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1 Introduction

A conformal field theory (CFT) is characterized non-perturbatively by a set of numbers
specifying the spectrum of local operators — scaling dimensions ∆i and spins ℓi — along
with the coefficients of their three-point functions. Thanks to the convergence properties of
operator product expansion (OPE), these CFT data determine not only two- and three-point
functions, but are sufficient to determine all higher-point functions through an expansion
in conformal blocks. The modern conformal bootstrap program [1], building upon the
foundational work of [2, 3], reformulates OPE consistency in two different channels as an
infinite set of constraints that can be systematically studied numerically. The past 15 years
have seen an explosion of progress on the bootstrap approach to CFTs on both numerical
and analytic fronts, see [4–8] for reviews.

So far the predominant focus of bootstrap studies has centered on scalar four-point
functions, and even from this relatively narrow set of constraints surprisingly strong results
have emerged. There are, however, good reasons to expand these investigations to include
external operators with nonzero spin, such as global symmetry currents and stress tensors.
Notably, stress tensors are ubiquitous in any local CFTs and couple to all operators that are
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singlets under global symmetries. Given their distinctive characteristics, spinning correlators
can provide a unique lens into CFT dynamics and help improve the bootstrap constraints
obtained solely from scalar correlators. Recent advancements in this direction include
bootstrapping three-dimensional CFT data using the four-point functions of global symmetry
currents [9–11] and stress tensors [12].

Dealing with spinning correlators presents an extra layer of technicality compared to
scalar cases due to the challenges of managing various tensor structures. The first task in
this business is to classify independent tensor structures for conformal three-point functions,
which serve as building blocks for higher-point functions. The three-point function of spinning
operators Oi takes the general form

⟨O1O2O3⟩ =
∑

a

λ
(a)
O1O2O3

⟨O1O2O3⟩(a) , (1.1)

where λ
(a)
O1O2O3

are the coefficients of some conformally-invariant tensor structures ⟨O1O2O3⟩(a)

labeled by a. We are especially interested in cases where some of these operators are conserved.
The immediate question that arises is: what basis of independent tensor structures should we
work with? The most basic approach is to write down a general ansatz with an over-complete
set of some conformally-invariant building blocks, and then determine relations among their
coefficients by imposing conservation, leaving a few independent tensor structures in the end.
However, a naive such procedure can lead to unnecessarily complex algebra and dependencies
on OPE data, complicating practical bootstrap applications. To address these complexities,
recent years have seen significant progress in developing novel approaches for dealing with
spinning conformal correlators, see [13–35].

A few notable classifications of conformally-invariant three-point structures were in-
troduced in [27, 33, 35]. Their main idea involved “gauge-fixing” the conformal symmetry
by going to the conformal frame (x1, x2, x3) = (0, x,∞), and then organizing the tensor
structures through the “little group,” consisting of transformations that leave this config-
uration invariant. This group-theoretical approach highlights the fact that the counting
of correlators in CFTd matches that of on-shell scattering amplitudes in QFTd+1 [14, 27].
In particular, by exploiting the property of massless particles having two helicity states in
QFT4, the basis for CFT3 constructed in [35] fully diagonalizes the OPE data for mean-field
correlators of conserved currents.

These constructions motivate the idea of organizing tensor structures in CFTd using
amplitude structures in QFTd+1 as a convenient kinematical basis, where the latter can
effectively be analyzed through correlators in (d + 1)-dimensional anti-de Sitter space (AdS).
Indeed, the study of spinning conformal correlators fits naturally in the context of the
AdS/CFT correspondence [36–38], with conserved currents J and stress tensors T on the
boundary being dual to photons (or gluons) and gravitons in the bulk AdS, respectively.
Moreover, non-conserved spinning operators, which generically appear in the OPE of conserved
tensors, are dual to massive spinning particles in AdS. As such, it is useful to perform a
systematic construction of AdS three-point functions involving massless and massive spinning
particles, which reduce to three-particle amplitudes in the flat-space limit.

A key advancement in computing spinning conformal correlators has been the development
of the embedding-space formalism [13, 18] and weight-shifting operators [39]. These tools have
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enabled an efficient computation of spinning correlators by applying differential operators to
simpler scalar seeds, and had important applications in CFT [33, 40, 41] and in cosmology [42–
44]. Recently, the bulk interpretation of weight-shifting operators was elucidated in [45, 46],
where they were identified as the AdS analogs of on-shell kinematic building blocks for flat-
space amplitudes, given appropriate normalization and ordering. With this new understanding,
it becomes possible to directly construct AdS correlators by substituting these kinematic
building blocks from a given amplitude. In particular, this suggests that massless-massless-
massive amplitudes in flat space, which have been fully classified in [47], can be directly
“uplifted” to AdS.

In this paper, we provide a systematic approach to constructing three-point tensor
structures in CFTd by exploiting the known classification of three-particle amplitudes in
QFTd+1. Specifically, we focus on parity-even, three-point functions of one or two conserved
operators with non-conserved, totally symmetric spin-ℓ operators Oℓ, such as ⟨JJOℓ⟩, ⟨TTOℓ⟩,
⟨JOℓOℓ⟩, and ⟨TOℓOℓ⟩.1 As an application, we also derive the corresponding differential
representations for the conformal blocks of external conserved currents and stress tensors
due to totally symmetric tensor exchanges in d ≥ 3.

The paper is organized as follows. In section 2, we introduce the differential building
blocks for conformal correlators, including scalar seed functions and weight-shifting operators.
We also describe a procedure of uplifting scattering amplitudes to AdS using these basic
ingredients. In section 3, we present a basis of tensor structures for conserved-conserved-(non-
conserved) and conserved-(non-conserved)-(non-conserved) correlators. These are constructed
using the same classification as massless-massless-massive and massless-massive-massive
scattering amplitudes. In section 4, we present the corresponding differential representations
for spinning conformal blocks with external conserved currents and stress tensors. We conclude
in section 5. In appendix A, we consider the construction of differential representations
from the bulk perspective. In appendix B, we compare our results with the helicity basis
constructed in [35].

2 Differential building blocks

We begin with an overview of the differential operator technology in conformal field theory.
In section 2.1, we introduce scalar seed three-point functions, followed by the presentation
of the relevant weight-shifting operators in section 2.2. We then describe a prescription for
uplifting flat-space amplitudes to AdS in section 2.3.

2.1 Three-point scalar seeds

A natural language to describe conformal correlators is the embedding-space formalism [14, 59],
where conformal transformations on Rd are realized as Lorentz transformations on a projective
lightcone embedded in R1,d+1. We will denote coordinates in embedding space by XA, whose
indices A = 0, 1, · · · , d + 1 can be raised and lowered by the Minkowski metric ηAB . Because
embedding-space coordinates have d + 2 components, we impose two constraints on the

1These three-point functions involving higher-spin operators play an important role in analytic studies of
conformal collider and causality bounds [48–58].
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coordinates in order to get the correct number of degrees of freedom for position-space
coordinates xi in Rd, with i = 1, · · · , d. This can be achieved by restricting to the Euclidean
section of the projective lightcone, defined by the constraints X2 = 0 and X+ = 1, where
X± = X0 ± Xd+1 are the lightcone coordinates. The Euclidean section is parameterized by

XA = (X+, X−, X i) = (1, x2, xi) . (2.1)

When analyzing tensors in embedding space, it is useful to adopt an index-free notation
and contract all tensor indices with auxiliary null polarization vectors ZA, with Z2 = 0 and
X · Z = 0. It is parameterized on the Euclidean section by

ZA = (Z+, Z−, Zi) = (0, x · z, zi) , (2.2)

where zi is the corresponding auxiliary null vector in Rd, with z2 = 0.
Since a scalar three-point function of given scaling dimensions is uniquely fixed by

conformal symmetry up to normalization, we can equivalently compute this correlator from
the bulk AdS. The bulk-to-boundary propagator of a scalar field in embedding space is

Π∆(X, Y ) = N∆
(−2X · Y )∆ , N∆ ≡ Γ(∆)

(2π)
d+1

2
, (2.3)

where Y denotes the bulk coordinate in AdSd+1, with Y 0 > 0 and Y 2 = −1 in units where
the AdS radius is set to one. Note that this normalization is different from the standard
convention, but it is the one that most directly relates to flat-space amplitude structures
in momentum space.2 A scalar three-point function can be computed by integrating over
the bulk-to-boundary propagators as

⟨ϕ∆1ϕ∆2ϕ∆3⟩ =
∫

AdSd+1
dY Π∆1(X1, Y )Π∆2(X2, Y )Π∆3(X3, Y ) , (2.4)

where ϕ∆i
denotes a scalar with scaling dimension ∆i. We use the symbol ϕ instead of

O to indicate that these scalars are not necessarily operators that are present in a CFT.
Evaluating the integral gives [60]

⟨ϕ∆1ϕ∆2ϕ∆3⟩ =
b∆1∆2∆3

X∆123
12 X∆231

23 X∆312
31

, (2.5)

b∆1∆2∆3 = N∆1N∆2N∆3

π
d
2 Γ(∆123

2 )Γ(∆231
2 )Γ(∆312

2 )Γ(∆1+∆2+∆3−d
2 )

2Γ(∆1)Γ(∆2)Γ(∆3)
, (2.6)

where Xij ≡ −2Xi · Xj and ∆ijk ≡ ∆i + ∆j − ∆k.
2Given that scattering amplitudes live in momentum space, this comparison is naturally done for momentum-

space correlators. In momentum space, the normalization choice (2.3) ensures a unit normalization of an
n-point scalar seed function in the flat-space limit [45]. If desired, switching to the standard normalization in
embedding space is straightforward, which might be useful if one is interested in computing AdS correlators
with precise coupling constants (see [46] and appendix A). This will change both the normalization of the
scalar seeds and that of the weight-shifting operators that we discuss next. Our primary interest in this paper
is deriving a basis of tensor structures in CFT and, as such, the normalization convention does not play an
important role.
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Similarly, spinning three-point functions in AdS can be computed using spinning bulk-
to-boundary propagators (see [18] and appendix A). Given that the number of independent
correlators is identical between AdSd+1 and a generic CFTd, these AdS correlators (or
their linear combinations) can be used as a convenient kinematical basis for three-point
tensor structures in CFT. Rather than explicitly doing the bulk integrals, there exists a
more efficient method to compute these spinning correlators entirely on the boundary side,
effectively recycling the computation of the scalar three-point function. This makes use of
certain differential operators called weight-shifting operators, which we discuss next.

2.2 Weight-shifting operators

Weight-shifting operators [39] provide an efficient means to generate conformal structures
with nonzero spin from scalar objects. These operators can be constructed by first writing
down general conformally-covariant objects with the desired homogeneity in X and Z, and
then demanding that they have a well-defined projection onto the Euclidean section of the
lightcone. A generic weight-shifting operator can be denoted as

DA1A2···
αβ : [∆, ℓ] 7→ [∆ + α, ℓ + β] , (2.7)

where the superscript carries embedding-space indices, while α and β in the subscript indicate
the shift in the scaling dimension and spin of a conformal primary on which the operator acts,
respectively. While there exist, in principle, infinitely many such weight-shifting operators,
we will present below some particularly useful ones that will be used in our analysis.

Weight-shifting operators. Weight-shifting operators are first constructed as conformally-
covariant differential operators that transform in finite-dimensional representations of the
conformal group SO(d+1, 1). These can be viewed as efficient kinematical tools for generating
the structures we want. The most useful ones for our purposes arise from the vector and
adjoint representations, which we classify below.

- Vector representation. We first summarize the weight-shifting operators in the vector
representation of the conformal group. These are operators that carry a single embedding-
space index, some of which are given by [39, 41]

DA
−0 = XA , (2.8)

DA
0+ =

(
(∆ + ℓ)δA

B + XA∂XB

)
ZB , (2.9)

DA
+0 =

(
c1δA

B + XA∂XB

)(
c2δB

C + ZB∂ZC

)(
c3δC

D − ∂C
Z ZD

)
∂XD

, (2.10)

where δA
B is the Kronecker delta and

c1 = 2− d + 2∆ , c2 = 2− d +∆− ℓ , c3 = ∆+ ℓ . (2.11)

The above three differential operators lowers the scaling dimension, raises the spin, and
raises the scaling dimension, respectively, of a conformal primary by one unit. Hereafter,
the numbers ℓ = Z · ∂Z and ∆ = −X · ∂X that appear on the right-hand side of these
expressions always denote the spin and dimension of a conformal primary O∆,ℓ before
acting with the differential operator.

