimension two-volume transverse to the D1-branes. Also in the above

ϕ is the boost parameter and r0 is the radius of the horizon of non-extremal or black (D1,

D3)-brane solution.

Eq. (2.1) represents the relativistic (D1, D3) solution. The corresponding non-

relativistic solution can be obtained by applying the standard procedure of the so-called

Null Melvin Twist [26–29] or by taking a Penrose limit or a TsT transformation [41] to

the relativistic (D1, D3) solution. The procedure of Null Melvin Twist generates a new

solution in eight steps starting from the original relativistic solution. So, starting from the

black (D1, D3) bound state solution given in (2.1), we first apply boost along x1-direction,

T-dualize the boosted isometric x1-direction, twist a local one-form in a transverse compact

direction, T-dualize back along x1, boost back along x1 and then take a scaling limit. In the

light-cone coordinates t = (x1+x0)/
√

2, ξ = (x1−x0)/
√

2 the final solution takes the form,

ds2 =
H− 1

2

K

[

{

−
(

2r2β2f +
g

2

)

dt2 − g

2
dξ2 + (1 + f) dtdξ

}

(2.3)

+

(

H

F

)

K
(

(dx2)2 + (dx3)2
)

]

+ H
1
2

[

f−1dr2 + r2

(

1

K
(dχ + A)2 + ds2

P2

)]

Here K = 1− β2r2g(r) and g(r) = −r4
0/r

4. We have introduced a one form A by dA = J ,

with J , the Kahler form on the complex projective space P2 and ds2
P2 is the metric on the

complex projective space P2. The part of the metric (1/K)(dχ + A)2 + ds2
P2 is the metric

on the squashed 5-sphere with the squashing parameter K. The other fields are given as,

e2φ = g2
s

(

H

F

)

1

K

B[2] =
r2β√
2K

(dχ + A) ∧ [(1 + f)dt + (1 − f)dξ] +
tan θ

F
dx2 ∧ dx3

1Note that the 5-form field strength must be made self-dual by adding the hodge-dual ∗F[5] with the F[5]

given above for (2.1) to be a solution of type IIB supergravity, although we have not written it explicitly.
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A[2] =
1

gsF
sin θ coth ϕdt ∧ dξ

F[5] = F
(old)
[5] +

1

2

(

B
(old)
[2] ∧ dA

(old)
[2] − A

(old)
[2] ∧ dB

(old)
[2]

)

−1

2

(

B
(new)
[2] ∧ dA

(new)
[2] − A

(new)
[2] ∧ dB

(new)
[2]

)

(2.4)

where F
(old)
[5] , B

(old)
[2] , A

(old)
[2] are the various fields given in (2.1) and B

(new)
[2] , A

(new)
[2] are the

fields given in (2.4). The solution represented by (2.3) and (2.4) are the non-relativistic

non-extremal (D1, D3) solution of type IIB string theory. The extremal solution with

the non-relativistic symmetry can be obtained from (2.3) and (2.4) by scaling r0 → 0

and ϕ → ∞ such that the product r2
0 sinhϕ remains finite. Note that the parameter β,

appearing in the solution above can be scaled away in the extremal case by scaling the

t and ξ coordinates appropriately. However, this can not be done for the non-extremal

case and in this case β is a physical parameter related to the chemical potential of the

boundary theory [27].

The non-commutative Yang-Mills (NCYM) decoupling limit [31, 32] is a low energy

limit by which we zoom into the region,

r0 < r ∼ r0 sinh
1
2 ϕ cos

1
2 θ ≪ r0 sinh

1
2 ϕ (2.5)

Note that in this region ϕ is very large, whereas, the angle θ is very close to π/2. In

this approximation,

H ≈ r4
0 sinh2 ϕ

r4
,

H

F
≈ 1

cos2 θ(1 + a4r4)
≡ h

cos2 θ
(2.6)

where,

h =
1

1 + a4r4
, with a4 =

1

r4
0 sinh2 ϕ cos2 θ

(2.7)

Note that in the NCYM limit, the asymptotic value of B23 component (from (2.4) we find

that this is tan θ) responsible for creating non-commutativity takes a very large value as

θ → π/2. Now with the above approximation (2.6), the metric in (2.3) takes the form,

ds2 =
r2

R2

1

K

[

{

−
(

2r2β2f +
g

2

)

dt2 − g

2
dξ2 + (1 + f)dtdξ

}

.

