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1 Introduction

The study of black holes in AdS spacetimes has driven a great deal of investigation in
fundamental physics, as the AdS/CFT correspondence [1–3] has led to significant progress in
our understanding of both gravity and gauge field theories. In particular, precision holography,
which aims to investigate the duality between gravity and conformal field theories beyond
leading order in the large N and strong coupling regime, is currently the focus of intensive
research. In the gravity side, this involves studying corrections to AdS spacetimes, such as
higher derivative corrections [4–11] or 1-loop effects, like those of logarithmic type [12–18].
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By their own nature, the study of these corrections is a challenging endeavour. In this
work, we focus on higher derivative corrections to black hole solutions of minimal gauged
five-dimensional supergravity, with a special focus (but not only) on supersymmetric solutions.

The black hole solutions in this theory are in general characterized by the mass, electric
charge and two different angular momenta. As usual in the case of AdS, the supersymmetric
solutions must have rotation, which increases the complexity of their analysis. The simplest
of those solutions was first written by Gutowski and Reall [19], describing a black hole with
electric charge and two equal angular momenta. More general solutions of this theory —
with arbitrary mass, charge and distinct angular momenta, and containing the most general
supersymmetric solution as a particular case — were found in [20]. Our focus will be on
studying corrections to this solution, which we call the CCLP solution.

There has been recent work in understanding higher derivative corrections in five-
dimensional supergravity. The starting point involves applying the off-shell formalism of
N = 2 gauged supergravity [21] with all possible four-derivative invariants [6, 9, 22–34].
Integrating out the auxiliary degrees of freedom leads to an explicit action for the metric and
gauge field [6, 9, 31], which can be further simplified by implementing field redefinitions [9, 34].
From the point of view of holography, such theory is now dual to a superconformal field
theory with unequal central charges a ̸= c, the difference (a− c) being proportional to the
higher-derivative couplings [35].

Refs. [8, 9] have recently been able to compute the corrections to the thermodynamic
quantities of the CCLP black hole,1 showing that, in the supersymmetric case, the result
precisely agrees with the corresponding superconformal index of the dual CFT, which contains
corrections controlled by difference of central charges (a − c). These references made use
of the on-shell action in order to compute the free energy in the grand canonical ensemble,
from which one derive the subsequent thermodynamic quantities, such as energy, charges and
entropy. A key aspect of their computation is that, in order to obtain the free energy at first
order in the higher-derivative corrections, it suffices to evaluate the on-shell action on the
two-derivative solution, following the Reall and Santos method [36] — see also [37–39]. Thus,
their approach avoids the complicated task of solving the equations of motion.

Here we take a different approach in order to study the corrections to the CCLP solution.
We consider extremal (but not necessarily supersymmetric) black holes and we study their
near-horizon geometries. Due to the enhanced symmetry of the near-horizon region, solving
the equations of motion is much easier than for the full solution. Thus, our goal is to compute
the corrections to these solutions and to their thermodynamic quantities by studying their
near-horizon geometries.

There are several reasons that motivate us to pursue this goal. First, even though the
results of [8, 9] perfectly agree with field theory expectations, the Reall-Santos approach
depends on carefully dealing with boundary terms in the on-shell action, which is even more
subtle in the case of AdS spacetimes [39]. Thus, we consider it wise to derive those results by
a different method. In addition, the on-shell action approach does not tell us much about
the interpretation of the thermodynamic charges derived from it. In fact, [10], which studied
supersymmetric near-horizon geometries with equal angular momenta, already observed a

1See also [34] for a similar analysis that includes.

– 2 –



J
H
E
P
0
3
(
2
0
2
4
)
0
3
6

discrepancy between the thermodynamic electric charge and the standard definition of charge
understood as a surface integral. Here we further analyze this issue for general near-horizon
geometries. Another reason for following the near-horizon approach is that it presumably
allows for an easier generalization to subleading corrections with respect to the on-shell
action method, as we argue in section 7. Finally, obtaining a solution of the equations
of motion (in our case, the near-horizon geometry) gives us much more information than
just the thermodynamic properties and can be useful for other purposes, like e.g. the study
of perturbations [40].

The study of near-horizon extremal geometries does present some challenges. Unlike the
case of spherically symmetric black holes, where one can elegantly reduce the problem to an
algebraic system of equations by using the entropy function formalism [41–44], for rotating
black holes the story is more involved [11, 45–50]. In the case of five-dimensional solutions,
black holes with two equal angular momenta are of cohomogeneity 1 and have an enhanced
symmetry group that leads to a drastic simplification of the near-horizon solutions [10, 19].
However, when the two angular momenta are different, the solutions take a more complicated
form and we are required to solve a very intricate system of differential equations. On top
of this, there is the question of identifying the various charges and potentials of the black
hole from the near-horizon region. By following the approaches of [10, 11, 51–54], we will
compute the charges (electric charge and angular momenta) by using Komar integrals [55]
that are independent of the surface of integration and hence can be evaluated at the horizon.
The potentials (electrostatic potential and angular velocities of the horizon) are on the other
hand defined as differences of certain quantities between the horizon and infinity, and hence
cannot be determined from the near-horizon region alone. Nevertheless, one can identify
unambiguously certain quantities that we will refer to as near-horizon potentials. It turns
out that the entropy, charges and these potentials satisfy a near-horizon version of the first
law of thermodynamics, which was already observed (in the case of equal angular momenta
supersymmetric solutions) in [10]. Here we show that this law holds for general near-horizon
extremal geometries (including higher-derivative corrections) and we provide an explanation
for it that allows us to interpret the near-horizon potentials.2

In the supersymmetric case, our results reproduce those of [8, 9] up to an ambiguity
in the definition of the electric charge. On the other hand, for most of our analysis we do
not restrict ourselves to supersymmetric solutions and we consider general extremal black
holes with arbitrary charge and different angular momenta.

This work is organized as follows. In section 2, we review the details of the five-dimensional
supergravity action with higher derivative corrections. We discuss how to compute the
conserved charges and we review the CCLP solution of the two-derivative theory. Section 3
is devoted to a general analysis of near-horizon geometries. We introduce an appropriate
ansatz and show how to identify the angular coordinates and near-horizon potentials in full
generality. We then move on to section 4 where we obtain the near-horizon geometry of
the extremal CCLP black holes. We introduce a novel parametrization that allows us to
write the solution in a fully explicit and compact form, and we derive and study the various

2See [56, 57] for a more general investigation of the laws of black hole thermodynamics at the near-horizon
region.
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thermodynamic quantities and relations. The analysis of the four-derivative corrections to the
solution comprises section 5 while we focus on the corrected thermodynamics in section 6. We
conclude with some remarks and open problems in section 7. In appendix A we provide some
explicit formulas for the near-horizon solutions that are too long to be displayed in the main
text. We include as well a Mathematica notebook with our (even longer) complete results.

2 Review of higher-derivative AdS5 supergravity

2.1 Action

In this section we briefly review the five-dimensional gauged supergravity theory of interest.
We focus on preparing ourselves to study the four-derivative corrections of the theory and
the corresponding Noether surface charges. After a careful series of field redefinitions starting
from the off-shell formalism [6, 9], the result of the supergravity action is relatively compact

S = 1
16πG5

∫
d5x

√
|g|
{
c0R+ 12c1g

2 − c2
4 F

2 − c3

12
√

3
ϵµνρσλFµνFρσAλ

+ λ1αg
2
[
XGB − 1

2CµνρσF
µνF ρσ + 1

8F
4 − 1

2
√

3
ϵµνρσλRµναβRρσ

αβAλ

]}
,

(2.1)

where g is equal to the inverse length of AdS and the Gauss-Bonnet invariant XGB, Weyl
tensor Cµνρσ and the Maxwell field invariants F 2 and F 4 are given by

XGB = RµνρσR
µνρσ − 4RµνRµν +R2 , (2.2a)

Cµνρσ = Rµνρσ −
2
3
(
Rµ[ρgσ]ν +Rν[σgρ]µ

)
+ 1

6Rgµ[ρgσ]ν , (2.2b)

F 2 = FµνF
µν , (2.2c)

F 4 = FµνF
νρFρσF

σµ . (2.2d)

The various constants ci are defined as ci = 1 + αg2δci with

δc0 = 4λ2 , δc1 = −10λ1 + 4λ2 , δc2 = 4λ1 + 4λ2 , δc3 = −12λ1 + 4λ2 , (2.3)

where λ1 and λ2 are two free coupling constants that control the corrections. The action is
written in a way such that the first line in (2.1) is the usual two-derivative contribution when
α is set to zero. We note that the effect of λ2 is just to renormalize the coupling constants
and fields of the two-derivative action. In particular, since it changes the normalization of
the Einstein-Hilbert term, it is natural to introduce an effective Newton’s constant,

Geff = G5
1 + 4αg2λ2

, (2.4)

which will naturally appear in some of our results. From the holographic perspective, the
λi couplings modify the CFT central charges a and c, and in particular they break the
degeneracy between them — this is a generic effect of higher-derivative terms [35, 58–61].
In fact, we have [6, 9]

a = π

8g3Geff
, a− c = −παλ1

gGeff
. (2.5)
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2.2 Equations of motion and conserved quantities

From the action (2.1), we can derive the equations of motion Eµν and Eµ by varying the
metric as well as the gauge potential, respectively. This gives us

Eµν = −1
2gµνL

′ + Pαβγ(µ|Rαβγ|ν) − 2∇α∇β(Pβ(µν)α + Πβ(µν)α) − 1
2F(µ|ρF|ν)

ρ , (2.6)

Eµ = −∇µFµν + c3

4
√

3
ϵναβγδFαβFγδ + λ1 α

2
√

3
ϵ,nuαβγδRαβρσRγδ

ρσ . (2.7)

where

Pµνρσ = ∂L′

∂Rµνρσ
= c0gµ[ρgσ]ν + λ1 α

[
2Rµνρσ − 4

(
Rµ[ρgσ]ν −Rν[ρgσ]µ

)
+ 2gµ[ρgσ]νR

− 1
2FµνFρσ −

1
12gµ[ρgσ]νF

2 + 1
3
(
FµαF[ρ

αgσ]ν − FναF[ρ
αgσ]µ

) ]
, (2.8a)

Πµνρσ = − λ1 α√
3
ϵµναβγRαβ

ρσAγ , (2.8b)

Fµν = − 2 ∂L′

∂Fµν
= c2F

µν − 2λ1 α

(
−CµνρσFρσ + 1

2F
µρFρσF

νσ
)
, (2.8c)

and L′ = L − LCS is the Lagrangian without the Chern-Simons terms.3 It is manifest that
these nonlinear coupled differential equations are highly complicated to solve. Nevertheless,
our goal is to solve them for near-horizon geometries and to evaluate the charges from a
first principles approach. Here we review how obtain the conserved charges via the Noether
current associated to spacetime symmetries and gauge transformations. For a thorough
analysis of the conserved charges of the theory (2.1) we refer to [10]. Here we quote their
results and remark on some of the main subtleties.

