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1 Introduction and summary

One of the fascinating aspects of supersymmetry is that it allows one to obtain non-
perturbative results which are hard to be obtained otherwise. With the help of the su-
persymmetric localization (see e.g. [1] for a review), the infinite-dimensional path integral can
be reduced to a finite-dimensional integral of over the moduli space of Bogomolnyi-Prasad-
Sommerfield (BPS) configurations, so that we can exactly compute partition functions and
physical observables of the theory. This has led to precision studies of supersymmetric gauge
theories, black holes and string theory.

In this paper, we are interested in the counting problem of the supersymmetric ground
states of Type ITA string theory on a Calabi-Yau (CY) manifold, whose holomorphic cycles are
wrapped by Dp-brane with even p’s. In particular we consider non-compact toric Calabi-Yau
threefolds and fourfolds.

On the one hand, on the worldvolume of the D-branes we find supersymmetric quiver
quantum mechanics. We expect that the BPS degeneracy can be computed by evaluating



the BPS index (Witten index [2]) of the quantum mechanics, with fugacities turned on
for global symmetries.

On the other hand, when putting Type ITA string theory on a toric Calabi-Yau threefold,
the counting problem of BPS states can be nicely translated into the combinatorial problem
of crystal melting. The statistical mechanical model of crystal melting for a general toric
CY threefold was formulated in [3] (see also [4-17], and [18] for a review), generalizing the
crystal melting model for C? [19]; the BPS degeneracies can be obtained by enumerating all
the possible configurations of the molten crystals satisfying the melting rule. Mathematically,
these BPS invariants are in fact the generalized Donaldson-Thomas (DT) invariants [20], and
the crystal configurations are nothing but the fixed-point sets of the moduli space, in the
equivariant localization with respect to the torus action originating from the toric geometry.

One of the main goals of this paper is to connect these two descriptions, by directly
deriving the crystal melting model from the evaluation of supersymmetric indices by applying
the aforementioned supersymmetric localization techniques. Following [21], the integral of
the 1-loop determinant can be computed using the Jeffrey-Kirwan (JK) residue [22]. For
the cases of the toric CY threefolds, we discuss them in appendix B. It is worth noting that
recently the relations between JK residues and DT3 invariants were proven mathematically
in [23, 24] (see also [25-27] for relevant calculations). Moreover, our discussion generalizes
(with interesting new features) to toric CY fourfolds. We shall consider the BPS bound states
formed by D6-/D4-/D2-/D0-branes wrapping compact cycles in the CY fourfold, with a pair
of non-compact D8- and anti-D8-branes filling the CY.

There are clear similarities between the BPS state countings on threefolds and fourfolds.
For example, the definition of the 3d crystals can be naturally extended to those of the 4d
crystals, and it is natural to expect that the 4d crystals would likewise give a combinatorial
interpretation of the BPS spectra. Indeed, thanks to the JK residue formula, we can
actually show that the torus fixed points are in one-to-one correspondence with the crystal
configurations, for both the threefolds and the fourfolds. The melting rule of the crystals
is then a natural consequence of the pole structure in the JK residue formula. As we are
considering the BPS indices, there would also be signs given by the fermion number. For
CY threefolds, we shall not only obtain the expected crystal structure, but also recover the
correct signs from the JK residues.

For toric CY fourfolds, the 4d crystals were recently discussed in [28], where the combi-
natorial structure can be nicely obtained from the periodic quivers and brane brick models.
Here, we would like to discuss how the 4d crystals could appear from a different perspective,
namely the BPS index computations, where the situations for the toric CY fourfolds could
be more complicated compared to the threefolds. Although we still have the 4d crystals, it
is important to emphasize that the crystals themselves are not sufficient for BPS counting.
Although the 4d crystals still label the isolated fixed points of the moduli space, they cannot
encode the full information of the BPS states; the full information can be extracted only
when supplemented by the weights obtained from the JK residue formula, and the weights are
rational functions of the fugacities associated to the global symmetries. This is a significant
difference from the threefold cases.

Let us discuss the fourfold cases in more detail. In the 1-loop determinant for the index,
there are contributions from chiral and Fermi multiplets, as well as from vector multiplets.



The information of the supermultiplets is nicely encoded by a 2d N =(0,2) quiver. The
corresponding 2d N = (0,2) quiver gauge theory can be considered as the worldvolume theory
of probe D1-branes on the Calabi-Yau fourfold. This class of theories is represented by a Type
ITA brane configuration known as a brane brick model [29-39]. The dimensional reduction
of this class of theories gives rise to an N =2 supersymmetric quiver quantum mechanics.
The non-compact D8-/anti-D8-brane pair corresponds to the “framing” of the quiver, which
represents the non-dynamical flavour branes. In particular, the chiral and Fermi multiplets
thereof come from the strings connected to the D8 and anti-D8 respectively.

We also turn on a background B-field [40], and the chamber structures could depend
on its value. In certain limit of the fugacities/chemical potentials, we expect the tachyon
condensation to happen, and the D8/anti-D8 pair would annihilate into a single D6-brane.
For X xC where X is a toric CY threefold, this should then recover the partition function for
X. From the partition functions we have for C? x C%/Z,, and conifold xC, we find that the
limit should be € /(vi—v2) — 0 (for any k=1,2,3,4), where ¢, and v; 2 are the equivariant
parameters associated to the CY isometries and the framing respectively.

Moreover, as we are considering the D8/anti-D8 pair (though considering Dp-branes
bound to a single D8 is still well-posed), the framing node should be U(1]1) (instead of
U(1)). In terms of the crystal structure that labels the fixed points, it is reflected by the
fact that when vy is tuned to be certain linear combinations of vy and €, the crystal would
get truncated. Indeed, in the JK residue formula, this may cause extra cancellations of the
factors in the numerator and the denominator in the 1-loop determinant, and thus terminates
the growth of the crystal at the corresponding atom(s).

As an illustration, we shall discuss some examples of 2d N =(0,2) theories given by
brane brick models and compute their BPS partition functions. As the stability of the BPS
states could vary for different moduli, there is also the wall crossing phenomenon. We shall
consider the chambers that can be reached via “mutations” of the framed quivers. For 2d
N =(0,2) quivers that can be obtained from dimensional reduction of 4d A/ =1 quivers, some
of the chamber structures can be naturally inherited from the threefold counterparts. On
the other hand, for 2d N = (0,2) theories themselves, they also enjoy certain IR equivalence
known as the triality [41] (see also [42]) that were shown to have a natural interpretation in
terms of brane brick models [31]. Therefore, it is expected that there is a richer chamber
structure under wall crossing for the fourfold cases. It would be an interesting problem to
systematically extend this discussion to more general examples of toric Calabi-Yau fourfolds.

In mathematics literature, there are also extensive studies on defining the (generalized)
DT invariants for the CY fourfolds. For instance, such invariants were introduced and
explored in [43-48] using the obstruction theory. It turns out that they have some nice
physical interpretations, where certain Ext groups correspond to the multiplets in the gauge
theories and the insertions are related to the framings. Moreover, the DT invariant in this
mathematical definition depends on the choice of the orientation of a certain real line bundle
on the Hilbert scheme. We will see that this is a choice of the sign collectively from the J-
and F-terms of the gauge theory in each crystal configuration, and would be canonically
determined with the physical input.

Let us also mention that for the cases of Calabi-Yau threefolds, it has recently been
found that there exist some infinite-dimensional algebras, known as the (shifted) quiver



Yangians [49-54], as the BPS state algebras underlying the BPS state counting — the 3d
crystals are the weight spaces of the representations of the quiver Yangians, and the BPS
partition functions are nothing but the characters of the quiver Yangians for the crystal
representations. It is natural to imagine that similar algebras exist for the cases of Calabi-Yau
fourfolds, which have the 4d crystals as the representation spaces.! Let us again emphasize
that, however, the situation for Calabi-Yau fourfolds is more complicated since the 4d crystal
in itself is not sufficient to fully recover the data of the physical BPS state counting. The
BPS algbera should also incorporate the non-trivial weights as mentioned above.

The paper is organized as follows. In section 2, we will review 2d N' = (0,2) quiver gauge
theories associated to toric CY fourfolds and their realization in terms of brane brick models.
In section 3, after recalling the JK residue formula used for localization, we will derive the
combinatorial part, namely the 4d crystals, in the BPS counting problem for the fourfolds.
We shall also comment on the extra data of the BPS states that are not encoded by the
crystals, as well as the wall crossing phenomenon. In section 4, we will mention the elliptic
and rational counterparts of the partition functions, where the elliptic invariants have further
constraints on the parameters due to the anomalies. Some explicit examples will be given
in section 5. In section 6, we will discuss the connections between the BPS counting and
the mathematical definition of the DT invariants. In appendix A, we list the contributions
from the supermultiplets in the integrands for the elliptic genera for both 2d N =(2,2) and
N =(0,2) theories. We will show in appendix B how the 3d crystals, as well as the correct
signs in the BPS indices, can be obtained from the JK residue formula for toric CY threefolds.

2 Toric CY, and 2d N = (0,2) theories

In this paper, we study an N =2 supersymmetric quiver quantum mechanics associated
with a toric Calabi-Yau fourfold compactifications of Type ITA string theory. Such a quiver
quantum mechanics (with A/ =2 supercharges) can be obtained as the dimensional reduction
of a class of 2d N'=(0,2) quiver gauge theories. These theories are worldvolume theories
of D1-branes probing toric Calabi-Yau fourfolds and are realized in terms of a Type I1B
brane configuration known as a brane brick model [29-39]. The following section gives a
brief review of brane brick models.

Quivers. Given a quiver @ ={Qo,Q1}, where the set of vertices is denoted by Qo and
the set of edges by @)1, we can use the following dictionary in order to identify the gauge
symmetry and matter content of the corresponding 2d N =(0,2) gauge theory:

o a vertex a represents a U(N,) gauge group;

o an oriented edge from an initial vertex a to a terminal vertex b represents a bifundamental
chiral multiplet X ;;

e an unoriented edge between vertices a and b represents a Fermi multiplet Agp,.

'The charge function introduced in [55] could play a role in such representations.
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Figure 1. Quiver diagram for the C* brane brick model.

We note that Fermi fields are not assigned an orientation in the quiver diagram due to the
Ay < Ay symmetry of 2d A =(0,2) theories. Figure 1 shows as an example the quiver
diagram for the C* brane brick model.

The J-and E-terms. Given a Fermi multiplet Ay, there is an associated pair of holomor-
phic functions of chiral fields called F,; and Jp, and are the J- and E-term relations of the
corresponding 2d N = (0,2) theory. These are restricted to be binomials for toric Calabi-Yau
fourfolds, where E,;, transforms in the same representation as Ay, while Jp, transforms in
the conjugate representation of Ag. They satisfy an overall constraint Y tr(FEqpJp,) =0. The
general form of the J- and E-terms is as follows,

Joa=Jp—Jy.. Ea=Eh—E.. (2.1)

where ij; and E;Eb are monomials in chiral fields.
As an example, the above C* quiver has the following J- and E-terms:

J E
AV YZ-ZY=0, DX-XD=0,
A?:. ZX-XZ=0, DY-YD=0,
A®:. XY-YX=0, DZ-ZD=0,

(2.2)

where X,Y,Z,D are the chirals and A® correspond to the Fermis.

Periodic Quivers. The quiver and J- and E-terms of a 2d N = (0,2) theory corresponding
to a toric Calabi-Yau fourfold can be turned into a periodic quiver on a 3-torus. Such a
periodic quiver is dual to the underlying Type ITA brane configuration known as a brane
brick model that realizes this class of 2d N'=(0,2) theories. As we will see later, when
computing the BPS index, the fixed points of the torus action on the moduli space are
actually labeled by a 4-dimensional uplift of the periodic quiver. The periodic quiver for
the C* theory is illustrated in figure 2.

