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1 Introduction

Probing Calabi-Yau (CY) singularities with D-branes is a fruitful approach for engineering
quantum field theories in various dimensions (see e.g. [1–5]). For toric CY’s, the gauge theories
are further endowed with beautiful combinatorial structures. A paradigmatic example is
given by the 4d N = 1 gauge theories on D3-branes probing toric CY 3-folds, which are
captured by brane tilings [6–8]. Brane tilings have significantly simplified the connection
between the gauge theories and the corresponding CY 3-folds, becoming standard tools with
applications that range from string phenomenology to integrable systems.

Building on the seminal work [9, 10], it was realized that the BPS spectrum of D-branes on
a toric CY 3-fold is captured by a statistical model of crystal melting [11, 12] (see also [13, 14]
for important earlier ideas). Remarkably, the crystalline structure underlying these models
is given by the brane tiling, or equivalently the dual periodic quivers, corresponding to
the CY 3-fold.

In recent years, a program similar to the one that lead to the discovery brane tilings
has focused on understanding the 2d (0, 2) gauge theories on D1-branes probing toric CY
4-folds [15]. This program culminated with the introduction of brane brick models, a new
class of type IIA brane configurations that are connected to the D1-branes at the singular CY
4-folds by T-duality [16]. Very much like their brane tiling precursors, brane brick models
have trivialized the correspondence between 2d gauge theories and toric CY 4-folds. We refer
the interested reader to [17–27] for several further developments.

Lately, Nekrasov introduced the Magnificent Four, a statistical model whose random
variables are solid partitions [28–30]. The model computes the refined index of a system of
D0-branes in the presence of D8-D8 system in C4, with a B-field.1

Motivated by these recent developments, in this paper we introduce crystal melting
models that capture the BPS bound states of D-branes on toric CY 4-folds. For general
toric CY 4-folds, these models might involve D0/D2/D4/D6/D8-brane charges. The crystal
is 4-dimensional and its crystalline structure is determined by the brane brick model (or,
equivalently, its dual periodic quiver) associated to the CY 4-fold under consideration.
Beautifully, but perhaps not surprisingly, brane brick models, which are instrumental in
connecting quivers on D-branes to toric CY 4-folds, play a central role in the crystal
melting models.

This paper is organized as follows. Section 2 presents a brief discussion of the 2d gauge
theories on D1-branes probing toric CY 4-folds and their description in terms of brane
brick models. Section 3 discusses the case of C4, which we will use throughout the paper
to illustrate our ideas. Section 4 reviews important combinatorial objects associated to
brane brick models, such as brick matchings and the oriented surfaces that result from
subtracting them. Section 5 discusses the concept of height function in brane brick models.
Section 6 introduces a statistical model of crystal melting for toric CY 4-folds, focusing on
C4. Section 7 constructs the crystal for C4 and initiates its investigation. It introduces fixed
depth slicing as a useful approach for visualizing 4d crystals. Section 8 continues with the
exploration of the C4 crystal, introducing Hasse diagrams, a powerful tool to study crystals
and melting configurations. In preparation for an implementation of the crystal model in
terms of brane brick models, section 9 presents related ideas for CY 3-folds and brane tilings.

1See also [31] for interesting recent developments.
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D1-branes

CY4

Figure 1. D1-branes probing a CY4.

0 1 2 3 4 5 6 7 8 9
D4 × × × · × · × · · ·
NS5 × × ———– Σ ———— · ·

Table 1. Brane brick model configuration.

Section 10 reformulates the crystal melting model for C4 in terms of the corresponding brane
brick model. Section 11 outlines how our ideas extend to arbitrary toric CY 4-folds and
general brane configurations. In section 12, we present our conclusions and outline various
directions for future research.

Note. While this paper was ready for submission, [32] appeared. Besides the common
subject, there seems to be minor overlap with our work.

2 Toric CY4’s, 2d (0, 2) quivers and brane brick models

Consider a Type IIB setup of D1-branes probing a toric CY4 singularity, as schematically
shown in figure 1. The effective low energy theory on the worldvolume of the D1-branes
is a 2d (0, 2) gauge theory.2

Brane brick models are obtained from D1-branes at toric CY4 singularities by T-duality.
A brane brick model is a Type IIA brane configuration consisting of D4-branes wrapping a
3-torus T3 and suspended from an NS5-brane that wraps a holomorphic surface Σ intersecting
with T3 as summarized in table 1. The holomorphic surface Σ is the zero locus of the Newton
polynomial of the toric CY4. The 2d gauge theory lives on the two directions (01) common to
all the branes. The (246) directions are compactified on a T3. Most of the important gauge
theory information is captured by a tropical limit, i.e. a skeleton, of this configuration. For
this reason, such skeleton is also often referred to as the brane brick model.

Brane brick models are dual to periodic quivers on T3. Both objects encode all the
necessary information for writing the Lagrangian of the 2d (0, 2) quiver gauge theories on
the worldvolume of D1-branes probing toric CY 4-folds. Namely, they summarize not only
the quivers, but also their J- and E-terms. The dictionary connecting brane brick models
to 2d (0, 2) gauge theories is summarized in table 2.

2D1-branes on generic CY4’s preserve (0, 2) SUSY. Non-chiral SUSY enhancement occurs when the putative
CY4 contains C factors; C4, CY2 × C2, CY3 × C preserve (8, 8), (4, 4), (2, 2) SUSY, respectively. Chiral
enhancement to (0, 4) SUSY arises from CY2 × CY2. Further chiral enhancement to (0, 6) or (0, 8) is possible
for particular orbifold geometries.
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Brane Brick Model Gauge Theory Periodic Quiver
Brick Gauge group Node
Oriented face Bifundamental chiral field Oriented (black) arrow
between bricks i and j from node i to node j from node i to node j

Unoriented square face Bifundamental Fermi field Unoriented (red) line
between bricks i and j between nodes i and j between nodes i and j

Edge J- or E-term coupling Plaquette encoding
a J- or an E-term

Table 2. Dictionary between brane brick models and 2d gauge theories.

Figure 2. Toric diagram of C4.

Various consistency conditions of the 2d (0, 2) gauge theory, such as anomaly cancellation
and the trace condition are guaranteed by structural properties of brane brick models (see
e.g. [16, 33]).

We refer the reader to [15–18, 33] for further details. Brane brick models reduce the
computation of the underlying CY4 geometry starting from the gauge theory to a combinatorial
problem, which is based on a generalization of perfect matchings to be discussed in section 4.
Conversely, several efficient algorithms for determining the brane brick models for a given
geometry have been developed [15, 18, 19, 21, 23, 34, 35].

3 The simplest example: C4

3.1 Quiver theory

Let us consider the gauge theory on D1-branes on C4, whose toric diagram is shown in figure 2.
This theory can be obtained by dimensional reduction of 4d N=4 SYM. The resulting 2d

theory has (8, 8) SUSY. In (0, 2) language, the theory contains a vector multiplet associated
with a single U(N) gauge group, four chiral fields (X, Y , Z and W ) and three Fermi fields
(Λi, i = 1, 2, 3), all transforming in the adjoint representation of the gauge group. This
information is summarized in the quiver shown in figure 3.

The corresponding J- and E-terms are as follows

J E

Λ1 : Y · Z − Z · Y W · X − X · W

Λ2 : Z · X − X · Z W · Y − Y · W

Λ3 : X · Y − Y · X W · Z − Z · W

(3.1)
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4

3

Figure 3. Quiver diagram for N D1-branes over C4. It consists of a single U(N) gauge node, four
adjoint chiral fields (shown in black) and three Fermi fields (shown in red).

4

3

q

Figure 4. The quiver diagram for N D1-branes over C4. It consists of a single U(N) gauge node,
four adjoint chiral fields (shown in black) and three Fermi fields (shown in red).

Adding flavor to the quiver with a D9-brane. We can add flavor fields to the quiver
by introducing higher dimensional branes. Let us consider a single D9-brane spanning the
two dimensions of the gauge theory plus the entire C4. The gauge theory is the same one as
before, with the addition of a single chiral arrow q, as shown in figure 4. The flavor node,
shown in blue, represents the D9-brane. The field q does not participate in any J- or E-terms.

3.2 D0-branes on CY 4-folds

In what follows, we will interpret the class of theories described by brane brick models as
the supersymmetric quantum mechanics on D0-branes probing the corresponding toric CY
4-folds. The extra flavor introduced in the previous section corresponds to a D8-brane with
B-field spanning C4. In practice, we simply remove the spatial field theory dimension from
the previous discussion (or from the usual brane brick model literature, which is typically
about theories on D1-branes).

In this context, the chiral and Fermi fields of the unflavored theories are in the D0-D0
sector. The flavor introduced in the previous section corresponds to a D8-D0 field. The
flavored quiver theory in the previous section is closely related to the one underlying the
Magnificent Four model.3

More general flavor branes will be discussed in section 11.

3More precisely, the Magnificent Four model also contains a D8-brane, which introduces a Fermi flavor. This
Fermi field, however, does not participate in J- or E-terms with the flavor or D0-D0 chiral fields. As a result,
its presence does not affect the discussion of the crystal melting model we will introduce in coming sections.
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that separate T 3 into a collection of 3d polytopes filled by D4-branes. We call the 3d

polytopes bricks .

3.2 The Brane Brick Model - Gauge Theory Dictionary

In section §2.1, we explained how the periodic quiver combines the quiver and J- and

E-terms of a 2d (0, 2) gauge theory into a single object. In analogy to the connection

between brane tilings and periodic quivers for 4d N = 1 toric gauge theories [15],

brane brick models can be constructed from the periodic quiver by graph dualization.

Both constructions therefore contain precisely the same information. The dualization

procedure for C4 is illustrated in Figure 6.

Y

Z

D
X

periodic quiver

T 3

Brane Brick

T 3

Figure 6. The periodic quiver and dual brane brick model T 3 for the C4 theory.

The brane brick model for C4 contains a single brick, which corresponds to the

only gauge group of the theory. This brick takes the form of a truncated octahedron

consisting of eight hexagonal and four square faces, which correspond to chiral and

Fermi fields, respectively.5 More generally, orbifolds of C4 are obtained by tessellating

T 3 with additional copies of the same type of brick. From now on, motivated by

the convention for quivers, we will use black faces to indicate chiral fields and red

ones to indicate Fermi fields. For C4, the faces of the brick are pairwise identified in

T 3 resulting, as expected, in four chiral fields and three Fermi fields in the adjoint

representation of the gauge group. We can regard brane box models as degenerate

limits of brane brick models for C4 and its orbifolds in which some faces shrink to zero

size.

Plaquettes in the periodic quiver correspond to edges in a brane brick model. The

toric condition thus implies that Fermi fields correspond to squares. The converse is

5Truncated octahedra have appeared in a similar context in [16].
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Figure 5. Periodic quiver and dual brane brick model for C4.

Figure 6. Universal covers of the periodic quiver and brane brick model for C4.

3.3 Brane brick model for C4

Figure 5 shows the periodic quiver and dual brane brick model for C4. Black and red faces in
the brane brick model correspond to chiral and Fermi fields, respectively. To simplify the
figure, the region shown in both cases is larger than a unit cell.