+hK
(

(dx2)2 + (dx3)2
)

]

+
R2

r2

[

f−1dr2 + r2

(

1

K
(dχ + A)2 + ds2

P2

)]

(2.8)

where R2 = r2
0 sinh ϕ and we have rescaled the coordinates x2,3 as x2,3 → cos θx2,3. Due

to the large magnetic or B-field in x2,3-directions, they satisfy the non-commutativity

relation [x2, x3] = iΘ, where Θ is the non-commutativity parameter. Similarly the other

fields2 in (2.4) can also be rewritten using (2.6), and this will be the holographic dual of

non-relativistic NCYM theory. Note that since for the non-relativistic case β is a physical

parameter, by setting β to zero, we recover the near horizon metric of the relativistic non-

extremal (D1, D3) solution. However, for the extremal case, β can not be put to zero, but

should be scaled away before recovering the relativistic limit.

2Since we do not need the other fields in what follows we will not write them explicitly here.
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3 Drag force in hot non-relativistic NCYM plasma

Now in order to compute the drag force3 on an external quark it is convenient to write the

metric (2.8) in the original coordinate [48] t → (ξ − t)/
√

2 and ξ → (ξ + t)/
√

2 as,

ds2 =
r2

R2

1

K

[{

−
(

1 + r2β2
)

fdt2 +
(

1 − r2β2f
)

dξ2 + 2r2β2fdtdξ
}

+hK
(

(dx2)2 + (dx3)2
)]

+
R2

r2

[

f−1dr2 + r2

(

1

K
(dχ + A)2 + ds2

P2

)]

(3.1)

It is clear from (3.1) that by putting β to zero we recover the relativistic limit as expected.

Now the dynamics of an external quark moving in this background can be understood from

the Nambu-Goto action of the fuandamental string given as,

S = − 1

2πα′

∫

dτdσ
√

−det(gab) (3.2)

where gab is the induced metric on the world-sheet of the fundamental string in the back-

ground (3.1) and is given as,

gab =
∂Xµ

∂ξa

∂Xν

∂ξb
Gµν (3.3)

where Gµν is the background metric (3.1) and ξa,b, a, b = 0, 1 are the world-sheet coordi-

nates τ = ξ0 and σ = ξ1. We now use the static gauge condition X0 ≡ t = τ and r = σ.

The end point of the string is allowed to move along one of the non-commutative directions

X2 = x (say). Then the string embedding is completely specified by the function x(t, r).

The action (3.2) then reduces to the form,

S = − 1

2πα′

∫

dtdr

[

1 + r2β2

K
+

(

r2

R2

)2
1 + r2β2

K
hf(x′)2 − h

f
(ẋ)2

]
1
2

(3.4)

Here ‘overdot’ and ‘prime’ on x denote the derivative with respect to ‘t’ and ‘r’ respectively.

Let us now make a simplifying and reasonable assumption that if we allow a sufficiently

long time the string will move with a constant velocity and therefore, x(t, r) = vt + ζ(r).

Substituting this in (3.4), the string action takes the form,

S = − 1

2πα′

∫

dtdr

[

1 + r2β2

K
+

(

r2

R2

)2
1 + r2β2

K
hf(ζ ′)2 − h

f
v2

]
1
2

(3.5)

Since the Lagrangian density does not contain ζ explicitly, the corresponding momentum

must be conserved independent of both r and t and so, we have

πζ =

(

r4

R4

)

1+r2β2

K hfζ ′

√

1+r2β2

K +
(

r4

R4

)

1+r2β2

K hf (ζ ′)2 − h
f v2

= const. independent of r, t (3.6)