Due to the Chern-Simons terms, there are several notions of electric charge that one may
consider [62]. Here we will use the “Page” charge [63], which is given by

Q = − 1
16πG5

∫
Σ

(
⋆F − c3√

3
F ∧A− 2λ1α√

3
ΩCS

)
, (2.9)

where ΩCS is the Lorentz-Chern-Simons three-form defined by

ΩCS = dωab ∧ ωab −
2
3 ω

a
b ∧ ωbc ∧ ωca , (2.10)

and ωab = ωabµ dxµ is the spin connection and the Latin indices are flat. This charge satisfies
a Gauss law, so the result is independent of the choice of integration surface Σ, as long as
this is a co-dimension 2 spacelike hypersurface homeomorphic to the sphere at infinity. Thus,
it can be evaluated at the black hole horizon, Σ = H. On the other hand, Q is gauge and
frame dependent, due to the gauge and Lorentz-Chern-Simons three-forms, respectively. The
gauge ambiguity can be fixed by demanding regularity of the vector field at the horizon,
but the frame ambiguity is more worrisome as there is no canonical choice of frame. We
revisit this point in detail in section 6.1.

3We also point out that we define the Lagrangian without the (16πG5)−1 factor, so L = c0R + . . . .
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If the solution has a Killing vector ξµ, one also finds the conserved current

Jξ = dQξ , (2.11)

where Qξ is the Noether charge three-form, given by

Qξ = − 1
32πG5

ϵµν

[
4∇σPµνσρξρ − 2Pµνσρ∇σξρ − (ξγAγ)

(
Fµν + c3

3
√

3
ϵµνρσλAρFσλ

)]
,

(2.12)
and where

Pµνρσ = Pµνρσ + Πµνρσ − (Pµ[νρσ] + Πµ[νρσ]) , (2.13)

where the antisymmetrized terms are there to guarantee that Pµ[νρσ] = 0.4 The integral of
Jξ over any Cauchy slice C then yields the conserved charge, and through the use of Stokes’
theorem one can reduce this to an integral over the boundary, Σ = ∂C,

J [ξ] =
∫

Σ
Qξ . (2.14)

In this case, it is important that Σ is the sphere at infinity, since dQξ ̸= 0 and therefore
we do not have a Gauss law. Hence, the conserved charges such as the total energy and
angular momenta must in principle be computed at infinity. A way around this consists
in defining a “Noether-Komar” charge three-form

Q̃ξ = Qξ − Ω , (2.15)

where dΩ = Jξ

∣∣
on−shell, so that we have dQ̃ξ = 0 on-shell. Finding such a three-form Ω is

always possible by noting that, on-shell, one has Jξ = −1
2 ⋆ ξL. For more details about the

construction of these Komar charges, we refer to [10, 11, 51–54]. Now, the integral of Q̃ξ is
independent of the surface of integration, and it computes the Noether charge as long as the
integral of Ω at infinity vanishes. Thus, one can use Q̃ξ to evaluate the charges as an integral
over the horizon. However, there is a final twist in this story. If one only has access to the
near-horizon region, then one usually cannot fix the ambiguity in Ω by demanding that its
integral at infinity vanishes. This is one of the reasons why it is not possible to compute the
mass from the near-horizon region. Fortunately, in the case of the angular momenta, it is
possible to fix this ambiguity. It turns out that, in a stationary spacetime, one can choose the
Ω for the rotational Killing vectors in a way that its integral on any constant time surface5

vanishes [10]. For a very explicit example of this we refer to [11]. Thus, to make the long
story short, it turns out one can actually compute the angular momenta by integrating (2.14)
on the near-horizon region as long as we integrate on a constant time surface.

Finally, we are also interested in the entropy of the black hole, which is given by the
Iyer-Wald formula [64, 65]

S = − 1
8G5

∫
H

d3x
√
γ Pµνρσ nµν nρσ , (2.16)

4Those terms do not affect the equations of motion, but they are crucial in the computation of the Noether
charge.

5The time coordinate is taken as the coordinate associated to the time-like Killing vector.
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where γ is the determinant of the induced three-dimensional horizon metric and nµν is the
binormal to the horizon normalized via nµνnµν = −2. We note that this formula, just like
those for the charge and the angular momenta, is gauge-dependent. It is possible to refine
Wald’s formalism in order to derive a gauge-invariant entropy formula [66–68], but here
we will fix this ambiguity by demanding regularity of the gauge field at the horizon. The
validity of this approach is ultimately verified by checking that our results are compatible
with the first law of thermodynamics and that they agree with the results of [8, 9], obtained
by different methods.

2.3 Black holes: review of the CCLP solution

As we are interested in finding corrections to the five-dimensional AdS black hole with two
distinct angular momenta and electric charge as was first constructed in [20], we briefly review
the solution, along with its thermodynamic quantities. The metric and gauge field are given by

ds2 = − ∆θ

[(
1 + g2r2) ρ2dt+ 2qν

]
dt

ΞaΞbρ2 + 2qνω
ρ2 + γ

ρ4

(∆θdt

ΞaΞb
− ω

)2
+ ρ2dr2

∆r
+ ρ2dθ2

∆θ

+ r2 + a2

Ξa
sin2 θdϕ2 + r2 + b2

Ξb
cos2 θdψ2,

A =
√

3q
2ρ2

(∆θdt

ΞaΞb
− ω

)
,

(2.17)

where

ν = b sin2 θdϕ+ a cos2 θdψ, ∆r = g2
(
r2 + a2

) (
r2 + b2

)(
1+ 1

g2r2

)
+ q2 + 2abq

r2 − 2m,

ω = a sin2 θ
dϕ

Ξa
+ b cos2 θ

dψ

Ξb
, ∆θ = 1 − a2g2 cos2 θ − b2g2 sin2 θ,

ρ2 = r2 + a2 cos2 θ + b2 sin2 θ, Ξa = 1 − a2g2,

γ = 2mρ2 − q2 + 2abqg2ρ2, Ξb = 1 − b2g2.
(2.18)

The general non-extremal black hole is paramatrized by the four parameters {a, b,m, q}
associated to the angular momenta J1, J2, energy E and electric charge Q. The conserved
quantities J1, J2 and Q may be found via the Komar integrals we introduced above (but
specified for the two-derivative theory)

J1 = 1
16πG5

∫
S3
⋆dξϕ = π

[
2am+ qb

(
1 + a2g2)]

4G5Ξ2
aΞb

, (2.19)

J2 = 1
16πG5

∫
S3
⋆dξψ = π

[
2bm+ qa

(
1 + b2g2)]

4G5Ξ2
bΞa

, (2.20)

Q = 1
16πG5

∫
S3

(
⋆F − 1√

3
F ∧A

)
=

√
3πq

4G5ΞaΞb
, (2.21)

where ξϕ = −gµϕdxµ and ξψ = −gµψdxµ are the Killing vectors −∂ϕ and −∂ψ expressed
as 1-forms.
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The Hawking temperature is derived by requiring appropriate periodic identifications
in Euclidean time, which leads to

T = β−1 =
r4

+
[(

1 + g2 (2r2
+ + a2 + b2)]− (ab+ q)2

2πr+
[(
r2

+ + a2) (r2
+ + b2)+ abq

] . (2.22)

It is important to also find the chemical potentials associated to the angular momenta and
the electric charge. The angular velocities Ω1 and Ω2 are given by

Ω1 =
a
(
r2

+ + b2) (1 + g2r2
+
)

+ bq(
r2

+ + a2) (r2
+ + b2)+ abq

, Ω2 =
b
(
r2

+ + a2) (1 + g2r2
+
)

+ aq(
r2

+ + a2) (r2
+ + b2)+ abq

. (2.23)

Via the Killing field that generates the horizon χµ = ∂t + Ω1∂ϕ + Ω2∂ψ, the electrostatic
potential is

Φ = χµAµ|r→∞ − χµAµ|r→r+
=

√
3gqr2

+(
r2

+ + a2) (r2
+ + b2)+ abq

. (2.24)

Finally, the entropy can be computed via the area of the horizon

S =
π2 [(r2

+ + a2) (r2
+ + b2)+ abq

]
2G5ΞaΞbr+

. (2.25)

We are particularly interested in extremal solutions, i.e., those where the inner and outer
horizons coincide and the Hawking temperature vanishes. This condition is satisfied for

∆r(r+) = 0, ∂r∆r(r+) = 0. (2.26)

For extremal solutions, the parametrization chosen in [20] with {a, b,m, q} is not optimal as
∆r is an order 6 polynomial and in order to write the thermodynamic quantities in a compact
way, one would also require to use the parameter r+ which is dependent on the others. We
remedy this difficulty by finding a novel parametrization that automatically solves (2.26).
The result is that the metric and thermodynamic quantities can be written compactly in
terms of three parameters. We discuss this in detail in section 4.

Finally, the CCLP solution becomes supersymmetric when the constraint

q = m

1 + (a+ b)g (2.27)

is satisfied. In general, the Lorentzian supersymmetric solutions are pathological unless
one imposes an additional condition, corresponding precisely to the extremality condition
∂r∆r(r+) = 0. For this supersymmetric and extremal solution the entropy can be expressed
explicitly as a function of the charges as

S = π

√
4g−2Q2 − π

G5g3 (J1 + J2) . (2.28)

In addition, since the extremal supersymmetric solution only depends on two parameters,
the charges satisfy a nonlinear constraint[

2
√

3g−1Q+ π

2G5g3

] [
4g−2Q2 − π

G5g3 (J1 + J2)
]
−
(

2Q√
3g

)3

− 2π
G5g3J1J2 = 0 . (2.29)
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These results can be matched with the field theory prediction for the entropy associated to the
superconformal index as first shown in [69–71]. References [8, 9] found the higher-derivative
corrections to these expressions and matched them again with the field theory results at
subleading order in (a − c). Here we intend to re-derive those results by analyzing the
higher-derivative corrections to near-horizon geometries.

3 Near-horizon geometries with SL(2,R) × U(1) × U(1) symmetry

3.1 Ansatz

The near-horizon geometries in which we are interested consist of an AdS2 geometry fibered
over two circles, with a total symmetry group SL(2,R)×U(1)×U(1). Near-horizon geometries
of the same type have been studied in previous literature, e.g. [49, 72]. However, here we
perform an independent analysis that we deem to be more suitable for the applications we
pursue. In particular, it is crucial to us not only analyzing the local form of the solution
but also its global structure.

Without loss of generality, a metric and vector field with SL(2,R)×U(1)×U(1) symmetry
can always be written as

ds2 = W (x)
(
−r2dt2 + dr2

r2

)
+ W (x)
G(x) dx

2 +
2∑

a,b=1
Hab(x) (dϕa − ωardt) (dϕb − ωbrdt) ,

(3.1)

A = ψrdt+
2∑

a=1
Aa(x) (dϕa − ωardt) , (3.2)

where a, b = 1, 2, the coordinate x is compact and ϕ1, ϕ2 are angular coordinates with
periodicity 2π.6 The quantities ωa are constant — required by the SL(2,R) symmetry —
and they are interpreted as chemical potentials conjugate to the angular momenta in each
of the directions ϕ1 and ϕ2. They are related to the angular velocity of the horizon, but
in the near-horizon geometry they lose that meaning as we lack an asymptotic region from
where we can measure those velocities. Analogously, the constant ψ is a variable conjugate
to the electric charge and hence it is related to the electrostatic potential, although again
the lack of an asymptotic region forbids us to interpret it as the usual electrostatic potential
at infinity. Importantly, the three potentials (ψ, ω1, ω2) are univocally determined from the
near-horizon geometry once we impose regularity of the metric (absence of conical defects)
and of the gauge field (absence of divergences). We detail this below.