Throughout the paper, we will often consider the universal covers of the periodic quiver
and the brane brick model. Figure 6 illustrates how the combination of several unit cells
of each of them looks like.

4 The combinatorics of brane brick models

In this section we present a brief review of certain combinatorial objects associated to brane
brick models. We refer the reader to [16] for further details.

4.1 Brick matchings

Brick matchings are the brane brick model analogues of perfect matchings for dimer models.
They play a central role in the connection between the quiver theories and the underlying
CY 4-folds. Below we present three equivalent definitions for them.

– 6 –
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Definition 1. Brick matchings can be defined through the J- and E-terms of the brane
brick model which, for gauge theories on the worldvolume of D1-branes probing toric CY
4-folds, take the following binomial form

Λa : Ja = J+
a − J−

a

Λ̄a : Ea = E+
a − E−

a , (4.1)

which is often referred to as the toric condition [15]. Here, the index a runs over Fermi fields.
To define the brick matchings, we complete the J- and E-terms into gauge invariants by
multiplying them by the corresponding Fermi fields Λa or conjugate Fermi fields Λ̄a. This
results in two pairs of monomial terms known as plaquettes for every (Λa, Λ̄a)-pair,

Λa · J+
a , Λa · J−

a , Λ̄a · E+
a , Λ̄a · E−

a , (4.2)

where J±
a and E±

a indicate holomorphic monomial products of chiral fields. Given plaquettes,
brick matchings are defined as a special collection of chiral, Fermi and conjugate Fermi fields
that cover every plaquette exactly once by satisfying the following conditions:

• The chiral fields in the brick matching cover the plaquettes (Λa · J+
a , Λa · J−

a ) or the
plaquettes (Λ̄a · E+

a , Λ̄a · E−
a ) exactly once each.

• If the chiral fields in the brick matching cover the plaquettes (Λa · J+
a , Λa · J−

a ), then
Λ̄a is included in the brick matching.

• If the chiral fields in the brick matching cover the plaquettes (Λ̄a · E+
a , Λ̄a · E−

a ), then
Λa is included in the brick matching.

The chiral fields Xm contained in brick matching pµ can be summarized in a brick
matching matrix P , whose entries take the following form,

Pmµ =
{

1 Xm ∈ pµ

0 Xm /∈ pµ
. (4.3)

The Fermi field content of a brick matching can be reconstructed from knowledge of the
chiral fields in it, so the latter is sufficient for determining it.4 Moreover, only chiral fields
are necessary for connecting with the underlying toric geometry. Including the (conjugate)
Fermis is important when constructing surfaces by taking differences of perfect matchings,
as it will be discussed in section 4.2. If the Fermis were not present, the resulting surfaces
would have holes at their locations.

Given the P -matrix, it is useful to express chiral fields in terms of brick matchings
as follows

Xm =
∏
µ

pPmµ
µ . (4.4)

Remarkably, the combinatorial structure of brick matchings is such that the map (4.4)
between chiral fields and perfect matching variables automatically satisfies the vanishing J-

4Interestingly, contrary to what happens for ordinary perfect matchings of brane tilings, brick matchings
can have different numbers of chiral fields.
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and E-terms conditions. This, in turns, leads to a one-to-one correspondence between brick
matchings and GLSM fields in the toric description of the classical mesonic moduli space
of the gauge theory. As such, perfect matching map to points in the toric diagram of the
CY4. There are various ways for determining the position in the toric diagram of a given
perfect matching. They include: assigning them charges under the gauge symmetries and
imposing vanishing D-terms, computing their intersections with the fundamental axes of the
brane brick model unit cell, and using the slope of the height function [16].

Definition 2. It is worth mentioning that there exist an alternative definition of brick
matchings due to Richard Kenyon, which is identical to the one for perfect matchings of
brane tilings (see e.g. [7]):5

• A perfect matching p is such that every vertex in the brane brick model is covered
exactly once by a chiral face in p.

Definition 3: brick matchings from chiral cycles. Let us consider the J- and E-terms
associated to a Fermi field Λa. The product

JaEa = J+
a E+

a − J+
a J−

a − J−
a E+

a + J−
a E−

a (4.5)

is a sum of four chiral cycles. From the point of view of the periodic quiver, chiral cycles
are “minimal” closed oriented loops of chiral fields.

We can alternatively define the chiral content of a brick matching as a collection of chiral
fields that contains exactly one field from each of these chiral cycles for every Fermi field [22].
It is easy to see that, according to this definition, a brick matching has two (not necessarily
distinct) chiral fields from the J- and E-terms of a given Fermi field Λa, and either both
of them belong to Ja or both belong to Ea. Hence, it covers either both J-terms and we
add Λ̄a to it, or it covers only E-terms and we add Λa. With this completion with Fermi
fields, this definition is clearly equivalent to the first one.

This definition of perfect matchings, combined with (4.4), implies that all chiral cycles
are equivalent on-shell, i.e. modulo J- and E-term relations. Every chiral cycle becomes
equal to the product of all perfect matchings, when written in terms of these variables.
Therefore, we can equate all these minimal closed cycles to a single variable that we will
call ω. While this might be rather expected in the case of C4, for which all chiral cycles are
quartic products of chiral fields and the four chiral fields are symmetric, it is non-trivial for
general toric CY 4-folds. This fact will become important in section 6 when we construct
a crystal from the quiver.

To conclude, let us mention that this definition of perfect matchings extends to a
generalization of dimer models for toric CYm+2 with arbitrary m ≥ 0, which was introduced
in [22]. It is natural to expect that such m-dimers and their perfect matchings may be
relevant to the extensions of crystal melting to higher dimensional CY’s.

5We thank Richard Kenyon for private discussions leading to this insight. These conversations took place
during a meeting of the NSF FRG in the Mathematical Sciences shared with the author, and benefitted from
ideas from the other members of the group: Gregg Musiker, David Speyer and Lauren Williams.
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px py pz pw

Figure 7. The four brick matchings for C4.

px py

pz

pw

Figure 8. Correspondence between brick matchings for C4 and points in its toric diagram.

Brick matchings for C4. The theory for C4 has four brick matchings, which are in
one-to-one correspondence with the chiral fields associated to the four complex directions.
They are presented in figure 7. We only show the chiral fields in them since, as mentioned
earlier, this information is sufficient for determining the Fermi content.

The P -matrix summarizing the perfect matchings is therefore

P =


px py pz pw

X 1 0 0 0
Y 0 1 0 0
Z 0 0 1 0
W 0 0 0 1

 . (4.6)

Figure 8 shows the correspondence between these brick matchings and points in the
toric diagram of C4.

4.2 Oriented surfaces from brick matchings

The difference between two brick matching p1 − p2 results in the (disjoint union of) oriented
surfaces on the brane brick model or its universal cover. This difference is defined as follows:

– 9 –
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• The orientation of every face in a perfect matching is given by the orientation of the
corresponding bifundamental (or adjoint) fields.

• The orientations of faces in p2 are reversed.

• Faces contained in both perfect matchings are combined with opposite orientations and
hence disappear from the final result.

• The orientation of the resulting surface is determined by the orientation of the chiral
fields it contains.

Below we present two typical examples of surfaces obtained as differences between
brick matchings.

Example 1: phase boundaries. Phase boundaries are 2d surfaces on a brane brick model,
which are in one-to-one correspondence with edges of the toric diagram of the corresponding
CY4. More precisely, the homology of such a surface on T3 is equal to the Z3 vector defining
the corresponding edge. Phase boundaries are the brane brick model analogues of zig-zag
paths for brane tilings.

We refer to the corners of toric diagrams as extremal points. Let us consider two extremal
brick matchings pµ and pν , with coordinates

pµ : (mx, my, mz)
pν : (nx, ny, nz) (4.7)

and connected by an edge of the toric diagram. The phase boundary associated to the edge
connecting them is ηµν = pµ − pν , and its homology on T3 is (mx − nx, my − ny, mz − nz).6

In the same way that zig-zag paths of brane tilings are in one-to-one correspondence
with external legs of the (p, q) web dual to the toric diagram of the corresponding CY3,
phase boundaries are in one-to-one correspondence with 2d “legs” of (p, q, r)-webs dual to
the 3d toric diagram of the corresponding CY4. Figure 9 shows a phase boundary for C4,
represented on the universal cover of the brane brick model.

Once we introduce the crystal melting model for toric CY 4-folds in the coming sections,
we will see that, very much like their zig-zag cousins, phase boundaries are associated to the
interfaces between regions of the crystal with different asymptotic behavior.

Example 2: difference with respect to a reference brick matching. The difference
between a brick matching and a reference brick matching is used to determine the correspond-
ing height function. As we will explain in section 5, the height function jumps by 1 at each
of the resulting surfaces. An explicit example will be presented in section 10.4.

5 Height function

Given a brick matching pµ of either a brane brick model (i.e. with periodic identifications
on T3) or its universal cover, it is possible to define an integer-valued height function hµ.
To do so, we first pick a reference brick matching p0. As discussed above, the difference

6More generally, if the edge between pµ and pν consists of n segments, pµ − pν gives rise to n disconnected
surfaces on the brane brick model, i.e. n phase boundaries, with the same homology.

– 10 –
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Figure 9. Phase boundary ηyw = py − pw, calculated using the perfect matchings in figures 7 and 8
(including Fermis).

pµ − p0 defines a set of oriented surfaces. The height function jumps by ±1 when traversing
these surfaces, with the sign determined by the orientation of the crossing. This prescription
only determines changes of the height function so, in order to fully fix it, it is necessary to
specify its value at some point of the brane brick model.

When considering brane brick models, which live on T3, instead of their universal cover,
the height function is not singled valued. In this case, it is more appropriate to consider
the slope of the height function. It is defined as (∆1hµ, ∆2hµ, ∆3hµ), where ∆ihµ is the
change in the height function when going between consecutive copies of the unit cell along
the i = 1, 2, 3 fundamental direction of the torus.

6 A statistical model of crystal melting for toric CY4

In this section, we introduce the statistical model of crystal melting associated to the D0-D8
system in C4. This theory is described by the flavored quiver in figure 4.7 The starting
point for constructing the crystal is the universal cover of the periodic quiver for C4, which
we denote Q̃.

We denote the 3d space in which Q̃ lives as quiver space and assign coordinates (x, y, z)
to it.8 The flavor arrow q, often referred to as framing arrow in this context, is assigned to
one of the nodes in Q̃, effectively determining the origin in quiver space.

The model is a natural generalization to toric CY 4-folds of the one for toric CY 3-folds
introduced in [11] (see also [36–39] for relevant discussions and generalizations).

6.1 The unmolten crystal

Without loss of generality, let us assume that the flavor q is connected to node i0 in Q̃. We
define the crystal such that every atom in it is in one-to-one correspondence with an oriented
path of chiral fields in Q̃ starting from q (equivalently starting from i0), modulo J- and E-term

7In the literature, when discussing analogous constructions for CY 3-folds, the terms crystal and atoms are
sometimes replaced by pyramids and stones, respectively.