– 5 –



J
H
E
P
0
3
(
2
0
2
4
)
1
4
7

Natural choices for the normalization of the above weight-shifting operators were introduced
in [45, 46] based on their behavior in the flat-space limit. We follow [45] and define the
following normalized version of the operators:

XA ≡ −iDA
−0 , (2.12)

EA ≡ 1
∆− 1 + ℓ

DA
0+ , (2.13)

PA ≡ 2i

(ℓ + 1)(∆− 1 + ℓ)(d −∆− 2 + ℓ)D
A
+0 . (2.14)

Their normalization (with factors of i) is chosen such that the action of these operators
on the scalar seed (2.5) has a natural meaning in momentum space, when compared with
on-shell amplitudes in the flat-space limit.3

To gain a more physical intuition for these weight-shifting operators, it is instructive to
look at their action on bulk-to-boundary propagators. This allows us to derive differential
representations for spinning correlators straight from the bulk integrals, as demonstrated
in [46] and appendix A. Here, let us simply highlight an interesting “shadow relation”
between the two operators PA and XA when acting on scalar propagators:

PAΠ∆−1 −XAΠ∆+1 = i(∆̃−∆)Y AΠ∆ . (2.15)

From this relation, it follows that switching between two differential representations
involving PA and XA amounts to simply shifting seed dimensions and exchanging ∆̃ with
∆! We will demonstrate the utility of this relation in section 3 and provide more details in
appendix A.

- Adjoint representation.—Another useful class of weight-shifting operators are those that
belong to the adjoint (antisymmetric tensor) representation of the conformal group. We
find the following two operators in the adjoint representation to be particularly useful:4

DAB
00 = 1√

2
(X [A

∂
B]
X + Z

[A
∂

B]
Z ) ≡ LAB , (2.16)

DAB
−+ = 1√

2
X [AZB] . (2.17)

The first operator is the usual conformal generator LAB, which does not change any
quantum numbers; the second operator, on the other hand, raises the spin and lowers the
dimension of a conformal primary by one unit each. We define the normalized version of
the latter as

HAB ≡ i

∆− 2D
AB
−+ . (2.18)

Note that this is just an algebraic factor, so its action is rather simple.
3To go to momentum space, we first contract the embedding-space indices, project onto the physical

position space Rd, and then take the Fourier transform.
4Our convention for (anti)symmetrization is T[A,B] = TAB − TBA and T(AB) = TAB + TBA.
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Operator ∆i ∆j ℓi ℓj Ref.
Eij 0 0 +1 +1 (2.19)
Hij −1 −1 +1 +1 (2.25)
Dij 0 −1 +1 0 (2.20)
D̃ij 0 +1 +1 0 (2.21)
Fij −1 0 +1 0 (2.24)
Xij −1 −1 0 0 (2.22)
Pij +1 +1 0 0 (2.23)

Table 1. A selection of bi-local operators and their shift in scaling dimension and spin.

Bi-local operators. The weight-shifting operators in the vector and adjoint representations
that we have introduced above are conformally covariant, carrying free embedding-space
indices. However, it is often beneficial to have operators that are conformally invariant. Such
operators are especially useful if we want to project them onto position space or take their
Fourier transform. An easy way to generate these conformally-invariant operators is by simply
pairing the covariant objects into SO(d+1, 1) singlets that are bi-local, acting on two different
conformal primaries. We present below some useful bi-local operators that we will use later.

- Vector representation. Let us first consider combining the weight-shifting opera-
tors (2.12)–(2.14) from the vector representation. We can pair these operators in three
different ways to form the following spin-raising combinations:

Eij ≡ Ei · Ej , (2.19)
Dij ≡ Ei · Xj , (2.20)
D̃ij ≡ Ei · Pj , (2.21)

where i, j denote the positions that the operators act on. Specifically, they have the
following action: Eij raises the spin at both positions i and j by one unit; Dij raises the
spin at position i and lowers the dimension at position j by one unit each; D̃ij raises the
spin at position i and raises the dimension at position j by one unit each. We can also
form the following bi-local operators that only change the scaling dimensions:

Xij ≡ Xi · Xj , (2.22)
Pij ≡ Pi · Pj , (2.23)

where Xij (Pij) lowers (raises) the scaling dimensions by one unit at both positions i and
j. A summary of these bi-local operators is provided in table 1.

- Adjoint representation. From the weight-shifting operators (2.16) and (2.17) in the adjoint
representation, the two spin-raising combinations we can take are

Fij ≡ iHi · Lj , (2.24)

Hij ≡ Hi · Hj = Ĥij

(∆i − 2)(∆j − 2) , (2.25)
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where · means the component-wise product in this case. The action of these operators is
as follows: Fij raises the spin and lowers the dimension by one unit at the same position i;
Hij raises the spins and lowers the dimensions at both position i and j by one unit. For
later convenience, we also defined Ĥij ≡ −1

2X
[A
i Z

B]
i Xj[AZjB] = 1

2Hij , which differs from
the standard definition Hij by a factor of 1

2 . See table 1 for a summary of these operators.

Notice that Hij defined above is purely algebraic. As we will see later, this feature
is advantageous when it comes to an explicit evaluation of spinning correlators. In
addition, there is another spin-raising, algebraic invariant that we can form by combining
weight-shifting operators in different representations, given by

Vi,jk ≡ 1
2
∆j +∆k −∆i + ℓi

∆i − 2 iVi,jk , (2.26)

where we have related it to the standard definition Vi,jk = −X
[A
i Z

B]
i Xj,AXk,B

Xj ·Xk
. This raises the

spin and lowers the dimension by one unit at the same position i, and it is antisymmetric
in j and k. Its ℓ-th power can be expressed as

Vℓ
i,jk =

(
∆j+∆k−∆i

2

)
ℓ

(∆i − ℓ − 1)ℓ
(iVi,jk)ℓ , (2.27)

where (·)ℓ denotes the Pochhammer symbol. The above normalization is chosen such that
we can freely replace the differential operators Dij or D̃ij with the algebraic Vi,jk when
acting on a scalar seed; for example,

Vℓ
3⟨ϕ∆1ϕ∆2ϕ∆3+ℓ⟩ = D̃ℓ

31⟨ϕ∆1−ℓϕ∆2ϕ∆3⟩ = (−1)ℓD̃ℓ
32⟨ϕ∆1ϕ∆2−ℓϕ∆3⟩

= Dℓ
31⟨ϕ∆1+ℓϕ∆2ϕ∆3⟩ = (−1)ℓDℓ

32⟨ϕ∆1ϕ∆2+ℓϕ∆3⟩ , (2.28)

where we define Vi ≡ Vi,jk with cyclic ordering.

2.3 From amplitudes to correlators

Up to this point, we have introduced the ingredients for constructing three-point tensor
structures in CFT, namely the scalar seeds and weight-shifting operators. We now describe a
prescription for constructing differential representations for a basis of conformally-invariant
tensor structures, mirroring the classification of scattering amplitudes.

In the conventional method of deriving differential representations for conformal cor-
relators, one begins with a general ansatz consisting of differential operators, and then
determines their coefficients by imposing physical constraints like conservation. Although this
can be straightforwardly done case by case, the differential operators involved are generally
non-commutative and can be normalized in arbitrary ways, and the same result can be
obtained via many different weight-shifting paths. In this context, the differential operators
used are effectively just tools for getting the desired answer, lacking an inherent physical
meaning themselves.

Recently, [45, 46] highlighted that certain weight-shifting operators, when appropriately
normalized and ordered, have a natural interpretation as being the AdS analogs of on-shell
kinematic building blocks for scattering amplitudes (see also [42–44, 61–63] for related studies
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Amplitudes in R1,d
uplifting

flat-space limit
Correlators in AdSd+1

Figure 1. Relation between scattering amplitudes and AdS correlators.

of differential representations for (A)dS correlators). To see this, first, individual weight-
shifting operators are normalized such that, in the flat-space limit, their action on scalar
seeds turns into the corresponding amplitude components without extra numerical factors.
This ensures that the basic building blocks for correlators combine in the same manner as
they do for amplitudes. Moreover, while the amplitude building blocks are algebraic, the
associated differential operators in AdS have an intrinsic ordering ambiguity. To establish a
well-defined mapping between these building blocks, a specific normal ordering prescription
is required for the differential operators.

It is well known that scattering amplitudes can be obtained from AdS correlators by
taking the flat-space limit. At the same time, understanding the precise mapping between
the algebraic and differential building blocks in the two spacetimes also enables us to “uplift”
flat-space amplitudes to AdS (or dS) through a direct substitution of the basis elements
(see figure 1). Given that a conformal three-point function is non-perturbatively determined
up to a few constants, the AdS correlators obtained through this method can serve as a
basis of three-point structures for general CFTs.

In order to generate the desired tensor structures for conserved spinning correlators,
we need to combine multiple differential operators that act on scalar seeds with different
scaling dimensions. We have a set of two operators that we can use for this purpose, PA

and XA, which either raises or lowers scaling dimensions. Each choice of these operators
offers its own set of benefits. We will outline the basic idea below, and demonstrate the
procedure with concrete examples in section 3.

P representation. One way of constructing differential representations for AdS correlators
involves using PA to shift the seed dimensions. In this approach, we take a given scattering
amplitude that depends on a polarization vector ϵµ and momentum pµ (see section 3.1.1),
and make the following replacement:

ϵµ → EA , pµ → PA . (2.29)

Despite the embedding-space index A having a larger range than the spacetime index µ,
the above replacement is always applied to contracted vectors; e.g. ϵµpµ → EAPA. The
operators are then ordered such that all EA are placed to the left of PA. As shown in [46]
and appendix A, this operator ordering follows from certain identities that re-express bulk
covariant derivatives acting on a spinning propagator as normal-ordered EA and PA operators
acting on scalar propagators.

A key advantage of this “P representation” is its simplicity in verifying the conservation
condition [46]. To see this, let us define the divergence operator as

div ≡ 2i ∂X · TZ , (2.30)

T A
Z ≡

(
d

2 − 1 + Z · ∂Z

)
∂A

Z − 1
2ZA∂Z · ∂Z , (2.31)

– 9 –
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where T A
Z is the Todorov operator that strips off a null vector ZA [64].5 Taking the divergence

of a conserved tensor should then annihilate its correlator (modulo contact terms). Our
choice of the normalization in (2.13), (2.14), and (2.30) implies that

div EA = PA ,

div EAEB = 2PAEB ,
(2.32)

when acting on a conserved spin-1 current and a stress tensor, respectively. Remarkably,
this is analogous to the replacement ϵµ → pµ under which flat-space amplitudes of massless
particles vanish due to gauge invariance. This similarity suggests that one can directly uplift
a given scattering amplitude of photons or gravitons to AdS. While this is not entirely
straightforward in all cases because the operators on the right-hand side of (2.32) are no
longer normal ordered, we will show in section 3 that this approach is indeed valid for the
three-point structures that we study in this paper.

Despite this conceptual advantage, one drawback of this approach is the necessity to
evaluate multiple normal-ordered operators EA and PA before contracting their indices,
resulting in an increased computational complexity. For example, consider the expansion
of the following normal-ordered operators:

:D̃12D̃21 : = EA
1 EB

2 P2AP1B , (2.33)
:D̃2

12D̃2
21 : = EA1

1 EA2
1 EB1

2 EB2
2 P2A1P2A2P1B1P1B2 , (2.34)

where the colons on the left-hand side indicate normal ordering, and the operators on the
right-hand side must act on scalar seeds before all of their indices are contracted. This
proliferation of indices becomes increasingly difficult to handle for higher spins.

X representation. As an alternative approach, we can instead make the following re-
placement of the amplitude building blocks:

ϵµ → EA , pµ → XA . (2.35)

Interestingly, the shadow relation (2.15) implies that this uplifting procedure applies directly,
not to conserved tensors themselves, but instead to their shadows. In order to obtain
correlators of conserved tensors, we can follow a straightforward procedure to translate a
given P representation to its X counterpart, as we outline below.

As an initial move, after having obtained the P representation of a correlator, we simply
replace the operators PA → XA. Interestingly, this move naturally leads to the emergence of
bi-local operators and algebraic invariants. For example, we have the following interesting
identities involving normal-ordered operators:

:D12D21 : = E12X12 − Ĥ12 , (2.36)
:D2

12D2
21 : = E2

12X 2
12 − 2Ĥ12E12X12 + Ĥ2

12 . (2.37)

Notice that the right-hand side simply involves products of bi-local operators and the algebraic
factor Ĥ12; evaluating these expressions is much more efficient than those in terms of PA,

5Note that XA is null, and the operator PA simplifies to PA = −2iT A
X when acting on a scalar correlator.
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given in (2.33) and (2.34). Moreover, this “X representation” is also useful for momentum-
space calculations, since it is straightforward to Fourier transform bi-local operators [43, 44].
However, in this approach we sometimes need to incorporate extra terms beyond those
obtained from a direct uplifting procedure, in order to satisfy the conservation condition.
See section 3 for concrete applications of this approach.