The metric (3.1) still has some gauge freedom associated to reparametrizations of the
x coordinate. This allows us to set an extra condition in order to fix the gauge, and we
find it useful to set

W (x)
G(x) det [Hab(x)] = const. (3.3)

6As we will see, the metric functions G(x) and Hab(x) have to satisfy certain properties in order to ensure
absence of conical defects.
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Now, even though (3.1) is the most intuitive way of writing a metric with the given
symmetries, it is not the most convenient form when solving the equations of motion. In
fact, by performing a change of coordinates

y1 = s1ϕ1 + s2ϕ2 ,

y2 = s3ϕ1 + s4ϕ2 ,
(3.4)

where the si are constants, we can rearrange the solution as

ds2 = W (x)
(
−r2dt2 + dr2

r2

)
+ W (x)
G(x) dx

2 + G(x)
W (x)B(x)dy

2
1 +B(x) (dy2 + J(x)dy1 − rdt)2 ,

A = ψrdt+
(
Â1(x) − ψJ(x) + k

)
dy1 +

(
Â2(x) + ψ

)
(dy2 + J(x)dy1 − rdt) ,

(3.5)
where we have set gxxgy1y1gy2y2 = 1 following the gauge condition (3.3). Furthermore, we
have decomposed the Ay1 and Ay2 components of the gauge field in a way in which ψ as well
as the new constant k are gauge parameters. Thus, they do not appear in the equations of
motion, but nevertheless they are fixed by regularity, as we show next.

3.2 Angular coordinates and chemical potentials

In practice, once a solution of the form (3.5) has been found, one must then undo the
change of variables (3.4) in order to identify the angular coordinates ϕa and the chemical
potentials ωa. However, one does not know a priori this change of variables and one must
derive it entirely from the properties of the near-horizon metric (3.5). Here we show how
to do this in full generality upon the assumption of S3 topology, which is the topology of
the CCLP black hole horizon [20].

As was mentioned, the coordinate x is compact and thus it has a range x ∈ [x1, x2],
which is determined by the vanishing of G(x) at those points. However, by doing a linear
change of variable x→ α+ βx we can always set x1 = −1, x2 = 1. Observe that the effect
of this change of coordinates can be reabsorbed by performing y1 → y1/β

2 and redefining{
G(x), J(x), Â1(x), k

}
→
{
β2G(x), βJ(x), βÂ1(x), βk

}
. Hence, without loss of generality

we assume x ∈ [−1, 1], which allows us to interpret x = cos θ̃ with θ̃ ∈ [0, π], although we
will work in terms of x for convenience.

The points x = ±1 are then identified as the poles of the horizon. Near those points the
angular coordinates are identified by demanding regularity of the metric, i.e., absence of conical
defects. Let us examine the behavior of the metric near those points for a constant t and r slice

ds2
3 = W (x)

G(x) dx
2 + G(x)

W (x)B(x)dy
2
1 +B(x) (dy2 + J(x)dy1)2 . (3.6)

First, we introduce the coordinate z such that

dz = dx

√
W (x)
G(x) . (3.7)

Integrating this relation near x = ±1 yields

x = 1 +
z2

+G
′(1)

4W (1) + O(z4
+) , x = −1 +

z2
−G

′(−1)
4W (−1) + O(z4

−) . (3.8)
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We then rewrite the ya coordinates in terms of the angular coordinates ϕa as in (3.4). We
demand the periodicity of ϕa to be 2π and si are undetermined coefficients. We series expand
the metric around x = −1 and x = +1 up to order z2. Then, in order for the geometry to
be regular, the metric around those points must take the form

ds2
3(x→ +1) = dz2

+ + z2
+ (dϕ2 + C+dϕ1)2 + (D+ + E+z

2
+)dϕ2

1 + O(z4
+) , (3.9)

ds2
3(x→ −1) = dz2

− + z2
− (dϕ1 + C−dϕ2)2 + (D− + E−z

2
−)dϕ2

2 + O(z4
−) , (3.10)

where C±, D±, E± are constants. In particular, this means that

gϕ2ϕ2 = z2
+ + O(z4

+) , gϕ1ϕ2 = 0 + O(z2
+) (3.11)

near x = 1 while

gϕ1ϕ1 = z2
− + O(z2

−) , gϕ1ϕ2 = 0 + O(z2
−) (3.12)

near x = −1. These are four conditions that fix the four coefficients si. We find the unique
solution up to orientation changes to be

y1 = 2H(1)ϕ2 + 2H(−1)ϕ1 ,

y2 = −2J(1)H(1)ϕ2 − 2J(−1)H(−1)ϕ1 ,
(3.13)

where we have defined

H(x) =
√
B(x)W (x)
G′(x) . (3.14)

From the relations (3.13) we find the generators of rotations

∂ϕ1 = 2H(−1) (∂y1 − J(−1)∂y2) ,
∂ϕ2 = 2H(1) (∂y1 − J(1)∂y2) ,

(3.15)

which we need in order to compute the angular momenta. We can also obtain the area
element of the horizon in terms of the angular coordinates,

dΣ3 = dx ∧ dy1 ∧ dy2 = 4dx ∧ dϕ1 ∧ dϕ2H(1)H(−1)(J(−1) − J(1)) , (3.16)

which allows us to compute the area right away

A = 32π2|H(1)H(−1)(J(1) − J(−1))| . (3.17)

After identifying the angular coordinates, we can apply the change of coordinates (3.13)
in (3.5) and rewrite the metric in the canonical form (3.1). This allows us to read off the
chemical potentials ωa

ω1 = 1
2P(−1)(J(1) − J(−1)) , ω2 = − 1

2P(1)(J(1) − J(−1)) . (3.18)

On the other hand, the electrostatic potential is determined by the regularity of the gauge
field at the poles of the horizon. This can be analyzed by using (3.5). Since the metric
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component gy1y1 vanishes at x = ±1, the component of the gauge field Ay1 must also vanish
at those points — otherwise the gauge field would be singular, as one can check by computing
its norm. Thus, we impose

Â1(x) − ψJ(x) + k
∣∣∣
x=±1

= 0 (3.19)

and we find

ψ = Â1(1) − Â1(−1)
J(1) − J(−1) , (3.20)

k = J(−1)Â1(1) − J(1)Â1(−1)
J(1) − J(−1) . (3.21)

In this way, all the chemical potentials are intrinsically determined by the regularity of
the solution.

4 Near-horizon geometry of the two-derivative theory

4.1 Solving the equations of motion

The near-horizon extremal geometry in minimal gauged supergravity can be obtained by
taking the appropriate near-horizon limit of the CCLP solution. However, the resulting
metric and gauge potential are considerably involved and not in the form of (3.5). Another
obstacle is that in the case of higher-derivative gravity, we do not know the complete solution
and we must work directly in the near-horizon geometry. Thus, here we solve directly the
equations of motion of the two-derivative theory for the ansatz (3.5). This allows us to
extract some insight on how the equations may be solved and then to implement it in the
case when higher derivatives are turned on. Along the way, we use inspiration from the
CCLP metric in some steps of the derivation.

First, it is useful to express the equations in the frame

e0 =
√
Wrdt , e1 =

√
W
dr

r
, e2 =

√
W

G
dx ,

e3 =

√
G

WB
dy1 , e4 =

√
B (dy2 + Jdy1 − rdt) .

(4.1)

We note that the functions J(x) and Â1(x) always appear with at least one derivative acting
upon them, and we can instead consider our variables to be J ′(x) and Â′

1(x), reducing the
order of the equations. In fact, it proves interesting to perform the change of variables

J ′ = j

WB
, Â′

1 = ζB − jÂ2
WB2 , (4.2)

where we have introduced the functions j(x) and ζ(x). In terms of these variables, the
E3 component of the Maxwell equation and the E34 component of the Einstein equation
yield, respectively

3ζ ′ − 2
√

3Â2Â
′
2 = 0 , j′ + ζÂ′

2 = 0 . (4.3)
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These can be integrated immediately to find

ζ = κ1 + 1√
3
Â2

2 , j = κ2 − κ1Â2 −
1

3
√

3
Â2

2 , (4.4)

where κ1 and κ2 are integration constants. On the other hand, we have the following
combination of components of Einstein equations

E00 − E22 = −G
′′ − 24g2W + 2

2W = 0 , (4.5)

so that we can express W in terms of G as

W = G′′ + 2
24g2 . (4.6)

Another interesting combination of Einstein equations is the following

E00 + E22 + E33 + E44 = − 3
2BW 2

[
B2 + B

3W

(
W
(
2Â2

2 − 3
(
G′W ′ +GW ′′))

+3GW ′2 + 24g2W 3 − 6W 2
)

+ 1
9
(
3GWÂ′

2
2 + Â4

2 + 2
√

3Â2
2κ1 + 3κ1

2
) ]

= 0 .
(4.7)

This equation determines algebraically B in terms of G and Â2, since W is also determined
by G. The remaining Einstein equations and the E4 component of Maxwell equations form
a highly nonlinear system of equations of G and Â2. Furthermore, these contain up to six
derivatives of G, making finding the solution highly challenging. To remedy the difficulty, we
take inspiration from the near-horizon limit of the CCLP metric and consider the following
ansatz for these functions

G = (1 − x2)(κ3 + κ4x) , Â2 = κ5
W

, (4.8)

with undetermined constants κi. With this, we can obtain an explicit expression for B
from (4.7). For general values of κi, the solution for B contains square roots — being the
solution of the quadratic equation (4.7). However, we constraint the κi constants in order
to form a perfect square inside the square root, so that B becomes a rational function of
x. It turns out that doing so already solves most of the components of the equations of
motion. The remaining components simply set an additional constraint on the remaining
integration constants κi.

Finally, J and Â1 can be obtained by integrating (4.2). Thus, the solution is determined
up to solving the constraint equations between the κi coefficients. We do not explicitly show
the constraint here due to its complicated nature. In fact, one of the most challenging aspects
about the solution is finding an appropriate parametrization in which these coefficients take
a simple form. We have been able to identify a set of three parameters (X,Y, Z) that allow
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us to express the solution in an explicit and fairly compact form. The result reads

W = ∆
4g2 (3 −R2) ,

G =
(
1 − x2

) (x− 1)X2 − (x+ 1)Y 2 + 2Z2

3 −R2 ,

B = ∆
4g2 (3 −R2) −

(
1 −R2)

2g2 (3 −R2)2 ∆2

[ (
1 −R2 − 2XY Z

)2

+ ∆
2 (−1 +X − Y − Z)(1 +X + Y − Z)(1 +X − Y + Z)(−1 +X + Y + Z)

]
,

J = − 4
√

2g
√

1 −R2

(3 −R2) (X2 − Y 2)B∆2

[ (
1 −R2 − 2XY Z

)2

− ∆
(
1 −R2 + 2Z2(X2 + Y 2) + 2X2Y 2 +XY Z

(
1 +R2

)) ]
,

Â1 = 2
√

3
(
1 −R2 − 2XY Z

) ((
1 −R2) (1 −R2 − 2XY Z

)
− ∆2)

(3 −R2) (X2 − Y 2)B∆2 ,

Â2 = −

√
3
2
(
1 −R2 − 2XY Z

)√
1 −R2

g (3 −R2) ∆ ,

(4.9)

where we have introduced the notation7

∆ = 1 − x
(
X2 − Y 2

)
− Z2 , (4.10)

R =
√
X2 + Y 2 + Z2 . (4.11)

We note that the expressions for J and Â1 are divergent for Y → X, but the divergent piece
is a constant term that can be reabsorbed in the choice of integration constant from (4.2),
so the solution is actually regular at X = Y .8

From these expressions it is quite clear that a real Lorentzian solution only exists if R ≤ 1
and therefore in terms of the (X,Y, Z) parameters the space of solutions lies within the unit
ball in R3. Note that at R = 1 the horizon area is zero yielding a naked singularity. For
this reason, we choose to consider only the regime R < 1. These parameters turn out to be
related to the original parameters (a, b, q,m, r+) of the CCLP solution [20] via

a = X

gZ
, m = 3 − 2R2 −R4 + 4X2Y 2 + 4X2Z2 + 4Y 2Z2

8g2Z4 , r2
+ = 1 −R2

2g2Z2 ,

b = Y

gZ
, q = 1 −R2 − 2XY Z

2g2Z3 .