8These coordinates will be useful for constructing Q̃ and the crystal later. In this paper we do not assign a
physical meaning to their actual values, beyond determining the structure of the periodic quiver.
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relations.9 The crystal is built out of atoms stacked on top of the nodes of Q̃ on R3. Since the
quiver for C4 has a single node, the crystal has a single type of atom. The crystal contains a
fourth dimension, that we will denote the depth d.Chiral fields determine the relative depth
of the atoms connected by them. If there is a chiral arrow from atom i to atom j, atom j is
at a higher depth than i. We can think about two such atoms as partially overlapping.10

To build the crystal, we first place an atom over node i0, which will become the tip of the
crystal. Then, we iteratively add new atoms according to the chiral fields that emanate from
the corresponding nodes in the original quiver. The (x, y, z) position of an atom is the one of
the corresponding node in Q̃, while the depth is proportional to the R-charge (equivalently
the conformal dimension) of the corresponding chiral operator. In the simple case of C4, in
which the four chiral fields are equivalent, this is simply proportional to the length of the
path (namely the number of chirals in it).11 This procedure results in an infinite crystal.

Modulo J- and E-term constraints, every oriented path γi0,j defining atom j of the
crystal can be expressed as

γi0,j = vi0,jωn (6.1)

where vi0,j is a shortest path connecting i0 to j, ω is the closed loop associated to a chiral
cycle, and n ≥ 0.12 We can interpret vi0,j as defining an atom at the top layer of the crystal.
An atom with an additional factor of ωn, is located directly below, n levels down.

6.2 Melting configurations

We now consider molten crystals, i.e. configurations that are obtained by removing atoms
from the unmolten crystal. We will denote any crystal configuration (i.e. molten or not) as
Iµ. We define the corresponding complement Ωµ as the difference between the unmolten
crystal and Iµ, i.e. Ωµ is the set of removed atoms. For brevity, we will refer to the Ωµ

as melting configurations.13

Let us momentarily focus on the unflavored quiver Q. Let us denote Q0 and QX the
sets of nodes and chiral arrows in Q, respectively. The set of all open oriented chiral paths
in Q gives rise to an algebra C[Q0, QX ], that we will call the chiral path algebra. Given the
ideal of relations coming from vanishing J- and E-terms

IJ,E = ⟨J+
a − J−

a = 0, E+
a − E−

a = 0⟩ , (6.2)

where a runs over all Fermis, it is natural to define the factor algebra A = C[Q0, QX ]/IJ,E . A

consists of the open chiral paths in the unflavored quiver modulo vanishing J- and E-terms.
Melting configurations are constructed according to the following melting rule.

Melting rule: If γi0,iαi,j is in Ωµ for some αij ∈A, then γi0,i should also be in Ωµ.
9J- and E-term relations lead to equivalences between paths in the periodic quiver with the same endpoints.

In other words, atoms can generically be reached in multiple, equivalent ways.
10We reserve the term overlapping for atoms that are directly on top of each other.
11The explicit values of the depth are not necessary for determining melting configurations, as we discuss in

the coming sections.
12As we explained in section 4.1, all chiral cycles are equivalent up to J- and E-terms, and therefore can be

identified with a single variable ω.
13Anticipating the connection between molten crystals and brick matchings that will be discussed in

section 10, we use the same type of subindex to label both.

– 12 –



J
H
E
P
0
3
(
2
0
2
4
)
0
9
1

Heuristically, this means that if an atom is removed in a given melting configuration, then
all atoms on top of it must be removed too. More precisely, starting from atom j, we can
go up the crystal by following the path αi,j in the reverse direction, encountering atom i,
which should also be removed.

It is straightforward to see that every molten crystal Iµ defines an ideal of A. To show
this, we consider the contraposition of the melting rule, which implies that for any γ ∈ Iµ

and any α ∈ A, then γα is also in Iµ. In simple words, starting from any atom in a molten
crystal and moving from it along a path α ∈ A, results in another atom in the molten crystal,
i.e. an atom that has not been removed.

Explicit constructions of the unmolten crystal and melting configurations will be presented
in sections 6 and section 8.

Melting height. We have previously introduced the notion of depth, which measures how
far below the tip of the unmolten crystal an atom is. When studying melting configurations,
it is useful to consider the melting height h, which is a also a function of the point (x, y, z)
in quiver space. For a crystal configuration Iµ, it is defined as

h = d0 − dµ , (6.3)

where d0 and dµ are the depth functions of the top layers of the unmolten crystal and Iµ,
respectively. It is possible to normalize the depth such that h counts the number of removed
atoms in the melting configuration Ωµ at every value of (x, y, z). From now on, we will
assume such normalization for the melting height.

Partition functions. It is useful to define a partition function of the form

Z =
∑
Ωµ

ynµ , (6.4)

where nµ is the number of atoms in melting configuration Ωµ. The integer coefficient of Z at
order yn therefore gives the number of melting configurations with n atoms.

In terms of branes, the unmolten crystal represents the single D8-brane, while every
melting configuration corresponds to adding nµ units of D0-charge.

7 The 4d crystal for C4

In this section, we construct the unmolten crystal for C4. According to the periodic quiver
in figure 5, we assign the following vectors to each type of chiral field

vX = (1,−1, 1)
vY = (1, 1,−1)
vZ = (−1, 1, 1)
vW = (−1,−1,−1)

(7.1)

The coordinates of every atom in quiver space are then given by

(x, y, z) = nXvX + nY vY + nZvZ + nW vW (7.2)
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0 1 2 3 4 d

Figure 10. Constant depth slices of the unmolten crystal for C4 up to d = 4.

with nX , nY , nZ , nW ≥ 0 the numbers of X, Y , Z and W fields in a path connecting the
origin to the atom under consideration. The fourth coordinate of every atom is the depth,
which is given by14

d = nX + nX + nZ + nW . (7.3)

An atom might be reached by different paths, due to the equivalences coming from van-
ishing J- amd E-terms. Therefore, a given atom might be associated to different values
of (nX , nY , nZ , nW ).

7.1 Slicing 4d crystals

Visualizing a 4d crystal is of course challenging. In this paper we will present various ways to
do so. The first approach consists of slicing the crystal at different depths. This approach
can be applied to both unmolten and molten crystals. Let us illustrate this construction with
the unmolten crystal. Figure 10 shows the atoms in it up to d = 4.

From figure 10, we see that the 3d slice at depth d is a tetrahedron of edge length d + 1.
The number of atoms at depth d is therefore

n(d) = 1
6(1 + d)(2 + d)(3 + d) , (7.4)

which results in

d 0 1 2 3 4 5 6 7 8 9 10
n(d) 1 4 10 20 35 56 84 120 165 220 286

(7.5)

Equation (7.4) can be generalized to D dimensions, for which the number of atoms in
the (D − 1)-dimensional slices at depth d is

nD(d) = 1
(D − 1)!(1 + d)(2 + d) . . . (D − 1 + d) . (7.6)

Overlapping atoms. The first repeated 3d position (x, y, z), i.e. the first case of an atom
with another one directly on top, occurs at depth 4, where we encounter a second atom at
(0, 0, 0). At depth 5, we get 4 repeated atoms at positions (−1,−1,−1), (−1, 1, 1), (1, 1,−1)
and (1,−1, 1). More generally, at depth d, we get atoms with the same positions in quiver
space as all the ones at depth d − 4.

14For simplicity, we normalize the depth such that it is simply given by the number of chiral fields in the
shortest path connecting an atom to the origin.
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The crystal and toric geometry. The tetrahedral shape of the slices is related to the
tetrahedral shape of the toric diagram, which is shown in figure 2. Each of the vertices in a
slice corresponds to a vertex in the toric diagram, a fact that can be understood as follows.
At a fixed depth d = nX + nX + nZ + nW , a vertex corresponds to a direction along which the
distance from the origin is maximized. This corresponds to using d copies of the same vector
vi, i = X, Y, Z, W . Also, edges between two faces in a slice corresponds to edges between the
two corresponding vertices in the toric diagram, and so on. We will revisit the correspondence
between the crystal and the underlying toric geometry in section 10. This connection will
become even more tangible in the reformulation of the model in terms of brane brick models.

7.2 The “3d surface” of the 4d crystal

Let us definite the “3d surface” of a 4d crystal configuration Iµ as its top layer, in analogy
with the 2d surface of an ordinary 3d crystal.15 In other words, we define:

Surface of the crystal Sµ: set of all the atoms in Iµ such that their depth is minimum
for a given position in quiver space. The 4d coordinates of the atoms are (x, y, z, d).

A corollary of this definition is that if we consider all chiral arrows connecting atoms in
Sµ, they are such that they do not form closed oriented loops. If there was such a loop, we
would have two atoms at the same (x, y, z) position but at different values of d. Therefore,
one of them could not be in Sµ. We will revisit this fact in section 10 where we present a
reformulation of the crystal in terms of brane brick models.

As an example, let us consider the surface of the unmolten crystal. Algorithmically, it
can be constructed following the same procedure we used to build the full crystal, but keeping
only the atoms of lowest depth for every (x, y, z) coordinate. With the normalization we are
using, the depths of overlapping atoms differ by multiples of 4, so at every depth d, we need
to remove the atoms at every d′ < d such that d − d′ = 0 mod 4. Figure 11 shows the atoms
on the surface up to d = 7. Atoms on the surface and the interior of the crystal are shown in
blue and orange, respectively. We observe that up to d = 3 all atoms are on the surface.

7.3 Melting configurations and solid partitions

The crystal for C4 is equivalent to a 4d corner, with melting configurations in one-to-one
correspondence with solid partitions. The connection between the quiver theory for D0 and
D8-branes on C4 and solid partitions was first explored in the context of the Magnificent
Four model [28–30]. The partition function counting solid partitions is

Z = 1 + y + 4y2 + 10y3 + 26y4 + 59y5 + 140y6 + · · · (7.7)

In the coming section, we will illustrate how this partition function arises from the crys-
tal model.

15We feel it is useful to stick to the term surface to denote the top layer of a crystal due to its intuitive
interpretation, despite that, in this case, it is a 3-dimensional object.
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Figure 11. Atoms on the surface of the unmolten crystal for d = 0, . . . , 7.

8 Exploring the crystal

In this section we present additional tools for visualizing and studying 4d crystals. All the
atoms in the crystal define a poset ∆, in which the ordering is determined by the partial
overlap relations. An efficient way of keeping track of the latter is by means of a Hasse
diagram. An arrow in this diagram from atom a to atom b indicates that a is on top of b. In
this context, the arrows actually correspond to chiral fields in the quiver. Figure 12 shows
the poset for the unmolten crystal for C4 up to d = 3.

The crystal under consideration has a single top atom, and hence a single atom at the
peak of the Hasse diagram. More general crystals, like the ones described in section 11,
might have multiple top atoms, which would be reflected in the respective Hasse diagrams.
Each layer in figure 12 corresponds to one of the slices in section 7.1. While it is natural to
vertically organize the Hasse diagram according to the depth, only the relational structure
stemming from the arrows is important.

