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1 Introduction

It is a simple kinematical fact that massless 4-momenta can be parametrized by a point
(z, z̄) on the celestial sphere, along with a frequency ω. In this parametrization, collinear
limits of massless particles are described by collision of the corresponding points on the
celestial sphere. In gauge theory or gravity, the amplitudes factorize in terms of well-known
collinear splitting functions, whose leading behaviour in the collinear limit is proportional
to a simple pole in the inner product between the collinear momenta (cf., [1–3]). All
subleading corrections to the splitting function are regular in the inner product of collinear
momenta, and the factor multiplying the splitting function is itself a lower-point scattering
amplitude.

On the celestial sphere, the structure of the collinear limit resembles, at least heuris-
tically, an operator product expansion (OPE). It turns out that this can be made pre-
cise: replacing the frequency ω of each external particle with a conformal dimension ∆ by
means of a Mellin transform turns the scattering amplitude into an object which trans-
forms like a conformal correlation function on the celestial sphere [4, 5]. The resulting
Mellin-transformed object is often called a celestial amplitude, and the external states
are conformal primary wavefunctions. The Mellin transform precisely relates the collinear
limit in momentum space with the OPE limit of colliding operator insertions on the celes-
tial sphere [6, 7]. So with a slight abuse of terminology, one can refer to both the collinear
limit in momentum space and the OPE limit in the conformal primary basis as celestial
OPEs defined on the sphere.

Celestial OPEs play a key role in celestial holography, which aims to describe massless
S-matrix elements for ‘bulk’ theories in flat spacetime in terms of a two-dimensional confor-
mal field theory (CFT) (see [8, 9] and references therein). Indeed, celestial OPEs encode the
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data (the OPE coefficients and spectrum) of such a celestial CFT (CCFT), so determining
them is important for any bottom-up construction of celestial holography. The singu-
lar terms contributing to tree-level celestial OPEs have been determined by direct Mellin
transform or symmetry arguments for a broad array of massless field theories [6, 7, 10, 11],
and this in turn led to the discovery of various infinite-dimensional asymptotic symmetry
algebras underlying gluon and graviton scattering [10, 12, 13]. There have now been an
extensive number of studies investigating the structural properties (e.g., associativity) of
the singular contributions to tree- and loop-level celestial OPEs [14–23].

This singular OPE data would be enough to uniquely determine a local, unitary CFT,
but it is clear that any CCFT will have exotic properties (e.g., distributional terms in 2-
and 3-point correlation functions [24] and complicated analytic dependence on conformal
dimensions [25]), and the singular celestial OPEs are not sufficient. To constrain CCFTs,
one requires not just the singular terms, but the regular, subleading terms of the celestial
OPE as well. Even in momentum space (where such terms represent subleading corrections
to the collinear splitting function) these terms probe the degree to which four-dimensional
scattering amplitudes are governed by an associative OPE of a two-dimensional CFT (ce-
lestial or otherwise).

Starting with the work of [26], there has been an effort to determine regular contri-
butions to the celestial OPE using symmetry constraints or brute force calculations in the
collinear expansion of low-multiplicity gluon or graviton amplitudes [27–31]. These strate-
gies get complicated very quickly, and it is not at all clear how to proceed to arbitrary order
in the OPE, even for specific scattering amplitudes at tree-level. One approach to tackling
this problem is to find a dynamical principle for computing celestial OPEs directly, rather
than relying on kinematical constraints or Mellin transforming explicit momentum space
calculations.

In this paper, we compute all of the regular terms in the tree-level celestial OPE
between gluons for the maximal helicity violating (MHV) sector using twistor string the-
ory [32, 33]. This builds on the deep and long-standing connections between twistor theory
and the asymptotic geometry of spacetimes [34–40]. The twistor string provides a dynami-
cal principle for direct calculation of the celestial OPE, and the connection between twistor
theory and celestial holography has now been established in a variety of ways [41–46]. In a
prior paper [43], we showed that the worldsheet OPE of (ambi)twistor string theory local-
izes to the singular OPE limit on the celestial sphere and hence dynamically generates all
singular terms in the celestial OPE without any truncation or approximations. However, it
was not clear how to obtain regular terms in the OPE with this framework, which localized
on the region of the string moduli space corresponding to the singular terms only.