(4.12)

This can be checked by comparing some of the metric components at the horizon taking into
account that x = cos(2θ)9 and by comparing the expressions for the charges and entropy
that we provide below. In addition, we verify that the relations (4.12) automatically solve

7This R should not be confused with the Ricci scalar.
8We discuss the case of X = Y in subsection 5.2 and the solution of the various functions in the ansatz is

written in (5.9).
9In particular, the gxx and grr components are the easiest ones to check.
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Figure 1. The allowed region in the parameter space (X,Y, Z) of extremal black holes is given by
two sections of a unit sphere as shaded in blue. The unit sphere is denoted in gray. Supersymmetry is
allowed on the pink plane defined by X + Y + Z = 1. Extremal and supersymmetric black holes are
allowed for regions where the supersymmetric plane intersects with the extremal solutions. Note that
the supersymmetric plane only intersects in one of the two blue regions.

the equation that determines the position of the horizon as well as extremality condition for
CCLP black holes (2.26). Therefore, (4.12) provides an interesting and useful parametrization
of the space of extremal CCLP solutions.

Besides the constraint R < 1, these relations also inform us that we should restrict our
space of solutions to X2 < Z2 and Y 2 < Z2, which are equivalent to the usual constraints
(ag)2 < 1, (bg)2 < 1. In this way, the space of solutions is restricted to two pyramidal spherical
caps as shown in figure 1. Finally, in terms of the (X,Y, Z) parameters the supersymmetric
condition (2.27) takes the simple form

X + Y + Z = 1 . (4.13)

In this case, we can write these variables explicitly in terms of a and b as

X⋆ = ag

1 + (a+ b)g , Y ⋆ = bg

1 + (a+ b)g , Z⋆ = 1
1 + (a+ b)g , (4.14)

where the star ⋆ is meant to represent supersymmetric extremal values.

4.2 Thermodynamics

With the solution (4.9), we evaluate the various thermodynamic quantities of the black hole.
Using the general formulas (3.18) and (3.20), it is straightforward to obtain the near-horizon
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chemical potentials

ω1 = −
√

2
(
Z2 −X2) [XY 2Z + (2Y +XZ)

(
X2 + Z2 − 1

)]
√

1 −R2 (3 −R2) [2XY + Z (1 +X2 + Y 2 − Z2)]
,

ω2 = −
√

2
(
Z2 − Y 2) [Y X2Z + (2X + Y Z)

(
Y 2 + Z2 − 1

)]
√

1 −R2 (3 −R2) [2XY + Z (1 +X2 + Y 2 − Z2)]
,

ψ =

√
3
2
(
1 −R2 − 2XY Z

) [
Z
(
1 −R2)− 2XY

]
g
√

1 −R2 (3 −R2) [2XY + Z (1 +X2 + Y 2 − Z2)]
.

(4.15)

We can also obtain the black hole entropy S = A/(4G5) by direct application of (3.17), yielding

S = π2√1 −R2 (Z (X2 + Y 2 + 1
)

+ 2XY − Z3)
4
√

2G5g3(Z2 −X2)(Z2 − Y 2)
. (4.16)

Then, the charge and angular momenta can be obtained by evaluating the integrals (2.21), (2.19)
and (2.20), respectively, where in the latter we have to use the Killing vectors defined
in (3.15). This yields

Q =
√

3πZ
(
1 −R2 − 2XY Z

)
8G5g2 (Z2 −X2) (Z2 − Y 2) ,

J1 = − π

16G5g3 (Z2 −X2)2 (Z2 − Y 2)

[
2X3Z

(
Y 2 − Z2 + 1

)
+ 2X2Y

(
Y 2 + 2Z2 − 1

)

+ 2X4Y +X5Z +XZ
(
Y 2 + Z2 − 1

) (
Y 2 + Z2 + 3

)
+ 2Y Z2

(
Y 2 + Z2 − 1

) ]
,

J2 = J1(X ↔ Y ) .
(4.17)

These results deserve several comments. First, the expressions for the charges and entropy
coincide with those of [20], specified for extremal solutions, upon using the relations (4.12).
Obviously this includes the supersymmetric case given by (4.14). Second, the near-horizon
potentials and the charges satisfy a near-horizon version of the first law of thermodynamics [56]
that reads

1
2πdS = ω1dJ1 + ω2dJ2 + ψdQ . (4.18)

This allows us to understand the meaning of the potentials in (4.15). In general, the complete
first law of thermodynamics for the free energy F in the canonical ensemble reads

dF = −SdT +
2∑
i=1

ΩidJi + ΨdQ , (4.19)

where Ωi and Ψ are the angular velocities and the electrostatic potential, respectively, which are
given by the difference between values at the near-horizon and infinity. From this, taking the
second derivatives of the free energy and using that they commute, we can derive the relations(

∂S

∂Ji

)
T,Q

= −
(
∂Ωi

∂T

)
Ji ,Q

,

(
∂S

∂Q

)
T, Ji

= −
(
∂Ψ
∂T

)
Ji ,Q

, (4.20)
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where the subindices denote which variables are kept fixed when taking the derivative. On
the other hand, (4.18) is equivalent to(

∂S

∂Ji

)
T=0, Q

= 2πωi ,
(
∂S

∂Q

)
T=0, Ji

= 2πψ , (4.21)

Comparing both expressions allows us to identify the near-horizon potentials as “fugacities”

ωi = − 1
2π

∂Ωi

∂T

∣∣∣∣
T=0

, ψ = − 1
2π

∂Ψ
∂T

∣∣∣∣
T=0

, (4.22)

where Ωi and Ψ have to be understood as variables of T , Ji and Q. We can rewrite these
relations in a suggestive way as

ωi = − lim
T→0

Ωi − Ωext
i

2πT , ψ = − lim
T→0

Ψ − Ψext

2πT , (4.23)

where Ωext
i and Ψext represent the values at extremality. This is very similar to the definition

of the supersymmetric potentials which are often used in the literature as in [69, 71, 73–75],
with the difference that, in those cases, the whole expression is evaluated on the (complex)
supersymmetric solution. In fact, in the supersymmetric case, our potentials (4.15) satisfy
the constraint

ω1 + ω2 −
√

3gψ
∣∣∣
susy

= 0 . (4.24)

This is entirely analogous to the complex constraint satisfied by the supersymmetric poten-
tials [69–71], although in that case the right-hand side of the expression would be +i (in our
conventions). Such difference appears due to the different order in which the supersymmetric
and extremal limits are taken. In our case, we consider the extremal limit first and then
impose supersymmetry, so that the solution is Lorentzian and the potentials are real. In the
next sections, we will use (4.24) as the defining property of a supersymmetric solution.

5 Higher-derivative corrections

5.1 The setup

We now study the higher-derivative corrections in the action (2.1) to the solution (4.9). Let us
first explain the logic behind the resolution of the equations of motion. We work perturbatively
at first order in α, so that we assume that the metric and gauge field are expanded as

gµν = g(0)
µν + αg(1)

µν + O(α2) , Aµ = A(0)
µ + αA(1)

µ + O(α2) , (5.1)

where g(0)
µν and A

(0)
µ satisfy the two-derivative equations of motion. This allows us to write

the Einstein and Maxwell equations in (2.6) as

Gµν + 6g2gµν −
1
2F(µ|ρF|ν)

ρ + 1
8gµνF

2 = αT eff
µν (g(0), A(0)) , (5.2)

−∇µFµν + 1
4
√

3
ϵναβγδFαβFγδ = αJνeff(g(0), A(0)) , (5.3)
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where in the right-hand side we collect all the terms proportional to α and we evaluate them
on the zeroth-order solution. Thus, the equations that we have to solve are equivalent to the
original two-derivative equations with a fixed source. The process of solving the equations
of motion can in principle be carried out along the same lines as in section 4. We consider
the ansatz (3.5) and we introduce the functions j(x) and ζ(x) as in (4.2). Then, we expand
all the functions linearly in α as

W = W (0) + αg2W (1) , G = G(0) + αg2G(1) , B = B(0) + αg2B(1) ,

j = j(0) + αg2j(1) , ζ = ζ(0) + αg2ζ(1) , Â2 = Â
(0)
2 + αg2Â

(1)
2 ,

(5.4)

where the functions with the (0) superscript are those in (4.9). We arrive once more to
the equations (4.3), (4.5), (4.7), but in this case the right-hand side to these equations
depends only on the zeroth-order solution. These four equations (4.2), (4.3), (4.5), (4.7) can
be integrated completely to find j(1), ζ(1), W (1) and B(1) in terms of G(1) and Â

(1)
2 . The

two remaining variables G(1) and Â
(1)
2 satisfy a system of two coupled linear differential

equations with up to sixth-order derivatives. Solving these equations is highly challenging,
but it becomes much simpler in the case of equal angular momenta or when the difference
between the angular momenta is small, as we consider in the next subsections. Finally,
once the zeroth- and first-order solutions have been found for the variables in (5.4), it is
straight forward to obtain

J = J (0) + αg2J (1) , Â1 = Â
(0)
1 + αg2Â

(1)
1 , (5.5)

from (4.2).
In order to specify a solution, we also need to fix boundary conditions. Indeed, in our

analysis, we find some integration constants that correspond to a relabeling of the parameters
of the two-derivative solution as (X,Y, Z) → (X + αδX, Y + αδY, Z + αδZ). Thus, in order
to fix the solution we work in the grand canonical ensemble, so that we fix ω1, ω2 and ψ

to be given by the same expressions (4.15) of the two-derivative solution. We recall that
these potentials are given by the general formulas (3.18) and (3.20), so when we expand the
functions as in (5.4) and (5.5), the potentials take the form

ωi = ω
(0)
i

(
1 + αg2δωi

)
, ψ = ψ(0)

(
1 + αg2δψ

)
, (5.6)

where
δω1 = G(1)′(−1)

G(0)′(−1)
− B(1)(−1)

2B(0)(−1)
− W (1)(−1)
W (0)(−1)

− J (1)(1) − J (1)(−1)
J (0)(1) − J (0)(−1)

,

δω2 = G(1)′(1)
G(0)′(1)

− B(1)(1)
2B(0)(1)

− W (1)(1)
W (0)(1)

− J (1)(1) − J (1)(−1)
J (0)(1) − J (0)(−1)

,

δψ = Â
(1)
1 (1) − Â

(1)
1 (−1)

Â
(0)
1 (1) − Â

(0)
1 (−1)

− J (1)(1) − J (1)(−1)
J (0)(1) − J (0)(−1)

.