To summarize, P representations make verifying the conservation constraint straight-
forward, but they are often infeasible for explicit evaluations. In contrast, deriving X
representations is relatively less straightforward, but they are computationally much more
efficient. In the next section, whenever appropriate, we will construct spinning three-point
structures using both approaches.

3 Three-point functions in amplitude basis

In the previous section, we outlined the ingredients of the differential representations of
conformal correlators and described the uplifting procedure. We now use this methodology
to systematically construct a range of spinning three-point structures involving conserved
currents or stress tensors and non-conserved spinning operators.

3.1 Amplitude basis

We begin by reviewing the basics of three-particle scattering amplitudes (see e.g. [14, 55, 65])
and three-point functions in CFT. We then define a basis for conformally-invariant three-point
tensor structures based on the classification of scattering amplitudes.

3.1.1 Three-particle amplitudes

Consider the scattering of three particles with arbitrary spins in D = d + 1 spacetime
dimensions, where each particle carries the momentum pµ

i and polarization tensor ϵµ1···µℓ
i .

The polarization tensors are symmetric, traceless, and transverse, and it is convenient to
express them as a product of auxiliary vectors ϵµ

i with the replacement ϵµ1···µℓ
i → ϵµ1

i · · · ϵµℓ
i ,

which are transverse (pi · ϵi = 0) and null (ϵ2
i = 0).

A three-particle amplitude is a Lorentz-invariant function of pµ
i and ϵµ

i , and takes the
general form

Aℓ1ℓ2ℓ3 =
∑
n,m

bn,m ϵn12
12 ϵn23

23 ϵn31
31 dm1

12 dm2
23 dm3

31 δ(d+1)(p1 + p2 + p3) , (3.1)

where bn,m are numerical coefficients, and we have introduced the following shorthand notation

ϵij ≡ ϵi · ϵj , dij ≡ ϵi · pj . (3.2)

We have dropped pij ≡ pi · pj here, which for three-particle scattering can be written in terms
of particle masses using the on-shell condition and momentum conservation. The amplitude
is a homogeneous polynomial of degree ℓi in each ϵi, which means that the integer parameters
n ≡ {n12, n23, n31} and m ≡ {m1, m2, m3} satisfy the constraints

mi +
∑
j ̸=i

nij = ℓi , (3.3)
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for i = 1, 2, 3. These have a finite number of solutions for general spins, determined by a simple
counting formula [14].6 If the particle i is massless, then the amplitude must be invariant under
the gauge transformation ϵµ

i → ϵµ
i + ξpµ

i and satisfy the on-shell Ward identity pi,µAµ
ℓ1ℓ2ℓ3

= 0.
In general, imposing this constraint reduces the number of independent amplitudes.

3.1.2 Three-point functions

Consider now spinning three-point functions in CFTd. We will use an index-free notation
and denote a spin-ℓ operator in embedding space as Oℓ = ZA1 · · ·ZAℓOA1···Aℓ

. Similar to
what is done for amplitudes, we can express the general three-point function in terms of
the algebraic building blocks Hij and Vi as [14]

⟨Oℓ1Oℓ2Oℓ3⟩ =
∑
n,m

cn,m
Hn12

12 Hn13
13 Hn23

23 V m1
1 V m2

2 V m3
3

Xτ123
12 Xτ231

23 Xτ312
31

, (3.4)

where cn,m are numerical coefficients, τijk ≡ τi + τj − τk, and τi = ∆i − ℓi is the twist. The
integer parameters nij and mi obey the same constraints (3.3) as before, so that the number
of independent correlators is exactly the same as that of independent amplitudes for a given
set of spins. If the scaling dimension of Oℓi

saturates the unitarity bound, ∆i = d − 2 + ℓi,
then the operator is conserved and the associated divergence of the correlator must vanish,
divi⟨Oℓ1Oℓ2Oℓ3⟩ = “0,” up to possible contact terms that vanish at separated points. The
conservation constraint is the analog of the on-shell Ward identity for amplitudes of massless
particles, and imposing this generally reduces the number of independent structures.

Conformal three-point functions with more than one spinning operator generally de-
pend on more than one OPE coefficient, so it is useful to have an organizing principle to
systematically classify their independent tensor structures. In the case of three-particle
amplitudes (3.1), an organization based on distinct values of mi is useful, as it makes clear
the power counting of the effective field theory that gives these amplitudes. In CFTs, one
can similarly organize OPE coefficients by inverse powers of ∆gap ≫ 1, where ∆gap is the
characteristic scale associated with higher-spin operators with spin greater than two. This
organization is particularly useful in the holographic context, where large-N theories with
a large higher-spin gap are conjectured to admit a local gravity dual in AdS [66]. In such
scenarios, the inverse powers of ∆gap are expected to correspond to the counting of derivatives
in AdS [49, 51, 53, 54, 66–71].

As an illustrative example, consider the three-point structures from the Yang-Mills and
F 3

µν cubic interactions, with Fµν being the field-strength tensor. The on-shell amplitudes
are given by

AYM ∝ ϵ12d31 + cyc. , (3.5)
AF 3 ∝ d12d23d31 , (3.6)

where we have suppressed the color indices and coupling constants. These two amplitudes
are clearly distinguished by their mass dimensions. On the other hand, the corresponding

6The case of D = d + 1 = 4 spacetime dimensions needs to be treated separately, as five four-vectors cannot
all be linearly independent. This linear dependence is captured by the Gram determinant involving the five
vectors ϵ1, ϵ2, ϵ3, p1, p2, which can lead to a reduction of the number of independent amplitudes.
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AdS boundary three-point functions, expressed in the algebraic basis, take the form

⟨JJJ⟩YM ∝
(H23V1 + cyc.) + 3(d−2)

2d−3 V1V2V3

(X12X23X31)d/2 , (3.7)

⟨JJJ⟩F 3 ∝ (H23V1 + cyc.) + (d + 2)V1V2V3
(X12X23X31)d/2 . (3.8)

We see that the counting of ∆gap is not manifest in the algebraic basis, with the two
correlators just differing in the coefficient of V1V2V3.

An alternative idea of organizing three-point structures in CFT is to choose a basis that
clearly reveals the amplitude structures in the flat-space limit. As discussed in the previous
section, this can be naturally accomplished with canonically-normalized weight-shifting
operators. From the amplitudes (3.5) and (3.6), the uplifting procedure (2.29) gives

⟨JJJ⟩YM = E12D̃31⟨ϕd−2ϕd−1ϕd−1⟩+ cyc. , (3.9)
⟨JJJ⟩F 3 =:D̃12D̃23D̃31 : ⟨ϕd−2ϕd−2ϕd−2⟩ , (3.10)

where the differential operators act on scalar seed three-point functions. We can think of the
scalar seeds as playing an identical role as the momentum-conserving delta function in (3.1).
The operators in (3.10) are normal ordered and are given by

:D̃12D̃23D̃31 :≡: (E1 · P2)(E2 · P3)(E3 · P1) := EA
1 EB

2 EC
3 P2AP3BP1C . (3.11)

The counting of ∆gap is now transparent in the differential representations (3.9) and (3.10),
where the number of PA

j (or D̃ij) is associated to the number of bulk AdS derivatives or the
∆gap counting in the dual CFT [46]. Specifically, ⟨JJJ⟩F 3 ∼ ∆−2

gap, while the Ward identity
implies that ⟨JJJ⟩YM ∼ cJ , where cJ is the normalization of the two-point function ⟨JJ⟩.
Moreover, checking conservation of these expressions is now trivial with the use of the identity
div EA = PA shown in (2.32). Likewise, the differential representation for ⟨TTT ⟩ clearly
exhibits the double-copy relation with ⟨JJJ⟩ and thus also the counting of ∆gap [45, 46].

The correlators ⟨JJJ⟩YM and ⟨JJJ⟩F 3 , despite having a bulk origin, span the two-
dimensional vector space of independent tensor structures for ⟨JJJ⟩ in any CFT. We will call
such a basis of tensor structures that arise from the uplifting of amplitudes as an amplitude
basis. For simplicity, when the context is clear we will not explicitly show scalar seeds, but
instead simply show the differential part of correlators as

⟨ĴJJ⟩YM = E12D̃31 + E23D̃12 + E31D̃23 , (3.12)

⟨ĴJJ⟩F 3 =:D̃12D̃23D̃31 : , (3.13)

where ⟨·̂ · ·⟩ means that we are stripping off the scalar seed functions, with the understanding
that individual terms act on seeds with possibly different scaling dimensions.

Our goal is to extend this approach to three-point functions involving both conserved
and non-conserved spinning operators. This requires first classifying flat-space amplitudes
and then uplifting these expressions to AdS. The resulting differential representations then
serve as a basis for three-point tensor structures in CFT.
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Dim. Lagrangian Spin
D ≥ 4 ∇µ1 · · · ∇µℓ

FµνF µνSµ1···µℓ ℓ ≥ 0, ℓ ∈ 2Z
D ≥ 4 ∇µ3 · · · ∇µℓ

Fαµ1F α
µ2Sµ1···µℓ ℓ ≥ 2, ℓ ∈ 2Z

Table 2. Cubic interactions for two photons and one massive spinning particle. There are two
independent parity-even amplitudes in D ≥ 4.

3.2 ⟨JJOℓ⟩ and ⟨T T Oℓ⟩

In this subsection, we present differential representations for three-point structures involving
two conserved operators and one non-conserved, symmetric spinning operator.

3.2.1 ⟨JJOℓ⟩

Let us first summarize the amplitude structures. In D = d + 1 ≥ 8 spacetime dimensions,
there exist six independent parity-even amplitudes of two photons and one massive spinning
particle, which can be classified according to the irreducible representations of the massive
little group SO(d) [47]. If we restrict to totally symmetric representations in D ≥ 4, then the
number of independent amplitudes reduces down to two. These are given by

A(1)
11ℓ = (ϵ12p12 − d12d21)dℓ

31 (ℓ ≥ 0) , (3.14)

A(2)
11ℓ = (ϵ13ϵ23p12 + ϵ12d31d32 − ϵ13d21d32 − ϵ23d12d31)dℓ−2

31 (ℓ ≥ 2) , (3.15)

for even ℓ. Since we are mainly interested in kinematical structures in this work, we will
henceforth drop overall numerical factors in these definitions. Notice that the second amplitude
only exists for ℓ ≥ 2. These amplitudes can be constructed as linear combinations of the
independent solutions to the constraints (3.3), in addition to satisfying the on-shell gauge
invariance and permutation symmetry 1 ↔ 2. The corresponding cubic Lagrangians involving
two Fµν and one massive spin-ℓ field Sµ1···µℓ are also shown in table 2.

P representation. It is straightforward to construct a basis of tensor structures for
⟨JJOℓ⟩ by directly uplifting the amplitude expressions shown above. This gives the following
differential representations for two tensor structures:

⟨ĴJOℓ⟩(1) = (E12P12− :D̃12D̃21 :)Vℓ
3 , (3.16)

⟨ĴJOℓ⟩(2) = (E13E23P12 + E12D̃31D̃32 − E13D̃21D̃32 − E23D̃12D̃31)Vℓ−2
3 , (3.17)

where we used the fact that V3 = D̃31 when acting on scalar seeds. By construction, these
correlator structures have the correct flat-space limit. To see that the above structures are
conserved, we take the divergence at position 1 and use identity div EA = PA in (2.32),
which gives

div1⟨ĴJOℓ⟩(1) = (D̃21P12 − D̃21P12)Vℓ
3 = 0 , (3.18)

div1⟨ĴJOℓ⟩(2) = (D̃31E23P12 + D̃21D̃31D̃32 − D̃31D̃21D̃32 − E23P12D̃31)Vℓ−2
3 = 0 , (3.19)
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where we have used [Ei,Pj ] = 0 for i ̸= j. Conservation at position 2 can be checked similarly.
Since the above two structures are linearly independent, the three-point function ⟨JJOℓ⟩ in
any CFT can be captured by a linear combination of ⟨JJOℓ⟩(1) and ⟨JJOℓ⟩(2).7

We may also derive two different structures for ⟨JJOℓ⟩ by directly computing Witten
diagrams in AdS. In appendix A, we carry out this bulk computation for ℓ = 0, 2 and show that
these Witten diagrams are given by linear combinations of the two structures shown above.

X representation. When it comes to an explicit evaluation of the correlators, represen-
tations involving PA can be inconvenient due to the necessity of contracting the indices of
operators after acting them on scalar seeds. It is therefore beneficial to have equivalent
representations in terms of XA.