By restricting our attention to the MHV sector, where the twistor string worldsheet
is holomorphically identified with the celestial sphere, we obtain an effective description of
tree-level MHV gluon scattering in terms of a two-dimensional CFT on the celestial sphere
itself. This means that all terms in the celestial OPE (singular and regular) can be read
off from the OPEs between vertex operators in this effective CFT. It is crucial that the
resulting OPEs are organized in terms of soft gluon descendants to obtain expressions which
close on the gluon vertex operators at each order in the OPE expansion. This provides an
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interesting contrast with the work of [27–31], where the expansion is organized in terms of
Kac-Moody and Virasoro descendants.

Our results depend only on the fact that the two gluons involved in the celestial OPE
are external states in a tree-level MHV amplitude; the multiplicity of this amplitude or
the specific structure of the Parke-Taylor formula [47] or its Mellin transform is irrelevant.
This provides both an all-multiplicity proof of the subleading celestial OPE and an explicit
realization of the OPE by a two-dimensional CFT on the sphere. The latter guarantees
that the resulting MHV celestial OPE is associative as well as invariant under holographic
symmetry algebras.

The all-order MHV gluon celestial OPEs are surprisingly compact. For instance, the
OPE for positive helicity gluons with on-shell 4-momenta kαα̇i = καi κ̃

α̇
i represented on the

celestial sphere by vertex operators Ua
+(κi, κ̃j), the celestial OPE for the MHV sector is:

Ua
+(κi, κ̃i)Ub

+(κj , κ̃j) =
∞∑
p=0
〈i j〉p−1

p∑
k=0

p−k∑
`=0

(−[i ∂j ])`

`! Ja
−p[k](κ̃i)Ub

+(κj , κ̃i + κ̃j) . (1.1)

Here, a, b are the colour indices of the two gluons, 〈i j〉 = καi κj α, [i ∂j ] = κ̃α̇i
∂
∂κ̃α̇j

, and
Ja
−p[k] are the soft gluon descendants. This expression can easily be Mellin transformed

to yield the all-order, tree-level celestial OPE in CCFT between positive helicity gluons in
the MHV sector. For example, the result when both gluons are outgoing is

Ua
+,∆i

(zi, z̄i)Ub
+,∆j

(zj , z̄j) =
∞∑
p=0

zp−1
ij

p∑
k=0

p−k∑
`=0

∞∑
m=0

z̄mij
m!

D̄`
k

`! J
a
−p[k](z̄i) (1.2)

×B(∆i + k + `+m−1, ∆j−1) ∂̄mj Ub
+,∆i+∆j+k−1(zj , z̄j) ,

where ∆i,∆j are the conformal dimensions of the conformal primary wavefunctions, zij =
zi − zj , z̄ij = z̄i − z̄j denote the holomorphic and anti-holomorphic separations on the
celestial sphere, D̄k = −z̄ij ∂̄j + ∆i + ∆j + k − 3 is a differential operator on the celestial
sphere, and B(x, y) is the Euler Beta function.

More generally, we obtain expressions for the tree-level celestial OPE between two glu-
ons of positive or mixed positive/negative helicity in any incoming/outgoing configuration
in the MHV sector. The intrinsic chirality of the MHV sector and twistor string theory
means that there are no nontrivial OPE expressions for two negative helicity gluons that
can be obtained in this framework.