(5.7)

Thus, we impose the conditions

δω1 = δω2 = δψ = 0 , (5.8)

which in turn imply boundary conditions on the functions of the solution at x = ±1.
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5.2 Equal angular momenta

When the black hole has equal angular momenta, corresponding to X = Y in the parametriza-
tion introduced in (4.9), the U(1)×U(1) symmetry of the solution is enhanced to SU(2)×U(1).
As a result, all the functions in the ansatz have a fixed functional dependence. We have
G(x) ∝ (1 − x2), while the rest of functions in (5.4) must be constant. In turn, the functions
J(x) and Â1(x) become linear in x up to an irrelevant additive constant, as only derivatives
of J(x) and Â1(x) appear in the equations. This allows us to express the solution as

W = 1 − Z2

4g2 (3 − 2X2 − Z2)
(
1 + αg2δW

)
,

G = 2
(
1 − x2) (Z2 −X2)
3 − 2X2 − Z2

(
1 + αg2δG

)
,

B = X2 (2 − 2X2 − Z2 − Z
)2

g2(1 − Z)2 (3 − 2X2 − Z2)2

(
1 + αg2δB

)
,

J =x
2
√

2g3√1 − 2X2 − Z2 (2X2 + Z − Z2) (3 − 2X2 − Z2)2
X2(1 + Z) (2 − 2X2 − Z2 − Z)2

(
1 + αg2δJ

)
,

Â1 = − x
2
√

3g2 (1 − 2X2 − Z
) (

2X2 + (−1 + Z)Z
) (

3 − 2X2 − Z2)
X2 (2 − 2X2 − Z2 − Z)2

(
1 + αg2δÂ1

)
,

Â2 = −

√
3
2
(
1 − 2X2 − Z

)√
1 − 2X2 − Z2

g(1 − Z) (3 − 2X2 − Z2)
(
1 + αg2δÂ2

)
,

(5.9)

where the leading terms correspond to the two-derivative solution (4.9) with X = Y (in the
case of J and Â1 we took the Y → X limit and removed the constant term) and the higher-
derivative corrections are captured by the constant coefficients δW , δG, δB, δJ , δÂi. Thus,
the higher-derivative Einstein and Maxwell equations become a linear system of algebraic
equations for these coefficients whose solution is straightforward to obtain. Moreover, we also
use the equations in (5.8), which impose additional constraints on the coefficients. When
we do so, the solution is completely fixed. The full expressions for these coefficients are
somewhat lengthy and thus we provide them in appendix A.

Zero chemical potential. There are two interesting limits of this solution. One is the
supersymmetric limit, which is contained in the analysis of the next section. The other is
the case of zero chemical potential. By using (4.15) with Y = X, we can see that imposing
ψ = 0 amounts to setting

Z = 1 − 2X2 . (5.10)

Naturally, in the two-derivative solution, this also implies the vanishing of the gauge field,
Aµ = 0, so that the solution is purely gravitational. Interestingly, this is no longer the case
when the higher-derivative corrections are included. Indeed, at first order in α, the solution
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with ψ = 0 and equal angular momenta reads

W = X2

2g2(2X2 + 1)

(
1 + 2αg2λ1

(
8X8 − 26X6 + 41X4 − 12X2 + 1

)
X4 (8X4 − 10X2 + 5)

)
,

G =
(
1 − x2) (1 − 4X2)

2X2 + 1

(
1 − 32αg2λ1

(
2X6 − 3X2 + 1

)
X2 (8X4 − 10X2 + 5)

)
,

B =
(

X2

g(2X2 + 1)

)2(
1 + 2αg2λ1

(
X2 − 1

)2 (40X4 − 2X2 + 1
)

X4 (8X4 − 10X2 + 5)

)
,

J = 2g3x

X3

√
1 − 2X2

(
2X2 + 1

)2
(

1 − αg2λ1x
(
120X8 − 134X6 + 31X4 + 4X2 + 3

)
X4 (8X4 − 10X2 + 5)

)
,

Â1 = 0 ,

Â2 = − 4αgλ1
√

3 − 6X2

X(2X2 + 1) ,

(5.11)
so a non-trivial Â2 is generated. The reason for this is the gravitational Chern-Simons term,
which acts as a source in Maxwell equation, as d ⋆ F ∼ αR ∧R. Therefore, gravity — and
more precisely, angular momentum — can generate an electric charge. We obtain the precise
value of this charge in the next section.

5.3 Supersymmetric solutions with J1 ̸= J2

When J1 ̸= J2, the equations of motion are much more involved and we have not been able
to find an exact solution. However, we can find an approximate solution when the difference
between angular momenta is small by performing an expansion in powers of (J1 − J2) around
the solution with equal angular momenta. To simplify things further, we also restrict ourselves
to the more holographically interesting supersymmetric case.

Let us note that, in the two-derivative theory, we identified supersymmetry with the
constraint (4.13), which in turn implied that the chemical potentials satisfy the relation (4.24).
In general, a solution is supersymmetric when it allows for a non-zero Killing spinor. Now,
the Killing spinor equations are in general modified by the higher-derivative corrections, and
hence one should compute what the effect is on the supersymmetry conditions. Following [9],
we assume that the constraint (4.24) is not modified by the higher-derivative corrections
and we take this to be the defining property of a supersymmetric solution at subleading
order in α. Since we are working in the grand-canonical ensemble, we make sure that the
correction to the two-derivative supersymmetric solution still satisfies (4.24) and hence is
still supersymmetric by setting

Z = 1 −X − Y . (5.12)

In order to find a solution, our goal is to expand the higher-derivative corrections in (5.4) in a
power series of (Y −X), since this measures the difference between the two angular momenta.

There is another key property of the solution that makes the expansion less burden-
some. We observe that, whenever the variable x appears nontrivially10 in the two-derivative

10With this we mean that there is an additional x-dependence with respect to the X = Y case.
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solution (4.9), it is always multiplied by (Y −X). Thus, when we expand this solution in
powers of (Y −X), the n-th power contains, at most, n powers of x. It is very natural to
assume that the higher-derivative corrections will have the same structure. Taking this into
account, we expand the correction to the functions in (5.4) as

W (1)(x) =
∞∑
n=0

(Y −X)n
n∑
k=0

Wn,kx
k , G(1)(x) = (1 − x2)

∞∑
n=0

(Y −X)n
n∑
k=0

Gn,kx
k ,

B(1)(x) =
∞∑
n=0

(Y −X)n
n∑
k=0

Bn,kx
k , j(1)(x) =

∞∑
n=0

(Y −X)n
n∑
k=0

jn,kx
k ,

ζ(1)(x) =
∞∑
n=0

(Y −X)n
n∑
k=0

ζn,kx
k , Â

(1)
2 (x) =

∞∑
n=0

(Y −X)n
n∑
k=0

Â2,n,kx
k ,

(5.13)
where Wn,k, Gn,k, Bn,k, jn,k, ζn,k and Â2,n,k are constant coefficients. By plugging this
ansatz into the equations of motion, expanding again in powers of (Y −X), and collecting
the terms with different powers of x,11 we obtain a system of algebraic equations for these
coefficients. We check that this system indeed solves the equations of motion order by order,
hence validating the form of the ansatz (5.13).

The solution in fact contains free coefficients that must be fixed by imposing the con-
ditions (5.8). To this end, we first obtain the functions J(x) and Â1(x) by plugging (5.4)
with (5.13) into (4.2), and expanding again in (Y − X). In this case, the expansion of
these functions takes the form

J (1)(x) =
∞∑
n=0

(Y −X)n
n∑
k=0

Jn,kx
k+1 , Â

(1)
1 (x) =

∞∑
n=0

(Y −X)n
n∑
k=0

Â1,n,kx
k+1 , (5.14)

and the coefficients Jn,k, Â1,n,k are determined by the ones in (5.13). This allows us to evaluate
the correction to the potentials in (5.7), which also take the form of a series expansion, and
hence (5.8) provides three constraints at every order of (Y −X). When these constraints are
imposed together with the equations of motion, we find that the solution of the form (5.13)
is unique. We have been able to obtain the solution to order (Y −X)6 and we provide the
corresponding coefficients in the ancillary Mathematica notebook. For the sake of illustration,
we show the solution to first order in (Y − X) in appendix A.

We have attempted to find a pattern that would allow us to sum the whole series expansion
and obtain the exact solution. In particular, we tried to fit the solution to a rational function
of x, in analogy with the two-derivative solution (4.9). However, the expressions are too
complicated and we could not find a simple pattern. Nevertheless, we will see in section 6.4
that there is a way in which this can be done in the case of the thermodynamic quantities.

With the solution at hand we can compute right away the area of the horizon by
applying (3.17). We get

A = 2π2(X + Y )
√
X + Y −X2 −XY − Y 2

g3(1 − 2X − Y )(1 − 2Y −X)
[
1 + αg2λ1δA

]
, (5.15)

11Observe that we do not perform a series expansion in x, we keep all the x-dependence at each order of
(Y − X). This dependence on x is automatically polynomial.
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where, to second order in (Y − X), δA reads

δA = − −180X3 + 177X2 − 32X + 9
X(9X2 − 12X + 1) − 9(Y −X)

(
63X4 + 24X3 − 50X2 + 24X − 1

)
2X2 (9X2 − 12X + 1)2

+ (Y −X)2

12(X − 1)2X3 (3X2 − 1) (9X2 − 12X + 1)3

(
229635X11 − 946971X10 + 1665765X9

− 1705617X8 + 1153926X7 − 495990X6 + 67410X5 + 76662X4 − 56937X3

+ 14737X2 − 1047X + 27
)

+ O
(
(Y −X)3

)
.

(5.16)
Although this is again terribly complicated to guess a pattern, we will find a way to sum
the whole series as we elaborate on in section 6.4.

6 Thermodynamics

6.1 Electric charge: ambiguity due to the Lorentz-Chern-Simons terms

The formulas for the electric charge (2.9), angular momenta (2.14) and entropy (2.16) present
gauge ambiguities due to the presence of Chern-Simons terms. However, these ambiguities
are fixed by working in the regular gauge that we are utilizing, i.e., imposing regularity at the
horizon. However, in the formula for the electric charge there is also a Lorentz-Chern-Simons
three-form that introduces frame ambiguities. These are harder to fix, since there is not a
priori a canonical choice of frame. Instead, there are infinitely many regular frames, which
are related by “large” Lorentz transformations. In our case, since the spacetime is a twisted
product AdS2 × S3, it is natural to restrict to the rotations of frame generated by the sphere
S3, leading to a discrete set of different notions of charge — one for each homotopy class of
S3. Each of these is, in principle, a valid definition of electric charge. However, only one
particular charge (modulo an additive constant independent of the parameters of the solution)
enters in the first law of thermodynamics. Then, the question is whether we can find a frame
in which the electric charge is the thermodynamically relevant charge.

With this goal, we consider a family of frames ẽa related to (4.1) according to

ẽ0 = e0 ,

ẽ1 = e1 ,

ẽ2 = cos(nϕ1 +mϕ2)e2 + sin(nϕ1 +mϕ2)e3 ,

ẽ3 = − sin(nϕ1 +mϕ2)e2 + cos(nϕ1 +mϕ2)e3 ,

ẽ4 = e4 ,

(6.1)

where ϕ1 and ϕ2 are the angular coordinates introduced in (3.13) and n,m must be integers
in order to ensure the regularity of the transformation. Although this is clearly not the most
general choice of frame, we show below that this is indeed enough for our purposes. Due
to the frame transformation, the Lorentz-Chern-Simons three-form introduces a non-trivial
contribution to the charge, which reads

Ω̃LCS = ΩLCS + W , (6.2)
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where

W = dy1 ∧ dy2 ∧ d
[
−σ1B

3/2J ′ + σ2
B3/2W 2

(
BW

(
G′ +B2JWJ ′

)
−G

(
WB′ +BW ′))] ,

(6.3)
and

σ1 = 1
2(J(−1) − J(1))

[
mJ(−1)G′(1)√
B(1)W (1)

− nJ(1)G′(−1)√
B(−1)W (−1)

]
,

σ2 = 1
2(J(−1) − J(1))

[
mG′(1)√
B(1)W (1)

− nG′(−1)√
B(−1)W (−1)

]
.