8.1 Melting configurations

Here we present explicit examples illustrating how the Hasse diagram can be used to classify
melting configurations. According to the melting rule, whenever an atom is removed from
the crystal, all atoms above it, i.e. all atoms contained in downward paths terminating in
it, should also be removed.

Example 1: melting configurations with 4 atoms. Let us count the number of melting
configurations with 4 atoms, or equivalently, according to the discussion in section 7.3, the
number of solid partitions with 4 boxes. The Hasse diagram provides an efficient way to
represent and count all such configurations. They are given in figure 13, together with their
multiplicities, which are easily determined by the combinatorics of the types of fields involved
in each type of configuration. Types of fields are indicated with gray letters over the arrows.
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Figure 12. Hasse diagram for the C4 crystal up to d = 3.
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× 12 × 6 

× 4 

× 4 
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a b

b a

a

a

a

Figure 13. Hasse diagram representations of all melting configurations with 4 atoms.

We conclude that there are 26 melting configurations with 4 atoms, which agrees with the
corresponding term in the partition function (7.7).

Example 2: melting configurations with 5 atoms. We can perform a similar exercise
and use the Hasse diagram to count the number of melting configurations with 5 atoms.
They are shown in figure 14 with their multiplicities. We conclude that there are 59 melting
configurations with 5 atoms, in agreement with (7.7).

Example 3: a melting configuration with overlapping atoms. Let us use the Hasse
diagram to identify the smallest melting configuration containing a point (x, y, z) with melting
height greater than 0, i.e. the smallest one containing at least two overlapping atoms. As
mentioned in section 7.1, the first overlapping atom is located at (x, y, z, d) = (0, 0, 0, 4),
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Figure 14. Hasse diagram representations of all melting configurations with 5 atoms.

so let us look for the minimal melting configuration containing it. Our previous discussion
implies that this melting configuration corresponds to the subset of the poset in figure 12 that
consists of all atoms contained in downward paths terminating in (0, 0, 0, 4). Equivalently, we
start from the corresponding point in the Hasse diagram and move upwards, removing all
atoms connected to it by arrows and iterating this process starting from the newly deleted
atoms. The resulting subset of the Hasse diagram is shown in figure 15, from where we see
that this melting configuration contains 16 atoms. Larger melting configurations containing
the (0, 0, 0, 4) atom must include this subset.

It is interesting to note that this melting configuration, which is the first one with an
atom at melting height 1, appears at a relatively high order in the partition function, q16. As
it follows from our analysis above, this follows from the melting rule. Heuristically, the higher
the dimension of the crystal, the larger the number of ways in which atoms can partially
overlap. Our result implies that the atoms in all melting configurations with 15 or fewer
atoms have melting height equal to 0.

A better idea of how the structure of this melting configuration is obtained by considering
its slices according to depth, as shown in figure 16.

An alternative visualization is achieved by projecting the configuration onto the (x, y, z)
space and including information regarding the melting height (not to be confused with the
depth used in figure 16). This is done in figure 17.

– 18 –



J
H
E
P
0
3
(
2
0
2
4
)
0
9
1

(-1
,1
,-1

)

(-1
,-1

,1
)

(1
,-1

,-1
)

(1
,1
,1
)

(-2
,0
,0
)

(0
,0
,-2

)

(0
,2
,0
)

(0
,-2

,0
)

(0
,0
,2
)

(2
,0
,0
)

(-1
,-1

,-1
)

(-1
,1
,1
)

(1
,1
,-1

)

(1
,-1

,1
)

(0
,0
,0
)

(0
,0
,0
)

Figure 15. Subset of the Hasse diagram for C4 representing the minimal melting configuration
containing the first pair of overlapping atoms.

0 1 2 3 4 d

Figure 16. Constant depth slices of the melting configuration defined by figure 15.

Figure 17. Melting configuration given by figure 15. Orange and green spheres correspond to melting
height equal to 1 and 2, respectively.
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Figure 18. Toric diagram for C3 and the corresponding brane tiling. Dashed red lines indicate the
boundaries of the unit cell.

9 An appetizer: brane tilings and crystal melting for C3

In section 10, we will introduce a brane brick model description of the crystal melting model
studied above. Given the challenges of visualizing 4d objects, it is useful to first review the
analogous construction in 3d, i.e. the brane tiling and crystal melting model for D0-branes
and a D6-brane on C3. We refer the reader to [7] for background on brane tilings and [11] for
further details of the ideas in this section. The gauge theory on D3-branes probing C3 is 4d

N = 4 SYM. As we did before, we will interpret this theory as a quiver quantum mechanics
on D0-branes. The D6-brane adds a chiral flavor going from a global node representing the
D6-brane into the only node of the quiver. Figure 18 shows the toric diagram for C3 and
the corresponding brane tiling, which is the hexagonal lattice.16

This simple theory has three perfect matchings, which are in one-to-one correspondence
with the chiral fields associated to the three complex directions. The P -matrix summarizing
the perfect matchings is therefore

P =


px py pz

X 1 0 0
Y 0 1 0
Z 0 0 1

 . (9.1)

Figure 19 shows the correspondence between these perfect matchings and points in the
toric diagram, in analogy with figure 8. It also shows the dual (p, q) web, in which perfect
matchings map to regions separated by the lines in the web.

The underlying structure of the crystal melting model is the universal cover of the brane
tiling for C3, namely an infinite hexagonal lattice.17 Melting configurations are in one-to-one
correspondence with perfect matching of this extended tiling, as we explain below.

9.1 The unmolten crystal

The first step is to identify the perfect matching that describes the crystal before any melting.
For C3, this configuration is often referred to as the empty room configuration for its similarity
with the empty corner of a 3d room. The corresponding perfect matching, which we will

16Larger unit cells on the hexagonal lattice correspond to Abelian orbifolds of C3 [6, 7, 45–47].
17While we will focus on the brane tiling perspective, the crystal melting model can also be formulated in

terms of the universal cover of the periodic quiver.
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pz

Figure 19. Correspondence between perfect matchings for C4 and points in its toric diagram. On
the right, we show the dual (p, q) web.

Figure 20. The canonical perfect matching for C3.

call the canonical perfect matching p0, is shown in figure 20 [11]. The figure shows a finite
region that should be extended to the infinite hexagonal lattice in the obvious way. To
simplify the visualization, we have omitted the black and white nodes of the brane tiling.
The canonical perfect matching consists of three regions. Inside each of them, p0 is given
by one of the perfect matchings of the original brane tiling associated to one of the corners
of the C3 toric diagram (px, py and pz). Interestingly, the boundary between these regions,
represented with dotted lines in figure 20, agrees with the (p, q) web in figure 19 (up to an
obvious transformation). Brane tilings give rise to a “discretized” version of the underlying
CY3 geometry [9, 11, 36, 37]. This fact holds for general toric CY3’s. In figure 20, we have
indicated the hexagons on which two or three regions coincide in blue. On these hexagons, p0
is given by the appropriate combination of the basic perfect matchings.

Depth. The third dimension of the crystal is obtained by introducing a reference perfect
matching pr and determining the height function. The procedure is analogous to the one
for brane brick models discussed in section 5 (see e.g. [7] for details). Figure 21 shows he
choice of pr that, upon subtraction from p0, reproduces the depth function measured from
the top atom. Roughly speaking, within each of the three regions associated to one of the
basic perfect matchings, pr is given by a combination of the other two. We also show the
contour lines obtained from p0 − pr. It is trivial to determine the orientation of these curves
by taking into account the nodes of the brane tiling and their colors.
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p0 pr

Figure 21. The canonical perfect matching p0, the reference perfect matching pr and the contour
lines obtained from taking their difference.

0
1

2
3

Figure 22. Depth function for the canonical perfect matching, obtained from figure 21.

It is natural to assign d = 0 to the top atom and pick the orientation of the contours
such that d increases from there. The height function can then be regarded as the depth.
We can interpret figure 22 as the corner of a cube, in which each of the three orthogonal
faces correspond to one of the perfect matchings at the corners of the toric diagram of C3

and the dashed lines indicate the edges at which two faces come together. Notice that if we
think that each of these faces is perpendicular to the x, y and z directions, our choice of
pr is such that the depth increases in the (1, 1, 1) direction. It is straightforward to verify
that the resulting crystal agrees with the one built from the quiver, using the CY3 analogue
of the construction in section 6 [11].

9.2 Melting configurations

Let us now consider general melting configurations which, in this language, correspond to
perfect matchings of the universal cover of the brane tiling.

Depth. As for the canonical perfect matching discussed in the previous section, the depth
function for any perfect matching p is obtained by computing its difference p− pr. Figures 23
and 24 show an example of this procedure for a general perfect matching p and the resulting
height function.
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Figure 23. A perfect matching p and the contour lines of the height function obtained by subtracting
the reference perfect matching pr.

1

2
3

1

Figure 24. Depth function for the perfect matching p in figure 23.

Melting height. As discussed in section 6.2 for CY 4-folds, the atoms removed from the
crystal are better captured by the melting height h, i.e. difference between the depths for p,
given by figure 24, and for the unmolten crystal, given by figure 22. In fact, it is not necessary
to calculate the depth as an intermediate step, since the contour lines for h can be computed
directly as the difference p − p0, i.e. they are independent of the reference perfect matching
pr. Finally, it is natural to assign h = 0 to the region close to infinity, where p and p0 agree.

Figures 25 and 26 show the determination of the melting height for the same perfect
matching considered in figure 24. In this perspective, it is much cleared that the melting
configuration under consideration corresponds to removing two atoms, the top one and
another one along one of the three ridges of the crystal.

10 Brane brick model description of CY4 crystal melting

In this section, we explain how the melting model introduced in section 6 in terms of periodic
quivers can be formulated in the language of brane brick models and brick matchings. The
classification of melting configurations translates into a problem of counting perfect matchings.
While we illustrate our ideas with C4, they extend to general toric geometries [48]. The
discussion is a natural generalization of the one presented in section 9 for CY 3-folds.
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Figure 25. A perfect matching p and the contour lines of the melting height function obtained by
subtracting the canonical perfect matching p0.

1

Figure 26. Melting height function for the perfect matching p in figure 25.

10.1 From brick matchings to melting configurations

Melting configurations are in one-to-one correspondence with brick matchings of the universal
cover of the brane brick model. We will elaborate on the details of this correspondence in
sections 10.2 and 10.4. We now discuss how the fourth dimension of the crystal, i.e. the
depth or the melting height, emerges from brick matchings.

Depth. Generalizing what happens for CY 3-folds, the fourth dimension of the crystal
is obtained by introducing a reference brick matching pr. For every brick matching p, the
difference p − pr gives rise to collection of oriented level surfaces. The depth associated to
these level surfaces is a special case of the height function discussed in section 5. Below
we explain how to identify the reference perfect matching pr that gives rise to the crystal
defined by the quiver.