The paper is structured as follows: section 2 reviews the salient aspects of twistor string
theory and the induced description of the tree-level MHV sector in terms of a 2d CFT on
the celestial sphere. Section 3 then sets out the details of the celestial OPE computation,
defining the soft gluon descendants used to organize the expansion and performing the
calculation for both momentum eigenstates and the conformal primary basis. Section 4
concludes with a discussion of open problems and future directions. Appendix A proves
some identities used during the OPE computation.
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2 Twistor strings and the MHV sector on the celestial sphere

The maximal helicity violating (MHV) sector of tree-level gluon scattering amplitudes
— with two negative helicity and arbitrarily many positive helicity external gluons —
is remarkably simple: the amplitudes are captured at all multiplicities by the famous
Parke-Taylor formula [47]. Nair observed long ago that the Parke-Taylor formula can
be understood as a worldsheet correlator in twistor space [48], and Witten refined and
generalized this to formulate tree-level Yang-Mills theory as a twistor string [32].

In twistor string theory, the MHV sector corresponds to holomorphic maps from a
Riemann sphere to twistor space which are linear. When vertex operators for the exter-
nal gluons correspond to momentum eigenstates or conformal primary wavefunctions —
parametrized by points on the celestial sphere and a frequency or scaling dimension, re-
spectively — this means that the worldsheet is holomorphically identified with the celestial
sphere.

Broadly speaking, twistor strings are 2d chiral worldsheet CFTs governing holomorphic
maps from a closed Riemann surface to twistor space, a complex projective space which is
related non-locally to spacetime (see section 3 of [49] for a recent review). Twistor strings
have been formulated to describe several massless field theories, including supergravity [50]
and ABJM theory [51], but we will be interested in the Berkovits-Witten twistor string
describing four-dimensional Yang-Mills theory [32, 33, 52, 53].

A fact about this twistor string theory is that genus zero correlation functions of
vertex operators representing positive and negative helicity gluons are equal to tree-level
gluon scattering amplitudes. The worldsheet path integral imposes a relationship between
the degree of the holomorphic map from the worldsheet to twistor space and the number
of negative helicity gluon vertex operators: maps of degree d correspond to correlators
involving d+ 1 negative helicity gluons. In other words, the helicity grading of the world-
sheet correlator localizes the degree of the holomorphic map. After this localization, the
resulting expression, often referred to as the Roiban-Spradlin-Volovich-Witten (RSVW)
formula [32, 54], gives the tree-level Nd−1MHV gluon scattering amplitude in Yang-Mills
theory. The formula can be proved to correctly capture these scattering amplitudes using
on-shell recursion relations [55, 56] or worldsheet factorization arguments [57].

For our purposes, it suffices to simply state the gluon vertex operators and the OPEs
between the worldsheet fields which result from quantizing the model at genus zero. Let
ZA = (µα̇, λα) be homogeneous coordinates on projective twistor space, PT, which is the
open subset of CP3 corresponding to λα 6= 0. This means that the ZA are considered
only up to overall projective rescalings, ZA ∼ r ZA for any non-vanishing complex number
r ∈ C∗. As worldsheet fields on the Riemann sphere CP1, these are bosons with zero
conformal weight, taking values in degree d holomorphic maps CP1 → PT.

Positive and negative helicity gluons are represented by the (integrated) vertex oper-
ators

Ua
+ =

∫
Σ
ja a(Z) , Ua

− =
∫

Σ
ja O b(Z) . (2.1)

Here, a and b are twistor representatives for the positive and negative helicity gluons,
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respectively; they are valued in

a ∈ H0,1(PT,O) , b ∈ H0,1(PT,O(−4)) , (2.2)

where H0,1(PT,O(k)) denotes the cohomology group on PT of (0, 1)-forms which are homo-
geneous of degree k and ∂̄-closed but not exact. The Penrose transform, relating cohomol-
ogy on PT to massless free fields in (complexified) Minkowski spacetime, ensures that these
representatives correspond to on-shell positive and negative helicity gluons [58–60]. In the
negative helicity vertex operator, O is constructed from fermionic fields χa, a = 1, . . . , 4:

O := εabcd
4! χa χb χc χd = χ4

4! , (2.3)

where χa have vanishing conformal weight, are valued in degree d holomorphic polynomials
on the worldsheet and have the same projective scaling as the twistor coordinates ZA. This
ensures that the integrand of the negative helicity vertex operator is homogeneous of weight
zero, and thus well-defined.