In the periodic quiver, each monomial in the J- and E-terms is represented by a (minimal)
plaquette. By plaquette, we mean a closed loop in the periodic quiver composed of multiple
chirals and one single Fermi. In particular, the chirals form an oriented path with the two
endpoints connected by the Fermi. The toric condition (2.1) indicates that there are four
plaquettes for each unoriented edge, corresponding to (Aab, J;;) and (Kab,Ejzb). Pictorially,
this is illustrated in figure 3.

Brane Brick Models. Brane brick models [29-39] represent a large class of 2d N =(0,2)
theories that are realized as worldvolume theories of D1-branes probing toric Calabi-Yau
fourfolds. They represent Type ITA brane configurations of D4-branes suspended from an
NS5-brane, forming a tessellation of a 3-torus. The periodic quiver of the corresponding 2d



Figure 2. The periodic quiver for the C* brane brick model.
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Figure 3. Illustration of J- and E-term plaquettes that correspond to a single Fermi field in the
brane brick model.

Iba

N =(0,2) theory forms the dual graph of this tessellation. The brane bricks in the brane
brick model correspond to the U(N) gauge groups and brick faces correspond to either chiral
or Fermi fields of the corresponding 2d A =(0,2) theory.

Brane brick models exhibit brick matchings, which are collections of chiral and Fermi
fields that cover every plaquette of the brane brick model exactly once. Such brick matchings
correspond to GLSM fields in the GLSM description of the moduli spaces associated to
abelian brane brick models. They are directly related to vertices in the toric diagram of the
corresponding toric Calabi-Yau fourfold and allow us to better the moduli spaces associated
to brane brick models [29, 30, 38].

Dimensional Reduction. The class of 4d N =1 theories that are worldvolume theories of
D3-branes probing toric Calabi-Yau threefolds X can be represented by a bipartite periodic
graph on a 2-torus known as a brane tiling [56-59]. Similar to brick matchings in brane brick
models, brane tilings exhibit special collections of chiral fields in the 4d theory that are given
by perfect matchings in the associated bipartite graph. These perfect matchings correspond
to GLSM fields in the toric description of the corresponding Calabi-Yau threefold X.
When one dimensionally reduces a 4d N'=1 theory given by a brane tiling, the resulting
2d N =(2,2) theory is known to correspond to a brane brick model associated to a toric
Calabi-Yau fourfold of the form X xC [29, 30, 33]. The 4d vector V, and 4d chiral multiplets



Xap» become under dimensional reduction 2d A =(2,2) vector and chiral multiplets, which in
turn can be represented in terms of 2d N = (0,2) multiplets as follows:

o 4d N =1 vector V,: 2d N =(0,2) vector V, + 2d N =(0,2) adjoint chiral ®,4;

e 4d N =1 chiral X,: 2d N =(0,2) chiral Xy + 2d N =(0,2) Fermi Agp.

The superpotential W of the 4d N =1 gives rise to the J- and E-terms of the 2d theory
as follows,

ow
o Fay=PaaXap+Xap P, (2.3)

Jba =
for every chiral X, and Fermi A,, coming from a 4d N =1 chiral X,,.

We note that dimensional reduction of brane tilings into brane brick models can be
generalized with an additional orbifolding that breaks the factorization of the toric Calabi-Yau
fourfold X xC. This process is known as orbifold reduction in the literature [33]. A further
generalization of this process is known as 3d printing of brane brick models [35].

Triality. It is known that 2d A =(0,2) theories exhibit IR dualities similar to Seiberg
duality [60] for 4d N'=1 theories. This IR phenomenon for 2d N = (0,2) theories is known
as triality [41, 42]. As the name suggests, this low energy equivalence between 2d N = (0,2)
theories leads to the original theory after performing the triality transformation three times
on the same gauge group of the 2d theory. Triality has a natural interpretation in terms of a
local mutation of the corresponding brane brick model [31]. When one performs the local
mutation three times, triality returns the original brane brick model. As will be discussed in
section 3.5, triality for brane brick models is closely related to the wall crossing phenomenon
in the BPS state counting problem.

3 The 4d crystals from BPS states countings

In this section, we shall use the JK residue formula to write the index. We will use this
to obtain the crystals for BPS counting, together with the non-trivial weights that are not
incorporated in the crystals.

3.1 JK residues for supersymmetric indices

Let us quickly summarize the JK residue formula for the supersymmetric index [61-63]. The
flavoured supersymmetric index is defined as

I(y, {fwit {a;}) = Tr [ (1) Fe QR Tw/ [T aft |, (3.1)
7 k

where F' is the fermion number, and y,w;, q; are the fugacities for the R-symmetry and flavour
symmetries. In particular, w; (resp. gi) will be used to denote the fugacities associated to the
framing (resp. U(1) isometries) for the quiver gauge theories. It would be convenient to write

2miv; 2mie
, wi=e™ g =e %, (3.2)



Henceforth, we shall use the variables for the fugacities and the chemical potentials interchange-
ably. In the case of toric CY fourfolds, we have (ey,ea,€3,¢4) € U(1)3 for the Q-background.
It would also be convenient to introduce

e=e1teatestes, ¢=q192q3¢4 - (3.3)

The CY condition is then e =0, or equivalently, ¢ =1, for the (unrefined) indices.

From [21], we learn that the index can be computed using the JK residues:

I= i Z JK-Resy—y- (Q(U*)a 77) Zl—loop (y, u)7 (3.4)

W], 2

sing

where W is the Weyl group, and we have collectively denote {u;} as u. The 1-loop determinant
Z1-100p denotes the integrand of the residue, and JK-Res denotes the Jeffrey-Kirwan residue.
Let us explain each ingredient in turn.

The integrand: Zj.joop. The integrand Zi.jo0p factorizes into the contributions from the
N =(0,2) vector/chiral/Fermi multiplet contributions:

Zl—loop(u) :HZV(yvu)HZX(yvU)HZA(y7u) : (35)
\%4 X A

The contributions from the different multiplets are given as follows:

e Vector multiplet V with gauge group G:

Zy = H 2isin(—ma(u)) = H (—:L‘_O‘/z(xa—l)), (3.6)

ae®(G) acd(Q)

2mia(u)

where ® denotes the root system of G and z*=e . As we are considering the

unitary gauge groups in this paper, we have

Ly = H 2isin (ﬂuga’) —7Tu§-a)> 2isin (Wu§-a) —Wu(a))
(4,5)

:(H) ($Z(a)x§a))—1 (xl(a) _mga)> (xga)_xz(a)) ’ (3.7)
2y

where the product is over all pairs of (i,j) with i# j, and we have included the
superscript (a) to indicate the gauge node in the quiver.

e Chiral multiplet y in a representation R:

1 1
Zy=11 55 = : (3.8)
pl;[R 2isin (mp(u)+7F(z)) pl;[R 2= PI2y~F/2 (zryF —1)




where F' denotes the flavour charge. For the chirals connecting two unitary gauge nodes
a,b of ranks N,, N, we have?

6abNa
1

];IQisin (ﬂ'anaJ (Gk))

Ng Nb

<111 :

i=1j=1 ];[ 2isin (Wuga) — +7Fy, s (ek)) ];[21 sin (7T’U,§b) —ﬂuga) +7Fy 1 (ek))

Zy=

J
5abNa
1

1;[ q;a%a,l (1 _qua,I)

No Np

<111

1

- ’ a b —-1/2 a b a b -1/2 b a ’
ST (e ) (0 =) (g ) () )

(3.9)

where e; = —F7 (e;). To avoid possible confusions, we shall always refer to ¢; and F as

weights and charges respectively so that they have the opposite signs.®> We shall also
use w; = e>™¥ for the fields connected to the framing node.

e Fermi multiplet A in a representation R:

I\ = H 2isin (—mp(u) —7F(z)) = H (—‘L“_’)/Zg,/_F/2 (:rpyF—l)> . (3.10)

PER PER

2The first line comes from the fact that the adjoint representation of U(N) is reducible. In other words,
there is a U(1) part besides the SU(N) roots.

3For the 2d N = (0,2) quivers that can be obtained from dimensional reduction of 4d theories, the weights
can also be determined as follows. As the original periodic quiver (for 4d A'=1) on T? is uplifted to one
on T2, we have an extra cycle/direction parametrized by the new adjoints ®q,. This would then cause the
vertical shifts of the multiplets in the periodic quiver. Suppose that ®,, are shifted by 1. As a result, the
superpotential would have shift —1 as the J- and E-terms should have opposite vertical shifts. We may then
write the shift of Xap (Jpa, resp. Eap) as Sap (—Sap—1, resp. sap+1).

To determine s,1, we can choose one perfect matching in the brane tiling of the 4d theory. As a perfect
matching would pick out precisely one X, in each monomial term of the superpotential, we can therefore
choose these X, in this perfect matching to have sq, = —1 while keeping the other chirals unshifted. In the
toric diagram, this adds a vertex above the one corresponding to the chosen perfect matching, uplifting the
polygon into a polyhedron (Of course, choosing different perfect matchings would not change the geometry
due to the SL(3,Z) invariance of the toric diagram). Notice that the shifts of the Fermis A4 are given by
Sab+1(# Sab), so the chirals and the Fermis would connect different (lattice) nodes in the periodic quiver.

Therefore, for these 2d theories, we can assign the weights of ®,,, whose vertical shifts are always 1, to be
€4. The weights of X, are then shifted by sqpea(= —es or 0) compared to their 4d N =1 counterparts.



For the Fermis connecting two unitary gauge nodes a,b of ranks N, IV, we have

dabNa N, Ny
Zn= (H 2isin (—mFy, (Ek))> TTTI1]2isin ( (A1) 4 grqys(AD) —WF](Gk))
I i=15=1 1T
dabNa Ng Ny _1/2
= (H ( T (1—q1))> ITIIII <_ (xt(m)xsmf)m) (:L,t(Az)_qI:L,s(AI))) ’
I i=1j=1 I

(3.11)

where s(A),t(A) € {a,b} based on the choice of the orientations of the edges,* and hence
we have also omitted the subscripts i, j.

The space M. For gauge group G of rank N whose Lie algebra is g, denote the Cartan
subalgebra as h and the coroot lattice as QY. Then the space 9 is defined as hc/Q"V. From
Z1-100p, €ach multiplet gives rise to a hyperplane H; ={Q;(u)+---=0} C 9 with covector
Q; € h*. For instance, a chiral leads to p(u)+F(z) =0 where Q; =p

Take Mging :UH The set of isolated points where at least IV linearly independent

hyperplanes meet 1s denoted as My, Then Q(u*) is the set of Q; meeting at u* € My

In this paper, the singularities are always non-degenerate. In other words, the number of

sing*

hyperplanes meeting at u* is always N for any u*.
The covector n € h* picks out the allowed sets of hyperplanes in the JK residue. This
is given by the positivity condition:

n € Cone(Q;,) {Z%Ql a; >0} (3.12)

j=1

Here, we shall mainly focus on the choice n=(1,1,...,1), whose admissible singularities as
we will see give rise to the crystal structure corresponding to the cyclic chambers.

The Jeffrey-Kirwan Residue. The JK residue [22] (see also [64]) is defined by

JK-Res dQ’Ll (U) A dQlN( ) . Sgn(det(Q’i17"'7QiN))7 776 CODe(Qij)? (313>
Qi (u) Qw( ) 0, otherwise,
which can be rewritten as
1
dug A---Ad , n€Cone(Q;;),
JK-Res ‘UI 'UN = |det(Qi17"‘7QiN)’ J) . (3.14)
Qi (1) Qiy (u) 0, otherwise,

There is an equivalent way to define the JK residue constructively as a sum of iterated
residues [65]. The key ingredient is a flag. For each u* with (Qi,,...,Qiy), we consider a flag

fZ[foz{O}CflC...fN], dim]:j:j (3.15)

4Recall that choosing an orientation for one edge would simultaneously determine the orientations for all
the other edges. Different choices should give the same result due to the symmetry between A and A.