3Drag force in various other backgrounds have been calculated earlier in [42–47].
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Solving this equation we obtain,

ζ ′ =
R4

r4

πζ

√
K

√

1 + r2β2hf

√

√

√

√

f
h

1+r2β2

K − v2

f
h

1+r2β2

K − π2
ζ
R4

r4h2

(3.7)

Now notice in (3.7) that as r varies from r0 to ∞, both the numerator and the denominator

inside the square root change sign. So, at some r, the expression for ζ ′ can become imagi-

nary when they have opposite signs. Therefore, the solution (3.7) is not always physically

acceptable. To get the physical solution we have to choose the constant πζ suitably such

that both the numerator and the denominator in the square root change the sign at the

same place rv (say). This fixes the constant πζ in the form,

πζ =
r2
v

R2

v

(1 + a4r4
v)

=
r2
v

r2
0

v

sinhϕ(1 + a4r4
v)

(3.8)

where rv is the solution of the equation given by,

(1 + r2
vβ

2)
[

a4r8
v + (1 − a4r4

0 − v2)r4
v − r4

0

]

+ v2β2r2
v

(

r4
v − r4

0

)

= 0 (3.9)

We can substitute the value of πζ from (3.8) to (3.7) and integrate to obtain the complete

string dynamics. In principle this is possible, but in practice, the difficulty is that the

eq. (3.9) is a polynomial equation in rv of degree ten and in general it is not always

possible to solve it analytically. Even if this is possible it is not always guaranteed that

the eq. (3.7) can be integrated in a closed form. However, we can formally write down the

expression of the drag force from (3.8) as,

F = − 1

2πα′

r2
v

R2

v

(1 + a4r4
v)

= − 1

2πα′

r2
v

r2
0

v

sinhϕ(1 + a4r4
v)

(3.10)

Note that by solving rv from eq. (3.9), we can express the drag force (3.10) in terms of r0,

sinh ϕ, v, β, a and α′, the parameters of the string theory or gravity side. Later we will

express the drag force expression in terms of the parameters of the boundary gauge theory

or non-relativistic NCYM theory. Let us mention here that the parameter β is non-trivial

and cannot be scaled away for non-relativistic theory and therefore we will call it the non-

relativistic parameter and by setting it to zero, we can recover the relativistic limit. On

the other hand the parameter a, is associated with the non-commutativity of the theory

and by setting it to zero we can recover the commutative limit. The parameter a was

defined before as a4r4
0 = 1/(sinh2 ϕ cos2 θ). In the NCYM decoupling limit sinh ϕ ∼ 1/α′

and cos θ ∼ α′/Θ, where Θ is the non-commutativity parameter given earlier and so, as

α′ → 0, sinhϕ ≫ 1 and cos θ → 0 as we mentioned earlier. Therefore, in this decoupling

limit a4r4
0 ∼ Θ2. So, a measures the non-commutativity as it is directly related to the

non-commutativity parameter.

In order to understand the drag force expression (3.10) more concretely we make some

observation from the rv equation given in (3.9). We note that for the relativistic (β = 0)

and commutative (a = 0) case, we get from (3.9)

v2 =
r4
v − r4

0

r4
v

(3.11)
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It is therefore clear that as rv goes from r0 to ∞, v varies from 0 to 1 as expected of a

relativistic theory. On the other hand, for the commutative (a = 0) but non-relativistic

(β 6= 0) case, we get from (3.9),

v2 =
(1 + r2

vβ
2)(r4

v − r4
0)

r2
v(r

2
v + r4

0β
2)

(3.12)

In this case, as rv varies from r0 to ∞, v varies from 0 to ∞, again this is as expected of a

non-relativistic theory. Let us next consider the relativistic (β = 0) but non-commutative

(a 6= 0) case. We find from (3.9),

v2 =
(r4

v − r4
0)(a

4r4
v + 1)

r4
v

(3.13)