The conformal weight (1, 0) currents ja appearing in both vertex operators arise from
a worldsheet current algebra, with the index a in the associated Lie algebra. The current
algebra contributes all of the non-trivial Wick contractions in any correlation function of
the vertex operators (2.1) through the OPE between the currents:

ja(σ) jb(σ′) ∼ k δab

(σ − σ′)2 + fabc jc(σ′)
σ − σ′

, (2.4)

where σ, σ′ are affine coordinates on the genus zero worldsheet, k is the level of the current
algebra and fabc are the structure constants of the associated gauge group. The double pole
in this OPE leads to gravitationally-mediated double-trace terms in correlation functions,
so to decouple these gravitational degrees of freedom (which correspond to four-derivative
conformal gravity, so are also non-unitary) we set the level of the worldsheet current algebra
to zero: k → 0 [52, 61].1 Hence, the current OPE on the worldsheet will be taken to have
only a simple pole

ja(σ) jb(σ′) ∼ fabc jc(σ′)
σ − σ′

, (2.5)

from now on.
To obtain answers in momentum space, one chooses momentum eigenstate represen-

tatives for the twistor representatives in the vertex operators (2.1). For an on-shell 4-
momentum decomposed into spinors as kαα̇ = κακ̃α̇, the corresponding positive and nega-
tive helicity gluon representatives in twistor space are (cf., [62]):

a(Z) =
∫
C∗

ds
s
δ̄2(κ− s λ) ei s[µ κ̃] , b(Z) =

∫
C∗

ds s3 δ̄2(κ− s λ) ei s[µ κ̃] , (2.6)

with the scale parameter s ∈ C∗ ensuring that each representative has the appropriate
homogeneity on twistor space and

δ̄2(κ− s λ) := 1
(2πi)2

∧
α=0,1

∂̄

( 1
κα − s λα

)
, (2.7)

is the two-dimensional holomorphic delta function.
1Ordinarily the level is required to be a positive integer for the worldsheet current algebra to be globally

well-defined, but for calculations based only on local worldsheet OPEs, having k = 0 is not problematic.
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Now, given the relation between the degree d of the holomorphic map from the world-
sheet to twistor space, and the helicity grading of the resulting scattering amplitude
(namely, Nd−1MHV), the MHV sector of twistor string theory corresponds to linear, d = 1
holomorphic maps. In this case, the zero modes of the ZA worldsheet fields are

ZA(σ) = UAα σ
α , (2.8)

where σα = (σ0, σ1) are homogeneous coordinates on the CP1 worldsheet and {UAα } are
the map moduli. The remaining GL(2,C) redundancy in this description can be fixed
by picking (compatible) values for four of the moduli; a particularly convenient choice is
to set Uβα = δαβ . This holomorphically identifies the homogeneous coordinates σα on the
worldsheet Σ ∼= CP1 with the λα components of the twistor field. With this identification,
the remaining components of the degree one map to twistor space are simply

µα̇(λ) = xαα̇ λα , χa(λ) = θaα λα , (2.9)

where (xαα̇, θaα) are the remaining four bosonic and eight fermionic moduli.
The relations (2.9) are easily recognizable as the standard twistor incidence relations

for chiral Minkowski superspace, relating a point (x, θ) ∈ M to a holomorphic, linearly
embedded sphere in PT; for the MHV sector, this Riemann sphere in twistor space is
identified (holomorphically) with the string worldsheet itself. Furthermore, the sphere in
twistor space with homogeneous coordinates λα is precisely the celestial sphere (cf., [41]).