Melting height. The atoms removed from the crystal are more directly captured by the
melting height h, the difference between the depths of the unmolten crystal and a melting
configuration for any point (x, y, z) in the quiver/brane brick model space. Generalizing the
discussion in section 9.2, the level surfaces for h in the melting configuration associated to a
brick matching p can be computed directly as the difference p − p0, where p0 is the canonical
brick matching, without using the reference brick matching pr. Finally, we set h = 0 in the
asymptotic region at infinity, where brick matchings agree with pr.
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10.2 The unmolten crystal

Figure 27 shows the canonical brick matching p0 of the universal cover of the brane brick
model for C4 that describes the unmolten crystal. Generalizing the discussion in section 9.1,
p0 consists of four regions, inside each of which it is given by one of the brick matchings
of the brane brick model associated to a corner of the C4 toric diagram. The boundaries
between every pair of these regions are six 2-dimensional surfaces that are in one-to-one
correspondence with the six edges connecting corners in the toric diagram. In other words,
we can regard these surfaces as a “(p, q, r)-web” dual to the toric diagram of a CY4. We have
indicated the bricks on which two or three regions coincide in green and blue, respectively.
There is also a brick at the center of the configuration, and hence not visible in the figure,
on which the four regions come together. On all these special loci, brick matchings are
given by the appropriate combinations of the basic brick matchings.18 This perfect matching
represents the 4d empty room configuration.

Let us explore this configuration in further detail. Figure 28.a shows a view of p0 along one
of the blue rays, e.g. the vector vW in our construction. Remarkably, from this viewpoint, the
configuration reduces to the canonical perfect matching for C3, which we presented in figure 21.
The truncated octahedra bricks and their brick matchings get projected onto the hexagonal
lattice and its perfect matchings! Figure 28.b shows a view from the antipode, i,e. from −vW ,
from where we observe the entire plane covered by the remaining perfect matching pD.

As for C3, the reference brick matching pr for C4 is basically given by the “complement”
of p0 in each region, surface, etc. Since we will be primarily interested in the melting height
of configurations, instead of the depth, and visualizing these perfect matchings is challenging,
we will not present a figure with pr.

10.3 From crystal surfaces to brick matchings

The canonical perfect matching we introduced above was determined such that, in combination
with the reference brick matching, it gives rise to the depth determined by the quiver
construction and illustrated in figure 10. This procedure translates into an algorithmic
prescription for determining p0 from the quiver, which we now review. The analogous
construction for CY 3-folds was discussed in [11].

Let us focus on projection of the surface of the unmolten crystal onto quiver space and
consider the chiral arrows connecting these atoms. Since we restrict to the surface of the
crystal, these arrows do not form closed loops. If closed loops were present, they would give
rise to atoms with the same coordinates on quiver space but different depths, therefore not on
the surface. Equivalently, the arrows in this construction are those in the Hasse diagram of

18The region shown in figure 27 should be regarded as a finite subset of the infinite universal cover of the
brane brick model. Its beautiful rhombic dodecahedron shape is an artifact of how it was generated, which is
analogous to how the hexagonal region for C3 in the figures of section 9 was created. In the normalization
used in this figure, the universal cover of the brane brick model consists of bricks on a lattice generated by
the following vectors: vx = (0,−2,

√
2), vy = (0, 2,

√
2), vz = (2, 0,−

√
2) and vW = (−2, 0,−

√
2). Each of

the regions covered by one of the basic brick matchings pi, with i = x, y, z, d, are given by bricks located at
njvj + nkvk + nlvl, with j, k, l ̸= i and nj , nk, nl = 1 . . . , nmax, for some maximum size nmax. Also, the reason
why the facets of the region in figure 27 are not triangles as the ones in figure 10 is simply that they do not
correspond to surfaces of equal depth.
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py

pxpz

pw

Figure 27. Canonical brick matching for C4. It consists of four regions in which it coincides with
the brick matchings associated to corners of the toric diagram. Bricks on which two or three of these
regions overlap are shown in green and blue, respectively.

px

py

pz pw

(a) (b)

Figure 28. a) When viewed from one of the vi vectors (in this case vw), the canonical brick matching
for C4 reduces to the canonical perfect matching for C3. From the antipode, i.e. from the −vi direction,
the configuration consists only of pi brick matchings.

– 26 –



J
H
E
P
0
3
(
2
0
2
4
)
0
9
1

Figure 29. Chiral arrows restricted to the atoms on the surface of the unmolten crystal up to d = 7.
The blue point indicates the atom at the origin.

figure 12 when restricted to atoms on the surface. The resulting quiver is shown in figure 29,
where red arrows indicate the four primary directions of this crystal, vi, i = X, Y, Z, W .

From figure 11, we know that the slices of the surface at each depth have a tetrahedral
shape. When projected onto quiver space, the entire surface becomes an onion-like collection
of tetrahedral shells of increasing size and depth. Since the arrows in figure 29 point in the
direction of increasing depth, they provide a quiver representation for the gradient of the
depth. The canonical brick matching, once combined with the reference brick matching, gives
rise to surfaces of increasing height (i.e. of decreasing depth). Therefore, we conclude that the
arrows in the quiver in figure 29 corresponds to pr, while its complement correspond to p0. The
fact that the resulting objects are brick matchings follow from the absence of closed loops on
this quiver and the definition of brick matchings in terms of chiral cycles given in section 4.1.

From melting configurations to brick matchings. The previous discussion can be
extended to the surface Sµ of an arbitrary molten crystal Iµ and result, following the same
arguments, on a brick matching pµ. It therefore establishes a correspondence between molten
crystals or, equivalently, melting configurations and brick matchings.

To conclude this section, let us further scrutinize the connections between figure 29 and
our previous constructions. First of all, we observe that the vertices of the tetrahedral slices
of the surface are along the vX , vY , vZ and vW directions. This is easy to understand, since
for any fixed depth d, the vertices correspond to the points of maximal distance from the
origin. In turn, the distance is maximized by combining d fields of the same type, hence
aligning with one of the four primary directions.

Now consider a tetrahedral slice of the surface and focus on one of its triangular faces.
The gradient of the depth function, which is represented by the arrows in figure 29, is
orthogonal to these faces.19 For a given face, there are two normal vectors:

19The notion of orthogonality is not perfectly defined in terms of the quiver, where we simply have collections
of nodes, but it is clearer in terms of brane brick models.
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0 1 2 3 4 d

Figure 30. Constant depth slices of the melting configuration defined by figure 15 in terms of the
brane brick model.

• vi, which increases the depth along vertex i.

• Since vX + vY + vZ + vW = 0, the other alternative is −vi = vj + vk + vl, where j, k, l

are the three remaining vectors. This vector points in the direction of increasing depth
from each of the facets. This fact agrees with figure 29, where we observe that every
face is associated to three types of arrows.

Recalling that p0 is the complement of this quiver, these two observations are in perfect
agreement with figure 28, where

• From the vi direction, p0 consists of three regions associated to pj , pk and pl coming
together.

• From the −vi direction, p0 corresponds entirely to pi.

10.4 Melting configurations and brick matchings

In this section, we discuss how general melting configurations are described in terms of
brane brick models and brick matchings. For concreteness, we illustrate our ideas using
Example 3 of section 8.1.

To start, let us visualize how the atoms in this partition translate into brane brick
models. Figure 30 shows the constant depth slices of this melting configuration, originally
shown in figure 16, in terms of the brane brick model.20 Figure 31 shows the projection
of these atoms onto quiver space.

The brick matching p corresponding to the melting configuration under consideration is
shown in blue in figure 32, where we also show the canonical brick matching p0 in red. We
only give the chiral field content of both brick matchings, since Fermis can be reconstructed
from this information. To simplify the figure, we restrict both brick matchings to the relevant
region in figure 31. p and p0 coincide outside of this region and, therefore, they cancel out
when subtracted. To be able to peek inside the configuration, we have split it open through
the middle. The other halves of these brick matchings are identical the ones shown.

The difference p − p0 results into two nested oriented surfaces, as shown in figure 32.
Figure 33 shows the resulting melting height. The blue region at the origin has height 2,

20Figures 30 and 16 differ by a 45◦ rotation around the vertical axis. This follows from the different
generators for the lattice chosen in each case. They are given in (7.1) and footnote 18. It is a straightforward
exercise to connect the two constructions.
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Figure 31. Bricks in the universal cover of the brane brick model involved in the melting configuration
under consideration. This region is the projection of the slices in 30 onto quiver space.

- =

p p0

Figure 32. A brick matching p, the canonical brick matching p0 and the level surfaces of the melting
height obtained by taking p − p0.

2

1

Figure 33. Melting height for the brick matching p in figure 32. The orange and blue regions have
height 1 and 2, respectively.

i.e. it corresponds to two overlapping atoms in the 4d crystal as expected. This is in perfect
agreement with figure 17. The configuration has 14 bricks with melting height 1 and 1 brick
with melting height 2, corresponding to 16 atoms, as expected.

It is worth noting that, from a graphing point of view, for general toric singularities it is
often simpler to consider the periodic quiver version of crystal melting than its brane brick
model counterpart, since representing the latter might be harder. Having said that, the brane
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brick model realization of the crystal melting model is conceptually important since, among
other things, it maps the problem to the combinatorics of brick matchings.

11 The general crystal melting model for toric CY4’s

While this paper focused on the D0-D8 system on C4, most of our discussion generalizes
to arbitrary toric CY 4-folds and general brane configurations on them. Below, we briefly
outline these generalizations and leave a detailed study to future work.

General CY 4-folds. For a general toric CY 4-fold, the underlying structure for the
crystal is the universal cover of the corresponding periodic quiver Q̃.21 The crystal has one
type of atom for every node in the original quiver. We label each type of atom with an
index i, with i = 1, . . . , G. G is equal to the volume on the toric diagram normalized by
the volume of a minimal tetrahedron.

General flavor branes. Let us first discuss the simplest configurations, i.e. those with
single D8-brane wrapping the entire CY4 with appropriate B-field, as considered in this
paper. The D8-brane provides a single chiral flavor qi0 incoming into a node i0 of the quiver.
Generically, the resulting theory seems to depend on the choice of i0, a freedom that is
not present for C4. It would be interesting to investigate the dependence of the crystal
melting models on i0 and whether some criterion leads to a preferred choice. A similar
freedom exists for CY 3-folds [11].

General flavor branes give rise to more involved configurations of flavors, consisting of Nq

incoming chirals qi, Nq̃ outgoing chirals q̃j and NΨ Fermis Ψk, where i, j and k indicate the
nodes in the quiver to which the flavors are connected.22 Nq, Nq̃, NΨ ≥ 0 and, to keep the
discussion general, we do not assume any relation between them. The flavors can participate
in J- and E-terms, represented by gauge invariant terms of the following general forms:

qiOi,jΨj , ΨiOi,j q̃j , qiΦi,j q̃j , qiΦi,j q̃j (11.1)

where Oi,j and Φi,j are operators made of D0-D0 fields. The Oi,j operators contain only
chiral fields, Φi,j contain chirals and one Fermi, and Φi,j contain chirals and a conjugate
Fermi. These interactions should be added to the J- and E-terms that only involve D0-D0
fields, i.e. those encoded in the periodic quiver/brane brick model.