For this analysis, it is useful to first consider a more general form of the three-point
function involving non-conserved spin-1 operators with arbitrary scaling dimension ∆J ≥ d−1.
It is easiest to illustrate the basic idea with the simple example of ℓ = 0, for which there is a
unique three-point function ⟨JJO⟩. An explicit AdS calculation of the three-point function
of two massive spin-1 fields and a scalar gives

⟨ ̂J∆J
J∆J

O⟩ ∝ E12P12− :D̃12D̃21 : −(∆J − d + 1)2 E12 ,

= E12X12− :D12D21 : −(∆J − 1)2 E12 , (3.20)

see appendix A for a derivation. In the second line, we applied the shadow relation (2.15),
which amounts to exchanging {P,∆J} with {X , ∆̃J}. Note that in the above X representation,
the term :D12D21 := EA

1 EB
2 X2AX1B still requires the operators to be normal ordered before

their indices are contracted. Using the identity (2.36), however, we can turn (3.20) into

⟨ ̂J∆J
J∆J

O⟩ = Ĥ12 − (∆J − 1)2E12 , (3.21)

thus effectively transforming the normal-ordered product of operators into the algebraic
factor Ĥ12. Setting ∆J = d − 1 for the conserved case, we get

⟨ĴJO⟩ ∝ H12 − E12 , (3.22)

where the expression has been further simplified using the normalized operator Hab.
A similar derivation follows for ℓ = 2. In this case, we have two independent cubic

interactions in AdS, and we first compute the corresponding three-point functions assuming
generic scaling dimension ∆J ≥ d − 1. As we show in appendix A, this leads to the following
differential representations:

⟨ ̂J∆J
J∆J

O2⟩(1) ∝⟨ĴJO2⟩(1)−(∆J−d+1)
[
(∆J−d+3)E12D̃31D̃32

+2
(
(∆J−d+1)E13E23−E13D̃21D̃32−E23D̃12D̃31)

)]
, (3.23)

⟨ ̂J∆J
J∆J

O2⟩(2) ∝⟨ĴJO2⟩(2)−(∆J−d+1)2E13E23 , (3.24)

7An interesting special case is when Oℓ corresponds to the stress tensor, with ℓ = 2 and ∆3 = d. In this
case, the two distinct structures for ⟨JJT ⟩ (see e.g. [72]) can be related to ⟨JJOℓ⟩(1) and ⟨JJOℓ⟩(2) by a
basis rotation.
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Dim. Lagrangian Spin
D ≥ 4 ∇µ1 · · · ∇µℓ

RαβγδRαβγδSµ1···µℓ ℓ ≥ 0, ℓ ∈ 2Z
D ≥ 5 ∇µ3 · · · ∇µℓ

Rµ1αβγRµ2
αβγSµ1···µℓ ℓ ≥ 2, ℓ ∈ 2Z

D ≥ 4 ∇µ5 · · · ∇µℓ
Rµ1αµ2βRµ3

α
µ4

βSµ1···µℓ ℓ ≥ 4, ℓ ∈ 2Z

Table 3. Cubic interactions for two gravitons and one massive spinning particle. There are three
independent parity-even amplitudes in D ≥ 5 and two in D = 4.

where ⟨ĴJO2⟩(1,2) denote the structures (3.16) and (3.17) in the conserved case. The corre-
sponding X representations then directly follow from the shadow relation (2.15).

Generalizing to general spin ℓ and setting ∆J = d − 1, we find

⟨ĴJOℓ⟩(1) =
(
(d−2)H12−(d−2+2ℓ)E12−ℓ(E13D21−E23D12)V−1

3

+ℓ(ℓ−1)(d−2)E13E23V−2
3

)
Vℓ

3 , (3.25)

⟨ĴJOℓ⟩(2) =
(
E13E23X12+E12D31D32−E23D12D31−E13D21D32−(d−2)2E13E23

)
Vℓ−2

3 . (3.26)

These two differential representations can be used as a basis of tensor structures for ⟨JJOℓ⟩
in CFT. The presence of the term Ĥ12 again follows from the identity (2.36). Although
these expressions may appear somewhat complex, we emphasize that evaluating them in
the X representation, consisting solely of bi-local operators, is much simpler than in the P
representation. The benefits of this approach are even more pronounced when we consider
three-point structures involving stress tensors, which we discuss next.

3.2.2 ⟨T T Oℓ⟩

In the most general case of D = d + 1 ≥ 8 spacetime dimensions, there exist 20 parity-even
scattering amplitudes of two gravitons and one massive spinning particle, which have been
classified in [47, 73]. Restricting to totally symmetric tensor representations, the number
of independent amplitudes reduces to three in D ≥ 5 and two in D = 4. These arise from
high-derivative interactions involving two Riemann tensors Rαβγδ and one massive spin-ℓ
field Sµ1···µℓ , which are shown in table 3. The corresponding on-shell amplitudes are

M(1)
22ℓ =(ϵ12p12−d12d21)2dℓ

31 (ℓ≥ 0) , (3.27)

M(2)
22ℓ =(ϵ12p12−d12d21)(ϵ13ϵ23p12+ϵ12d31d32−ϵ23d12d31−ϵ13d21d32)dℓ−2

31 (ℓ≥ 2) , (3.28)

M(3)
22ℓ =(ϵ13ϵ23p12+ϵ12d31d32−ϵ23d12d31−ϵ13d21d32)2dℓ−4

31 (ℓ≥ 4) . (3.29)

The second amplitude M(2)
22ℓ only exists for D ≥ 5, while the other two exist for D ≥ 4. It

should be noted that these spin-2 amplitudes can be obtained by taking two copies of the
spin-1 amplitudes in (3.14) and (3.15).

P representation. In d ≥ 4 spatial dimensions, uplifting the amplitude expressions shown
above leads to the following differential representations for three-point structures involving
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two stress tensors and one non-conserved spinning operator:

⟨T̂ TOℓ⟩(1) =:(E12P12 − D̃12D̃21)2 : Vℓ
3 , (3.30)

⟨T̂ TOℓ⟩(2) =:(E12P12 − D̃12D̃21)(E13E23P12 + E12D̃31D̃32 − E23D̃12D̃31 − E13D̃21D̃32) : Vℓ−2
3 ,

⟨T̂ TOℓ⟩(3) =:(E13E23P12 + E12D̃31D̃32 − E23D̃12D̃31 − E13D̃21D̃32)2 : Vℓ−4
3 , (3.31)

where the first and third structures form a complete basis in d = 3. The differential double-copy
structure is also apparent in these expressions. We remind the readers that weight-shifting
operators, after being squared, must be normal ordered prior to contracting their indices.

It is straightforward to verify that the above three structures are all conserved. For
example, expanding out the product of normal-ordered operators in ⟨T̂ TOℓ⟩(1), we get

: (E12P12 −D12D21)2 : = E2
12P2

12 − 2E12 :D̃12D̃21 : P12+ :D̃2
12D̃2

21 :
= E2

12P2
12 − 2E12 EA

1 D̃21P2,AP12 + EA
1 EB

1 D̃2
21P2AP2B . (3.32)

Taking the divergence at position 1 using (2.32) then gives

div1 : (E12P12 −D12D21)2 : = 2(E2 · P1Ã P12 − PA
1 EB

2 Ã P2AP1B) , (3.33)

where we defined Ã ≡ E12P12− :D̃12D̃21: . Although the two terms on the right-hand side
of (3.33) clearly cancel in the flat-space limit, their cancellation at the operator level is not
obvious because P does not commute with Ã in general. Nevertheless, an explicit computation
confirms that the two terms do cancel when applied to a scalar seed of scaling dimension
∆ = d − 1 at positions 1 and 2. The conservation of ⟨TTOℓ⟩(2,3) can be verified similarly. In
these cases, while more operators are required to cancel, showing this essentially boils down
to proving identities similar to (3.33), e.g., with Ã instead taking the form E12D̃31 − E13D̃21.

As in the ⟨JJOℓ⟩ case, the expressions in the P representation shown above are useful
for verifying conservation. However, they are inefficient for explicit computations, requiring
several differential operators to be applied before their indices can be contracted. To this
end, we now present equivalent expressions for ⟨T̂ TOℓ⟩(1,2,3) consisting of bi-local operators
in the X representation.

X representation. First, consider the case ℓ = 0, given by the structure (3.30). A
significant benefit of the X representation is that, after using the shadow relation (2.15), the
combination of normal-ordered operators in (3.32) turns into a purely algebraic factor:

: (E12X12 −D12D21)2 := Ĥ2
12 , (3.34)

which follows from the identities (2.36) and (2.37). The resulting expression for ⟨TTO⟩ in
terms of the normalized H12 is

⟨T̂ TO⟩ ∝ H2
12 − 2H12E12 +

d − 2
d − 1E

2
12 . (3.35)

We see that this is almost given by the double copy of ⟨ĴJO⟩ shown in (3.22), except the
slightly funny coefficient for the last term. The flat-space limit is thus only partially manifest
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in this representation. Despite this, evaluating this expression is extremely simple, and this
approach will similarly prove beneficial in the subsequent examples.

For ℓ ≥ 4, there are three independent three-point structures for ⟨TTOℓ⟩ in d > 3 (and
two in d = 3). To generate these structures, we need to employ a larger set of differential
operators than in (3.35). There are in total of ten independent differential building blocks
that are symmetric between 1 and 2, and a convenient basis is given by

O1 = H2
12 , O6 = H12E13E23 ,

O2 = H12E12 , O7 = E12E13E23 ,

O3 = E2
12 , O8 = E2

13D2
21 + E2

23D2
12 ,

O4 = H12(E13D21 + E23D12) , O9 = E2
13E23D21 + E2

23E13D12 ,

O5 = E12(E13D21 + E23D12) , O10 = E2
13E2

23 .

(3.36)

These differential operators have been organized according to increasing powers of the spin-
raising operator E3. When OI containing different numbers of E3 combine, additional factors
of V3 is inserted in the seed.

Let us consider the general spin-ℓ expression for the first structure ⟨TTOℓ⟩(1), which
exists for all ℓ ≥ 0 and reduces to ⟨TTO⟩ when ℓ = 0. In terms of the operators OI , this
takes the form

⟨T̂ TOℓ⟩(1) =
[
O1c1 +O2c2 +O3c3 + ℓ(O4c4 +O5c5)V−1

3

+ ℓ(ℓ − 1)(O6c6 +O7c7 +O8c8)V−2
3

+ ℓ(ℓ − 1)(ℓ − 2)O9c9V−3
3

+ ℓ(ℓ − 1)(ℓ − 2)(ℓ − 3)O10c10V−4
3

]
Vℓ

3 , (3.37)

where

c1 = d2(d − 1)2 , c6 = 4d2(d − 1)2 ,

c2 = −2d(d − 1)2(d + 2ℓ) , c7 = −2d2((d − 2)(d − 4 + 2ℓ) + X12) ,

c3 = d(d − 1)(d + 2ℓ)(d − 2 + 2ℓ) , c8 = d(d − 2) ,

c4 = −2d(d − 1)2 , c9 = −2d2(d − 2) ,

c5 = 2d(d − 1)(d − 2 + 2ℓ) , c10 = d2(d − 2)2 .

(3.38)

We have included X12 in c7 for convenience, which gives a factor of 1
2(d−2+∆+ℓ)(2d−2−∆+ℓ)

when acting on the seed function Vℓ−2
3 ⟨ϕdϕdϕ∆+ℓ−2⟩. We see that all coefficients presented

this way are then manifestly independent of the dimension of Oℓ, and that only the first
three terms survive when ℓ = 0, reproducing (3.35). Despite the seemingly more complex
coefficients, evaluating this expression is highly efficient compared to (3.30).

In d > 3, the second structure ⟨TTOℓ⟩(2) is also non-vanishing for ℓ ≥ 2. It can be
distinguished from the first structure ⟨TTOℓ⟩(1) by the non-presence of the term O1 = H2

12.
We find

⟨T̂ TOℓ⟩(2) =
[
O2e2 +O3e3 + (O4e4 +O5e5)V−1

3 + (O6e6 +O7e7 +O8e8)V−2
3

+ (ℓ − 2)O9e9V−3
3 + (ℓ − 2)(ℓ − 3)O10e10V−4

3

]
Vℓ

3 , (3.39)
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where second line only contributes when ℓ > 2. The coefficients are given by

e2 = (d − 1)2 , e7 = −d2((d − 3)(d − 4 + 2ℓ)− (ℓ − 2)(ℓ − 3))
e3 = −d(d − 2 + 2ℓ) , + d(d − 8 + 4ℓ)X12 ,

e4 = (d − 1)2 , e8 = −d(ℓ − 1) ,

e5 = −d(d − 4 + 3ℓ) , e9 = −d2(d − ℓ) + dX12 ,

e6 = d(d − 1)2d(d + 4− 2ℓ −X12) , e10 = 1
2d2((d − 2)2 −X12) . (3.40)

These coefficients again become independent of the dimension of Oℓ, after absorbing some
of them to X12.