Here we notice that for rv = r0, v = 0. But since the maximum value v can take for a

relativistic theory is 1, rv can not be arbitrarily large. We can calculate the value of rv,

when v = 1 from eq. (3.13) and we find (for large and small non-commutativity)

a4r4
v = a4r4

0 + 1 − 1

a4r4
0

+ · · · , when ar0 ≫ 1 (3.14)

a4r4
v = a2r2

0 +
1

2
a4r4

0 + · · · , when ar0 ≪ 1 (3.15)

So, for large non-commutativity rv is close to r0, but for small non-commutativity rv is

far away from r0. Finally, we consider both non-relativistic (β 6= 0) and non-commutative

(a 6= 0) case. We find from (3.9),

v2 =
(1 + r2

vβ
2)(r4

v − r4
0)(a

4r4
v + 1)

r2
v(r

2
v + r4

0β
2)

(3.16)

Here also we note that as rv starts from r0, v starts from 0. We just mentioned that rv can

not take arbitrary large value when a 6= 0, for v to remain less than or equal to 1 (for the

relativistic theory). However, we will see that even when β 6= 0 (i.e. for the non-relativistic

theory) rv can not take arbitrary large value. The reason is that if rv exceeds the value

obtained for the relativistic case given in eqs. (3.14), (3.15), then v will exceed one when

we put β = 0 and this will be unphysical for a relativistic theory. Therefore, we will use

the values of rv given in (3.14) and (3.15) to determine v when β 6= 0. It can be checked

from (3.16) that for ar0 ≪ 1, v can be much larger, i.e., v ≫ 1 (showing the non-relativistic

nature of the theory), but for ar0 ≫ 1, the maximum value of v is of the order 1. Indeed

it can be checked from (3.14) and (3.16) that the value of v is given by,

v2 = 1 +
r2
0β

2

a4r4
0

(

1 + r2
0β

2
) + O

(

1

a8r8
0

)

(3.17)

So, for a4r4
0 ≫ 1, the velocity of the quark v is close to 1 (but the velocity is always greater

than 1) as we see from (3.17). So, we will analyse the general rv equation (3.9) and the

drag force (3.10) in four different cases, namely, (i) v ≪ 1, ar0 ≪ 1, (ii) v ≪ 1, ar0 ≫ 1,

(iii) v ≫ 1, ar0 ≪ 1, and (iv) v ∼ 1, ar0 ≫ 1.

– 7 –
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(i) v ≪ 1, ar0 ≪ 1. In this case (3.9) can be solved to obtain rv in the following form,

a4r4
v = a4r4

0(1 + v2 + v4) − a8r8
0v

2(1 + v2) + · · · (3.18)

Substituting this in (3.10) we obtain

F = − 1

2πα′

v

R2
r2
0

[(

1 +
1

2
v2

)

−
(

1 + 2v2
)

a4r4
0 + · · ·

]

(3.19)

This matches exactly with those given in refs. [49, 50] with v ≪ 1 as it should be in

this approximation.

(ii) v ≪ 1, ar0 ≫ 1. In this case by solving (3.9) we obtain rv in the form,

a4r4
v = a4r4

0

[

1 +
v2

a4r4
0

+ · · ·
]

(3.20)

Substituting this is (3.10) we obtain,

F = − 1

2πα′

v

R2

r2
0

a4r4
0

[

1 − v2 + 2

2a4r4
0

+ · · ·
]

(3.21)

This also matches with the drag force expression given in [49, 50] with v ≪ 1 as

expected.

(iii) v ≫ 1, ar0 ≪ 1. In this case we get from (3.9)

a4r4
v = a2r2

0

(

1 +
a2r2

0

2
+ · · ·

)

(3.22)

Substituting these in (3.10) we get,

F = − 1

2πα′

v

R2β2

(

v2 + r4
0β

4
)

(

1 − 3

4
a2r2

0 + · · ·
)

(3.23)

(iv) v ∼ 1, ar0 ≫ 1. Eq. (3.9) in this case gives,

a4r4
v = a4r4

0

(

1 +
1

a4r4
0

− 1

a8r8
0

· · ·
)

(3.24)

Substituting this in (3.10) we get,

F = − 1

2πα′

v(v2 − 1)