This holomorphic identification between the twistor string worldsheet and the celestial
sphere for the MHV sector can be implemented directly at the level of the individual vertex
operators. This allows us to effectively describe the MHV sector in terms of a 2d CFT
living on the celestial sphere itself. To do this, we parametrize the on-shell 4-momentum
of the ith external gluon as kαα̇i = καi κ̃

α̇
i with

κi α = (1, zi) , κ̃i α̇ = εi ωi z̄i α̇ = εi ωi (1, z̄i) , (2.10)

where ωi is the frequency, (zi, z̄i) is a point on the celestial sphere (in an affine coor-
dinate patch), and εi = ±1 denotes whether the momentum in incoming (εi = −1) or
outgoing (εi = 1). Note that this is a slightly non-standard parametrization, associating
the frequency with the anti-holomorphic coordinates on the celestial sphere. This simpli-
fies subsequent formulae by identifying holomorphic momentum spinor contractions with
holomorphic displacements on the celestial sphere, 〈i j〉 = zi − zj , the only price is that
holomorphic coordinates on the celestial sphere now carry little group weight.

Consider a positive helicity gluon vertex operator Ua
+,i in the MHV sector of the twistor

string. With the GL(2,C)-fixing of (2.9), for which σi α = λi α, we choose an affine patch
of the Riemann sphere so that λi α = (1, λi). The holomorphic delta function in the vertex
operator can be decomposed using a normalized spinor dyad aα = (1, 0), bα = (0,−1):

Ua
+,i =

∫
CP1×C∗

ja(λi)
dsi
si

δ̄(〈a i〉 − si 〈a λi〉) δ̄(〈b i〉 − si 〈b λi〉) ei si [µ(λi) i]

=
∫

CP1×C∗

ja(λi)
dsi
si

δ̄(1− si) δ̄(si λi − zi) ei si [µ(λi) i] ,

(2.11)
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with 〈a b〉 = 1. The scale integral in si can now be performed against the first delta
function, leaving

Ua
+,i =

∫
CP1

ja(λi) δ̄(λi − zi) ei [µ(λi) i] , (2.12)

with the remaining delta function explicitly implementing the holomorphic identification
between the vertex operator insertion on the worldsheet (λi) and the point on the celestial
sphere corresponding to the gluon momentum (zi).

The worldsheet integral in (2.12) can now be done against this remaining delta function
to leave a vertex operator defined entirely on the celestial sphere:

Ua
+,i(zi, κ̃i) = ja(zi) exp (i [µ(zi) i]) . (2.13)

Here, we have abused notation by denoting the current ja with the same symbol that
previously denoted the worldsheet current of conformal weight (1, 0); in particular ja

old(σ) =
ja

new(σ) dσ in terms of affine coordinates. From now on, ja denotes the Kac-Moody current
with zero conformal weight. An identical procedure can be used to reduce the negative
helicity gluon vertex operator to a vertex operator on the celestial sphere:

Ua
−,i(zi, κ̃i) = ja(zi) O(zi) exp (i [µ(zi) i]) , (2.14)

with ja again denoting the pure conformal weight zero Kac-Moody current.
It is straightforward to Mellin transform these expressions to obtain the correspond-

ing celestial sphere vertex operators in the conformal primary basis [4, 5]. This Mellin
transform exchanges the frequency ωi with a scaling dimension ∆i:

Ua,εi
±,∆i

(zi, z̄i) =
∫ ∞

0
dωi ω∆i−1∓1

i Ua
±,i(zi, κ̃i) , (2.15)

where the additional helicity dependent factors of ωi arise due to the non-standard little
group scaling associated with the parametrization (2.10). For these conformal primary
vertex operators, the incoming/outgoing parameter is explicit, as the Mellin transform
strips off the prefactors εi ωi of the momentum spinor κ̃i.