,10,



such that the vector space F; at level j is spanned by {Q;,,...,Q;; }. Denote the set of flags
as FL(Q(u*)), and we choose the subset

FLY(Qu*)) = {]—“e FL(Q(u")) "n € Cone (Hlf, .. .,Hﬁ) } , (3.16)
where
KL= Y Qi (3.17)
Qi€Q(u*)NF;

Introduce the sign factor v(F)=sgn (det (Vf,...,l/ﬁ)). The JK residue can then be ob-
tained by

JK-Res(Q(u*),n) :Zu(}")JK-ReS;. (3.18)
f
Here, the iterated residue JK-Resr is defined as follows. Given an N-form w=w; . yduiA
---Aduy, choose new coordinates

Uj=Qiu, j=1,...,N (3.19)

such that w=w __nyduiA---Aduy. Once this is given, the contribution to the JK residue

-----

from a flag is evaluated as

JK-Resrw = ResaT:;;: .. .Res;;l:'dikcbl,”_w =J (gm

> Resy,—us ... Resy, w1 N,  (3.20)

Uy
where J denotes the Jacobian.

Remark. In [66], the integrand for the instanton partition function of the gauge origami
system [67] was expressed using certain vertex operators. The OPEs of the vertex operators
can be read off from the quivers. Using the above expression for Zi_jop, it is straightforward
to verify the statement therein. These vertex operators can then be used to define the
so-called quiver W-algebras [68].

3.2 Flags and JK residues

Although the JK residue formula and the computation of the index contain more information,
the collection of the intersection points u* of the hyperplanes can be viewed as some 4d
configuration for the CY fourfold. Each site in the configuration corresponds to one of the
coordinates in u*. For later convenience, we may call such configurations “crystals” and their
sites “atoms”. The first definition of the JK residue above tells us about the “final state”
of the crystal. On the other hand, the constructive definition of the JK residue tracks the
growth /melting of the crystal (say, from rank N —1 to rank N) revealed by the flags. Of course,
the equivalence of the two definitions means that the index only depends on the final shape of
the crystal configuration. In the followings, we shall derive the melting rule for the 4d crystals.

When evaluating the JK residue using flags, it would be helpful to write the weight
at level N as

ZN (ul,...,uN) :ZN—l (ul,...,uN_l)AZN_LN (ul,...,uN), (321)
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where we have suppressed the superscripts (a) of u; for brevity. As the poles are always
simple, the iterated residues have the decomposition

Resyy=uz, - - Resy, —ur Zn (ug,...,un)

== ReSuN:u}«V .. .Resul:u{ (ZN,1 (ul, N ,uNfl) AZNfl,N (ul, Ce ,uN))

= (ReSUJ\Pl:U}‘V_l ce Resul:uTZN,l (ul, ce ,uNfl)) (ReSuN:u}*VAZNfl,N (UT, ces ,u*Nfl,uN)> y

(3.22)

and the first bracket in the last line is the one obtained at level N —1.
As Zx can be obtained from Zy_; by multiplying the factor AZn_; n. Together with
the contributions from the vector multiplet

Ng—1
H 2isin (ﬂ'ug\(z —ﬂ'uga)) 2isin (Wuz(a) —Wug\(;z) , (3.23)
i=1

the extra AZn_1 n is composed of the factors®

da
2isin (—71'112 +7ru§f2) *
— @ , (3.24)
2isin <7ruNa —7rv1>
with the initial node connected to the framing node labelled by 0, and®
N, [T2isin (—wut(AI) +rut) — g Fy (ek))
1T ! (3.25)

i—1 | T2isin (ﬂug\?j —Wugb) +7Fy,, (ek)> [I2isin (Wul(b) —Wug\a;g +7Fy (ek)>
I I

for all nodes b connected to the node a. Here, we require the quiver theory to satisfy the

followings:

e The theory has a corresponding periodic quiver, which is a weight lattice.

o There is at most one edge (either chiral or Fermi) connecting any two lattice points
(namely, the nodes in the periodic quiver).

In paritcular, this is true for quivers arised from toric CY fourfolds considered in the paper.”
This indicates that the flavour charge of the chiral xup 1 (0r Xpqe,r) would not only differ the
one of a Fermi Ay by a multiple of €. In other words, Fy,,  # Fa,, , = Fp,, , +ne (recall
that eventually we would like to take e =0). Likewise, none of the adjoint chirals would
have flavour charge being a multiple of € as well, i.e., Fj4; # 0 =ne. This means that we can

SHere, we simply take one chiral and one Fermi from the framing node to one (initial) gauge node. One
can of course consider more general framings with multiple edges connecting the framing node and different
gauge nodes, some of which could be related by wall crossing.

5We have omitted the U(1) part contributions from the possible adjoint loops as they do not have any
poles in u.

"One way to see this is to consider the brane brick model of the quiver. The lattice points correspond to
the brane bricks, i.e., the convex polytopes, in this dual graph. Any two polytopes can share at most one face,
which is the edge in the weight lattice/periodic quiver.
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take e =0 (or equivalently, ¢ =1) before evaluating the residues (as opposed to the threefold
cases discussed in appendix B where the order is reversed). In fact, the Calabi-Yau condition
should always come before the evaluation of the integral so that the poles could be correctly
cancelled by the factors in the numerator. For example, for the C* case whose periodic quiver
was given in (2), at rank 4, there is one contribution from

(ul,UQ,U3,U4) = (vl,ul +e€3,uq +64,U2+64) = (Ul,ul+63,ul+64,U3+63) . (3.26)

This can be depicted as

(3.27)

For wuy, the corresponding pole has order 2, which comes from the contributions ug—us —€s3
and ug—usg—ey (that are both equal to us—v; —e3—e4) due to the chirals.® However, this is
actually a simple pole since one such factor is cancelled by u; —u4 —€; —€3 in the numerator
due to the Fermi. This is because we need to take the Calabi-Yau condition €1 +es+€3+€e4 =0
first so that u; —us—e;—ea = —(ug—uy —€3—€y).

Notice that not all the flags have non-vanishing contributions. In order to characterize
the flags with non-vanishing contributions, we first discuss the construction of the 4d crystals
from the periodic quivers.

For the case of the Calabi-Yau threefold, the process of obtaining the 3d crystal is
as follows [3]:

1. We start with a quiver diagram on the two-torus, and consider the periodic quiver in
the universal cover, i.e., R2.

2. Choose a vertex of the quiver diagram, and consider a set of paths on the quiver
diagram.

3. We can add an extra direction by considering the R-charges.
We follow the same strategy as in our case at hand:

1. We start with a quiver diagram on the three-torus, and consider the periodic quiver in
the universal cover, i.e., R3.

2. Choose a vertex of the quiver diagram, and consider a set of (chiral) paths on the quiver
diagram.

8Here, we are using the rational version as it is the most straightforward one to see how the pole structure
is related to the periodic quiver.
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3. We can uplift the 3d periodic quiver with the direction coming from the R-charges.
Each path in the quiver diagram (starting from the initial node ay and ending at some
node b) can be written as pg p(n) = v4, pw™. Here, vy, p is the shortest path from ag
to b, and w corresponds to some closed loop. This loop can be viewed as composed of
the chirals only, or one can equivalently take some “shortcut” such that it consists of
both chirals and Fermis due to the J-/E-terms. Following this path p,, s(n), we put
an atom b at depth n in the uplift direction below the atom of colour b with the path

pamb(o) = Vag,b-

We notice that combinatorially this is exactly the structure discussed in the very nice
paper [28]. Readers are referred to [28] for more details on the 4d crystals and the connections
to the brane brick models. Here, our interest is to derive the crystals from the perspective
of the BPS states counting.

3.3 Crystals from JK residues

As the JK residues over the flags may or may not be zero, the crystals cannot grow arbitrarily.
Now, let us derive the melting rule of the crystals. While this was done previously for the
particular examples of the solid partitions in the C* [69], we will generalize the discussion
to an arbitrary toric Calabi-Yau four-fold.

For brevity, let us denote the basis vector (0,...,0,1,0,...,0) € RY with the only non-zero
N

element at the i*® entry as e;. Then n= 3 e; at level N. For an admissible set o such that
i=1

n € Cone(o), we can see a tree structure as follows. Given that ¢ must contain at least one

e;, the vector e, —e; is allowed in o while e;—ey is not. Then if e; and e, —e; are in o,
the vector e;—e;. is allowed while e, —e; is not etc.

At a generic level, there would still be more admissible o than the atoms in the crystal
due to the cancellations of the factors in the numerator and the denominator in Zi_jop-

Our proof proceeds by induction with respect to the rank of the gauge group. Suppose
that the pole structures are consistent with the crystal configurations at level N —1. Then
we can focus on the part AZy_; y and always assume that o ZU(N_l)U{eN—ej} for some
j <N where ¢(W=1 only involves e;<y.

In AZn_1,n, the possible poles would be in one of the following scenarios:

(a)

« If the pole for uy;’ corresponds to an atom already appeared in the molten crystal at size

N —1, then u%) :uE»b)—FXba’I (ex) :ug.‘,l) for some j' < N as depicted in figure 4. The

pole containing ug\‘,l) —ug.[,l) would then be cancelled by the same factor in the numerator

coming from the contribution of the vector multiplet as given in (3.23).

o If the pole for ug\?)

ug\‘;) — u§.b) —Fy,,.;(€x) gives a pole for some j < N. It could be possible that there are

corresponds to an addable atom for the molten crystal, then

multiple such factors, namely ug\‘;) :uyln) —Fy, 0 (€k) :uyf) —Fy,,,,(ex)=.... There
would exist some j’ such that
b
ug\?) = uﬁ*ll) _FXbla,I (ex) = u§(/:) _FXcdl,K (€)= '_Fanbl,L (ex) _FXbla,I (ex) (3.28)
= u(f) _FAab,I (ex),

J
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.

J

J

Figure 4. Suppose the atom labelled NV is already existing in the crystal. The pole ug\?) = ug-b) —Fypar

corresponds to the arrow from j to N. However, this atom already has some label j’ as it has been
added to the crystal.

Figure 5. The atom to be added at level N is shown in blue. Left: there are two same factors in
the denominator coming from the chirals, but one of them gets cancelled by the contribution from
the Fermi. This is in fact a pair of plaquettes from the J- or E-term. Right: there are multiple
contributions from the chirals (either pointing forwards or pointing backwards) to the same pole. This
would be cancelled to a simple pole by the factors in the numerator from the Fermis.

where the last equality follows from the J-/E-term plaquette in the quiver. As a

result, one of the two factors from ug\c;) = uﬁn) ~Fyy s :ugzz) —Fy,,,, is killed by the
corresponding contribution from the Fermi multiplet (3.11) in the numerator. After

cancelling one such factor, the surviving one with the next factor, say from u;

form another pair, and this procedure can be repeated pairwise. Eventually, there would

(23), would
be a simple pole left. In other words, the number of chirals connecting the existing
atoms and an addable atom is always one more than the number of Fermis connecting
the existing atoms and this addable atom in the crystal.” Schematically, this is shown
in figure 5.

(a)

o If the pole for uy’ corresponds to a position that does not belong to the size /N molten
crystal (obtained from the size N —1 crystal), then the cancellation of this factor is the
same as given in (3.28). This is diagrammatically shown in figure 6.