R2

(1 + r2
0β

2)

β2

(

1 − 3

2

1

a4r4
0

+ · · ·
)

(3.25)

In eqs. (3.19), (3.21), (3.23) and (3.25) we have given the drag force expressions in terms

of the parameters of string or gravity theory. Now in order to understand the nature of

the force in terms the boundary gauge theory, we have to relate the gravity parameters
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with the parameters of the non-relativistic NCYM theory. The temperature of the non-

relativistic NCYM theory can be calculated from the Hawking temperature of the non-

extremal decoupled gravity configuration given in (3.1) and has the form,

T =
1

πr0 sinhϕ
(3.26)

Also from the charge of the D3-brane we can calculate,

r4
0 sinh2 ϕ = 2λ̂α′2, (3.27)

where λ̂ = ĝ2
Y MN , is the ’t Hooft coupling of the non-relativistic NCYM theory, ĝY M is

the NCYM coupling and N is the number of D3-branes and is related to the gauge group

SU(N) of the gauge theory. The ’t Hooft parameter λ̂ is related to the corresponding

parameter of ordinary YM theory by the scaling of the form, λ = (α′/Θ)λ̂, where Θ is the

non-commutativity parameter [31, 32]. Now using (3.26) and (3.27) we get,

sinh ϕ =
1

√

2λ̂π2T 2α′
, r0 =

√

2λ̂πTα′, and, a4r4
0 = 2λ̂π4T 4Θ2 (3.28)

In obtaining the last expression we have used a4r4
0 = 1/(sinh2 ϕ cos2 θ) and cos θ = α′/Θ.

Using (3.28) we will express the drag force given earlier in (3.19), (3.21), (3.23), (3.25) for

various cases in the leading order in terms of the non-relativistic NCYM theory.

In the first case (i) v ≪ 1, ar0 ≪ 1, we get

F = −
√

ĝ2
Y MN

2
πT 2v (3.29)

We can formally express the above expression (3.29) in terms of the momentum p and mass

m of the external quark and integrate to find [33, 48],

p(t) = p(0)e
−π

r

ĝ2
Y M

N

2
T2

m
t
, where p(0) ≪ m (3.30)

The corresponding energy will be given as,

E(t) = E(0)e−π
√

2ĝ2
Y M

N T2

m
t, where E(0) ≪ m/2 (3.31)

The expression of drag force for the case (ii) v ≪ 1, ar0 ≫ 1 can be written using (3.28)

in the leading order as,

F = − 1

2
√

2ĝ2
Y MNπ3T 2

v

Θ2
(3.32)

The momentum and energy can be obtained as before and have the forms,

p(t) = p(0)e
− t

2π3mT2
√

2ĝ2
Y M

NΘ2
, where p(0) ≪ m (3.33)

E(t) = E(0)e
− t

π3mT2
√

2ĝ2
Y M

NΘ2
, where E(0) ≪ m/2 (3.34)
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In the above two cases when v ≪ 1, that is, when the momentum or energy is much

less than the quark mass, the quark will lose its momentum or energy exponentially. The

relaxation times are different in the two different cases and depend on whether the non-

commutativity is small or large. For small non-commutativity the relaxation time does

not depend on the non-commutativity parameter in the leading order, but depend directly

on the mass of the quark and inversely on the square of the temperature as well as the

square-root of the ’t Hooft coupling. On the other hand, for large non-commutativity, the

dependence on the temperature and the ’t Hooft coupling get inverted, but the dependence

on the mass remains the same. Also, in this case, the relaxation time depends directly on

the square of the non-commutativity parameter. So, for small non-commutativity the non-

commutative effect does not show up in the leading order, but it does show up in the

leading order for large non-commutativity.