Motivated by the crystal models for CY 3-folds (see e.g. [11, 36, 37]), we propose that
every atom in the unmolten crystal corresponds to an open oriented path of chirals starting
at a qi modulo J- and E-term relations of both the D0-D0 Fermi fields and the Fermi flavors
Ψj . Notice that some atoms might be reached by equivalent paths starting at different
qi’s. The positions of atoms in the crystal are determined by the rules in section 6.1. The
crystal constructed in this way contains Nq top atoms and is subject to up to 2NΨ additional

21Generically, there can be multiple periodic quivers, or equivalently brane brick modes, for a toric CY4.
They correspond to the so-called toric phases and are related by triality [49]. Such non-uniqueness is also
present for CY 3-folds. We plan to study the crystals arising from different toric phases in future work.

22More broadly, one might consider crystals for more general flavor combinations, i.e. not necessarily
associated to brane configuration. While less well motivated, such configurations might lead to interesting
combinatorial problems.
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relations coming from the Ψj fields. Finally, melting configurations are given by the melting
rule of section 6.2.

While we are confident on the general picture outlined in this section, some of its details,
particularly the proposed treatment of the J- and E-terms of Ψj fields, deserve further study.

Heuristically, we expect that if the number of relations coming from J- and E-terms
for Ψj fields exceeds the number of qi fields, this might lead to a truncation of the chiral
operators associated to atoms. Therefore, depending on the relation between Nq and NΨ
(and, possibly Nq̃), the resulting crystals might be infinite (like the one studied in this paper),
finite, or infinite but effectively lower dimensional (like the example in section 11.1). For
similar phenomena for CY 3-folds, see [36, 37].

Finally, general flavor configurations can correspond to “resolutions” of the discretized
version of the toric CY4 provided by the crystal, in which certain cycles grow to finite size.
CY3 examples displaying analogous behavior can be found in [36, 37].

Crystals and brane brick models. The implementation of the crystal melting model
in terms of brane brick models and their brick matchings follows the general discussion of
section 10. The starting point is the universal cover of the brane brick model for the toric
CY 4-fold under consideration.

The brick matching pµ associated to a melting configuration Ωµ is determined from the
crystal surface Sµ using the method in section 10.3. This includes the canonical perfect
matching representing the unmolten crystal. Crystals associated to different flavor con-
figurations, e.g. those corresponding to resolutions of the CY4, are captured by different
canonical perfect matchings.

For infinite crystals, every brick matching asymptotically approaches the unmolten crystal
and contains a collection of “frozen” regions inside each of which it is given by one of the
brick matchings of the brane brick model associated to a corner of the toric diagram.

Partition function. The partition function has a variable yi, i = 1, . . . , G, for every type
of atom in the crystal, i.e. for every gauge node in the quiver. It takes the form

Z =
∑
Ωµ

∏
i

y
n

(µ)
i

i , (11.2)

where the sum runs over melting configurations Ωµ and n
(µ)
i is the number of atoms of type i

in Ωµ. For general CY 4-folds, every node in the quiver corresponds to fractional brane, which
in turn is a bound state of D-branes wrapping vanishing cycles. Knowing these fractional
branes, it is possible to re-express the partition function in terms of D-brane charges.

11.1 A simple example: D0-D6 system on C4

To illustrate the construction of crystals for more general flavor configurations, let us consider
the case of D0-branes and a single D6-brane on C4. Figure 34 shows the corresponding quiver.
In the notation introduced above, this example has Nq = NΨ = 1 and Nq̃ = 0.

Without loss of generality, let us assume that the D6-brane spans the X, Y and Z

directions, and it is located at W = 0. Then, in addition to the J- and E-terms of the
D0-brane theory, which were given in (3.1), we have a J-term involving the flavors, given by
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4

3

q

In this case, Nq =

• They correspond of bound states including other types of branes and di↵erent

chambers.

• Give the example of C3. Show how the crystal is e↵ectively 3d.

• In this case, the two numbers are equal.

The D0-brane is located at X = Y = Z = W = 0. Without loss of generality,

let us assume that the D6-brane spans the X, Y and Z directions, and its located at

W = 0. In addition to the J- and E-terms of the D0 theory, which were given in (3.1),

we have
J

 : q ·W (11.3)

More intuitively, this corresponds to a cubic coupling in the Lagrangian of the form

q ·W · . This coupling is easy to understand, since a (classical) expectation value for

W would result on a mass term for the flavor fields q and  , which agrees with the fact

that moving the D6-brane along the W direction would separate it from the D0-brane

and make the states stretching between them massive.

Atoms in the crystal correspond to chiral paths starting with q

0 1 2 3 4 d

Figure 33: Constant depth slices of the unmolten crystal for the D0-D6 system in C4

up to d = 4.

12 Conclusions and future directions

We introduced a statistical model of crystal melting for non-compact toric CY 4-folds.

While we focused on C4 to illustrate our construction, we discussed how it extends to

general toric CY 4-folds. First, we formulated the model in terms of periodic quivers.

– 36 –

Figure 34. Quiver diagram for D0-branes and a D6-brane on C4.

0 1 2 3 4 d

Figure 35. Constant depth slices of the unmolten crystal for the D0-D6 system in C4 up to d = 4.

the gauge invariant coupling q WΨ. This coupling is easy to understand, since a (classical)
expectation value for W would result on a mass term for the flavor fields q and Ψ, which
agrees with the fact that separating the D6 and D0-branes along the W direction makes
the strings stretched between them massive.

The atoms in the unmolten crystal correspond to open oriented paths of chiral fields
starting from q, modulo J- and E-term relations. If we considered only the J- and E-terms
in (3.1), we would generate the same crystal we previously construceted in section 7. However,
the vanishing of the J-term for Ψ gives rise to the additional relation

q W = 0 . (11.3)

Since every atom corresponds to a path containing q, (11.3) implies that any path containing
a W field vanishes and the corresponding atom is not present in the crystal. Not surprisingly,
we recover the well-known crystal melting model for D0-branes and a D6-brane on C3, which
we also discussed in section 9. The crystal turns out to be infinite but 3-dimensional, with
melting configurations in one-to-one correspondence with plane partitions. Figure 35 shows
constant depth slices of the unmolten crystal up to d = 4. In contrast with figure 10, we
observe that for this model the slices are 2-dimensional, in agreement with the fact that
in this case the full crystal is 3-dimensional.

12 Conclusions and future directions

We introduced a statistical model of crystal melting for non-compact toric CY 4-folds. While
we focused on C4 to illustrate our construction, we discussed how it extends to general
toric CY 4-folds. First, we implemented the model in terms of periodic quivers. We then
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reformulated it in terms of brane brick models and brick matchings. We introduced various
techniques for visualizing the resulting crystals and their melting configurations, including
slicing and Hasse diagrams. The crystals provide a discretized version of the underlying toric
geometries. This paper takes the first steps laying out the basic ideas in what we consider
will turn out to be a rich subject. Our work suggests various interesting directions for future
investigation, some of which are summarized below:

• We outlined the generalization of the melting crystal model to arbitrary toric CY 4-folds
with general flavor D-branes. In the future, we plane to elaborate on this definition in
further detail, explore such general setups and investigate whether they exhibit novel
features.

• Generically, there are multiple toric phases for a toric CY 4-fold. From a field theory
perspective, such phases are related by triality, which is an IR equivalence of 2d (0, 2)
gauge theories when the quiver theories are interpreted as living on D1-branes probing
the CY4 [17, 18]. In such cases, there are alternative structures underlying the crystal,
given by the corresponding periodic quivers or brane brick models. CY 3-folds display
a similar behavior, where toric phases are related by Seiberg duality [7, 50–54]. We
expect different phases to give rise to the same discretized toric geometry. It would be
interesting to investigate the connection between crystals for different toric phases.

• Triality can change the framing flavors, even if the underlying periodic quiver remains
the same. This transformation would result in crystals of different shapes and sizes.
An analogous phenomenon has been studied for CY 3-folds (see e.g. [36, 37]). In that
case, Seiberg duality connects crystals, both infinite and finite, with different resolution
parameters and sizes. These crystals encode the BPS spectrum within different stability
chambers, which connect across walls of marginal stability. Interestingly, for CY 3-folds,
the partition functions of crystals that are connected in this way transform as the
variables of a cluster algebra with coefficients [37, 55–60]. It would be interesting to
investigate how the partition functions of CY4 crystals associated to flavor configurations
connected by triality are related.

• It would be interesting to investigate the geometry of the molten crystal in the high
temperature limit, i.e. for melting configurations with a large number of atoms, and
whether it is connected to the mirror CY4.

• Quiver Yangians are a new class of infinite-dimensional algebras that act on BPS states
of non-compact toric CY 3-folds [61, 62]. These BPS states correspond to D-branes
wrapping holomorphic cycles on such CY 3-folds and are captured by crystal melting
models based on brane tilings. It is therefore possible to bootstrap quiver Yangians
from molten crystal configurations. It would be interesting to determine whether similar
algebras exist for BPS states on toric CY 4-folds and, if so, whether they are connected
to the crystal melting models introduced in this paper.

• The open string sector of the topological B-model on CY (m+2)-folds is described by m-
graded quivers with superpotentials [34, 35, 63]. This correspondence extends to general
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m the connection between CY (m + 2)-folds and gauge theories on the worldvolume
of D(5 − 2m)-branes for m = 0, . . . , 3. m-dimers, a new type of combinatorial objects
that fully encode the m-graded quivers and their superpotentials in the case in which
the CY (m + 2)-folds are toric was introduced in [22]. For m = 1 and 2 these objects
correspond to brane tilings and brane brick models, respectively. Generalizing the
well-known m = 1 and 2 cases, m-dimers significantly simplify the connection between
geometry and m-graded quivers. It is natural to expect that a generalization of crystal
melting models for toric CY (m + 2)-folds exists and that it is based on m-dimers. It
would be interesting to pursue this line of investigation.

We plan to address these questions in forthcoming work.

Acknowledgments

We would like to thank Yang-Hui He, Eduardo García-Valdecasas, Nikita Nekrasov, Nicolo
Piazzalunga and, specially, Xingyang Yu for enjoyable and useful discussions. We are also
grateful to Dongwook Ghim, Azeem Hasan, Sangmin Lee, Rak-Kyeong Seong and Cumrun
Vafa for earlier collaborations on related topics. This work is supported by the U.S. National
Science Foundation grants PHY-2112729 and DMS-1854179.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

References

[1] I.R. Klebanov and E. Witten, Superconformal field theory on three-branes at a Calabi-Yau
singularity, Nucl. Phys. B 536 (1998) 199 [hep-th/9807080] [INSPIRE].

[2] D.R. Morrison and M.R. Plesser, Nonspherical horizons. 1, Adv. Theor. Math. Phys. 3 (1999) 1
[hep-th/9810201] [INSPIRE].

[3] I.R. Klebanov and M.J. Strassler, Supergravity and a confining gauge theory: Duality cascades
and χSB resolution of naked singularities, JHEP 08 (2000) 052 [hep-th/0007191] [INSPIRE].