Therefore, the 4d configuration at level N would be a crystal of size N. By induction, the
fixed points are in one-to-one correspondence with the crystal configurations satisfying the
melting rule: an atom a is in the molten crystal € whenever there exists a chiral I such
that I-a€ €. In other words, I-a¢ € whenever a¢ €. If one considers the Jacobi algebra
CQ/(J-, E-terms), the melting rule says that the complement of € is its ideal.

90f course, the initial atom(s) would be special as we keep the weights of the edges connecting the framing
node generic so that the corresponding factors in the numerator and the denominator do not cancel each other.
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Figure 6. The atom and the arrow in grey are not present in the crystal. Therefore, the blue atom
cannot be added to the crystal as there is no corresponding pole.

Example. Let us illustrate the above three scenarios with an example. For C* whose toric
diagram and quiver can be found in (5.1) below, the 1-loop determinant reads

N
1<kHl<3(_6k_€l) N (i — ) N (“j_ui)1<kHl<3(ui_u‘j_€k_€l)
Zl—loop: — <4_ <H Mdu,) H Z <I< 7
; U; =0 =
kljl(—ﬁk) i=1 ( 1) i#] kI:[1(Uj_Ui_€k)

(3.29)

where we have used the rational version for simplicity. Let us give one example for each
of the scenario:

e Suppose we have a single atom with position u; =1 in the crystal, and we would like
to add the second one to it. We have

2
(—ex—er)

1<k<I<3 (u1—v2) (ug—v2) >
Z1 oo = duyd
I-loop 4 ((Ul—vl)(UQ—Ul) e
[T (—ex)
k=1
2 (uj_Ui)1<kHl<3(ui_Uj_€k_Q)
<k<I<
11 : . (3.30)
i#j [T (uj—ui—eg)
k=1

Then the contribution from wuy =wv; is zero since the pole ug—w; is cancelled by the
factor us —u1 =ug—wv1 in the numerator.

o Consider the figure in (3.26) which is reproduced here:

(3.31)
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Suppose we have the configuration with atoms labelled by (u1,u2,us3). To add the atom
labelled by w4, we have two poles

Ug—UQ2—€E3 —=U4— U] —€E3— €4 and Ug—U3— €4 —=Uq4— Ul —€E4—€3. (3.32)
However, there is a factor
U4—U1—(—61—62)ZU4—U1—63—€4 (3.33)

from the Fermi multiplet in the numerator. Therefore, we would have a simple pole left
as expected.

o In this figure, the configuration with only (uj,u2,u4) is not allowed since the corre-
sponding pole uy —ug—e4 would be cancelled by ug —uj —(—€; —€2) = in the numerator
from the Fermi multiplet. Likewise, the configuration (u1,us,u4) is also not allowed.
Only when both us =wu1+e€3 and ug =wuj+¢€4 are present can we add u4 in the above
figure.

3.4 Weights for crystals

For a toric CY3, each crystal corresponds to a BPS state in the index up to a sign.'? However,
as mentioned before, the 4d crystals, albeit having a one-to-one correspondence with the
fixed points, do not encode the full information of the BPS spectrum.

In general, it is not easy to write down the full BPS partition function in a closed form.
Nevertheless, using the constructive definition of the JK residue, we can get the recursive
formula for the BPS indices. Recall that the BPS partition function reads'!

n —
ZBps(Pos- -+ P|Qy|-1) = > Z(qr)pp° - - -p‘c'{jf‘,f, (3.34)
not-tniQp|-1=N

where Zn(qx) is the index at level N which takes all the crystal configurations of size N into
account, but with non-trivial weights depending on g;. In other words, we have

In(ar)= Y Zelar), (3.35)
le|=N

Recall that a crystal €y of size N can be obtained from some crystal €y_1 of size N—1.
For brevity, let us abbreviate Zg, as Zy. Then

Zn(ar) =Zn—-1(qk) AZN_1,N (), (3.36)
where

ZNfl(qk) :ReSUNflzu}k\,_l .. .Resul:u? ZN-1 (ul, - ,uNfl),

AZN-1,N(qk) =Resuy=ut, AZN-1,N (U], .., uy_1,uN) - (3.37)

10We also show this using the JK residue formula in appendix B.
"Here, we use the formal variable p, representing the colours of the crystal. There should be non-trivial
maps from p, to the variables associated to the D-branes.
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Figure 7. The wall crossing of the conifoldxC quiver. Here, we are only showing the chambers that

descend from the cyclic chambers of the 4d N =1 quiver. The labels indicate the multiplicities of the
edges. These were also recently studied in [72].

In particular, u} is actually a function of the fugacities gx. This is precisely (3.22). More
concretely, for unitary gauge groups, the iterative factor AZy_1 n(gx) is given by

AZn_1.n (k) = ((3.23) x (3.24) X (3.25)) |y (gr)» (3.38)

where the apostrophe indicates that we remove the factor of the corresponding pole in the
denominator (which always comes from the chirals).

3.5 Wall crossing

For CY threefolds, as pointed out in [70], the chambers under “the wall crossing of the second
kind” [71] are essentially related by Seiberg dualities. The cyclic chambers achieved this way
still have the crystal structures, but with different shapes.'? Here, we can study the similar

13 on the node(s) connected to the framing node.

phenomena under mutations

In general, for an N =(0,2) quiver, we can mutate the quiver in line with the triality
following the rules in section 2. This would lead us to different cyclic chambers as the
framing changes. However, for a 2d quiver with a 4d parent theory, we can also first take
the Seiberg duality for the 4d quiver and then dimensionally reduce it to 2d. An example
can be found in figure 7. We expect this to be different from the direct manipulation on

the 2d quiver itself. In other words, the diagram

mutation

4d quiver A 4d quiver B

\Ldim’l red’'n ldim’l red’'n (3.39)

mutation?

2d quiver A’ 2d quiver B’

does not commute. While the general rules of triality /mutation for quivers with supersymme-
try enhanced to N'=(2,2) is still not clear, there seems to be richer chamber structures for
toric CY fourfolds (even just for those admitting crystal descriptions).

120f course, the cyclic chambers are not necessarily obtained by mutations. See for example the dPg case
in [51, §5.2].

BMathematically, quiver mutations are mainly defined for quivers without self-loops and 2-cycles (despite
some extensions in some mathematical literature). Moreover, these quivers only have oriented arrows (namely
no Fermis). In this paper, we simply use mutation to refer to the IR equivalence manipulation on the quivers.
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Again, a closed expression for the wall crossing formula is not easy to obtain. Nevertheless,
we can still use the JK residue formula to compute the index after the wall crossing. The
new crystals can then be read off from the flags. The crystals can also be obtained directly
from the quiver after the wall crossing, where the nodes/atoms connected to the framing
node by the chirals correspond to the starters, pausers or stoppers in the language of [51].
The positions of these atoms are determined by the weights of the chirals. We shall consider
more examples in section 5.

Moreover, one may also consider the covectors n other than (1,...,1). This would give
rise to different sets of allowed cones. In particular, the resulting chambers may not have
the combinatorial crystal descriptions satisfying the melting rule. Nevertheless, the BPS
index can still be computed using the JK residues.

4 Elliptic and rational generalizations

We have seen that the BPS index of a 1d quantum mechanics can be obtained from the
2d N =(0,2) elliptic genus under dimensional reduction. It is therefore natural to consider
more general possibilities, by considering the 2d elliptic genera themselves (“elliptic version”),
as opposed to the 1d indices (“trigonometric/K-theoretic version”). We can also consider
further dimensional reduction on a circle to 0d, to discuss “rational/cohomological version”.
Let us briefly discuss these in this section.

4.1 The elliptic invariants

Instead of supersymmetric indices of 1d quantum mechanics, we can compute the 2d elliptic
genus of the theory, by using the expressions for the 1-loop determinant reviewed in appendix A.
We then obtain the elliptic version of the generalized DT invariants for the 2d N = (0,2)
theories. By taking the trigonometric limit of the elliptic genus, one recovers the K-theoretic
invariants discussed above. Note that some particular examples are discussed in the literature:
for a special example of C3, the A" = (2,2) elliptic invariants were computed in [73] and dubbed
“elliptic DT invariants”, and the cases with abelian gauge groups were considered in [34].
Our discussion, however, applies to a general toric Calabi-Yau threefolds and fourfolds, and
to a general non-Abelian theory.

There is one subtlety in the discussion of the 2d elliptic genus: unlike the 1d quiver
quantum mechanics and the 0d quiver matrix model (to be mentioned below), the 2d theories
are subject to anomaly constraints. This is similar to the case studied in [73].

Due to the gauge R-symmetry anomaly, the integrand of the elliptic genus is only doubly
quasi-periodic under u; — u;+a+b7 with a,b€ Z and any w; for generic vy 2. Often, there

—2mib(v1—v2) ypder the transformation. Therefore, we need

would be an extra phase e
v —v2 €Z. (4.1)

Here, we are just considering the case when there is one chiral-Fermi pair from the framing
node to only one of the gauge nodes.'* One may also consider more general framings which

10f course, the flavour symmetry is U(1) (or U(1|1)) in the context of (generalized) DT theory. For general
SU(M) (or SU(M|M)) flavour symmetry which can be thought of as multiple D8-branes, the condition would
become M (vi—v2) € Z.
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could lead to different conditions depending on the cases. We will analyze some examples
in section 5.

It is worth noting that under the shift ex — ex+1 or vy — vip+1 for any € or v, the
corresponding fugacity is invariant. However, the elliptic genus may not be so due to the
presence of the Jacobi theta functions. Physically, this is caused by the 't Hooft anomaly,
and ZT2 — :|:ZT2.

4.2 The rational limit

We may dimensionally reduce the 1d N'=2 quantum mechanics to a 0d quiver matrix model.
This can be achieved by taking the rational limit 5 — 0 in the fugacities

X = e27r1,8ui’ w; = eQmﬁvi, Qe = e27‘(‘1ﬁ6k’ (42)

where we have taken the redefinition of the variables to make the scaling more explicit. In
the index formula, this replaces the functions of form sin(u) with u. As a result, we have
a partition function for the matrix model (the 0d theory).

Now that we have mentioned the 0d theories, it is tempting to consider those arising from
a toric CY5 and wonder if they would also admit some combinatorial structure described
by 5d crystals for their partition functions (possibly with non-trivial weights). We run
into a problem for a general toric CYs — the resulting 0d theory has minimally N =1
supersymmetry and we do not have a supersymmetric partition function via localization for
0d N =1 theories. Nevertheless, for the 0d theories obtained from dimensional reductions
of the 1d N =2 theories as discussed above, we have more (N >2) supersymmetries. In
other words, the formula of the partition function from the BPS index provides a partial
combinatorial structure for the theories associated to CxCYy4. This is characterized by
the same 4d crystals from their 1d parent theories (with non-trivial weights), where one
parameter, say €5, is turned off.

5 Examples

Let us now consider some examples as illustrations of our discussions above. Some features
of some examples were also studied previously in [66, 69, 74-76].