Similarly, for case (iii) v ≫ 1, ar0 ≪ 1 using (3.28) the expression of drag force in the

leading order has the form

F = − v3µ2

2π
√

2ĝ2
Y MN

(3.35)

where we have defined 1/(βα′) = µ, the chemical potential of the non-relativistic NCYM

theory. The momentum and the energy in this case have the forms,

p(t) =





1

p(0)2
+

tµ2

πm3
√

2ĝ2
Y MN





− 1
2

, where p(0) ≫ m (3.36)

E(t) =





1

E(0)
+

2tµ2

πm2
√

2ĝ2
Y MN





−1

, where E(0) ≫ m/2 (3.37)

In this case the momentum or the energy loss does not depend on the temperature [48]

unlike in the previous two cases. The momentum (or the energy) loss depends directly on

the square of the chemical potential and inversely on the cube (square) of the quark mass

and the square-root of the ’t Hooft coupling. With time they do not decay exponentially

as in the previous cases, but the momentum goes as t−1/2, whereas the energy goes as t−1.

Finally, the drag force expression for case (iv) v ∼ 1, ar0 ≫ 1 can be written us-

ing (3.28) in the leading order as,

F = −
√

ĝ2
Y MN

2
πT 2C(ĝ2

Y MN,µ, T )(v3 − v) (3.38)

where

C(ĝ2
Y MN,µ, T ) =

µ2 + 2π2ĝ2
Y MNT 2

2π2ĝ2
Y MNT 2

(3.39)

with µ being the chemical potential defined before. Note that the function C tends to unity

when µ2 ≪ 2π2ĝ2
Y MNT 2. Also note that when µ2 ≫ 2π2ĝ2

Y MNT 2, the force expression is

independent of temperature. It is well-known [49, 50], that the non-commutativity reduces

the amount of drag force on the quark moving in a strongly coupled NCYM plasma and
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so, it is not surprising that the drag force is very small (since v ∼ 1, for large non-

commutativity ar0 ≫ 1). The momentum and energy in this case have the forms,

p(t) = m

[

1 −
(

1 − m2

p2(0)

)

e
− 2πT2

m

r

ĝ2
Y M

N

2
C(ĝ2

Y M
N,µ,T )t

]− 1
2

, where p(0) ∼ m (3.40)

E(t) =
m

2

[

1 −
(

1 − m

2E(0)

)

e
− 2πT2

m

r

ĝ2
Y M

N

2
C(ĝ2

Y M N,µ,T )t

]−1

, whereE(0) ∼ m

2
(3.41)

In this case since v ∼ 1, both the momentum and the energy loss is also very small due to

large non-commutative effects.

4 Conclusion

To summarize, in this paper we have considered the non-extremal (D1, D3) bound state

solution of type IIB string theory. In a particular decoupling limit this supergravity con-

figuration is known to describe the holographic dual of relativistic NCYM theory at finite

temperature with space-space non-commutativity. By applying the standard technique of

Null Melvin Twist we have obtained the non-relativistic version of non-extremal (D1, D3)

bound state system. The same decoupling limit in this case, describes the holographic

dual of the non-relativistic NCYM theory at finite temperature with space-space non-

commutativity. We have computed the drag force on a quark moving through such plasma

and along one of the non-commutative directions, by using the AdS/CFT correspondence

and the string probe approach. We first computed the drag force in terms of the param-

eters of the gravity theory and then using the AdS/CFT dictionary expressed it in terms

of the parameters of the gauge theory. We found that the general drag force expression

can not be written in a closed form. So, to show the various effects we have considered the

various corners of the solution space and obtained the drag force expressions in the leading

order. We also formally integrated the drag force expression to obtain the momentum as

well as the energy loss of the quark in various limits. In particular, we have shown that

when the velocity of the quark is small, it loses its energy exponentially with time. The

relaxation times are expressed in terms of the parameters of the NCYM theory. When

the non-commutative effect is large, the relaxation time depends explicitly on the non-

commutativity parameter. We also found that the velocity could be very large when the

non-commutative effect is small. In that case the quark loses its energy as inverse power

of time. Also the energy loss does not depend on the temperature of the theory unlike in

other cases. Finally, we found that when the non-commutative effect is large the velocity

can not be arbitrarily large but must be of the order 1. In this case, the energy loss of the

quark is very small due to the large non-commutativity.
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