Lastly, there is a third structure ⟨TTOℓ⟩(3) that exists for ℓ ≥ 4. Instead of using OI ,
we find it more convenient to express this structure as

⟨T̂ TOℓ⟩(3) =:(U2 − 2d2UE13E23 + d2(d − 1)(d − 2)(E13E23)2) : Vℓ−4
3 , (3.41)

U ≡ E13E23X12 + E12D31D32 − E23D12D31 − E13D21D32 . (3.42)

The extra d-dependent terms compared to (3.31) can be understood as arising from the
shadow relation, whose coefficients are proportional to ∆T = d instead of ∆̃T = 0 (and
therefore vanish) in (3.31). While (3.41) is not expressed purely in terms of bi-local operators,
evaluating this is still very efficient. It is also straightforward to write this in terms of OI

with, this time, ∆-dependent coefficients.
It can be straightforwardly verified that all three structures ⟨TTOℓ⟩(1,2,3) are conserved

for their valid ranges of ℓ. Although these X representations may appear somewhat intricate,
these structures need to be evaluated only once, which can then be expressed in the algebraic
basis consisting of Hij and Vi,jk. The Mathematica notebook containing the explicit
expressions of ⟨TTOℓ⟩(1,2,3) can be found at https://github.com/haydenhylee/ampbasis.

3.3 ⟨JOℓOℓ⟩ and ⟨T OℓOℓ⟩

Next, we examine three-point structures involving one conserved tensor and two non-conserved
spinning tensors.

3.3.1 ⟨JOℓOℓ⟩

For the scattering of one photon and two charged massive spinning particles, there are a
total of (ℓ + 1) + ℓ = 2ℓ + 1 independent amplitudes that are gauge invariant in ϵ1 and
antisymmetric under the exchange 2 ↔ 3. The two groups of on-shell amplitudes are

A(1,m)
1ℓℓ = ϵℓ−m

23 (d23d32)md12 (0 ≤ m ≤ ℓ) , (3.43)

A(2,m)
1ℓℓ = ϵℓ−m−1

23 (d23d32)m(ϵ12d31 − ϵ13d21) (0 ≤ m ≤ ℓ − 1) . (3.44)

The corresponding Lagrangian structures are shown in table 4.
An important case is the cubic interaction from the minimally-coupled kinetic term,

AµSν1···νℓ∇µS⋆
ν1···νℓ

− c.c., where Aµ is a spin-1 gauge field. This gives the amplitude A(1,0)
1ℓℓ =

ϵℓ
23d12. The corresponding conformal three-point structure is easy to write down:

⟨ĴOℓOℓ⟩(1,0) = Eℓ
23V1 . (3.45)
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Dim. Lagrangian Spin
D ≥ 4 Aµ∇ρ1···ρmSν1···νℓ∇µν1···νmS⋆ρ1···ρm

νm+1···νℓ
− c.c. 0 ≤ m ≤ ℓ

D ≥ 4 Aν1∇ρ1···ρm+1Sν1···νℓ∇ν2···νm+1S⋆ρ1···ρm+1
νm+2···νℓ

−Aρ1∇ρ2···ρm+1Sν1···νℓ∇ν1···νm+1S⋆ρ1···ρm+1
νm+2···νℓ

− c.c.
0 ≤ m ≤ ℓ − 1

Table 4. Cubic interactions for one photon and two massive spinning particles. There are in total of
2ℓ + 1 independent parity-even amplitudes in D ≥ 4, classified into two groups.

Since div1V1 = 0, this structure is manifestly conserved at position 1 at non-coincident points,
while the Ward identity relates the coefficient of this structure to the two-point function of
Oℓ. As an example, evaluating the result for ℓ = 1 and writing it in the algebraic basis gives

⟨JO1O1⟩(1,0) ∝
H12V3 + H13V2 + (d − 2)V1V2V3 −

(
1 + 2∆(∆−1)

d−2

)
H23V1

X
d/2
12 X

d/2
13 X

∆+1−d/2
23

. (3.46)

Because V1 depends on both X2 and X3, we see that the result after acting with Eℓ
23 is not

simply proportional to V1, obscuring the flat-space limit. This makes it difficult to distinguish
this structure from the ones associated to higher-derivative interactions, suppressed by ∆gap.
In contrast, the differential representation (3.45) clearly displays the flat-space structure.

In the general case, we can again uplift the amplitudes (3.43) and (3.44) directly to write
down the corresponding conformal structures in the P representation. However, evaluating
them turns out to be highly nontrivial for general ℓ and m, and therefore this time we only
explicitly present the expressions in the X representation, given by

⟨ĴOℓOℓ⟩(1,m) = Eℓ−m
23 (D23D32)mV1 , (3.47)

⟨ĴOℓOℓ⟩(2,m) = Eℓ−m−1
23 (D23D32)m(E12D31 − E13D21) . (3.48)

It should be noted that this is not a unique basis choice that one can use. Instead of
the insertion (D23D32)m = Dm

23Dm
32, the one that may more naturally arise from the direct

uplifting of the amplitude is

: (D23D32)m := EA1
2 · · · EAm

2 EB1
3 · · · EBm

3 X3A1 · · · X3AmX2B1 · · · X2Bm . (3.49)

It is clear that this replacement does not affect the conservation at position 1. However, this
proliferation of indices is difficult to handle for high m, and we have opted for the representation
that is the simplest for evaluation. This non-uniqueness of the basis choice follows from
the non-commutative nature of covariant derivatives in AdS, and there are multiple ways of
organizing the AdS interactions that involve shuffling around the lower-derivative terms.

3.3.2 ⟨T OℓOℓ⟩

For the scattering of one graviton and two identical massive spinning particles, we have a
total of (ℓ + 1) + ℓ + (ℓ − 1) = 3ℓ independent amplitudes that are gauge invariant in ϵ1 and
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Dim. Lagrangian Spin
D ≥ 4 hµ1µ2∇µ1ρ1···ρmSν1···νℓ∇µ2ν1···νmSρ1···ρm

νm+1···νℓ
0 ≤ m ≤ ℓ

D ≥ 4 hµ2
ν1∇ρ1···ρm+1Sν1···νℓ∇µ2ν2···νm+1Sρ1···ρm+1

νm+2···νℓ

−hµ2
ρ1∇ρ2···ρm+1Sν1···νℓ∇µ2ν1···νm+1Sρ1···ρm+1

νm+2···νℓ

0 ≤ m ≤ ℓ − 1

D ≥ 5
hν1ν2∇ρ1···ρm+2Sν1···νℓ∇ν3···νm+2Sρ1···ρm+2

νm+3···νℓ

−2hν1ρ1∇ρ2···ρm+2Sν1···νℓ∇ν2···νm+2Sρ1···ρm+2
νm+3···νℓ

+hρ1ρ2∇ρ3···ρm+2Sν1···νℓ∇ν1···νm+2Sρ1···ρm+2
νm+3···νℓ

0 ≤ m ≤ ℓ − 2

Table 5. Cubic interactions for one graviton and two identical massive spinning particles. There are
in total of 3ℓ independent parity-even amplitudes in D ≥ 5 (2ℓ + 1 in D = 4), classified into three
(two in D = 4) groups.

symmetric under the exchange 2 ↔ 3. In D > 4, the three groups of amplitudes are

M(1,m)
2ℓℓ = (d23d32)mϵℓ−m

23 d2
12 (0 ≤ m ≤ ℓ) , (3.50)

M(2,m)
2ℓℓ = (d23d32)mϵℓ−m−1

23 d12(ϵ12d31 − ϵ13d21) (0 ≤ m ≤ ℓ − 1) , (3.51)

M(3,m)
2ℓℓ = (d23d32)mϵℓ−m−2

23 (ϵ12d31 − ϵ13d21)2 (0 ≤ m ≤ ℓ − 2) . (3.52)

Only the first two groups of amplitudes exist in D = 4 spacetime dimensions. The corre-
sponding Lagrangian structures are shown in table 5.

Before presenting the general formulas, let us first consider the minimal coupling of
the kinetic term, hµ1µ2∇µ1Sν1···νℓ∇µ2Sν1···νℓ

, where hµ1µ2 denotes the graviton. This gives
the amplitude M(1,0)

2ℓℓ = ϵℓ
23d2

12, with the corresponding uplifted expression Eℓ
23V2

1 . We have
already described the relevant features of a similar example (3.45), and here we also show
the explicit result for ℓ = 1:

⟨TO1O1⟩(1,0) = E23V2
1 ⟨ϕd+2ϕ∆ϕ∆⟩ (3.53)

∝
H12H13−(d−2)(H13V2+H12V3)V1+ (d−2)2

2 V2V3V 2
1 + 2∆(∆−1)+d−2

2 H23V 2
1

X
d/2+1
12 X

d/2+1
13 X

∆−d/2
23

.

We see that the flat-space structure is manifest in the differential representation but not so
much in the algebraic basis. This structure stands out because it satisfies the Ward identity,
and consequently its normalization is fixed by the two-point function of Oℓ.

As before, we can write down the P representation for general structures, but this
approach is not ideal for practically computing the correlators with general ℓ and m. Instead,
we simply show the expressions in the X representation below:

⟨T̂OℓOℓ⟩(1,m) = Eℓ−m
23 (D23D32)mV2

1 , (3.54)

⟨T̂OℓOℓ⟩(2,m) = Eℓ−m−1
23 (D23D32)m(

(E12D31 − E13D21)V1 − dE12E13
)

, (3.55)

⟨T̂OℓOℓ⟩(3,m) = Eℓ−m−2
23 (D23D32)m(

: (E12D31 − E13D21)2 : −2dE12E13E23
)

. (3.56)

Notice the presence of the extra terms that are proportional to d. As we have seen in (3.41),
these d-dependent coefficients can be understood as arising from the shadow relation, and
are required to satisfy the conservation constraint.
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4 Spinning conformal blocks

Having constructed a basis for three-point tensor structures, we now outline a method to
construct the corresponding basis of conformal blocks. An efficient way to compute spinning
conformal blocks is using the method in [13], which involves applying differential operators
on scalar seed blocks. We review this method and give the differential representations for
the conformal block decomposition of ⟨JJJJ⟩ and ⟨TTTT ⟩ in terms of the amplitude basis
of three-point structures we presented in the previous section.

4.1 Differential representation and seed blocks

To begin with, consider the four-point function of a scalar ϕ. By summing over all primary
operators that contribute to the OPE in the 12-34 channel, the four-point function can
be expressed as

⟨ϕ(X1)ϕ(X2)ϕ(X3)ϕ(X4)⟩ = K4(Xi)
∑
O

λ2
ϕϕOGO(u, v) , (4.1)

where λϕϕO denotes the OPE coefficient, the conformal block GO is a dimensionless function
of the conformally-invariant cross-ratios

u = X12X34
X13X24

, v = X14X23
X13X24

, (4.2)

and the overall kinematical factor K4 is given by

K4(Xi) =
(

X24
X14

)∆1−∆2
2

(
X14
X13

)∆3−∆4
2 1

(X12)
∆1+∆2

2 (X34)
∆3+∆4

2

. (4.3)

The conformal block satisfies the conformal Casimir equation

(C2 − C∆,ℓ)GO = 0 , (4.4)

where C2 = (L1 + L2)2 is the quadratic Casimir of the conformal group and C∆,ℓ = ∆(∆−
d)+ ℓ(ℓ+d−2) is the Casimir eigenvalue for the exchanged operator O. The scalar conformal
block is well known, which can be computed by solving the Casimir equation and imposing
the correct behavior in the OPE limit [74].

Similar to the scalar case, a spinning four-point function can be expanded in conformal
blocks together with conformally-invariant tensor structures. Denoting the external operators
as Oi ≡ Oℓi

(Zi, Xi), the expansion of their four-point function in the 12-34 channel gives

⟨O1O2O3O4⟩ = K4(Xi)
∑
O

∑
a,b

λ
(a)
O1O2Oλ

(b)
O3O4OG

(a,b)
O (Zi, Xi)

= K4(Xi)
∑
O

∑
a,b

λ
(a)
O1O2Oλ

(b)
O3O4O

∑
I

TI
O1···O4(Zi, Xi)GI,(a,b)

O (u, v) , (4.5)

where TI
O1···O4

denotes conformally-invariant four-point tensor structures indexed by I, and
dimensionless functions G

I,(a,b)
O are referred to as the spinning conformal blocks. This

expansion involves a double sum over a, b that label the independent three-point structures.
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An important point is that, unlike the scalar version, spinning conformal blocks depend on
the choice of a basis for three-point tensor structures. A well-chosen basis can therefore
facilitate the computation and also clarify the interpretation of the OPE data.