(6.4)

These coefficients come from the relation (3.13) between the angles ϕi and the yi coordinates.
When we integrate the charge, we get the following difference due to the frame change

∆Q = 3αλ1

16
√

3πG5

∫
W . (6.5)

At first order in α, we can just evaluate this term at the two-derivative solution, and we get the
following explicit result for the ambiguous contribution to the charge as a function of n and m,

∆Qn,m = αλ1π

2
√

3πG5
[nf(X,Y, Z) +mf(Y,X,Z)] , (6.6)

where

f(X,Y,Z) = 1
(Y 2−Z2)(−1−X2+Y 2+Z2)3

[
X7Y +X5Y

(
5−3Y 2+Z2

)
−XY

(
−1+Y 2+Z2

)2(
1+Y 2+Z2

)
+X6

(
−Y 2+Z(2+Z)

)
+
(
−1+Y 2+Z2

)2(
Y 4+Z2−Z4−Y 2(1+2Z)

)
+X4

(
3Y 4+Y 2(−3+10Z)

−3Z2
(
−1+Z2

))
+X3Y

(
−5+3Y 4+6Z2−Z4+2Y 2

(
1+5Z2

))
+X2

(
−3Y 6+Y 4

(
6+6Z−3Z2

)
+Z(−2+3Z)

(
−1+Z2

)2

+Y 2
(
−3−4Z+4Z3+3Z4

))]
.

(6.7)

Since this is not a constant value, it affects the variations of the charge dQn,m and therefore
it affects the first law. Our hope is that there is a choice of n and m for which Qn,m is the
thermodynamic charge. We study this in careful detail below.

6.2 Equal angular momenta

By direct evaluation of the integrals (2.9), (2.14) and (2.16) in the solution (5.9), we obtain the
electric charge, angular momenta and the entropy of the black holes. The result takes the form

S = π2(Z + 1)
(
2X2 − Z2 + Z

)√
−2X2 − Z2 + 1

4
√

2G5g3 (X2 − Z2)2

[
1 + αg2(4λ2 + λ1∆S)

]
, (6.8)

Ji = πX(Z + 1)
(
X2(6Z − 2) + 4X4 + Z4 + Z3 + Z2 − 3Z

)
16G5g3 (X2 − Z2)3

[
1 + αg2(4λ2 + λ1∆J)

]
, (6.9)
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Q =
√

3πZ(Z + 1)
(
1 − Z − 2X2)

8G5g2 (X2 − Z2)2

[
1 + αg2(4λ2 + λ1∆Q)

]
(6.10)

+ π(m+ n)αλ1
[
(Z − 1)2 (X2(4Z + 2) + 4X4 + Z2 (Z2 − 1

))
− 8X6]

2
√

3G5(Z − 1)3(Z + 1)(Z2 −X2)
,

where the expressions of ∆S, ∆J , ∆Q are somewhat long and hence we provide them in the
ancillary Mathematica notebook. Observe that the correction due to λ2 is universal and it
is equivalent to replacing G5 by the effective Newton’s constant Geff in (2.4).

In the case of Q, we have made explicit the ambiguous Chern-Simons contribution
due to the frame choice, that in this case only depends on the sum of the two integers
n+m. In order to fix this ambiguity, we evaluate the near-horizon version of the first law of
black hole mechanics (4.18), which should hold as well in the presence of higher-derivative
corrections. We get

1
2πdS − ω1 dJ1 − ω2 dJ2 − ψ dQ = −(m+ n+ 4) παλ1

2
√

3G
ψd[f(X,X,Z)] , (6.11)

where ωi and ψ are the potentials given by (4.15) evaluated at Y = X — these receive no
corrections since we are working in the grand-canonical ensemble — and f is the function
introduced in (6.7). Thus, for

n+m = −4, (6.12)

the first law is satisfied and hence Q becomes the thermodynamic electric charge.

Supersymmetric limit. In the supersymmetric case, (4.14) with a = b, i.e., X = ag/(1 +
2ag), Z = 1/(1 + 2ag), the expressions above simplify dramatically and we get

S = π2a
√
ag(ag + 2)

g2Geff(1 − ag)2

[
1 + αg2λ1

48(ag + 2)(2ag + 1)
11a2g2 + 8ag − 1

]
,

Ji = πa2(ag + 3)
2gGeff(1 − ag)3

[
1 + αg2λ1

24
(
8a4g4 + 25a3g3 + 29a2g2 + 9ag + 1

)
ag(ag + 3) (11a2g2 + 8ag − 1)

]
,

Q =
√

3πa
2gGeff(1 − ag)2

[
1 + αg2λ1

8
(
23a4g4 + 73a3g3 + 57a2g2 + 7ag + 2

)
3ag (11a2g2 + 8ag − 1)

]
.

(6.13)

These results match exactly those of [10], also obtained from the near-horizon geometry.
However, as also noticed by [10], the charge obtained from this procedure differs by a pure
constant — independent of the parameters of the black hole — from the charge obtained
from the on-shell action [9] (the rest of the results are identical). In the next subsection we
analyze this discordance in the case of different angular momenta.

Zero chemical potential. As we noted in section 5.2, the solutions with ψ = 0 actually
acquire a nontrivial gauge field on account of the electro-gravitational Chern-Simons term.
These solutions even have a nonzero charge, and in fact we get

Q = −4παλ1
(
3 − 4X2 − 8X4)

√
3G5 (1 − 4X2)2 , (6.14)
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where we have set n+m = −4, as before. Observe that, since Q depends on X, it cannot
be taken to zero by adding a pure constant to it. In fact, it is not zero in any of the
frames we have analyzed, so the generation of a non-zero charge is a genuine effect of the
higher-derivative corrections. Interestingly, Q is a function of the angular momentum through
its dependence on X, so it is not a free parameter of the solution. On the other hand, one may
also consider solutions with zero charge, but these will necessarily have a nonzero potential.

6.3 Supersymmetric solutions with J1 ̸= J2

Let us now consider the supersymmetric solutions that we have found in section 5.3 as
an expansion in (Y − X). We can again evaluate the charges and the entropy through
the integrals (2.9), (2.14) and (2.16). In the case of the electric charge we also add the
frame-dependent term (6.6). In order to make contact with previous literature, we express
the result in terms of the parameters a and b by using the relationships (4.14). Then, we
also translate the series expansion in (Y −X) into a series expansion in (b− a). The result,
to order (b − a)2 and first order in α, reads

S = π2(a+ b)
√
ab+ a+ b

2Geff(1 − a)(1 − b)

[
1 + αλ1δS

]
,

J1 = π(a+ b)(ab+ 2a+ b)
4Geff(1 − a)2(1 − b)

[
1 + αλ1δJ1

]
,

J2 = π(a+ b)(ab+ 2b+ a)
4Geff(1 − b)2(1 − a)

[
1 + αλ1δJ2

]
,

Q =
√

3π(a+ b)
4Geff(1 − a)(1 − b)

[
1 + αλ1δQn,m

]
,

(6.15)

where we have set g = 1 and

δS = 48(a+ 2)(2a+ 1)
11a2 + 8a− 1 − 72(b− a)

(
13a2 + 16a+ 7

)
(11a2 + 8a− 1)2

− 2(b− a)2

a2(a+ 1)2 (a2 + 4a+ 1) (11a2 + 8a− 1)3
(
33a10 − 5520a9 − 33975a8 − 81460a7

− 108482a6 − 88572a5 − 43066a4 − 11036a3 − 1167a2 − 4a+ 1
)

+ O
(
(b− a)3

)
,

(6.16)

δJ1 = 24
(
8a4 + 25a3 + 29a2 + 9a+ 1

)
a(a+ 3) (11a2 + 8a− 1) + 8(b− a)

a2(a+ 3)2 (a2 + 4a+ 1) (11a2 + 8a− 1)2
(
88a9

+ 1189a8 + 5762a7 + 13249a6 + 14422a5 + 7889a4 + 3094a3 + 895a2 + 74a− 6
)

+ 2(b− a)2

a3(a+ 1)2(a+ 3)3 (a2 + 4a+ 1)2 (11a2 + 8a− 1)3
(
2475a16 + 73157a15

+ 778745a14 + 4365729a13 + 14805057a12 + 32337717a11 + 47141825a10

+ 47441601a9 + 34726215a8 + 19894695a7 + 9289651a6 + 3306235a5 + 754083a4

+ 76383a3 − 2157a2 − 605a+ 42
)

+ O
(
(b− a)3

)
, (6.17)
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δQn,m = 2
(
2 + 17a+ 63a2 + 85a3 + 49a4)

a (−1 + 8a+ 11a2) +
(
2 − 7a+ 5a2) (m+ n)

6a

+ (b− a)
[

2 − 32a− 265a2 − 544a3 − 160a4 + 784a5 + 539a6

a2 (−1 + 8a+ 11a2)2

−
(
1 + a− 5a2 − 3a3)m+

(
1 + a− 2a3)n

6a2(1 + a)

]

+ (b− a)2
[

1
6a3(1 + a)2 (1 + 4a+ a2) (−1 + 8a+ 11a2)3

(
6 − 111a+ 93a2 + 14383a3

+ 95277a4 + 282930a5 + 497994a6 + 614982a7 + 522456a8 + 208221a9 − 50727a10

− 70485a11 − 15499a12)+
(
2 + 3a+ 3a2 − 5a4) (n+m) − a4(11m+ 3n)

24a3(1 + a)2

]

+ O
(
(b− a)3

)
. (6.18)

and, as usual, δJ2 = δJ1(a ↔ b). We observe that the results for S and Ji coincide with
those of [9] when expanded in (b − a), which represents a highly nontrivial check of our
computations. On the other hand, we have to determine for which value of (n,m) the electric
charge is the thermodynamic one. For this charge, the near-horizon version of the first
law of thermodynamics should hold. By plugging (6.15) and (4.15) in the supersymmetric
case into (4.18), we obtain12

1
2πdS − ω1 dJ1 − ω2 dJ2 − ψ dQ = − παλ1

2
√

3G5
ψ d [(n+ 2)f∗(a, b) + (m+ 2)f∗(b, a)] , (6.19)

where

f∗(a, b) ≡ f(X∗, Y ∗, Z∗) = 3a2b+ 2ab2 + ab+ 2b2 − a− b

(a+ 1)(b− 1)(a+ b) . (6.20)

Therefore, the first law is satisfied for

n = m = −2 , (6.21)

and thus the frame (6.1) is fully fixed by this criterion. For these values of n and m, the
charge can be rewritten as

Q =
√

3π(a+ b)
4G5(1 − a)(1 − b)

[
1 + 4αλ2 + αλ1δQ

]
− 2παλ1√

3G5
, (6.22)

12Naturally, we obtain the result as a series expansion in (b − a), but we verify that it corresponds to the
expansion of this expression.
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with

δQ = 4
(
19a4 + 44a3 + 36a2 + 8a+ 1

)
a (11a2 + 8a− 1)

+ (b− a)
(
418a6 + 608a5 − 202a4 − 528a3 − 266a2 − 32a+ 2

)
a2 (11a2 + 8a− 1)2

+ (b− a)2

3a3(a+ 1)2 (a2 + 4a+ 1) (11a2 + 8a− 1)3
(
− 5753a12 − 20904a11 + 7026a10

+ 129304a9 + 260413a8 + 301360a7 + 250612a6 + 143104a5 + 47449a4 + 7128a3

+ 58a2 − 56a+ 3
)

+ O
(
(b− a)3

)
.