Regardless of whether one considers momentum eigenstates or conformal primary wave-
functions, it is clear that the positive and negative helicity gluon vertex operators can be
reduced to operator insertions on the celestial sphere for the MHV sector. Interactions
between these vertex operators can now be captured by an effective 2d CFT defined on the
celestial sphere itself:

SMHV = 1
2π

∫
CP1

λ̃α̇(z) ∂̄µα̇(z) + Scurrent
∣∣∣
CP1

, (2.16)

where Scurrent|CP1 denotes the worldsheet current algebra restricted to the celestial sphere.
This CFT induces OPEs between the fields on the celestial sphere:

µα̇(zi) λ̃β̇(zj) ∼
δα̇
β̇

zij
, ja(zi) jb(zj) ∼

fabc jc(zj)
zij

, (2.17)

where zij := zi − zj .
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This 2d CFT is ‘effective’ in the sense that it only describes correlation functions of the
vertex operators in the MHV configuration. Indeed, it is easy to see that these correlators
reproduce the Parke-Taylor formula for the MHV amplitude. Taking only one colour-
ordered term contributing to the correlation function of Kac-Moody currents, one finds〈
U−,i U−,j

∏
l 6=i,j
U+,l

〉
= 1
z12 z23 · · · zn1

∫
d4x d4θO(zi) O(zj) exp

(
i
n∑
l=1

kl · x
)

(2.18)

= (2π)4 δ4
(

n∑
l=1

kl

)
z4
ij

z12 z23 · · · zn1
= (2π)4 δ4

(
n∑
l=1

kl

)
〈i j〉4

〈1 2〉 〈2 3〉 · · · 〈n 1〉 ,

as desired, having used ∫
d8θO(zi) O(zj) = z4

ij , (2.19)

when evaluating the fermionic moduli integral.
More generally, OPEs between fields or the vertex operators (2.13), (2.14), or (2.15)

defined by the CFT (2.16) only hold in the MHV sector. Within this sector, such OPEs in
the 2d CFT are, by definition, OPEs on the celestial sphere itself.

3 OPE computation

Armed with the description of the MHV sector on the celestial sphere in terms of the vertex
operators (2.13), (2.14) and the 2d CFT (2.16), we can now consider the OPE between
gluon insertions. For momentum eigenstates, the resulting OPE expansion corresponds to
an expansion in the holomorphic collinear limit, and by Mellin transforming the result we
obtain the descendant expansion of the celestial OPE for the MHV sector of CCFT.

Since the effective theory lives on the celestial sphere itself, we are able to perform
the descendant expansions in this OPE to all-orders in both the holomorphic and anti-
holomorphic degrees of freedom: in momentum space, this means that we obtain all-order
collinear expansions, while in CCFT this results in all-order expressions for the celestial
OPE with all regular terms included. The resulting expressions are organized in terms of
soft gluon descendants.

3.1 Soft descendants

In this section, we identify the soft gluon descendants used to organize the terms in the
exact OPE between two vertex operators. The only non-trivial Wick contractions between
gluon vertex operators (positive or negative helicity) are through the Kac-Moody current.
While the singular part of the OPE is given by (2.17), to obtain all-order expressions we
require the exact OPE between two Kac-Moody currents. This is obtained in the usual
way, by expanding the current ja(z) in modes (cf., [63–65]):

ja(zi) jb(zj) = fabc jc(zj)
zij

+
∞∑
n=0

znij
n! :∂nja jb : (zj) , (3.1)

where ∂ denotes holomorphic differentiation and normal ordering : : is defined by

:∂nja jb : (zj) = 1
2πi

∮
C(zj)

dzi
∂nja(zi) jb(zj)

zij
, (3.2)
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for C(zj) a small contour enclosing zj . From now on, normal ordering with this prescription
will be implicitly assumed.