An efficient way to compute these spinning blocks is by acting with differential operators
on scalar conformal blocks as [13]

K4(Xi)G(a,b)
O (Zi, Xi) = D(a)

O1O2
D(b)

O3O4
K4(Xi)GO(Xi) , (4.6)

where D(a)
OiOj

are some differential operators and the scalar conformal block GO(Xi) = GO(u, v)
here is referred to as a seed block. One can generate the desired tensor structures with a
linear combination of products of differential operators, i.e.,

D(a)
O1O2

⊃ Hn12
12 Fm1

12 Fm2
21 Dm′

1
12 Dm′

2
21 Σm1+m′

2+n12,m2+m′
1+n12 , (4.7)

where {n12 +m1 +m′
1, n12 +m2 +m′

2} = {ℓ1, ℓ2} and Σδ1,δ2 : {∆1,∆2} → {∆1 + δ1,∆2 + δ2}
is a reminder that the scaling dimensions of the seed block should be increased accordingly
to account for the dimension shifts from the weight-shifting operators. For identical external
operators, D(a)

O3O4
has the same form as D(a)

O1O2
under the permutation 1, 2 ↔ 3, 4. Following

the practice in the previous section, we will henceforth suppress the dependence on Σδ1,δ2

in D(a)
O1O2

.
The problem of computing spinning conformal blocks boils down to constructing confor-

mally-invariant differential operators that satisfy

⟨O1O2Oℓ(Z3, X3)⟩(a) = D(a)
O1O2

(Z1, Z2, X1, X2)⟨ϕ(X1)ϕ(X2)Oℓ(Z3, X3)⟩

= D(a)
O1O2

(Z1, Z2, X1, X2)Vℓ
3⟨ϕ(X1)ϕ(X2)ϕ∆+ℓ(X3)⟩ , (4.8)

where ℓ denotes the spin of the exchanged operator, and we have shown some arguments of
the operators for clarification. A crucial property of D(a)

O1O2
is that it only acts on external

scalars, namely ϕ(X1) and ϕ(X2) in (4.8), so that it does not affect the conformal multiplet
of the exchanged operator in the OPE. These scalars in the seed blocks are not necessarily
operators present in a CFT. Instead, they are considered for pure kinematical reasons, whose
three-point functions are normalized as in (2.5).

In section 3, we have defined a basis of three-point structures for ⟨JJOℓ⟩ and ⟨TTOℓ⟩.
Recall that some differential operators for these structures acted on X3, which naturally
followed from the uplifting of amplitudes. To use the above method for computing spinning
conformal blocks, we would like to translate the results of the previous section into differential
operators that just act on X1 and X2. We carry out this exercise next.

4.2 ⟨JJJJ⟩ and ⟨T T T T ⟩

We will now present two concrete examples, focusing on the conformal blocks for the four-point
functions ⟨JJJJ⟩ and ⟨TTTT ⟩ due to the exchange of totally symmetric tensors.

4.2.1 ⟨JJJJ⟩

For the conformal blocks with external conserved currents, we would like to derive the
differential operators D(a)

J1J2
that generate the three-point structures ⟨JJOℓ⟩(a) that we have
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classified before. As before, there are four independent tensor structures symmetric in 1
and 2 before imposing conservation. A set of four independent differential operators of
the form (4.7) is given by

D1 = H12 , D3 = F12D21 + F21D12 ,

D2 = F12F21 , D4 = D12D21 .
(4.9)

Our task is to recast the amplitude basis structures ⟨JJOℓ⟩(1,2) in terms of DI . When doing
so, the simplicity observed in one representation may not necessarily be reflected in the other.
For the purpose of facilitating conformal bootstrap applications, we would like the resulting
expressions in terms of the DI operators to be simple. This leads us to perform a simple
basis rotation for the three-point structures ⟨JJOℓ⟩(1,2), and define the two independent
differential operators for the conformal blocks as follows:

D(1)
J1J2

Vℓ
3 ≡ ⟨ĴJOℓ⟩(1) + ℓ(ℓ − 1)⟨ĴJOℓ⟩(2) ,

D(2)
J1J2

Vℓ
3 ≡ ⟨ĴJOℓ⟩(2) .

(4.10)

Such a basis rotation for the first structure is in fact naturally motivated from the bulk
perspective, where the exact three-point function computed in AdS is also a linear combination
of ⟨JJOℓ⟩(1) and ⟨JJOℓ⟩(2), as we show in appendix A. The superscript label a ∈ {1, 2}
matches the label we used for the amplitude basis structures, so that D(1)

J1J2
and D(2)

J1J2
exist

for ℓ ≥ 0 and ℓ ≥ 2, respectively. Explicitly, we have

D(1)
J1J2

∝C∆,ℓD1+2D2 =C∆,ℓH12+2F12F21 , (4.11)

D(2)
J1J2

∝C∆,ℓ

(
ℓ(ℓ+1)D1+D2−D3+

d−1
d−2D4

)
−2(ℓ−1)

(
(d−1+ℓ)(d−2+ℓ)D1+(2d−4+ℓ)D2−(d−2+ℓ)D3

)
. (4.12)

The differential operators D(1,2)
J3J4

are given by the permutation 1, 2 ↔ 3, 4. Interestingly, the
first line is precisely the uplifted expression from the flat-space amplitude A(1)

11ℓ ∝ (m2ϵ12 +
2d12d21)dℓ

31 in terms of the bi-local operators in the adjoint representation, with the Casimir
eigenvalue playing the role of the mass of a particle. In particular, unlike in (3.25), no
extra terms need to be added for higher ℓ. The appearance of the Casimir eigenvalue was
also noticed as a curious observation in [13]; here, we have given a physical interpretation
for its appearance.

The differential operators we have presented are defined in terms of derivatives with
respect to embedding-space coordinates Xi, which act on the combination of the kinematic
factor and the scalar block, shown in (4.6). One can then evaluate the derivatives and express
the resulting tensor structure TI

JJJJ as a polynomial of the standard Hij and Vi,jk, and express
the derivatives acting on the spinning conformal blocks in terms of the cross-ratio derivatives
∂u and ∂v. Such a coordinate change can be straightforwardly worked out, see [9, 14].

4.2.2 ⟨T T T T ⟩

For ⟨TTOℓ⟩ with ℓ ≥ 4, recall that there are 10 independent tensor structures symmetric
in 1 and 2 before imposing conservation. These can be captured by the following set of DI
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operators that act only on positions 1 and 2:

D1 = H2
12 , D6 = H12D12D21 ,

D2 = H12F12F21 , D7 = F12F21D12D21 ,

D3 = F2
12F2

21 , D8 = F2
12D2

21 + F2
21D2

12 ,

D4 = H12(F12D21 + F21D12) , D9 = F12D2
21D12 + F21D2

12D21 ,

D5 = F2
12F21D21 + F2

21F12D12 , D10 = D2
12D2

21 .

(4.13)

These operators are organized in descending powers of H and F , and are defined analogous
to the OI operators in (3.36). To avoid clutter, we use the same notation DI as in the
⟨JJOℓ⟩ case to label the differential operators with the understanding that these are now
associated with ⟨TTOℓ⟩. Imposing conservation of ⟨TTOℓ⟩ reduces the number of allowed
combinations of DI down to three.

As in the spin-1 case, it turns out that a certain basis rotation of ⟨TTOℓ⟩(a) is useful for
simplifying the resulting expressions in terms of the DI operators. For the first structure,
we find that the following combination accomplishes this:

D(1)
T1T2

Vℓ
3 ≡ T̂1 − T̂2 +

(d − 1)C∆,ℓ

4(d − 1 + ℓ)(d − 2 + ℓ)

(
T̂1 − T̂2 −

d − 2
d − 1 T̂3

)
, (4.14)

where

T̂1 ≡ ⟨T̂ TOℓ⟩(1) , (4.15)

T̂2 ≡ ℓ(ℓ − 1)⟨T̂ TOℓ⟩(2) , (4.16)

T̂3 ≡ ℓ(ℓ − 1)(ℓ − 2)(ℓ − 3)⟨T̂ TOℓ⟩(3) . (4.17)

This is so constructed that it becomes proportional to ⟨TTOℓ⟩(1) for ℓ = 0, while keeping
the coefficients of DI relatively simple, with four of them set to zero. Its explicit expression
in terms of the DI operators is given by

D(1)
T1T2

∝ a1D1 + a2D2 + a3D3 + a4D4 + a5D5 + a8D8 , (4.18)

where
a1 = 1

4d(y1 + y2(C∆,ℓ − 8)) , a4 = 4d(2(ℓ − 1)(d − 2 + ℓ)− C∆,ℓ) ,

a2 = d(y1 + y2 + 32(d − 1)) , a5 = −1
2a4 ,

a3 = d((d − 2)C∆,ℓ − 4d2) , a8 = 4(d + 1)(2d − C∆,ℓ) ,

(4.19)

with
y1 ≡ (d − 1)(2d + 4− C∆,ℓ)(4d − 8− C∆,ℓ) ,

y2 ≡ 4ℓ(d − 2 + ℓ)((ℓ − 1)(d − 1 + ℓ)− C∆,ℓ) .
(4.20)

For ℓ = 0, some DI operators become degenerate and only three of them are linearly
independent. We can make this fact manifest by rewriting the result for ℓ = 0 in terms
of just D1,2,3 as

D(1)
T1T2

∣∣
ℓ=0 ∝ C2

∆,0H2
12 + 4C∆,0H12F12F21 + 4 d − 2

d − 1
∆̃∆

(∆̃ + 2)(∆ + 2)
F2

12F2
21 . (4.21)
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Notice that, similar to what we observed for ⟨TTO⟩ in (3.35), this expression is almost given
by the double copy of (4.11), except for one of the terms. This is simply due to our desire
to adopt the computationally efficient bi-local operators to express the result, while the
double-copy structure can be made manifest in the P representation, shown in (3.30).

The remaining two independent differential operators D(2,3)
T1T2

can be chosen as

D(2)
T1T2

Vℓ
3 ≡ T̂2 +

( 1
d − 1 − 1

)
T̂3 , (4.22)

D(3)
T1T2

Vℓ
3 ≡ T̂3 . (4.23)

For D(2)
T1T2

, which exists for ℓ ≥ 2 and d ≥ 4, this combination of T̂2 and T̂3 simplifies some
coefficients of DI , setting two of them to zero. The third structure D(3)

T1T2
is chosen to be the

same as T̂3 and it is thus non-vanishing only for ℓ ≥ 4. The explicit expressions for D(2,3)
T1T2

are slightly lengthier than that of D(1)
T1T2

, and we instead present them in the accompanying
Mathematica notebook https://github.com/haydenhylee/ampbasis.

5 Conclusions

Stress tensors are universal in CFTs. By the AdS/CFT correspondence, they are dual
to gravitons in the bulk AdS. Given this nature, it is highly important to gain a better
understanding of the properties of stress tensor correlation functions in CFTs. Stress tensors
also hold a promising potential in the numerical bootstrap program, offering the possibility
to enhance the constraints on CFTs beyond those obtained from scalar correlators.

In this paper, we have outlined a method to construct conformally-invariant three-
point tensor structures in CFTs. A key element of our approach is the use of weight-shifting
operators [39]. With appropriate normalization and ordering, these operators can be identified
as the (A)dS analogs of the on-shell building blocks for scattering amplitudes, a relationship
that can be made precise through the flat-space limit [45, 46]. This understanding enables
us to straightforwardly derive differential representations for tensor structures in CFT by
uplifting flat-space amplitudes to AdS, involving simple substitutions of the building blocks.

Using this method, we have derived the differential representations for three-point
structures involving conserved currents or stress tensors and non-conserved, totally symmetric
tensors in d ≥ 3. By construction, these differential representations precisely align with the
established classification of scattering amplitudes involving photons/gravitons and massive
spinning particles [47]. Such constructed amplitude basis of tensor structures then has a
clear physical interpretation in holographic CFTs as corresponding to AdS correlators in
one higher dimension.