5.1 Solid partitions: C*

The simplest example would be the C* case whose toric diagram and quiver are

(0,0,1)

(5.1)

(1,0,0)

S

(0,1,0)
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It is straightforward to see that the four adjoint chirals'® have weights €234, and we
shall pick the choice such that the weights of the three adjoint Fermis are —e;—¢; with
1<k <1<3. We shall take the chiral (resp. Fermi) connected to the framing node to have
weight v1 (resp. —uvg).!°

At rank N, the integrand is then

N
[I (I-qa) N
N2 | 1<k<i<3 w1y (z; —we) dx;
Z1-toop = 44 4 wo H (r;—w1) x
1—[ (1_qk) 2 i=1 7 1 7
k=1
N (xj—fUz')1<kHl<3($i—9€ijQl)
<k<i<
II . - (5.2)
#] [T (zj—ziqr)

It would also be convenient to write

= w1 /ws. (5.3)
Let us list some indices at low ranks as an illustration:!”

e Level 1:

— crystal labelled by v1:

(1-q192)(1—q193) (1 —q2q3)qa (/11— 1/ /1) .

h= (1—q1)(1—q2)(1—g3)(1—qq) (5.4)
e Level 2:
— crystal labelled by vq,v1+¢; (i=1,2,3,4):
o (—ae)(-ae)(1-ge)d,
Lyi=—1 (1—q1)(1—g2)(1—q3)(1—qq) (giv/—1/\/11)
(¢j—D(gx—D(a—)(glg—D(ga—1)(¢fqa—1) -

(i +1)(6i— ) (i —ae) (@ —a) (g — 1) (g —1) (Gq—1)’

where 4,7,k,l €{1,2,3,4} are distinct values (notice that j,k,l are symmetric).
The index is

4
Ir=) Ty,. (5.6)
=1

e Level 3:

5This can also be determined by the dimensional reduction for the C® case where the three chirals have
weights €1, €2 and €5 = —€1 —ea. After taking the vertical shift, the four adjoint chirals in the c* quiver would
have weights €1, €2, €5 —€4 and €4. The identification €3 = €5 —e4 yields the weight assignment.

16When writing the 1-loop determinant, we shall always make the choice that the Fermis connected to the
framing node are opposite to the accompanied chirals.

1"Recall that we have ¢ = q1¢2¢3qs = 1.
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— crystal labelled by vq,v1+€;4+2¢; (i=1,2,3,4):

(1—Q1QQ)(1—Q1(]3)(1—q2q3)q2 )
(I—q1)(1—q2)(1—g3)(1—qa) (G vVi—1//n)

(¢ —D(gx—D(a—)(gq—D)(ga—1)(@qa—1)
(@7 +ai+1)(67 —4)(@F — ) (@ — @) (@iq; — 1) (@iak — 1) (qiq—1)’
where 4,7,k,l €{1,2,3,4} are distinct values (notice that j,k,! are symmetric);

— crystal labelled by vi,v1+€;+¢€; (4,5 =1,2,3,4, i #j):

Ls (i) =~ T2,

(5.7)

(—q@)(-qag)(l-gpe)d,
T T ) () (gL —qr) VIV

(gi+1)(g5—ai) (@i =) (ar—1) (@ —1)(eiq; = 1) (¢F e — i) (GFu— i)
(¢ —a:) (g5 — ) (@ig; — V) (giar—ai) (@@ — ) (g5 —ar) (g —ar)

I3

J) —

, (5.8)

where i,j,k,l €{1,2,3,4} are distinct values (notice that k,l are symmetric and
3,(i.j) = Ls,(3.)-

The index is

Is= Y. T3 (5.9)

1<i<j<4

In general, we may also try to write down the generating function of the BPS indices'®

N Nig
Zpps= > Iy, Nigy (@)D Dt (5.10)
N€Zxo Nit-+Nigo =N

where p, is the formal variable for each colour of the atoms in the crystal. It would also be
convenient to introduce p=(—1)Ilp;p, .. .P|@,| (notice the sign).
For the C* case, it was conjectured in [69, 74] that the BPS partition function reads

ZBPS:PE[F](pnu'v{Qk})v (511)

_ lnellaigsllaegs)y]
Fodaed) = o Taslladio /il o) Vil

where [X]:= X1/2_x-1/2 and PE[f](z1,...,zn) is the plethystic exponential of a function
f in variables z1,...,xy,:

(5.12)

PE[f](21,....20) = exp (Z ;f(x?,...,xnm)> . (5.13)
m=1

Rational limit. In the rational limit, the integrand is

N

1<kHz<3(_€k_€l) N (u;—vg) N (uj_ui)1<kHz<3(ui_uj_6k_€l)
g | 1=k i) g, <k<i<
o ﬁ (—ex) <’:Hl (ui=v1) “) g ﬁ (uj—u;—e)
k=1 g k1 J v k

(5.14)

180ften in literature, the subscripts of p, start from 0. Here, we save the label 0 for the framing node, and
hence a=1,...,|Qo| for pa.
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The above partition functions then becomes

(v1—vg)(e1+e)(e1+eg)(eates)

Zmat :PE[F](pavl_v%{fk}):M(p) flezescd ) (515)

- - ety

; (5.16)

where

> 1
M (x,t) ._k];[lm (5.17)

is the MacMahon function, and M (t) = M(1,t).

Elliptic invariants. For the elliptic genus, we have

N
2 _ [ —2mn(7)°01(7, 1 +e2)01 (T, €1 +€3)01 (T, €2 +€3) ﬁMdu
1-loop 01(1,—€1)01(7,—€2)01 (T, —€3)01 (T, —€4) Or(roui—v1)

ﬂ 01 (T, uj—ui)el(T, uj—ui+€1+€2)01(7, Uj —U;+€1 +€3>91(T, uj—ui+€2+63)
91(T,uj—ui—61)01(7,uj—ui—eg)Hl(T,uj—ui—eg)ﬁl(T,uj—ui—q) '

i=1

i]
(5.18)

Notice that —6; (7,v2—u;) = 01(T,u; —v2). Indeed, under the transformation of u; — u;+a+bt
with a,beZ for any u;, the integrand would get an extra phase e~ 2m0(1=v2)  Therefore,

we need to have vi—wvg € Z.

5.2 Orbifolds: C2xC2/Z,

Let us now consider a special family of the C* orbifolds, namely C?xC?/Z,. The toric

diagram and the quiver are given as

(0,0,1)

(5.19)

When n =2, there are only two gauge nodes, and there are two pairs of opposite chirals and
four Fermis connecting the two nodes. The weights of the adjoint chirals (resp. Fermi) for
each node are taken to be €34 (resp. —e; —e€2). For nodes a and a+1, the chiral a —a+1
(resp. a+1—a) connecting them has weight €; (resp. e2) while the Fermis have weights
—e1—e3 and —eg—e3. Here, a=n+1 is understood as a=1 (mod n). The edges connected
to the framing node are assigned the same weights as in the C* case.
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For the dimension vector N = (N,), the integrand is then

(Na—Ng41) N2
Z1 1 qaezéo : anEC:Zo ‘ ( 1 Q1QQ )LIEEQO Na ( UJI) Nl H ﬁ dw(a)
oop A3 4 1— Q3)(1 —Q4) (a)

w2 a€Qoi=1 T;

( (2t —w ) ( (21 o’ ))( (o) g )Q1Q2>)
(" —w1) ) \acaoizs ( ga) )( )
. Nay1 ( LL‘ a+1 ( +1) $
(HHH Eaﬂ ‘”’3( ”)). (5.20)
\ .CC q1

a€Qpi=1 j=1 ( _$(a+1)QQ)

Again, we have n+1=1. As an illustration, let us list some indices at low ranks for n=2:

Level 1:

(]

— crystal with a single atom of colour p;:

 (I—qg)asqs (VE—1/R)
h= (1—g3)(1—qu) : (5.21)

Level 2:

crystal with an atom of colour p; and an atom of colour ps:

2 (1) (1 -q12) (1 - ¢iq193) (1 — 4ig243) (¢ — q143) (¢ — 4243)

= ¢iq3(1—¢3)(1—qu) (1 —qsq1) (1 — qsq2) (q1 — q2)

Iy 11) = 7. (5.22)

crystal with two atoms of colour pi:

L (1) @B (1-q1¢2) 1 —a) (1 —aiq1g2) (G — q12) (gin/Ti— l/f)
i=3 Qi(l_Q?))(l )(1 Q1Q3)(1 %‘M)(QZ’» Q4)

Z5 2,00 =
(5.23)

Rational limit. In the rational limit, the integrand is

N, N,
€1+€2 2 N T 1..(a)
Z—oo =|———F )% du,
t-loop < 6364) (agoi:r[l K (1) _uy

T (u('a)_u(‘a+l)_€2—€3) (u(‘aﬂ)—u(“)—el—es)
‘ J J 7
(H LT e o) (e ) R
J i i

a€Qoi=1 j=1 —61) (u —uy; —62)
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In fact, it was conjectured in [76] that

Zmat = PE[F] <p7 Py 101 —U27{5k})

n(v1 —vg)(es +ep)(erteg)(eptes) | (v1=vg)(e1+eg) — (o1 —vo)leytrep)
:M(p) €1€9€3€y ( n) €1€9 H M (p[(l,b]Lp) 3€4 ,
1<a<b<n
(5.25)
n(e1+e3)(ea+e€3 n—1/n Plab +1/p b
F(p’ {p[a7b]}7v1_v27{6k}) = ( )( )_|_ / + Z M
€1€2€3€4 €1€9 l<a<b<n €3€4
(01—02)(614‘62)19’ (5.26)
(1-p)?
where
M (z,t) =M (z,t)M (27",t) . (5.27)

Here, we have introduced the notations py, ) := (=) 1y pait...py (notice the sign). In
the limit e4/(v1 —v2) — 0, this recovers the partition function for the threefold CxC2/Z,.

Elliptic invariants. For the elliptic genus, we have

[ —2an(7)?01(T €1+ €2) CE?ON“ N, N _f, (T,UQ—u§1)>
Zl-loop_< 01(1,—€3)01(T,—¢€4) ) (H HdUa H ( (1)_U1)

a€Qpi=1 =1 91 T, U,

(H ﬁm( (a) §a)) 01 (¢,u§“)— @ te) +62))

€Qo ikj 91( (a)_uga)_eg) 0, ( (a) _ ( )—64)

.7
(H ﬁNﬁle ( (a+1) _ ()+62+63) lguga %a +e1—|—63)) ‘ (5.28)
7 J

(a+1) (a) a) a+1)
a€Qpi=1 j=1 (j —U; 01 (u €2

Again, the gauge anomaly would require vy —vy € Z.

5.2.1 Wall crossing of C2?x C2/Zs

Let us consider the wall crossing of the specific example with n=2. We shall focus on the
chambers that are induced by the cyclic chambers of the corresponding 4d quivers. For
CxC?/Zs, the cyclic chambers have the structure

D2 4 Do D2 +2D0 D2+ 3D0 Do D2 + 3D0 D2 + 2D0 D2 + DO
] ] | 1L ] | |

Co | Cq | Ca | “ee }I\ oee | oA | & | Go

NCDT DT PT Core

(5.29)
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For the chambers Ck, the crystals are coloured plane partitions with K semi-infinite faces
“peeled off”:

K + 1 atoms

/\ . (5.30)

For the chambers C, the crystals are of the Toblerone shape [77]:

(5.31)

Here, the orange lines indicate the top rows in the crystals. Notice that the first one is for
K =1 in this figure as C~'0 trivially has Zppg=1.

For the chambers of C?xC?/Z; that are induced by the above chambers of CxC?/Z,
we shall use the same notations Cx and C. Moreover, it is also clear how the framing
of the quiver would change:
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For convenience, let us swap the labels of the two gauge nodes every time we cross a wall
of marginal stability. In other words, a =1 always refers to the gauge node with incoming
chirals from the framing node.