(6.23)
In this case, the electric charge coincides with the one in [9] except for the last term in (6.22).
Indeed, we have

Q−Q[9] = −2παλ1√
3G5

. (6.24)

This constant shift obviously does not affect the first law and it coincides with the shift
obtained in [10] from the near-horizon geometry of the solution with a = b. It would be
interesting to look for a different frame — outside of the family of frames (6.1) — in which
one can further remove this constant. However, given that this constant is a pure number —
does not depend on the solution — this mismatch is not too worrisome.

6.4 Exact expressions

With the equations (6.16), (6.18), (6.23) at hand it is quite challenging to study the relation
between the entropy and the charges, due the complexity of these expressions. However, most
of this complexity is due to our requirement of working in the grand-canonical ensemble.
Instead, we can do a relabeling of the a and b parameters as

(a, b) → (a+ αλ1δa, b+ αλ1δb) , (6.25)

which has the effect of changing the corrections δS, δJi and δQ in (6.15) and (6.23). We can
use this freedom to cancel for instance the λ1 corrections to the expressions of the angular
momenta Ji. Thus, in this “fixed angular momenta ensemble” our results read

S = π2(a+ b)
√
ab+ a+ b

2Geff(1 − a)(1 − b)

[
1 + αλ1δS̃

]
,

J1 = π(a+ b)(ab+ 2a+ b)
4Geff(1 − a)2(1 − b) ,

J2 = π(a+ b)(ab+ 2b+ a)
4Geff(1 − b)2(1 − a) ,

Q =
√

3π(a+ b)
4Geff(1 − a)(1 − b)

[
1 + αλ1δQ̃

]
,

(6.26)
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where δS̃ and δQ̃ are now given by

δS̃ = 12(a+ 1)
a(a+ 2) − 6

(
a2 + 2a+ 2

)
(b− a)

a2(a+ 2)2 +
(
a5 + 9a4 + 21a3 + 26a2 + 24a+ 12

)
(b− a)2

a3(a+ 1)(a+ 2)3

−
(
2a7 + 20a6 + 62a5 + 91a4 + 88a3 + 88a2 + 72a+ 24

)
(b− a)3

2a4(a+ 1)2(a+ 2)4 + O
(
(b− a)4

)
,

δQ̃ = 4
(
2a2 + 5a− 1

)
3a + 2

(
2a2 + 1

)
(b− a)

3a2 −
(
3a3 + 5a2 + 2a+ 1

)
(b− a)2

3a3(a+ 1)

+
(
3a4 + 10a3 + 9a2 + 4a+ 1

)
(b− a)3

6a4(a+ 1)2 + O
(
(b− a)4

)
.

(6.27)
These expressions are now simple enough that we can guess the exact result. We find that the
simplest rational functions of a and b — with the lowest order numerator and denominator —
leading to the expansions above are

δS̃ = 4
[
ab
(
(a− b)2 + 5(a+ b) + 18

)
+ a3 + b3 + 3(a2 + b2) + 6(a+ b)

]
(a+ b)(a+ b+ 2)(ab+ a+ b) ,

δQ̃ = 8
[
ab
(
a2 + 6ab+ b2 + 13(a+ b) + 10

)
+ a3 + b3 + 3(a2 + b2) − 2(a+ b)

]
3(a+ b)2(a+ b+ 2) .

(6.28)

We then check that these expressions also capture higher-order terms in the (b− a) expansion
— we checked up to order (b − a)6 — and therefore this result must be exact. With these
expressions we can now study the dependence of the entropy on the charges as well as the
non-linear constraint satisfied by these. One can directly check that the following expression

S = π

√
4Q2 − π

Geff
(J1 + J2) + 8παλ1

Geff

[2Q√
3

+ π(J1 − J2)2

16GeffQ2/3 − π(J1 + J2)

]
, (6.29)

holds up to O(α2) terms. This coincides with the result of [8, 9] except for the linear term in
the charge, which comes precisely from the difference in the definition of the charges (6.24).
Now, in order to derive the non-linear constraint between the charges, the easiest way consists
in evaluating the zeroth-order constraint (2.29) to obtain how much it fails to be satisfied.
Since in this parametrization only the electric charge is modified, we get[

2
√

3Q+ π

2Geff

] [
4Q2 − π

Geff
(J1 + J2)

]
−
(2Q√

3

)3
− 2π
Geff

J1J2 = αλ1
G2

eff
Σ + O(α2) , (6.30)

with
Σ = 2QδQ̃

3Geff

(
32

√
3GeffQ

2 − 3π
√

3(J1 + J2) + 6πQ
)
. (6.31)

Thus, in order to obtain an explicit constraint we only need to express δQ̃ as function of
the charges. For this it suffices to use the two-derivative relations between (a, b) and (Ji, Q),
since the right-hand side of (6.30) is already proportional to α. After some massaging, we
find that Σ can be written as

Σ = 48πGeffJ1J2 + 4π2 (J1 + J2) − 8πQ√
3

(π − 6Geff (J1 + J2)) − 80
3 πGeffQ

2

+
4π2 (J1 − J2) 2

(
16
√

3GeffQ+ 3π
)

3π (J1 + J2) − 16GeffQ2 .

(6.32)
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Finally, we can rewrite the entropy and the constraint in terms of the central charges
of the dual CFT (2.5). We have

S = π

√
4Q2 − 8a(J1 + J2) − 8(a− c)

[2Q√
3

+ a(J1 − J2)2

2Q2/3 − a(J1 + J2)

]
, (6.33)

which again matches the results of [8, 9] — and hence the field theory prediction — once we
take into account (6.24). On the other hand, the non-linear constraint can be expressed as

[√
3Q+ 2a

] [
Q2 − 2c (J1 + J2)

]
= Q3

3
√

3
+ 2(3c− 2a)J1J2 + 2

3(a− c)
[
4
√

3aQ+ 5Q2

+
6a
(
3a + 2

√
3Q
)

(J1 − J2) 2

2Q2 − 3a (J1 + J2)

]
.

(6.34)

This again coincides with the results of [9] taking into account (6.24) once more.

7 Conclusions

We have studied extremal black holes in AdS5 supergravity with four-derivative corrections
by analyzing their near-horizon geometries. We introduced a novel parametrization of these
solutions that allowed us to write them explicitly and to solve the corrected Maxwell and
Einstein equations. Then, we were able to compute the charges of the black holes as integrals
over the horizon, thus allowing us to study the different thermodynamic relations even for
different angular momenta. We observed that the entropy, charges and near-horizon potentials
satisfy a near-horizon version of the first-law of thermodynamics (4.18) which holds as well in
the presence of corrections — see [56] for a general analysis of the laws of near-horizon black
hole mechanics. This allowed us to identify the near-horizon potentials as fugacities: the
derivatives of the actual potentials with respect to the temperature at T = 0 — see (4.23).

Our results for the thermodynamic quantities in the supersymmetric case match those
of [8, 9] obtained from evaluation of the on-shell action following the Reall-Santos method [36],
which does not require solving any equations of motion. This agreement serves as a nontrivial
check of both approaches, but nevertheless our computation reveals a number of nuances.

First, the need to solve the equations of motion makes the computation considerably
involved in the case of J1 ̸= J2 and in fact we have not been able to obtain an exact solution.
Rather, we had to restrict ourselves to a solution in the form of a series expansion in (J1 −J2).
It would be interesting to obtain a closed form solution but our results indicate that this
would be rather complicated as we were not able to find a simple pattern in the series.
On the other hand, we did manage to sum up the series expansion for the thermodynamic
quantities by working in a fixed angular momentum ensemble — see (6.28) — which makes
the expressions much simpler.

Second, the computation of the electric charge at the near-horizon region is ambiguous
due to the presence of the Lorentz-Chern-Simons three-form in the charge integral, whose
contribution depends on the frame. We have been able go around this issue by looking
for a frame in which the electric charge satisfies the first law of black hole mechanics. We
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stress that in general, and unlike what is stated in [10], a change of frame modifies the
charge by a term that depends on the parameters of the solution — see (6.7) — and not just
by a pure constant.13 Thus, only in one frame (or restricted family of frames) the charge
defined in this way satisfies the first law. However, our analysis was not exhaustive and
it leaves open the question of adding a pure constant — independent of the parameters of
the solution — to the charge. In fact, our charge disagrees with the one of [8, 9] by a pure
constant. The same constant was found in [10] for near-horizon geometries with equal angular
momenta in the frame given by the left-invariant Maurer-Cartan forms of SU(2), and here we
showed that it persists unchanged for J1 ̸= J2. It would be interesting to characterize all the
possible frame transformations and their effect on the charge and to check if one can remove
this constant shift in another frame. More importantly, we would like to understand what
makes special the frame (6.1) with n = m = −2, in which the electric charge is the correct
one for thermodynamics. In any case, this shows the difficulty in finding a first-principles
interpretation of the charge derived from the on shell action in [8, 9].

Despite these struggles, the analysis of near-horizon geometries does have an advantage
over the on-shell action computation: it allows for a direct generalization to subleading higher-
derivative corrections. Indeed, the methods and techniques presented here can be extended
quite straightforwardly to compute even higher-order corrections. The only real complication
would be the increasing length of the equations, but there would not be new obstructions.
This is because the construction of the near-horizon geometries as an expansion in (J1 − J2)
is entirely systematic, as we shown in section 5.3 — another question is of course whether one
can sum up the whole series for the thermodynamic quantities as in section 6.4. On the other
hand, in order to compute second-order corrections from the on-shell action, one has to obtain
the first-order corrections of the full solution [38] — not only the near-horizon geometry. In
view of our results here, obtaining the full solution would be very challenging and we do
not know at this point whether an analytic solution exists even for equal angular momenta.
Hence this approach would probably be less accessible than the near-horizon analysis.14

On a different note, our analysis was not restricted to supersymmetric solutions, since
the space of extremal solutions is larger, although the expressions get substantially longer,
even with equal angular momenta. A particularly interesting phenomenon we observed is
that, due to the electro-gravitational Chern-Simons term, gravity sources electromagnetism.
In particular, angular momentum sources electric charge. For instance, the extremal Myers-
Perry-AdS solution, which is a member of the family of solutions we are analyzing, necessarily
acquires a nontrivial gauge field and it gets a non-zero electric charge given by (6.14) (in
the case of equal angular momenta). In fact, one cannot have rotating solutions with both
zero charge and zero electrostatic potential. It would be interesting to understand the
meaning of this effect for the dual field theory, which must certainly be related to the mixed
⟨TTR⟩ anomaly [24].

There are several interesting avenues that are natural to pursue regarding this work.
Our method of studying the near-horizon extremal geometry can be extended to study

13Note that the near-horizon geometry is not a direct product AdS2 ×S3 but a fibered product, so one cannot
directly apply arguments of 3d gravity to analyze the ambiguities in the Lorentz-Chern-Simons three-form [76].