While the uplifting procedure is straightforward and yields structures that satisfy the
conservation constraints, the resulting differential representations, involving products of
uncontracted weight-shifting operators, are often not optimal for explicit computations. To
address this, we have also presented computationally more efficient representations in terms
of bi-local operators. Since these operators can be easily Fourier transformed, the differential
representations presented in this paper may also significantly streamline momentum-space
calculations of three-point functions of conserved and non-conserved tensors [57, 75, 76]. Our
results for the three-point structures are summarized in table 6.
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Dim. Correlator Ref. Amplitude Ref. Lagrangian Ref.
d ≥ 3 ⟨JJOℓ⟩(1) (3.25) A(1)

11ℓ (3.14) ∇ℓFFS Table 2
d ≥ 3 ⟨JJOℓ⟩(2) (3.26) A(2)

11ℓ (3.15) ∇ℓ−2FFS Table 2
d ≥ 3 ⟨TTOℓ⟩(1) (3.37) M(1)

22ℓ (3.27) ∇ℓRRS Table 3
d ≥ 4 ⟨TTOℓ⟩(2) (3.39) M(2)

22ℓ (3.28) ∇ℓ−2RRS Table 3
d ≥ 3 ⟨TTOℓ⟩(3) (3.41) M(3)

22ℓ (3.29) ∇ℓ−4RRS Table 3
d ≥ 3 ⟨JOℓOℓ⟩(1,m) (3.47) A(1,m)

1ℓℓ (3.43) (A∇)∇mS∇mS⋆ Table 4
d ≥ 3 ⟨JOℓOℓ⟩(2,m) (3.48) A(2,m)

1ℓℓ (3.44) A∇mS∇m+1S⋆ Table 4
d ≥ 3 ⟨TOℓOℓ⟩(1,m) (3.54) M(1,m)

2ℓℓ (3.50) (h∇2)∇mS∇mS Table 5
d ≥ 3 ⟨TOℓOℓ⟩(2,m) (3.55) M(2,m)

2ℓℓ (3.51) (h∇)∇mS∇m+1S Table 5
d ≥ 4 ⟨TOℓOℓ⟩(3,m) (3.56) M(3,m)

2ℓℓ (3.52) h∇mS∇m+2S Table 5

Table 6. Summary of the three-point structures and schematic Lagrangians.

We have also examined the differential representations for spinning conformal blocks
using the framework of [13], focusing on ⟨JJJJ⟩ and ⟨TTTT ⟩ due to the exchange of
totally symmetric tensors. Interestingly, we have found that these spinning conformal blocks
decompose somewhat nicely into the amplitude basis structures, suggesting that they could be
useful for practical bootstrap applications beyond holographic CFTs. It would be fascinating
to perform new bootstrap studies involving the stress tensor four-point function, building
on the results of [12] in d = 3.

It is important to note that our analysis, although valid in general dimensions, was
restricted to totally symmetric tensors and parity-even tensor structures. This is clearly
limited, as mixed-symmetric tensors can generally contribute to the OPE of stress tensors in
d > 3 [19, 25]. Our results could be straightforwardly extended to incorporate these cases by
uplifting the scattering amplitudes of two photons or gravitons and one mixed-symmetric
tensor, which have also been classified in [47]. An extension to supersymmetric and fermionic
correlation functions would also be interesting.

In this work, we have refined the connection between weight-shifting operators in CFTs and
flat-space scattering amplitudes that was more experimentally found in [45, 46]. We anticipate
that our findings should have broad applications to holographic CFTs and the computation
of (A)dS Witten diagrams. Specifically, the differential approach could significantly facilitate
the calculation of graviton correlators and help to formulate a precise double copy in (A)dS.
In addition, it would be interesting to understand the relationship between the differential
operators we have employed for conformal blocks and those applied to spinning partial waves
of scattering amplitudes in [77].
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A Three-point functions in AdS

In the main text, we derived a basis for conformal three-point functions by uplifting the
corresponding scattering amplitudes to AdS. A complementary (but more involved) approach
is to derive them directly in the bulk AdS using perturbation theory. In this appendix, we
follow the latter approach and, through some basic examples, demonstrate that this gives the
results presented in the main text. We begin by describing the relevant details of spinning
AdS propagators in section A.1, followed by a direct computation of ⟨JJOℓ⟩ for ℓ = 0, 2
from the bulk perspective in section A.2.

A.1 Spinning AdS propagators

In the main text, we have adopted the normalization convention for scalar seeds and weight-
shifting operators that makes manifest their connection to scattering amplitudes in the
flat-space limit within momentum space. This is sufficient for deriving differential repre-
sentations for three-point structures in CFT, where overall numerical prefactors do not
play an important role.

If one instead wants to perform an explicit calculation in AdS position space keeping
precise coupling constants, then a different normalization choice might be more practical. To
accommodate this, we also present the normalization convention chosen in [46], with a small
modification. It is important to note, however, that all operator identities discussed in the
main text and this appendix hold, regardless of the chosen normalization convention.

The standard normalization of the scalar bulk-to-boundary propagator in embedding
space is given by

Π∆ = N∆
(−2X · Y )∆ , N∆ = Γ(∆)

2π
d
2 Γ

(
∆− d

2 + 1
) . (A.1)

A normalization choice for the weight-shifting operators consistent with (A.1) is given by

XA = i(∆̃−∆)DA
−0 , (A.2)

EA = ∆− ℓ

∆(∆− 1)D
A
0+ , (A.3)

PA = 2i

(ℓ + 1)(1−∆)(d −∆− 2)(d − 2∆− 2)D
A
+0 . (A.4)

The bulk-to-boundary propagator for a spin-ℓ field can then be obtained by

ΠA1···Aℓ
∆ = EA1 · · · EAℓΠ∆ . (A.5)

Moreover, the operators P and X normalized as above also satisfy the same shadow relation
given in (2.15).

In what follows, we provide some useful identities for the bulk-to-boundary propagators
of scalars, spin-1, and spin-2 fields. These involve converting bulk covariant derivatives
acting on a bulk-to-boundary propagator to boundary weight-shifting operators acting on
scalar propagators, which allows us to pull the resulting derivatives with respect to external
coordinates out of the bulk integral.
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Scalar. For bulk covariant derivatives acting on a scalar propagator, we have the following
identities:

∇AΠ∆ = iPAΠ∆−1 − ∆̃YAΠ∆ ,

= iXAΠ∆+1 −∆YAΠ∆ , (A.6)
∇A∇BΠ∆ = −PAPBΠ∆−2 + i(∆̃− 1)Y(APB)Π∆−1 + ∆̃(∆̃YAYB − ηAB)Π∆ ,

= −XAXBΠ∆+2 + i(∆− 1)Y(AXB)Π∆+1 +∆(∆YAYB − ηAB)Π∆ . (A.7)

Note that the equivalent weight-down expressions are obtained by simply exchanging PA ↔
XA, ∆̃ ↔ ∆, and accordingly shifting the weights of scalar seed propagators.

Spin one. For a spin-1 field with generic weight ∆, the repeated action of the covariant
derivative on its propagator can be expressed as the combined action of spin-raising operator
EA and the weight-raising PA on a collection of scalar propagators with suitably chosen
weights. For instance,

(Π∆)M = EMΠ∆ , (A.8)
∇A(Π∆)M = iEMPAΠ∆−1 − (∆̃YAEM + YMEA)Π∆ , (A.9)

∇A∇B(Π∆)M = −EMPAPBΠ∆−2 − i(YME(APB) + (∆̃ + 1)EM Y(APB))Π∆−1

+ ((∆̃ + 1)YAYMEB + ∆̃YBYMEA)Π∆

+ (∆̃2YAYBEM − ∆̃ηABEM − ηAMEB)Π∆ . (A.10)

Note that all of the operators in the identities above are normal ordered, so that P always
acts on scalar propagators before the spin-raising operator E . As before, the shadow relation
PA ↔ XA, ∆̃ ↔ ∆ also applies in this case.

Spin two. Similar identities hold for a spin-2 field. We have8

(Π∆)MN = EMENΠ∆ , (A.11)
∇A(Π∆)MN = iEMENPAΠ∆−1 − (∆̃YAEMEN + Y(MEN)EA)Π∆ , (A.12)

∇A∇B(Π∆)MN = −EMENPAPBΠ∆−2 − i
(
Y(MEN)E(APB) + (∆̃ + 1)EMEN Y(APB)

)
Π∆−1

+
(
2YM YNEAEB + (∆̃ + 1)YAY(MEN)EB + ∆̃YBY(MEN)EA

)
Π∆

+
(
∆̃2YAYBEMEN − ∆̃ηABEMEN − ηB(MEN)EA

)
Π∆ . (A.13)

Again, the equivalent expressions in X representation can be easily obtained through the
exchange PA ↔ XA, ∆̃ ↔ ∆. It is straightforward to generalize these identities to higher-
spin cases.

A.2 Bulk derivation of ⟨JJOℓ⟩

As a demonstration, in this section we derive ⟨JJOℓ⟩ directly from the bulk. We focus
on two simple cases with ℓ = 0, 2, which are sufficient to illustrate the relevant qualitative
features. Computing more complicated examples would be straightforward, but it would
require the generalization of the propagator identities given in the previous section involving
more covariant derivatives.

8This fixes some typos in eq. (C.1) of [46].
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A.2.1 ⟨JJO⟩

Consider first the case ℓ = 0. The cubic interaction between two photons Aµ and one scalar ϕ is

Sint =
∫

AdSd+1
dd+1x

√
g
(
FµνF µνϕ

)
, (A.14)

where Fµν = ∇[µAν] = ∇µAν −∇νAµ and we have suppressed a coupling constant. For the
time being, we will treat Aµ as a spin-1 field with a generic mass (massless or massive),
but which has the same cubic interaction (A.14). The three-point function for the above
interaction is given by the following integral in embedding space:

⟨J∆J
J∆J

O⟩ =
∫

dY ∇[M (Π1,∆J
)N ]∇

[M ΠN ]
2,∆J

Π3,∆ , (A.15)

where the covariant derivatives are with respect to the bulk coordinate Y M . The subscript
J in ∆J is a reminder that the spin-1 field has a generic scaling dimension ∆J ≥ d − 1
and is not necessarily conserved.

We will rewrite the above integral as derivatives acting on external coordinates Xi using
identity (A.9), in the form of weight-shifting operators acting on a scalar propagator. Making
this substitution and using the following identities

(Y · E)Π∆ = 0 ,

(Y · P)Π∆−1 = i∆̃Π∆ ,

(Y · E)PMΠ∆−1 = iEMΠ∆ ,

(A.16)

we find that all Y -dependent pieces cancel among the terms in (A.15). We end up with

⟨J∆J
J∆J

O⟩ ∝ (E12P12− :D̃12D̃21 :)⟨ϕ∆J−1ϕ∆J−1ϕ∆⟩ − (∆̃J − 1)2E12⟨ϕ∆J
ϕ∆J

ϕ∆⟩ , (A.17)

where we have dropped a constant numerical prefactor, and the scalar three-point function is
given by ⟨ϕ∆1ϕ∆2ϕ∆3⟩ =

∫
dY Π1,∆1Π2,∆2Π3,∆3 . Notice that the second term above vanishes

for conserved spin-1 gauge field with ∆J = d − 1 or ∆̃J = 1, which then gives the ℓ = 0
version shown in (3.16).

The basic procedure of bulk derivation in the X representation is similar to that in the
P representation presented above, where all identities have P ↔ X , ∆̃J ↔ ∆J , accompanied
by a corresponding change of scaling dimensions in the scalar propagators. In the X
representation, we therefore end up with

⟨J∆J
J∆J

O⟩∝ (E12X12− :D12D21 :)⟨ϕ∆J +1ϕ∆J +1ϕ∆⟩−(∆J−1)2E12⟨ϕ∆J
ϕ∆J

ϕ∆⟩ ,

(A.18)
giving the expression shown in (3.20).

A.2.2 ⟨JJOℓ=2⟩

There are two independent cubic interactions between two photons and one massive spin-ℓ
particle with ℓ ≥ 2, shown in table 2. We will denote the correlators derived directly from
these two bulk Lagrangians as ⟨JJOℓ⟩L1

and ⟨JJOℓ⟩L2
.
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⟨JJO2⟩L1. We first consider the cubic action

Sint =
∫

AdSd+1
dd+1x

√
g
(
∇αFµν∇βF µνSαβ) . (A.19)

The corresponding three-point function ⟨JJO2⟩L1
is computed from the integral

⟨JJO2⟩L1 =
∫

dY ∇A∇[M (Π1,∆J
)N ]∇B∇[MΠN ]

2,∆J
ΠAB

3,∆ , (A.20)

where we have again assumed a generic scaling dimension ∆J ≥ d − 1 for the spin-1 field.
The basic procedure is similar to that of the ℓ = 0 case, except that one needs a different set
of relations to simplify the intermediate steps in the bulk integral. We can replace the double
covariant derivatives acting on the spin-1 propagator using the identities (A.10), (A.16),
as well as

Y M (Π∆)MN = 0 ,

(Y · E)PMPNΠ∆−2 = iE(MPN)Π∆−1 .
(A.21)

After many cancellations of the Y -dependent terms, we arrive at the following differential
representation of the correlator:

⟨ ̂J∆J
J∆J

O2⟩L1
∝ (E12P12− :D̃12D̃21 :)D̃31D̃32 −

[
E13E23P12 + E12D̃31D̃32((∆̃J + 1)2 − 3)

− (2∆̃J − 1)(E13D̃21D̃32 + 1 ↔ 2)
]
− (∆̃J − 1)2E13E23 . (A.22)

For the conserved case ∆J = d − 1, the last term disappears, and the result is given by
a linear combination of the expressions obtained via directly uplifting amplitudes—(3.16)
and (3.17)—as follows:

⟨JJO2⟩L1
∝ ⟨JJO2⟩(1) + ⟨JJO2⟩(2) . (A.23)

This means that the directly-uplifted representation (3.23) in fact mixes terms with different
derivative orders.