For the Ck chamber, the chirals connecting the framing node and the gauge node

1 (resp. 2) have weights vi+Key, v1+(K—1)e1+ea, ..., v1+Key (resp. va+ Kej+ea, vo+
(K—1)e1+2e2, ..., vo+e1+ Key when existing) while the accompanied Fermis have weights
—vg— Keq, —Ug—(K—l)el—Eg, eoe, —93—Keo (resp. v1+Kep+ea, Ul+<K—1)61—|—262, RN

v1+€1+ Keg when existing). Therefore, in the integrand, we only need to change the factors
coming from the framing to

U

.1)—1)2—K62))

(uf
.. (ugl)—vl—KQ)
( ))

)

No ( 22
H )
i=1 (112+K61 +€2—uy,

where we have used the equivariant version for simplicity. We conjecture that the equivariant

(v1+el+K€2_u§2)>
"'(v2+€1+K62—u(2))) ) (5.33)

i

partition function is

Zmat = PE[F] (p(K)ap(K,[2,2]) ;U1 — V2, {ék})
2(v1*v2)<61+€2)(€1+63)(€2+53)+3(v1*v2)(€1+€2)

= ]L{'(]g(f()> €1€2€3¢4 2ceg

(v1—v2)(e1teg)

e3eq
oo
1

M (pxpaypi)) 11 — ;

k=it (1= p oy Plic))

]:(p(K)ap(K,[Q,Q])>U1_U2a{Ek}>

_ (v1 —v2)(€1+€2)p(K) (2(61+€3)(62+63)+ 3 )
(1=p(ry)?

: (5.34)

€1€9€3€4 2€1€9

L ow)ate) [(PrpaHrwes)roo 1 &,
€3€4 (1 _p(K))Q D(K,[2,2) 1=

where p(xy =p1p2 and p(g [2.2)) = —p{(pgﬂ. The crystals are the 4d versions of (5.30), where

one “peels off” a 3d subcrystal every time one crosses a wall from Cg to Ck 1.

For the Ck chamber, the chirals connecting the framing node and the gauge node 2
(resp. 1) have weights vo+ Keq, vo+ (K —1)e1+e€a, ..., va+ Key (resp. v1+ (K —1)eq, v1+(K—
2)e1+e€g, ..., v1+ (K —1)eg when existing) while the accompanied Fermis have weights v; + Keq,
'Ul-l-(K— 1)61 +é€9, ..., v1+Keo (resp. —Vg— (K— 1)61, —Vg— (K—2)61 —€2, ..., —Ug— (K— 1)62
when existing). Therefore, in the integrand, we only need to change the factors coming
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from the framing to

(5.36)

where we have used the equivariant version for simplicity. We conjecture that the equivariant
partition function is

(v1—v2)(e1tea)
K 6364

~ ~ 1
Zanat = PEIF] (BB .y o1 —va {ex}) = | T1 ;  (5.37)
k=1 (1 P(K,[2,2) P ( ))

L Pk, [2.2)) (V1 —v2)(€1+€2) _
.7:(p(K)7p(K,[2,2}),U1—UQ7{ek}): (K[2,2) (ZZ Y2kl K)>, (5.38)

€3€4 k=11=1

where p(r :pflpgl and Pk [2,2]) = —pf“pf. The crystals are the 4d versions of (5.31),
where one adds a “layer” of a 3d subcrystal every time one crosses a wall from Cg to Cryq.

Let us also make a comment on the elliptic invariants. For the chamber Cg, the
shift of ugl) —>uz(~1)—|—a+bT with a,b€Z would yield an extra phase e 2m(K+D(v1—v2) " 4pq
hence (K+1)(vi—v2) €Z. On the other hand, the transformation of uZ(Q) would lead to
K(vi—v9) €Z. As K+1 and K are coprime, we should again have v; —vy € Z. Likewise, for
the chamber C’K, the transformations of u( ) and ul@) would give rise to K(v;—v92) € Z and
(K+41)(vi —v2) € Z. Therefore, we should have v —wvq € Z.

5.3 ConifoldxC

Another typical example would be the conifold xC. The toric diagram and the quiver are

(0,0,1)
0
(5.39)
(1,0,0)
(0.1,0) " 1 2
(1,1,0)

The weights of the edges are

xan | xaza [ xaze [ xein | xere | xe | Awen | Auso | Asua | Asrp (5.40)

€4 ‘ €1 ‘ —€1 ‘ €2 ‘—62—64‘ €4 ‘—€1+64 ‘ €1t+€4 ‘ 624—64‘ —€9

which can be directly obtained from the dimensional reduction of the conifold case. The
weights of the chiral and the Fermi connected to the framing node are still v; and —wv9
respectively.
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For the dimension vector N = (N7, N3), the integrand is then
W-Np)? /] N1+Nz N dgc (1 [N dac(2)
Zl—loop ={qy ? ( ) (;)
1—q4 bl 1 x i1l

N1 (1) N 29 _
’LUQ* i 2

H (1) H 1 (1) 2

i=1T; Wi i#j L —$ 44 i —SEJ (I4

N1 N2 xl(l) (2)(] q Z(1) .Z'(~2 q2 (2) (1) i 33(2) x( )ql . .
(fifj el e ) e i) )

1 2 2 ) —
00 twp@)@gtw<m%)(gtw“m)(y—@>%w
(5.41)
As an illustration, let us list some indices at low ranks:
e Level 1:
— crystal with a single atom of colour p;:
-1
7, Vai—1/Vi) (5.42)
(g1—1)
e Level 2:
e crystal with an atom of colour p; and an atom of colour ps:
. > s(1-gia'es") (1) (a5 -mar?) (qi—qflqzl)z (5.43)
2,(11) = — 1, .
S vad(-a) (a—a") (1-¢ia) (1-giaigs)
e crystal with two atoms of colour p;:
q4 1/
I 2,00 = Vi \F) (5.44)

1—qa
Rational limit. In the rational limit, the integrand is

Zl—loop

1 N1+No 2 Ng . N1 ugl)_v 2 N, ul(a)_ (g)
()" (o) (1) (T
a=1li=1 i=1U; " —U1 a=1li#j (UZ Uy —64)
(

1)+61+64))

(5.45)
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We conjecture that the equivariant partition function is

Zunat = PE[F] (P, pg 01 —v2, {6}

(v1—v2)

('Ul—U2)(f1+€2)(261+63)(261+f4)+(v1—1’2)63(61—62)(261—64) —
— M(p/) 2e1e3€eq(e]—€9) 2e1e4(e1+eg)(2€1 +e3) M (p[272]7p/> €4 , (546)
€1+€2)(2€1+€3)(2€1+€4 €3(€1—€2)(2¢1 —€g
# (oo ) = (D)@ ve) ,_ala—6)@ae)
2616364(61—62) 26164(61+62)(261+€3)
+1 —vg)p’
+19[2,2] /P[2,2} (v —wv2)p ’ (5.47)
€4 (1—19')2

where p’:=—pop1 and pp 9 :=—p1 (notice the sign). In the limit e4/(vi—v2) — 0, this
recovers the partition function for the conifold.

Elliptic invariants. The integrand for the elliptic genus is straightforward to write down.
Hence, we shall omit the full expression here. Again, due to the factor

1 — T, —u(»l)
(ﬁ 91( i )) (5.48)

i=1 91 (T, ugl)—vl)

the gauge anomaly would require vy —vq € Z.

5.3.1 Wall crossing

Let us now consider the wall crossing, focusing on the chambers that are induced by the cyclic
chambers of the corresponding 4d quivers [78]. For the conifold, the cyclic chambers have the
same structure as given in (5.29). For the infinite chambers C, the crystals look like

(TR

C Y _Y_Y_ Y3

"' ""' N \/
Ce (Eaaay
4

e

e 5
D R
SOOI oM
CH AR G40
A ) (PP R)
(AT ) (M)
wwwl) Clwwls)
Lo v} s 5D

A_A_A A')

(5.49)

(T

N/
.i' )

<

=

.
_/

N

-

v,
v,
°A‘

K + 1 atoms

/N
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For the finite chambers éK, the crystals are

O

% (5.50)

Here, the orange lines indicate the top rows in the crystals. Notice that the first one is for
K =1 in this figure as C~’0 trivially has Zgps=1.

For the chambers of the conifoldxC that are induced by the above chamber of the
conifold, we shall use the same notations Cx and Cg. Moreover, the framing of the quiver
would change as in figure 7, which is reproduced here:

(5.51)

For convenience, we swap the colours and the labels of the two gauge nodes every time we
cross a wall of marginal stability. In other words, a =1 always refers to the gauge node
in red with incoming chirals from the framing node, and the weights of the edges remain
the same as in (5.40).

For the C'x chamber, the chirals connecting the framing node and the gauge node 1
(resp. 2) have weights v+ Kej+ Keg, v1+ (K —2)e1+ Kea, ..., v1—Kej+Keg (resp. vo+ (K —
1e1+Keo, vo+(K—3)e1+Keg, ..., voa— (K —1)e; + Keg when existing) while the accompanied
Fermis have weights —vy— Ke1 — Keg, —vo— (K —2)e1 —Keg, ..., —vo+Ke; — Keg (resp. v+
(K—1)e1+Keg, v1+(K—3)e1+Keg, ..., v1—(K—1)e1+ Keg when existing). Therefore, in
the integrand, we only need to change the factors coming from the framing to

(M (uz(l) —vz—K€1—K€2> (“El) _U2+K61—K62) )

U, —1)1—K61—K62> (u —’U1+K61—K62)

g

G
gvl er+Kea—u; g (Ul— (K-1ea+Ke—u {2)))’ (5.52)

1 | v+ 61+K62— ('UQ— K 1)61—|—K62—
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where we have used the equivariant version for simplicity. We conjecture that the equivariant
partition function is

Zmat = PE[F] (p’(K) s D(K,[2,2]), V1 — V2, {Ek})

(v1—v2)(e1+en)(2€1 +e3)(2€1 +€4) + (v1—va)es(e1 —€g)(2€1 —€q)

=M (p/(K)> 2e1e3eq(e1—€2) 2e1€q(egten)(2e1+e3)
(v1—v3)
x 1 €4
M<p(K,[2,2])>p/(K)> H 1 T % ) (553)
k=11 (=P P/t
+€2)(261—|—€3)(261—|—64) 63(61—62)(261—64)
‘F / ) ) - ) :<(61
(p(K) P [2,2)), V17 Y2 {ek}) 2e1€e3€4(€1—€2) 2e1€4(€1+€2)(2¢1+€3)
/ K
P22 1P 2.2 | (V1 —v2)P(g) 1 K
" €4 R _P(K [2 2])64kal(K)’
(170 T R
(5.54)

where p’(K) =—p1p2 and p(g [2.2)) = —P1 pf“. In the DT chamber, this agrees with the

equivariant DT invariants in [45] (upon redefinition of the parameters). The crystals are
the 4d versions of (5.49), where one “peels off” a 3d subcrystal every time one crosses a
wall from Ck to Ck41.

For the C chamber, the chirals connecting the framing node and the gauge node 2
(resp. 1) have weights vo+ Kej+ (K —1)eg, vo+ (K —2)e1+(K—1)ea, ..., vo—Ker+(K—1)ey
(resp. v1+ (K —1)e1+(K—1)eg, v+ (K —3)e1+ (K —1)eg, ..., v1—(K—1)eg+ (K —1)ez when
existing) while the accompanied Fermis have weights v1 + Kep+ (K —1)eg, v1+ (K —2)e1+ (K —
Dea, ..., vi—Ke1+(K—1)ea (resp. —vo— (K —1)e;— (K —1)ea, —vo— (K —3)e1— (K —1)eq,

oy —U2+ (K —1)e; — (K —1)e2 when existing). Therefore, in the integrand, we only need to
change the factors coming from the framing to

N (ul! —vp— (K= 1)er— (K =1)ea) ... (ut —vp + (K= 1)er = (K~ 1)es )
|} M _ T
(== (K =11 = (K=1)es) ... (" =014 (K =1)er— (K ~1)e2)
Ny (U1+K61—|— K-1 62—u£2)) (vl—KeH—(K )ea — 52))
( ( 62—U52)) (vg—Kq—}—(K—l)eg—uEz))) ’

(5.55)

where we have used the equivariant version for simplicity. We conjecture that the equivariant
partition function is

(v1—v2)
€4
K 1
Zmat = PE[]:]( P (k)s DK, [2,2)) Ul_v%{ek}): 11 —F ., (5.56)
= (1—5(&[2,21)?’(@)
~ ﬁ(K,[zz 01=02) (S & k15K
f(?(K),p(K,[2,21)7v1—v2,{Ek}): ZZ Py | (5.57)
h=11=1
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where ﬁ(K) = —p1_1p2_1 and P [2,2]) = —pf“pé(. In the PT chamber, this agrees with the
rational limit of the K-theoretic PT invariants in [48]. The crystals are the 4d versions
of (5.50), where one adds a “layer” of a (semi-infinite) 3d subcrystal every time one crosses
a wall from C~’K to 6’K+1. Notice that, however, in contrast to the finite 3d crystals for the
conifold, the 4d crystals in the chambers Cf for the conifoldxC are infinite (due to the
fourth direction extended by the adjoint chirals).