14One the other hand, let us note that an advantage of the Reall-Santos method [36] or its generalized
version [38] is that it is not restricted to extremal solutions.
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six-derivative corrections. For that, one must first derive the form of the Lagrangian, which
involves starting from the off-shell action formalism, integrating out all auxiliary fields and
implementing field redefinitions to find a hopefully relatively compact six-derivative action, see
for example [6, 9, 22–29, 31]. The difficulty of the analysis of near-horizon geometries in that
theory would arise in the length of the computations but it should be in fact feasible. It would
then be interesting to match the results with the subleading corrections in the field theory dual.

On the other hand, we can also consider additional matter fields. To the best of
our knowledge, higher derivative corrections have not been studied in the context of five-
dimensional gauged supergravity with several vector multiplets. This is a rather challenging
endeavor as the solutions now involve the metric, gauge potentials and scalars. For example,
this would correspond to corrections of the supersymmetric Kunduri-Lucietti-Reall black
hole [77].

Finally, our novel (X,Y, Z) parametrization of extremal AdS5 black holes seems to
be a very natural form of expressing these solutions, and it has an interesting geometric
interpretation as depicted in figure 1. This parametrization leads to a compact and explicit way
of writing the solution and to a very appealing form of the supersymmetric condition (4.13).
It would be interesting to see if this kind of parametrization can be generalized to other
extremal AdS black holes [78–81]. There are numerous approaches in literature that require
the study of extremal solutions and finding such a parametrization for diverse dimensions
would be quite advantageous.
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A Higher-derivative corrections

In this appendix, we present the explicit expressions for the higher derivative corrections
found in the limit where the angular momenta are equal with no supersymmetry imposed in
section A.1 and in the supersymmetric case with unequal angular momenta in section A.2.
We note that the results are written in terms of the (X,Y,Z) parametrization.

A.1 Equal J solution

We write the various corrections for the J1 = J2 solution. We find that δJ = δÂ1 while the
remaining corrections are

δW = λ1
D

[
57344X18−2048X16

(
92−79Z+5Z2

)
−512X14

(
−507+878Z−514Z2 (A.1)

+22Z3+65Z4
)

+2(−1+Z)7Z5
(
26+39Z+Z2−18Z3−4Z4+3Z5+Z6

)
−64X12

(
2997−7610Z+9159Z2−4436Z3−1717Z4+1550Z5+57Z6

)
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−32X10(−1+Z)2
(
−2423+3006Z−7319Z2−1012Z3+3803Z4+502Z5+115Z6

)
−32X8(−1+Z)3

(
−461+329Z−3408Z2−596Z3+1995Z4+45Z5+58Z6+70Z7

)
+16X6(−1+Z)4

(
21+122Z+1338Z2−375Z3−1157Z4+656Z5+268Z6−11Z7

+50Z8
)

+4X4(−1+Z)5
(
−60+118Z−200Z2−1488Z3−569Z4+1225Z5+94Z6

−190Z7+207Z8+63Z9
)
−2X2(−1+Z)6Z2

(
360+518Z−179Z2−490Z3+199Z4

+322Z5+27Z6+2Z7+9Z8
)]
,

δG= 2λ1(1−Z2)
D

[
39936X16+3072X14

(
−43+34Z+9Z2

)
+256X12 (721−1144Z (A.2)

+156Z2+284Z3+7Z4
)

+128X10
(
−1087+2545Z−1441Z2−574Z3+587Z4

−35Z5+5Z6
)
−16X8(−1+Z)2

(
−3655+3845Z−393Z2−2606Z3+1007Z4

+385Z5+25Z6
)

+(−1+Z)6Z3
(
54+27Z−52Z2−26Z3+22Z4+11Z5+8Z6

+4Z7
)
−8X6(−1+Z)3

(
−1578+1219Z−1531Z2−2356Z3+1320Z4+803Z5

+253Z6+142Z7
)

+2X2(−1+Z)5Z
(
27+225Z+68Z2−256Z3+119Z4+197Z5

+2Z6−6Z7+8Z8
)
−4X4(−1+Z)4

(
−267+139Z−1071Z2−1008Z3+704Z4

+99Z5−35Z6+226Z7+61Z8
)]
.

δB=−2λ1
D

[
112640X18+1536X16

(
−267+212Z+63Z2

)
(A.3)

+256X14
(
2589−3962Z+194Z2+1126Z3+141Z4

)
+128X12

(
−4863+10460Z−3828Z2−4210Z3+1835Z4+534Z5+72Z6

)
−32X10(−1+Z)2

(
−11313+7582Z+6767Z2−5740Z3−1615Z4+454Z5+297Z6

)
−8X8(−1+Z)3

(
−15819+2635Z+8769Z2−11265Z3−3925Z4+4181Z5+3535Z6

+849Z7
)
−(−1+Z)7Z3

(
54+81Z+Z2−39Z3−3Z4+15Z5+15Z6+15Z7+5Z8

)
−4X6(−1+Z)4

(
−5973−1626Z+1744Z2−8694Z3−5370Z4+3426Z5+4696Z6

+1822Z7+87Z8
)

+X2(−1+Z)6Z
(
54+261Z+208Z2−144Z3−324Z4−42Z5

+336Z6+480Z7+206Z8+21Z9
)

+2X4(−1+Z)5
(
930+610Z+333Z2+3179Z3

+2641Z4−889Z5−1749Z6−451Z7+453Z8+159Z9
)]
,

δÂ1 = λ1
D

[
55296X18+512X16

(
−277+320Z+53Z2

)
(A.4)

+256X14
(
543−1390Z+414Z2+354Z3+55Z4

)
+64X12

(
−961+4158Z−3017Z2−1432Z3+761Z4+346Z5+145Z6

)
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−64X10(−1+Z)2
(
−97+804Z+1143Z2−204Z3−601Z4−124Z5+111Z6

)
−8X8(−1+Z)3

(
645+559Z+8593Z2+3115Z3−5509Z4−1567Z5+1663Z6

+469Z7
)
−3(−1+Z)7Z3

(
54+81Z+Z2−39Z3−3Z4+15Z5+15Z6+15Z7

+5Z8
)

+4X6(−1+Z)4
(
−423−298Z−8344Z2−5354Z3+5854Z4+2442Z5

−1544Z6−198Z7+281Z8
)

+2X4(−1+Z)5
(
−18−138Z−2995Z2−2161Z3

+2563Z4−127Z5−1681Z6+693Z7+1187Z8+277Z9
)

+X2(−1+Z)6Z (−54

−27Z+72Z2+250Z3−756Z4−908Z5+184Z6+550Z7+202Z8+7Z9
)]
,

δÂ2 = 4λ1X
2

(1−2X2−Z)D
[
56320X18+512X16

(
−483+373Z+122Z2

)
(A.5)

+256X14
(
1834−2831Z+168Z2+789Z3+84Z4

)
+128X12

(
−3940+8968Z−3991Z2−3099Z3+1631Z4+403Z5+28Z6

)
−16X10(−1+Z)2

(
−20713+19650Z+9361Z2−12280Z3−2591Z4+590Z5

+175Z6
)
−8X8(−1+Z)3

(
−16471+9646Z+5647Z2−14740Z3−2013Z4+3910Z5

+2077Z6+504Z7
)
−4X6(−1+Z)4

(
−7201+1949Z−1834Z2−15013Z3−3262Z4

+5335Z5+4494Z6+1993Z7+275Z8
)

+2X4(−1+Z)5
(
1353−252Z+3201Z2

+9152Z3+3133Z4−2454Z5−2829Z6−1788Z7−274Z8+54Z9
)

+X2(−1+Z)6
(
54−27Z+1461Z2+2629Z3+417Z4−817Z5−329Z6−149Z7

+281Z8+236Z9+36Z10
)
−(−1+Z)7Z2

(
−162−189Z+108Z2+161Z3−38Z4

−99Z5−104Z6−45Z7+4Z8+4Z9
)]
,

where the denominator reads

D=(Z−1)4(Z+1)2
[
96X12+48X10

(
Z2+8Z−5

)
(A.6)

−16X8
(
2Z4−11Z3−33Z2+49Z−13

)
−8X6

(
5Z6+13Z5−42Z4−38Z3+113Z2−63Z+12

)
−2X4(Z−1)2

(
9Z6+44Z5+75Z4−70Z3−150Z2+32Z−12

)
−X2(Z−1)3Z2

(
Z5+9Z4+25Z3+35Z2−46Z−72

)
+(Z−1)4Z5

(
Z3+2Z2+Z+2

)]
.
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A.2 Supersymmetric solution with J1 ̸= J2

When the angular momenta are distinct, the corrections to the supersymmetric solution
are given by

W0,0 =− 1+5X−15X2+45X3

1−9X−27X2+27X3 ,

W1,0 = −7−12X−162X2+540X3+405X4

(1+3X)2 (1−12X+9X2)2 ,

W1,1 = −1−16X+198X2−600X3+639X4−216X5

(−1+X)(1+3X)(−1+3X2)(1−12X+9X2) ,

(A.7)

G0,0 = 4(−1+3X)
(
−1+11X−69X2+99X3)

X(1+3X)(1−12X+9X2) ,

G1,0 = 2
(
−1+18X+57X2−1476X3+7533X4−10854X5+243X6)

X2(1+3X)2 (1−12X+9X2)2 ,

G1,1 = −11+188X−551X2−1248X3+6603X4−7740X5+2727X6

2(−1+X)X(1+3X)(−1+3X2)(1−12X+9X2) ,

(A.8)

B0,0 =− 9X
(
3+2X−69X2+126X3)

2(1+3X)2 (1−12X+9X2) ,

B1,0 = 9
(
−3+5X+42X2−1782X3+4509X4+405X5)

4(1+3X)3 (1−12X+9X2)2 ,

B1,1 =− 3
(
6+31X−807X2+2958X3−3096X4−513X5+1701X6)

4(−1+X)(1+3X)2 (−1+3X2)(1−12X+9X2) ,

(A.9)

J0,0 =− 4η(1+3X)2 (−9+32X−177X2+180X3)
9X4 (1−12X+9X2) ,

J1,0 =− 2(1+3X)
(
63−1132X+3801X2−12024X3+20709X4−19116X5+9963X6)

9X4η (1−12X+9X2)2 ,

J1,1 =− η(1+3X)2 (36−133X+1605X2−6234X3+13446X4−14661X5+2997X6)
27(−1+X)X5 (−1+3X2)(1−12X+9X2) ,

(A.10)

Â1,0,0 = 4(1+3X)
(
9−59X+273X2−711X3+540X4)
3
√

3X3 (1−12X+9X2)
,

Â1,1,0 =− 2
(
27−496X+1653X2−3456X3+2889X4−1296X5+5103X6)

3
√

3X4 (1−12X+9X2)2 ,

Â1,1,1 =− (1+3X)
9
√

3(−1+X)X4 (−1+3X2)(1−12X+9X2)
×
(
36−217X+1968X2−5559X3−3708X4+31293X5−36936X6+13851X7

)
,

(A.11)
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Â2,0,0 = 3
√

3η
(
5−36X+117X2)

2(1+3X)(1−12X+9X2) ,

Â2,1,0 = 3
√

3
(
5−78X+1530X2−7236X3+6885X4+3402X5)

4η(1+3X)2 (1−12X+9X2)2 ,

Â2,1,1 =
√

3η
(
−4−51X+924X2−2754X3+2160X4+81X5)

4(−1+X)X(1+3X)(−1+3X2)(1−12X+9X2) ,

(A.12)

where

η=
√
X(3X−2) . (A.13)

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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