[4] G. Aldazabal, L.E. Ibanez, F. Quevedo and A.M. Uranga, D-branes at singularities: A bottom up
approach to the string embedding of the standard model, JHEP 08 (2000) 002 [hep-th/0005067]
[INSPIRE].

[5] H. Verlinde and M. Wijnholt, Building the standard model on a D3-brane, JHEP 01 (2007) 106
[hep-th/0508089] [INSPIRE].

[6] A. Hanany and K.D. Kennaway, Dimer models and toric diagrams, hep-th/0503149 [INSPIRE].

[7] S. Franco et al., Brane dimers and quiver gauge theories, JHEP 01 (2006) 096
[hep-th/0504110] [INSPIRE].

[8] S. Franco et al., Gauge theories from toric geometry and brane tilings, JHEP 01 (2006) 128
[hep-th/0505211] [INSPIRE].

[9] A. Okounkov, N. Reshetikhin and C. Vafa, Quantum Calabi-Yau and classical crystals, Prog.
Math. 244 (2006) 597 [hep-th/0309208] [INSPIRE].

– 34 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/S0550-3213(98)00654-3
https://arxiv.org/abs/hep-th/9807080
https://inspirehep.net/literature/473137
https://doi.org/10.4310/ATMP.1999.v3.n1.a1
https://arxiv.org/abs/hep-th/9810201
https://inspirehep.net/literature/478357
https://doi.org/10.1088/1126-6708/2000/08/052
https://arxiv.org/abs/hep-th/0007191
https://inspirehep.net/literature/530835
https://doi.org/10.1088/1126-6708/2000/08/002
https://arxiv.org/abs/hep-th/0005067
https://inspirehep.net/literature/526956
https://doi.org/10.1088/1126-6708/2007/01/106
https://arxiv.org/abs/hep-th/0508089
https://inspirehep.net/literature/689743
https://arxiv.org/abs/hep-th/0503149
https://inspirehep.net/literature/678776
https://doi.org/10.1088/1126-6708/2006/01/096
https://arxiv.org/abs/hep-th/0504110
https://inspirehep.net/literature/680477
https://doi.org/10.1088/1126-6708/2006/01/128
https://arxiv.org/abs/hep-th/0505211
https://inspirehep.net/literature/683294
https://doi.org/10.1007/0-8176-4467-9_16
https://doi.org/10.1007/0-8176-4467-9_16
https://arxiv.org/abs/hep-th/0309208
https://inspirehep.net/literature/628794


J
H
E
P
0
3
(
2
0
2
4
)
0
9
1

[10] A. Iqbal, N. Nekrasov, A. Okounkov and C. Vafa, Quantum foam and topological strings, JHEP
04 (2008) 011 [hep-th/0312022] [INSPIRE].

[11] H. Ooguri and M. Yamazaki, Crystal Melting and Toric Calabi-Yau Manifolds, Commun. Math.
Phys. 292 (2009) 179 [arXiv:0811.2801] [INSPIRE].

[12] H. Ooguri and M. Yamazaki, Emergent Calabi-Yau Geometry, Phys. Rev. Lett. 102 (2009)
161601 [arXiv:0902.3996] [INSPIRE].

[13] B. Szendroi, Non-commutative Donaldson-Thomas invariants and the conifold, Geom. Topol. 12
(2008) 1171 [arXiv:0705.3419] [INSPIRE].

[14] S. Mozgovoy and M. Reineke, On the noncommutative Donaldson-Thomas invariants arising
from brane tilings, arXiv:0809.0117 [INSPIRE].

[15] S. Franco et al., 2d (0, 2) Quiver Gauge Theories and D-Branes, JHEP 09 (2015) 072
[arXiv:1506.03818] [INSPIRE].

[16] S. Franco, S. Lee and R.-K. Seong, Brane Brick Models, Toric Calabi-Yau 4-Folds and 2d (0, 2)
Quivers, JHEP 02 (2016) 047 [arXiv:1510.01744] [INSPIRE].

[17] S. Franco, S. Lee and R.-K. Seong, Brane brick models and 2d (0, 2) triality, JHEP 05 (2016)
020 [arXiv:1602.01834] [INSPIRE].

[18] S. Franco, S. Lee, R.-K. Seong and C. Vafa, Brane Brick Models in the Mirror, JHEP 02 (2017)
106 [arXiv:1609.01723] [INSPIRE].

[19] S. Franco, S. Lee and R.-K. Seong, Orbifold Reduction and 2d (0, 2) Gauge Theories, JHEP 03
(2017) 016 [arXiv:1609.07144] [INSPIRE].

[20] S. Franco, D. Ghim, S. Lee and R.-K. Seong, Elliptic Genera of 2d (0, 2) Gauge Theories from
Brane Brick Models, JHEP 06 (2017) 068 [arXiv:1702.02948] [INSPIRE].

[21] S. Franco and A. Hasan, 3d printing of 2dN = (0, 2) gauge theories, JHEP 05 (2018) 082
[arXiv:1801.00799] [INSPIRE].

[22] S. Franco and A. Hasan, Graded Quivers, Generalized Dimer Models and Toric Geometry, JHEP
11 (2019) 104 [arXiv:1904.07954] [INSPIRE].

[23] S. Franco and A. Hasan, Calabi-Yau products: graded quivers for general toric Calabi-Yaus,
JHEP 02 (2021) 174 [arXiv:2004.13765] [INSPIRE].

[24] S. Franco, 2d Supersymmetric Gauge Theories, D-branes and Trialities, arXiv:2201.10987
[INSPIRE].

[25] S. Franco and R.-K. Seong, Fano 3-folds, reflexive polytopes and brane brick models, JHEP 08
(2022) 008 [arXiv:2203.15816] [INSPIRE].

[26] S. Franco, D. Ghim and R.-K. Seong, Brane brick models for the Sasaki-Einstein 7-manifolds
Y p,k(CP1 × CP1) and Y p,k(CP2), JHEP 03 (2023) 050 [arXiv:2212.02523] [INSPIRE].

[27] S. Franco, D. Ghim, G.P. Goulas and R.-K. Seong, Mass deformations of brane brick models,
JHEP 09 (2023) 176 [arXiv:2307.03220] [INSPIRE].

[28] N. Nekrasov, Magnificent four, Adv. Theor. Math. Phys. 24 (2020) 1171 [arXiv:1712.08128]
[INSPIRE].

[29] N. Nekrasov and N. Piazzalunga, Magnificent Four with Colors, Commun. Math. Phys. 372
(2019) 573 [arXiv:1808.05206] [INSPIRE].

[30] N. Nekrasov and N. Piazzalunga, Global magni4icence, or: 4G Networks, arXiv:2306.12995
[INSPIRE].

– 35 –

https://doi.org/10.1088/1126-6708/2008/04/011
https://doi.org/10.1088/1126-6708/2008/04/011
https://arxiv.org/abs/hep-th/0312022
https://inspirehep.net/literature/634399
https://doi.org/10.1007/s00220-009-0836-y
https://doi.org/10.1007/s00220-009-0836-y
https://arxiv.org/abs/0811.2801
https://inspirehep.net/literature/810062
https://doi.org/10.1103/PhysRevLett.102.161601
https://doi.org/10.1103/PhysRevLett.102.161601
https://arxiv.org/abs/0902.3996
https://inspirehep.net/literature/814016
https://doi.org/10.2140/gt.2008.12.1171
https://doi.org/10.2140/gt.2008.12.1171
https://arxiv.org/abs/0705.3419
https://inspirehep.net/literature/761460
https://arxiv.org/abs/0809.0117
https://inspirehep.net/literature/794396
https://doi.org/10.1007/JHEP09(2015)072
https://arxiv.org/abs/1506.03818
https://inspirehep.net/literature/1376017
https://doi.org/10.1007/JHEP02(2016)047
https://arxiv.org/abs/1510.01744
https://inspirehep.net/literature/1396583
https://doi.org/10.1007/JHEP05(2016)020
https://doi.org/10.1007/JHEP05(2016)020
https://arxiv.org/abs/1602.01834
https://inspirehep.net/literature/1419991
https://doi.org/10.1007/JHEP02(2017)106
https://doi.org/10.1007/JHEP02(2017)106
https://arxiv.org/abs/1609.01723
https://inspirehep.net/literature/1485590
https://doi.org/10.1007/JHEP03(2017)016
https://doi.org/10.1007/JHEP03(2017)016
https://arxiv.org/abs/1609.07144
https://inspirehep.net/literature/1487925
https://doi.org/10.1007/JHEP06(2017)068
https://arxiv.org/abs/1702.02948
https://inspirehep.net/literature/1512942
https://doi.org/10.1007/JHEP05(2018)082
https://arxiv.org/abs/1801.00799
https://inspirehep.net/literature/1645929
https://doi.org/10.1007/JHEP11(2019)104
https://doi.org/10.1007/JHEP11(2019)104
https://arxiv.org/abs/1904.07954
https://inspirehep.net/literature/1730210
https://doi.org/10.1007/JHEP02(2021)174
https://arxiv.org/abs/2004.13765
https://inspirehep.net/literature/1793437
https://arxiv.org/abs/2201.10987
https://inspirehep.net/literature/2017999
https://doi.org/10.1007/JHEP08(2022)008
https://doi.org/10.1007/JHEP08(2022)008
https://arxiv.org/abs/2203.15816
https://inspirehep.net/literature/2060103
https://doi.org/10.1007/JHEP03(2023)050
https://arxiv.org/abs/2212.02523
https://inspirehep.net/literature/2611074
https://doi.org/10.1007/JHEP09(2023)176
https://arxiv.org/abs/2307.03220
https://inspirehep.net/literature/2675159
https://doi.org/10.4310/ATMP.2020.v24.n5.a4
https://arxiv.org/abs/1712.08128
https://inspirehep.net/literature/1644669
https://doi.org/10.1007/s00220-019-03426-3
https://doi.org/10.1007/s00220-019-03426-3
https://arxiv.org/abs/1808.05206
https://inspirehep.net/literature/1687444
https://arxiv.org/abs/2306.12995
https://inspirehep.net/literature/2670863


J
H
E
P
0
3
(
2
0
2
4
)
0
9
1

[31] T. Kimura and G. Noshita, Gauge origami and quiver W-algebras, arXiv:2310.08545 [INSPIRE].

[32] D. Galakhov and W. Li, Charging solid partitions, JHEP 01 (2024) 043 [arXiv:2311.02751]
[INSPIRE].

[33] S. Franco and X. Yu, BFT2: a general class of 2dN = (0, 2) theories, 3-manifolds and toric
geometry, JHEP 08 (2022) 277 [arXiv:2107.00667] [INSPIRE].

[34] C. Closset, J. Guo and E. Sharpe, B-branes and supersymmetric quivers in 2d, JHEP 02 (2018)
051 [arXiv:1711.10195] [INSPIRE].

[35] C. Closset, S. Franco, J. Guo and A. Hasan, Graded quivers and B-branes at Calabi-Yau
singularities, JHEP 03 (2019) 053 [arXiv:1811.07016] [INSPIRE].