Let us also make a comment on the elliptic invariants. For the chamber Cg, the
shift of ugl) —)’U,Z(»l)—FCL—i-bT with a,b€Z would yield an extra phase e 2m(K+D(v1—v2) " 5pq
hence (K+1)(vi—v2) €Z. On the other hand, the transformation of uZ(Q) would lead to
K(vi—v9) €Z. As K+1 and K are coprime, we should again have v; —vy € Z. Likewise, for
the chamber Cl, the transformations of ul(-l) and ul@) would give rise to K (v;—vz) € Z and
(K+41)(vi—v2) € Z. Therefore, we should have v —vq € Z.

5.4 Trialities: Q11!

In general, the N'=(0,2) quivers do not need to have 4d counterparts as above. As an
example, Qb1 has the toric diagram

(5.58)

(1,1,-1)

In particular, its quiver gauge theories enjoy triality featured in N = (0,2). Its three phases
form the triality network

—*N{ (5.59)

Here, phase A (resp. S) is antisymmetric (resp. symmetric) in the sense of the permutation
of the coordinate axes while phase NT is non-toric. Here, we shall only focus on phase
A as an illustration of triality and wall crossing. The outer circle with three quivers of
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phase A is given by!?

0 © g
LA
AN Ls svg
=0
. : )%( (5.60)
@ G \
|
This self-triality can be obtained by mutating the node 1 in purple.
Let us start with the quiver
0
1 (5.61)
4
The weights of the edges are chosen to be
X14,1 | X142 | X241 | X242 | X31,1 | X31,2 | X32,1 | X32,2 | X43,1 | X43,2
€1 —€1 € —€ € —€9 €1 —€1 €3 —€3 (5.62)
Ao | Aot | Azgn | Asao | Azaz | Azas
—€3 —€3 | €1t€2 | €1+€ | €1—€2 | E2—€1

The periodic quivers of phase S and phase NT can be found in [31].
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For the dimension vector N =(N,), the integrand is then

N N1(N3+Ny—Na—(N1—1)/2) Ny N2 (N3+Ny—N1—(N2—1)/2)
B i

Ns NS(N1+N27N47(N371)/2) N, N4(N1+N27N37(N471)/2)

(i) (i) (i)

wq
w2

»

a=1i=1 l‘ a=1i#j
T (O (WY (0 (2)
[TTI (o7 —a5"el”) (" —a52”)
i=1j=1
Il : Il :
i=1j=1 (x§1)—q2x§3)) (1’51)—% ) ) i=1j=1 ( W —qlxﬁl)) (:p§~4)—q1—1x§1)>
Il 1 Il :
i=1j=1 (161(2)—(11965’3)) (1’§2)—q1_ § ) i=1j=1 ( ) —q2 33(2)) ($§4)—QQ_1$§2)>
2
5 3 (o) (19— ) (o4~ o) -
[L111 (29— e (o g5 14 (5.63)
i=1j=1 i CI3$] —q3 T j
Let us list some indices at low ranks as an illustration:
o Level 1:
— crystal labelled by vy (ranks (1,0,0,0)):
=p—1/it. (5.64)
o Level 2:
— crystal labelled by v1,v1+€; (ranks (1,0,0,1)):
a1
Z 7. .
2= g (5.65)
— crystal labelled by v1,v1—€; (ranks (1,0,0,1)):
a1
I = 7. 5.66
2, 1_q% 1 ( )
The index is
I :IQHF —|—IQ’, =0. (567)
e Level 3:
— crystal labelled by v1,v1+e€1,v1—€; (ranks (1,0,0,2)):
T3 =wi(vp—1/v/p) - (5.68)
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— crystal labelled by v1,v1+€1,v14€3 (ranks (1,0,1,1)):
~ @a3a4(q1—293) (1 —q1q243) (/o — 1/ /1)

T = (5.69)
o) (1—¢})(1-g3)
— crystal labelled by v1,v1+€1,v1—€3 (ranks (1,0,1,1)):
019394(9192—q3) (193 —q2) (/i —1/\/11)
Ty s )= AR VEZLVE). (5.70)
(1—gi)(1—g3)
— crystal labelled by vq,v1 —€1,v14€3 (ranks (1,0,1,1)):
(e —ae)(1-qee)*(Ve—1/5)
Ty (oqy= e . (5.71)
(1—¢i)(1—q3)(q192—33)
— crystal labelled by v1,v1 —€1,v1 —€3 (ranks (1,0,1,1)):
19394(9203— 1) (12— q3)* (/i — 1/ \/1t)
Ty )= VIV (5.72)

(1—41)(1—43)(1—q19243)
The indices are
T1002) =Zs+, (5.73)
Za,01,0) = Ls,(+.0) T L3 (+,) T3, (- ) T L3, (- )

_ 1= A3+ 3+ GE(1+43)
= T laa-w)ans-1) VATV (5.74)

Wall crossing. We can apply the triality to the quiver and this would take us to a different
chamber. Let us mutate the node 1 in (5.61). This maps to the same quiver but with a
relabelling of the nodes by 2 —3 —4 — 2. Taking the framing into account, we have

(5.75)
The weights of the edges connecting the framing node 0 are taken to be
X10 ‘ Xo1 ‘ X02,1 ‘ X02,2 ‘ Asz01 ‘ A3z0,2 (5.76)
V1 ‘ —vg ‘ v1+€3 ‘ —U1—€1—€2 ‘ Vo +€1—€3 ‘ Vg —€2

In the integrand, we only need to change the factors coming from the framing to

Ny 1 N> 1
(zl_ll (Ul—ul(-l)) (uz(-l)—kvz)) (11_11 (uZ(Q)—vl—eg) (U£2)+U1+€1+62>>
(ﬁ (UES)—02—61+63) (UES)—’UQ-FEQ)) ) (5.77)

=1

where we have used the equivariant version for simplicity. Let us list some indices at low
ranks as an illustration:
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e Level 1:

— crystal labelled by —vy (ranks (1,0,0,0)):
w2

Z(1,0,0,0) = —m :
— crystal labelled by v1+e€3 (ranks (0,1,0,0)):

Vv 419293 (5.79)

a3(qrqeqzwi—1)"

(5.78)

Z(0,1,00)1 =

— crystal labelled by —v; —e; —ey (ranks (0,1,0,0)):

U%Q1Q2\/Q1Q2Q3 (5.80)

T -
(0.1,0.0).2 1—q1qoq3v?

The indices are

wo
T = 5.81
LO00 = Ji—1/ v (5.81)

41492
Z(0,1,0,0) = Z(0,1,0,0),1 7 Z(0,1,0,0),2 = —/ 5 (5.82)

e Level 2:

— crystal labelled by —vg,v;+e€3 (ranks (1,1,0,0)):

1— 1—q?
7:(1 1001 = q1q2wW2 ( w1w2)2( q3w1’w2) . (5.83)
STV gawr @3(qrgegazwi —1) (wy —w2)

— crystal labelled by —vq, —v1 —€; —€9 (ranks (1,1,0,0)):

V@1 G2q3wiwaw1 (q1g2q3w1 —w2) (g3we — q1gawn )

I _ 5.84
(1,1,0,0),2 43 (q1q2q3w? —1) (w1 —w2) ( )
— crystal labelled by —va, —v2+€; (ranks (1,0,0,1)):
qrws
. _ ‘ 5.85
OO (=) (V= 1/ /) o
— crystal labelled by —vs,—vy—e; (ranks (1,0,0,1)):
qi1wz
- _ . 5.86
00002 = {F =) (Vi 1/ Vi) o

— crystal labelled by v1+€3,v1 +€3+€2 (ranks (0,1,0,1)):

q2+/4919243 (5.87)

a3(3—1)(qrqeqzwi—1)

Zoi0n1=

— crystal labelled by v +e€3,v1+€3—€y (ranks (0,1,0,1)):
q2+/419293 (5.88)

a3(1—¢3)(q1q2q3w3 —1)

Zo,1,01)2=
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— crystal labelled by —vq —€1 —eg, —v1 —€1 —€3+€2 (ranks (0,1,0,1)):

Q1Q§w%\/Q1Q2Q3 (5 89)

1—3)(q1qeqzwi—1)

Z(0,1,0,1),3 = (

— crystal labelled by —vq —e€1 —€9, —v1 —€1 —€3—€2 (ranks (0,1,0,1)):

2,2
192W1+/q19293
. ) ' 5.90
OLODAT (B 1) (q1g2g5w7 — 1) .

The indices are

Z(1,1,00) = Z(1,1,0,0),1 +Z(1,1,0,0),2> (5.91)
Z10,0,1) =Z(1,00,1),1+Z(1,0,0,1),2=0, (5.92)
Z(0,1,0,1) = Z(0,1,0,1),1 +Z(0,1,0,1),21Z(0,1,0,1),3 7 Z(0,1,0,1),4 = 0 (5.93)

We may also compare the conditions on the chemical potentials in the elliptic case for
the two quivers. For (5.61), we still have

v —v2 €EZ. (5.94)
For (5.75), we have

Vi—V €L, €1+ea—€3EZL, 2v9+ei—ey—€3EL. (5.95)

6 Equivariant DT, invariants

It is known that the BPS invariants discussed above are mathematically the (generalized)
DT invariants for CY threefolds. In the case of CY fourfolds, there are also extensive studies
on counting the coherent sheaves in mathematics literature. Let us now briefly discuss the
equivariant DTy invariants which were established using obstruction theory in [43-47]. The
K-theoretic uplift can be found in [48].

Given a toric CY fourfold X, we would like to define some DT(-type) invariants as
“Jiz(n,pyv 17 where Z(n, 8) is the Hilbert scheme of closed subschemes Z C X with x(Oz) =n
and [Z] = € Hy(X). Here, we will be mainly focusing on the zero-dimensional DT invariants
with =0, and Z(n,0) =Hilb"(X) is the Hilbert scheme of n points on X. However, one
could quickly run into problems. For example, Hilb"(X) is generally non-compact due to
the non-compactness of X. It turns out that we can consider the fixed locus

Hilb" (X)) = Hilb" (X)€" (6.1)

where T C (C*)* is the 3-dimensional subtorus preserving the CY volume form. This equality
and the fact that it consists of finitely many isolated reduced points were shown in [44, 45].