⟨JJO2⟩L2. The other independent cubic action is

Sint =
∫

AdSd+1
dd+1x

√
g
(
FµαF µβSα

β

)
. (A.24)

The integral for the corresponding three-point function is

⟨JJO2⟩L2 =
∫

dY ∇[M (Π1,∆J
)A]∇[M (Π2,∆J

)B](Π3,∆)A
B . (A.25)

As before, we assume ∆J ≥ d − 1 in the derivation. Using the propagator identities, we
obtain the differential representations

⟨ ̂J∆J
J∆J

O2⟩L2
∝ E13E23P12 + E12D̃31D̃32 − E23D̃12D̃31 − E13D̃21D̃32 − (∆̃J − 1)2E13E23

= E13E23X12 + E12D31D32 − E23D12D31 − E13D21D32 − (∆J − 1)2E13E23 , (A.26)

where we have used the shadow relation in the second line. For the conserved case ∆J = d− 1
or ∆̃ = 1, the last term in the P representation above vanishes, reproducing (3.17), whereas
the second line gives the X representation shown in (3.26).
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B Comparison with helicity basis

It is instructive to compare the amplitude basis discussed in this paper with the helicity
basis constructed in [35, 78]. In the latter basis, the OPE data for conserved currents in
mean field theory were found to be diagonal in d = 3, which suggests that the structures
are well chosen. We first present the generalization of the helicity basis in d ≥ 3, and then
make a comparison with the amplitude basis.

The core idea is to construct SO(d − 1) symmetric tensor structures perpendicular to
momentum k conjugate to x in the conformal frame (x1, x2, x3) = (0, x,∞). One then
organizes the structures through the little group SO(d − 1) that leaves k invariant. The
construction of the polarization tensor structures that are perpendicular to k can be achieved
by the following projection operator9

P(ℓ)
ϵ = P(ℓ,ℓ)

ϵ P(ℓ−1,ℓ)
ϵ · · · P(0,ℓ)

ϵ , (B.1)

P(m,ℓ)
ϵ ≡ 1− 2

(d − 4 + ℓ + m)(ℓ − m + 1)
ϵ · k

k2 (k · Tϵ) , P(0,ℓ)
ϵ ≡ 1 , (B.2)

where Tϵ is the Todorov operator defined in (2.31). This operator is constructed such that
it is transverse to k:

(k · Dϵ)P(ℓ)
ϵ ϵµ1 · · · ϵµℓ = 0 . (B.3)

The parity-even tensor structures can then be constructed as [78]

Hi1i2i3
O1O2O3

∝ (ϵ1 · k)ℓ1−i1(ϵ2 · k)ℓ2−i2(ϵ3 · k)ℓ3−i3kα−d

× P(i1)
ϵ1 P(i2)

ϵ2 P(i3)
ϵ2 (ϵ1 · ϵ2)

i123
2 (ϵ2 · ϵ3)

i231
2 (ϵ3 · ϵ1)

i312
2 , (B.4)

where α ≡ (∆1+∆2−∆3)−(ℓ1− i1)−(ℓ2− i2)−(ℓ3− i3) and iabc = ia+ ib− ic. For i1, i2 that
run from 0 to ℓ1, ℓ2, respectively, the third index i3 takes values |i1−i2|, |i1−i2|+2, · · · , i1+i2.
For ℓ1 = ℓ2 = ℓ, there are a total of (ℓ + 1) tensor structures, which form a basis for parity-
even three-point structures with two conserved spin-ℓ tensors. We will drop the overall
normalization factors, which are unimportant for our purposes.

By construction, the helicity basis structures are orthogonal under the three-point inner
product [33]

(
⟨O1O2O3⟩(a), ⟨Õ1Õ2Õ3⟩(b)

)
=

∫
ddx1ddx2ddx3

vol SO(d + 1, 1)⟨O1O2O3⟩(a)⟨Õ1Õ2Õ3⟩(b)

= ⟨O1(0)O2(e)O3(∞)⟩(a)⟨Õ1(0)Õ2(e)Õ3(∞)⟩(b)

2d vol SO(d + 1, 1) , (B.5)

where we have suppressed the contraction of tensor indices. In the second line we have gauge
fixed the conformal symmetry to the conformal frame, with 2−d being the Faddeev-Popov
determinant, and e is a unit vector. The operator insertion at ∞ is defined as the limit
O(∞) = limr→∞ r2∆O(r), which gives a finite correlation function.

9This fixes some typos in eq. (5.3) of [78].
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Spin one. For conserved spin-1 currents, the parity-even helicity basis in momentum
space takes the form [35] H(1)

JJOℓ

H(2)
JJOℓ

 =

 t12
t13t23
(ϵ3·k)2 − t12

1−d

 (ϵ3 · k̂)ℓ3

k∆3−d+4 , (B.6)

where tab ≡ k2(ϵa · ϵb)− (ϵa ·k)(ϵb ·k) and we have labeled the structures as {H(1)
JJOℓ

,H(2)
JJOℓ

} =
{H110

JJOℓ
,H112

JJOℓ
}. Both of these structures are transverse with respect to ϵ1 and ϵ2, and

correspond to SO(d − 1) traceless symmetric tensors with respect to ϵ3. The three-point
pairing matrix between these two structures is diagonal:

(
H(a)

JJOℓ
, H̃(b)

JJOℓ

)
∝

1 0
0 (d−2)(d−2+ℓ)(d−1+ℓ)

(d−1)2ℓ(ℓ−1)


ab

, (B.7)

where H̃(a)
O1O2O3

≡ H(a)
Õ1Õ2Õ3

denotes the shadow structures. The lower diagonal entry is
singular for ℓ = 0, 1, which reflects the fact that the second structure only exists for ℓ3 ≥ 2
for generic ∆3.

After constructing the structures that are orthogonal to k, it is convenient to Fourier
transform these back to position space. There are four independent tensor structures in the
conformal frame symmetric in z1 and z2, given by

q1 = z12 , q3 = (z13v2 + z23v1)v−1
3 ,

q2 = v1v2 , q4 = z13z23v−2
3 , (B.8)

where we have defined zij ≡ zi · zj and vi ≡ zi · x̂. We can then express the helicity basis
structures (B.6) in position space as

H(1)
JJOℓ

H(2)
JJOℓ

 = MJJOℓ

q1
...

q4

 vℓ3
3

|x|∆1+∆2−∆3
, (B.9)

where MJJOℓ
is the 2 × 4 matrix given by [78]

MJJOℓ
∝

2n(d − β − 1) 4n(n − 1) 2nℓ ℓ(ℓ − 1)

− 2nβ
d−1 −4(d−2)n(n−1)

d−1 2n

(
ℓ+(d−1)(2−∆̃)

d−1

)
J−(d−1)(∆̃−2)2

d−1

 , (B.10)

with J = ℓ(ℓ + d − 2), ∆− ℓ = 2(d − 2 + n) and β = ∆+ ℓ. In particular, when ∆3 = d − 1
and ℓ3 = 1, the last column of MJJOℓ

vanishes. In this case, the helicity basis is related to
the two three-point functions ⟨JJJ⟩F 3 and ⟨JJJ⟩YM, shown in (3.9) and (3.10), as ⟨JJJ⟩F 3

⟨JJJ⟩YM

 ∝

d(d − 2) 0

3− d 1− d

H(1)
JJJ

H(2)
JJJ

 . (B.11)

When d = 3, we see that the helicity basis precisely corresponds to the amplitude structures,
as was shown in [35].
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For the amplitude basis ⟨JJOℓ⟩(a) with non-conserved operators, given in (3.25) and (3.26),
the two bases are related by the following change-of-basis matrix:⟨JJOℓ⟩(1)

⟨JJOℓ⟩(2)

 ∝

−∆(∆+d−4)
2 + ℓ(d−3)(d+ℓ−2)

2(d−1) ℓ(ℓ − 1)
− (d−2)(d−3)(d+∆+ℓ−2)

(d−1)(∆+ℓ−d+2) −2(d−2)(ℓ+∆−1)
(ℓ+∆−d+2)

H(1)
JJOℓ

H(2)
JJOℓ

 . (B.12)

The unitarity bound ∆ ≥ d−2+ℓ guarantees that the coefficients have positive denominators,
and the matrix is invertible for d ≥ 3 and ℓ ≥ 2. In d = 3, the second structure ⟨JJOℓ⟩(2)

becomes proportional to H(2)
JJOℓ

.

Spin two. For stress tensors, the parity-even helicity basis takes the form


H(1)

T TOℓ

H(2)
T TOℓ

H(3)
T TOℓ

 =


t2
12 −

(ϵ1·k)2(ϵ2·k)2

d−1
(d−1)t12t23t13+(ϵ3·k)2t2

12+(ϵ1·k)2t2
23+(ϵ2·k)2t2

13
(d−1)(ϵ3·k)2 − 2(ϵ1·k)2(ϵ2·k)2

(d−1)2

t2
13t2

23
(ϵ3·k)4+

4t12t23t13+ 2
d+1 (ϵ3·k)2t2

12−(ϵ1·k)2t2
23−(ϵ2·k)2t2

13
(d+3)(ϵ3·k)2 + (ϵ1·k)2(ϵ2·k)2

(d+3)(d+1)

 (ϵ3 · k̂)ℓ3

k∆3−d+4 ,

(B.13)
where we have labeled {H(1)

T TOℓ
,H(2)

T TOℓ
,H(3)

T TOℓ
} = {H220

T TOℓ
,H222

T TOℓ
,H224

T TOℓ
}. Again, all of

these structures are transverse with respect to ϵ1 and ϵ2, and correspond to SO(d − 1)
traceless symmetric tensors with respect to ϵ3. As in the spin-1 case, the three-point pairing
of the helicity basis structures is diagonal by construction:

(
H(a)

T TOℓ
, H̃(b)

T TOℓ

)
∝


1 0 0
0 (d2−9)(d+ℓ−2)(d+ℓ−1)

2ℓ(ℓ−1)(d−1)2(d+1) 0
0 0 2d(d+ℓ+1)(d+ℓ)(d+ℓ−1)(d+ℓ−2)

ℓ(ℓ−1)(ℓ−2)(ℓ−3)(d+3)(d+1)2


ab

. (B.14)

From these entries, we see that the structures H(2)
T TOℓ

and H(3)
T TOℓ

only exist for ℓ ≥ 2 and
ℓ ≥ 4, respectively.

Back in position space within the conformal frame, the 10 independent tensor structures
that are symmetric in 1 and 2 are given by

q1 = z2
12 , q6 = z12z13z23v−2

3 ,

q2 = z12v1v2 , q7 = z13z23v1v2v−2
3 ,

q3 = v2
1v2

2 , q8 = (z2
23v2

1 + z2
13v2

2)v−2
3 ,

q4 = z12(z23v1 + z13v2)v−1
3 , q9 = (z13v2 + z23v1)z13z23v−3

3 ,

q5 = (z13v2 + z23v1)v1v2v−1
3 , q10 = z2

13z2
23v−4

3 .

(B.15)

The spin-2 helicity basis (B.13) can then be expressed as


H(1)

T TOℓ

H(2)
T TOℓ

H(3)
T TOℓ

 = MT TOℓ

 q1
...

q10

 vℓ3
3

|x|∆1+∆2−∆3
, (B.16)
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where MT TOℓ
is a 3×10 matrix. The helicity basis is related to the amplitude basis ⟨TTOℓ⟩(a)

constructed in the main text by a change of basis as
⟨TTOℓ⟩(1)

⟨TTOℓ⟩(2)

⟨TTOℓ⟩(3)

 = RT TOℓ


H(1)

T TOℓ

H(2)
T TOℓ

H(3)
T TOℓ

 . (B.17)

Due to their large sizes, we show the explicit expressions for the matrices MT TOℓ
and RT TOℓ

in the Mathematica notebook https://github.com/haydenhylee/ampbasis.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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