[36] W.-Y. Chuang and D.L. Jafferis, Wall Crossing of BPS States on the Conifold from Seiberg
Duality and Pyramid Partitions, Commun. Math. Phys. 292 (2009) 285 [arXiv:0810.5072]
[INSPIRE].

[37] R. Eager and S. Franco, Colored BPS Pyramid Partition Functions, Quivers and Cluster
Transformations, JHEP 09 (2012) 038 [arXiv:1112.1132] [INSPIRE].

[38] T. Nishinaka, S. Yamaguchi and Y. Yoshida, Two-dimensional crystal melting and D4-D2-D0 on
toric Calabi-Yau singularities, JHEP 05 (2014) 139 [arXiv:1304.6724] [INSPIRE].

[39] J. Bao, Y.-H. He and A. Zahabi, Crystal melting, BPS quivers and plethystics, JHEP 06 (2022)
016 [arXiv:2202.12850] [INSPIRE].

[40] Y. Cao and M. Kool, Zero-dimensional Donaldson-Thomas invariants of Calabi-Yau 4-folds, Adv.
Math. 338 (2018) 601 [arXiv:1712.07347] [INSPIRE].

[41] Y. Cao, M. Kool and S. Monavari, K-Theoretic DT/PT Correspondence for Toric Calabi-Yau
4-Folds, Commun. Math. Phys. 396 (2022) 225 [arXiv:1906.07856] [INSPIRE].

[42] Y. Cao and Y. Toda, Counting perverse coherent systems on Calabi-Yau 4-folds, Math. Ann. 385
(2023) 1 [arXiv:2009.10909] [INSPIRE].

[43] Y. Cao, M. Kool and S. Monavari, A Donaldson-Thomas crepant resolution conjecture on
Calabi-Yau 4-folds, Trans. Am. Math. Soc. 376 (2023) 8225 [arXiv:2301.11629] [INSPIRE].

[44] G. Bonelli, N. Fasola, A. Tanzini and Y. Zenkevich, ADHM in 8d, coloured solid partitions and
Donaldson-Thomas invariants on orbifolds, J. Geom. Phys. 191 (2023) 104910
[arXiv:2011.02366] [INSPIRE].

[45] A. Hanany, D. Orlando and S. Reffert, Sublattice Counting and Orbifolds, JHEP 06 (2010) 051
[arXiv:1002.2981] [INSPIRE].

[46] J. Davey, A. Hanany and R.-K. Seong, Counting Orbifolds, JHEP 06 (2010) 010
[arXiv:1002.3609] [INSPIRE].

[47] J. Davey, A. Hanany and R.-K. Seong, An Introduction to Counting Orbifolds, Fortsch. Phys. 59
(2011) 677 [arXiv:1102.0015] [INSPIRE].

[48] Work in progress.

[49] A. Gadde, S. Gukov and P. Putrov, (0, 2) trialities, JHEP 03 (2014) 076 [arXiv:1310.0818]
[INSPIRE].

[50] N. Seiberg, Electric-magnetic duality in supersymmetric nonAbelian gauge theories, Nucl. Phys.
B 435 (1995) 129 [hep-th/9411149] [INSPIRE].

[51] B. Feng, A. Hanany and Y.-H. He, D-brane gauge theories from toric singularities and toric
duality, Nucl. Phys. B 595 (2001) 165 [hep-th/0003085] [INSPIRE].

– 36 –

https://arxiv.org/abs/2310.08545
https://inspirehep.net/literature/2710891
https://doi.org/10.1007/JHEP01(2024)043
https://arxiv.org/abs/2311.02751
https://inspirehep.net/literature/2719342
https://doi.org/10.1007/JHEP08(2022)277
https://arxiv.org/abs/2107.00667
https://inspirehep.net/literature/1875596
https://doi.org/10.1007/JHEP02(2018)051
https://doi.org/10.1007/JHEP02(2018)051
https://arxiv.org/abs/1711.10195
https://inspirehep.net/literature/1639306
https://doi.org/10.1007/JHEP03(2019)053
https://arxiv.org/abs/1811.07016
https://inspirehep.net/literature/1704143
https://doi.org/10.1007/s00220-009-0832-2
https://arxiv.org/abs/0810.5072
https://inspirehep.net/literature/810049
https://doi.org/10.1007/JHEP09(2012)038
https://arxiv.org/abs/1112.1132
https://inspirehep.net/literature/1080120
https://doi.org/10.1007/JHEP05(2014)139
https://arxiv.org/abs/1304.6724
https://inspirehep.net/literature/1230358
https://doi.org/10.1007/JHEP06(2022)016
https://doi.org/10.1007/JHEP06(2022)016
https://arxiv.org/abs/2202.12850
https://inspirehep.net/literature/2038861
https://doi.org/10.1016/j.aim.2018.09.011
https://doi.org/10.1016/j.aim.2018.09.011
https://arxiv.org/abs/1712.07347
https://inspirehep.net/literature/1644418
https://doi.org/10.1007/s00220-022-04472-0
https://arxiv.org/abs/1906.07856
https://inspirehep.net/literature/1740540
https://doi.org/10.1007/s00208-022-02364-1
https://doi.org/10.1007/s00208-022-02364-1
https://arxiv.org/abs/2009.10909
https://inspirehep.net/literature/1818675
https://doi.org/10.1090/tran/9027
https://arxiv.org/abs/2301.11629
https://inspirehep.net/literature/2627199
https://doi.org/10.1016/j.geomphys.2023.104910
https://arxiv.org/abs/2011.02366
https://inspirehep.net/literature/1828167
https://doi.org/10.1007/JHEP06(2010)051
https://arxiv.org/abs/1002.2981
https://inspirehep.net/literature/845921
https://doi.org/10.1007/JHEP06(2010)010
https://arxiv.org/abs/1002.3609
https://inspirehep.net/literature/846222
https://doi.org/10.1002/prop.201100013
https://doi.org/10.1002/prop.201100013
https://arxiv.org/abs/1102.0015
https://inspirehep.net/literature/886350
https://doi.org/10.1007/JHEP03(2014)076
https://arxiv.org/abs/1310.0818
https://inspirehep.net/literature/1256617
https://doi.org/10.1016/0550-3213(94)00023-8
https://doi.org/10.1016/0550-3213(94)00023-8
https://arxiv.org/abs/hep-th/9411149
https://inspirehep.net/literature/380062
https://doi.org/10.1016/S0550-3213(00)00699-4
https://arxiv.org/abs/hep-th/0003085
https://inspirehep.net/literature/524861


J
H
E
P
0
3
(
2
0
2
4
)
0
9
1

[52] B. Feng, A. Hanany and Y.-H. He, Phase structure of D-brane gauge theories and toric duality,
JHEP 08 (2001) 040 [hep-th/0104259] [INSPIRE].

[53] C.E. Beasley and M.R. Plesser, Toric duality is Seiberg duality, JHEP 12 (2001) 001
[hep-th/0109053] [INSPIRE].

[54] B. Feng, A. Hanany, Y.-H. He and A.M. Uranga, Toric duality as Seiberg duality and brane
diamonds, JHEP 12 (2001) 035 [hep-th/0109063] [INSPIRE].

[55] S. Fomin and A. Zelevinsky, Cluster algebras IV: Coefficients, math/0602259.

[56] V.V. Fock and A.B. Goncharov, The quantum dilogarithm and representations of quantum
cluster varieties, Invent. Math. 175 (2008) 223 [math/0702397].

[57] M. Kontsevich and Y. Soibelman, Stability structures, motivic Donaldson-Thomas invariants and
cluster transformations, arXiv:0811.2435 [INSPIRE].

[58] H. Derksen, J. Weyman and A. Zelevinsky, Quivers with potentials and their representations II:
Applications to cluster algebras, arXiv:0904.0676.

[59] P.-G. Plamondon, Cluster algebras via cluster categories with infinite-dimensional morphism
spaces, Compos. Math. 147 (2011) 1921 [arXiv:1004.0830] [INSPIRE].

[60] K. Nagao, Donaldson-Thomas theory and cluster algebras, arXiv:1002.4884.

[61] W. Li and M. Yamazaki, Quiver Yangian from Crystal Melting, JHEP 11 (2020) 035
[arXiv:2003.08909] [INSPIRE].

[62] D. Galakhov and M. Yamazaki, Quiver Yangian and Supersymmetric Quantum Mechanics,
Commun. Math. Phys. 396 (2022) 713 [arXiv:2008.07006] [INSPIRE].

[63] S. Franco and G. Musiker, Higher Cluster Categories and QFT Dualities, Phys. Rev. D 98
(2018) 046021 [arXiv:1711.01270] [INSPIRE].

– 37 –

https://doi.org/10.1088/1126-6708/2001/08/040
https://arxiv.org/abs/hep-th/0104259
https://inspirehep.net/literature/556014
https://doi.org/10.1088/1126-6708/2001/12/001
https://arxiv.org/abs/hep-th/0109053
https://inspirehep.net/literature/562472
https://doi.org/10.1088/1126-6708/2001/12/035
https://arxiv.org/abs/hep-th/0109063
https://inspirehep.net/literature/562517
https://arxiv.org/abs/math/0602259
https://doi.org/10.1007/s00222-008-0149-3
https://arxiv.org/abs/math/0702397
https://arxiv.org/abs/0811.2435
https://inspirehep.net/literature/1189091
https://arxiv.org/abs/0904.0676
https://doi.org/10.1112/S0010437X11005483
https://arxiv.org/abs/1004.0830
https://inspirehep.net/literature/851177
https://arxiv.org/abs/1002.4884
https://doi.org/10.1007/JHEP11(2020)035
https://arxiv.org/abs/2003.08909
https://inspirehep.net/literature/1787067
https://doi.org/10.1007/s00220-022-04490-y
https://arxiv.org/abs/2008.07006
https://inspirehep.net/literature/1811954
https://doi.org/10.1103/PhysRevD.98.046021
https://doi.org/10.1103/PhysRevD.98.046021
https://arxiv.org/abs/1711.01270
https://inspirehep.net/literature/1634644

	Introduction
	Toric CY(4)'s, 2d (0,2) quivers and brane brick models
	The simplest example: C**(4)
	Quiver theory
	D0-branes on CY 4-folds
	Brane brick model for C**(4)

	The combinatorics of brane brick models
	Brick matchings
	Oriented surfaces from brick matchings

	Height function
	A statistical model of crystal melting for toric CY(4)
	The unmolten crystal
	Melting configurations

	The 4d crystal for C**(4)
	Slicing 4d crystals
	The ``3d surface'' of the 4d crystal
	Melting configurations and solid partitions

	Exploring the crystal
	Melting configurations

	An appetizer: brane tilings and crystal melting for C**(3)
	The unmolten crystal
	Melting configurations

	Brane brick model description of CY(4) crystal melting
	From brick matchings to melting configurations
	The unmolten crystal
	From crystal surfaces to brick matchings
	Melting configurations and brick matchings

	The general crystal melting model for toric CY(4)'s
	A simple example: D0-D6 system on C**(4)

	Conclusions and future directions