For general X, there would be wall crossing, and the BPS indices are expected to related
to generalized DT invariants. Therefore, let us first consider the DT chamber. For the

— 38 —



C* case, each [Z] corresponds to a solid partition.?’ For general X, we have shown using
the JK residues that they should be labelled by 4d crystals. For each Z € Hilb™(X), we
have the vector bundles

ET x7 Ext'(Iz,Iz)

l

ET XT {Iz} = BT

for i=1,2, where Iz is the monomial ideal that cuts out Z, and ET — BT is the universal
bundle associated with T'. The deformation and obstruction spaces at Iz then correspond
to Ext!(Iz,Iz) and Ext?(Iz,Iz) respectively. Denote their Euler classes as ep(Ext'(Iz,1z)).
The Serre duality pairing on Ext2(I z,17) induces a non-degenerate quadratic form @ on the
bundle ETXTEth(I 7z,17). This allows one to define the half Euler class

dimExt2(I5,15)

e (EX11,17),Q) = ) (-) ™ ey (521 17) (63)
c 2[61727374]/<61 +€2—|—63+64> = Z[elﬁgyg],
where the sign is determined by the choice of the orientation on the positive real form

of (ET x7Ext?(Iz,17),Q). Then the T-equivariant virtual fundamental class of Hilb™(X)
is defined as

IR vir eT(EXtQ(IZ7IZ)7Q)
zeHilbr(x)T T 2122

where o (L) collectively denotes the choice of the square root for each Z. Fixing a line
bundle L on X with its tautological bundle on Hilb"(X) denoted as L™, the equivariant
DT invariant is defined as

2
DT4(n) = er(Bxt®(I2,12).Q) (i ) | 6.5
a(n) ZeHile"(X)T er(Ext!(I7,17)) 6T( |Z) (6.5)

Recall that in the quiver gauge theory, there is a symmetry between the Fermi multiplets
A and their conjugates A, which makes the corresponding edges unoriented in the quiver.
In the above mathematical definition, this is reflected by the Serre duality pairing and
the quadratic form, which lead to the “square root” for Ext*(Iz,Iz). In other words, the
contributions of the Fermi multiplets, which are essentially relations in the gauge theories, are
encoded by the obstruction space and the half Euler class e7(Ext?(Iz,17),Q). On the other
hand, the contributions of the chiral multiplets are given by the Euler class of Ext!(Iz,17).
Moreover, we have the factor er (L[”] | Z) from the (tautological) insertion. This corresponds

2°More generally, Z of dimensions < 1 which can have non-zero 3 were considered in [45, 48]. This further
includes the so-called curve-like solid partitions loc. cit., which are solid partitions with non-trivial asymptotic
plane partitions. They are expected to give rise to open BPS states (cf. [18, 51, 79]). Although we expect the
open BPS states in the cases of general X would also have some combinatorial structures given by the 4d
crystals with non-trivial asymptotes, here we shall only focus on the closed BPS states.
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to the contribution from the framing, and the line bundle L should be identified with the
Chan-Paton bundle on the anti-D8-brane.

In this sense, the BPS counting problem in the fourfold case has some resemblance to
the threefold case. Mathematically, it is still determined by the Euler classes of certain
Ext! and Ext? in the deformation-obstruction theory. Physically, certain combinations of
the N'=(0,2) multiplets would recover the contributions of the multiplets in the N'=(2,2)
case (cf. appendix A).

However, unlike the threefold case, here the Ext® group does not vanish. We can therefore

. . . vi Ext2(Iz,1
think of the factor in [Hilb™ (X )]THO( ¢ as the square root of = (Eth(eITZ(’ IZt))(eTZ(E;Z(t)3) I The

Ext! and Ext? groups could be understood as the arrows and plaquettes in the periodic

quiver. We expect that the Ext3 group, as the obstructions to the obstructions, corresponds
to the relations of the relations. In the 3d periodic quiver, it might be possible that this
is reflected by the 3-cells.

Let us also make a comment on the choice of the orientation. Recall that for each Fermi
multiplet A; (and its conjugate A;), we can make a choice between the J-term and the
E-term. In other words, we can have either A;J; or A;F; in the Lagrangian. As a result,
for each crystal configuration, there is a choice of the sign in the 1-loop determinant. This
corresponds to a sign choice for each torus fixed point, which is labelled by some 4d crystal,
in the mathematical definition. However, in the periodic quiver with its brane brick matching
matrix [30], once a J-/E-term is chosen, the others are simultaneously fixed. This would give
no ambiguity in the BPS index as the resulting sign is always the same no matter which
column one picks from the brick matching matrix. Therefore, the BPS index is uniquely
fixed. With this physical input, an orientation is automatically chosen. In some mathematical
literature such as [44, 45, 48], with some specific choices of the orientations (which are
conjectured to be unique), the partition functions of some cases were expressed in terms
of MacMahon functions and plethystic exponentials. In fact, we observe that such choices
always coincide with the physical results.

Non-commutative DT4. The above discussion is restricted to the DT chamber. A
mathematical formulation directly defined for the non-commutative DT, invariants was given
in [43]. As a result, one needs to consider quiver representations rather than sheaves. The
Jacobi algebra A=CQ/(J-, E-terms), which has the combinatorial structure given by 4d
crystals, is a CYy algebra in the sense that there are pairings Extf4(M ,IN) x Exti_i(N ,M)—C
for A-modules M, N (with at least one of M, N being finite-dimensional). The representations
of the (unframed) quiver (with relations) are in one-to-one correspondence with the finite
A-modules. Then instead of the Hilbert schemes, one takes the moduli space of framed
quiver representations, along with certain framed obstruction bundle endowed with a non-
degenerate quadratic form. Then the virtual fundamental class is defined as the Poincaré
dual of the half Euler class, which lives in the Borel-Moore homology of the moduli space
of quiver representations.

Vertex formalism and lifting D8-branes. In [44, 45, 48, 80, 81], some vertex formalisms
were proposed to obtain the DT invariants. It is tempting to think of this gluing of vertices
with certain edge factors as some incarnation of possible “topological string formalism” in the
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fourfold case. Indeed, the subschemes Z are now labelled by a collection of solid partitions,
one from each chart in the covering {U, = C*} of X.

On the other hand, for CY threefolds (without compact divisors), the connection between
BPS partition functions and topological string partition functions via wall crossing was
explained from the perspective of M-theory in [82]. There, one puts the M-theory on the
Taub-NUT geometry, which is an S! fibration over R? with the circle shrinking at the position
of the D6-brane. Then the central charges of the stable BPS particles for different B-fields
can be translated to those of the M2-branes.

It is natural to wonder if we can study the (cyclic) wall crossing structures for the CY
fourfolds in a similar manner (at least for those without compact 4-/6-cycles). This would
also allow us to relate the BPS partition functions to the vertex formalism mentioned above
from a more physical perspective. A naive way would be simply replacing the Taub-NUT
space with an S* fibration over R. However, with the presence of the D8-branes, to which
the RR field couples, we have the massive Type ITA string theory. It is believed that massive
Type ITA string theory does not admit a strong coupling limit [83], and the arguments of [82]
does not seem to immediately generalize here. An M9-brane could be reduced to the D8-brane
with O8 orientifolds, but it is still not clear whether this would be helpful in the analysis here.
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A Elliptic genera

Let us recall the JK residue formulae for the elliptic genus Zp2. The appropriate contour
was determined for the rank 1 case in [84] and was later generalized to any ranks using
the recipe of JK residues [21].

Write

= eZmu — eZmz’ q= eZmT ) (Al)

)
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For the N = (2,2) theories, the 1-loop determinant is composed of the following contributions:?!

e Vector multiplet V with gauge group G:

rankG rankG
27T77(q)3 _61 q7 a
Zy(t,zyu) = ————— || || duy, A2
virzu) ( 01(a,y~ ") 01 (a,y 1:13“ a (8-2)

where ® denotes the root system of G and x® :e2”ia(“).

e Chiral multiplet x in the representation R with R-charge R:

—0; (%yR/z_liUp)

Zy(T,z,u) = (A.3)
X ven 01 (a,y72ar)
o Twisted chiral multiplet ¥ with axial R-charge R4:
_91 q’yfRA/Q“Fl
Zs(1,2)= ( ) (A.4)

91 (qa yiRA/2)

The expressions of the elliptic functions are given below.
For the N =(0,2) theories, the 1-loop determinant consists of the following contributions:

e Vector multiplet:

rankG rankG

21 2 01 (q,z¢

Zy(1,u) = (771(q)> H 11(q()) H du; . (A.5)
e B A =

e Chiral multiplet:

Zy(1,u) :gi%?é?ﬂ)ﬁp) (A.6)
¢ Fermi multiplet A:
o Zp(T,u) = 1_117(91 (9, 2) i (A.7)
hESIC)

We have used the Dedekind eta function and a Jacobi theta function above:
))=a"* [ (1-a"), 6:1(r,2)==ia"®y"2 ] (1-0") (1-va") (1-y7'a"") . (A8)
k=1 k=1
For a,b€Z, we have the transformation

01 (T, uta+br) = (—1)@Hbe 2mibu=mit®rg, (£ 4y (A.9)

In this paper, we are mainly focusing on the Witten index, which can be obtained from
dimensional reduction in the limit ¢ —0. As (4;q9)co =1 and (y;q)co =1—y in this limit,
we have

n(r)=q"/*, 0i(r,2) =ig"Py 1 (1—y) = 29" *sin(mz2) (A.10)

2INotice that there are some sign differences compared to the ones in [21, 84] based on the convention of

the fermion number. This is to recover the correct signs in the BPS partition functions for toric CY threefolds
as discussed in appendix B.
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B Derivation of 3d crystals from JK residues

It is well-known that the BPS counting problem in the toric CY threefold setting is encoded by
3d crystals [3, 19]. We will now show this using the JK residue technique. The strategy is the
same as the one for the 4d crystal case. The contribution from the vector multiplet is given by

1 rankG _ (1_xa) rankG dz.
Zo ( > 3 B.1
14 yl/z(l_y—l) (aegG) y1/2 (1—y‘1x0‘) H X ( )

=1

while the contribution from the chiral multiplet is

a -1 — a -1
N, L ag 2 (2R) gty (2)
ILIT 1T @ (@) ! Il « @ (0!
beQoi=1 \ Ie{a—b} 1—q; x; (a:Na Ie{b—a} l—q; N, (:UZ )
a)\ %a.0 a
[ oiom) (o) o
—1 a a) .
Ie{a—a} 1_(]] 1_w711’15\/¢3 :ESVz

where w = e?™ denotes the weight of the arrow from the framing node to the initial node
(labelled by 0). The crystal structure can be seen in a similar manner as the 4d crystal
case discussed in the main context, where the cancellations of the unwanted poles by the
contributions from the Fermi multiplets are replaced by the contributions from the chirals
pointing backwards in the crystal here.

As all the factors from (the roots of) the vector multiplets and the chirals are in pairs
in the numerator and the denominator, there would be one factor in the numerator left are
taking the residue (which cancels the factor xssz in the denominator). This factor in the
numerator would then be cancelled by the factor (1—¢) in the denominator. More concretely,
suppose that we take the pole at (l—fxg\‘;Z) for some factor §. The residue of 1/ (1—f:1:§\0;3)

(a)

at :rgf;z =f~1is —f~!, which cancels the factor = N, in the expression with a minus sign left.
The corresponding numerator of this pole (1—qf:z§f2) is then cancelled by 1/(1—¢q) in the
expression. After taking ¢ =1, all the paired factors in the numerator and the denominator
get cancelled, and AZy_; ny is simply +1.

Let us now determine the sign factor.?? It is not hard to see that Zy has the sign

(—1)ht(dd) (B.4)

22Tf we use the convention of [21, 62, 84], AZy_1,ny would always be +1, and this would recover the
generating functions of the 3d crystals (whose coefficients are always positive).
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Here, d; denotes the rank of the gauge node connected to the framing node, and

<Oé,ﬁ>: Z Qg fBa— Z aqfBp (B.5)

a€Qo {a—b}

is the Ringel form with the dimension vector d = (d,) such that Y d, = N. This is precisely
a€Qo
the sign factor for the BPS index as given in [5].

Without taking ¢ =1, this gives a refinement of the indices.?> We expect that this
would also recover the refined BPS indices that further track the spin information, as was
discussed in [25, 27].%*

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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