To define soft gluon descendants of the vertex operators, we first identify the Kac-
Moody descendants through the OPE between the Kac-Moody current and a gluon vertex
operator (of either helicity) on the celestial sphere:

ja(zi)Ub
±,j(zj , κ̃j) = fabc Uc(zj , κ̃j)

zij
+
∞∑
n=1

zn−1
ij ja

−n Ub
±,j(zj , κ̃j) , (3.3)

where {ja
−n} are the modes of the Kac-Moody current. The action of these modes on vertex

operators is easily identified by comparing (3.3) and (3.1). Now, conformally soft gluon
currents on the celestial sphere are encoded in twistor space by polynomials in the two
components of µα̇, along with the Kac-Moody current [41, 43]:

Ja[k, l](z) := ik+l ja(z)
(
µ1̇)k(z)

(
µ2̇)l(z) . (3.4)

Note that ja ≡ Ja[0, 0] in this decomposition. Soft gluon vertex operators are now de-
fined by

Ja[p](z, κ̃) := ip

p! j
a(z) [µ(z) κ̃]p =

∑
k+l=p

κ̃1̇
k κ̃2̇

l

k! l! Ja[k, l] , p ∈ Z≥0 , (3.5)

with the second equality following from the expansion of [µ κ̃]p = (µ1̇κ̃1̇ +µ2̇κ̃2̇)p using the
binomial theorem. Acting with these soft gluons on a momentum eigenstate gives OPEs
of the form

Ja[p](zi, κ̃i)Ub
±,j(zj , κ̃j) = [i ∂j ]p

p!
fabc Uc

±,j(zj , κ̃j)
zij

+
∞∑
n=1

zn−1
ij Ja

−n[p](κ̃i)Ub
±,j(zj , κ̃j) , (3.6)

where [i ∂j ] ≡ κ̃α̇i ∂/∂κ̃α̇j . The coefficients Ja
−n[p](κ̃i) are the soft gluon descendants in terms

of which all OPEs between the gluon vertex operators can be organized.
Using (3.5) and (3.6), along with the basic OPEs of the Kac-Moody currents, it is

straightforward to identify the action of the soft gluon descendants at each order. For
instance, the action of the first soft descendant Ja

−1[1](κ̃i) is given by

Ja
−1[1](κ̃i)Ub

±,j = i fabc jc(zj) [∂µ(zj) i] ei [µ(zj) j] + i ja jb(zj) [µ(zj) i] ei [µ(zj) j] . (3.7)

More generally, by writing any exact OPE as a series in zij and comparing against the soft
descendant expansion one can identify the action of the soft descendants at each order in
the OPE expansion.

Now that we have the definition of soft descendants in hand, we are ready to write the
OPEs between vertex operators in terms of them.

3.2 The OPE in momentum space

Armed with the soft descendant expansion, we can now consider the OPE between two
positive helicity gluon vertex operators, in a momentum eigenstate basis, on the celestial
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sphere. The strategy is to perform the computation by writing all terms in the OPE as a
series in zij , then recasting terms at each order in terms of combinations of soft descendants.

We start by computing the OPE of two positive helicity vertex operators (2.13); using
the Kac-Moody OPE (3.1) and the fact that the µα̇(z) fields have no singular OPEs between
themselves, it follows that

Ua
+,i(zi, κ̃i)Ub

+,j(zj , κ̃j) = ja(zi) jb(zj) ei [µ(zi) i] ei [µ(zj) j]

=
( ∞∑
m=0

zm−1
ij ja

−m j
b
)( ∞∑

n=0

znij
n! ∂

n
(
ei [µ i]

)
ei [µ j]

)
, (3.8)

where

ja
−m j

b :=


fabc jc(zj) when m = 0

∂m−1ja jb(zj)
(m− 1)! when m ≥ 1

(3.9)

∂ ≡ ∂/∂zj and all fields on the second line of (3.8) are now evaluated at zj and implicitly
normal-ordered. In writing this expression, we have only assumed that the fields µα̇(z) are
analytic away from z = 0 when Taylor expanding ei [µ(zi) i] around zj . Schematically, (3.8)
takes the form of an expansion in the separation zij :

Ua
+,i(zi, κ̃i)Ub

+,j(zj , κ̃j) =
∞∑
p=0

zp−1
ij Uab

p (zj , κ̃i, κ̃j) , (3.10)

where the coefficients Uab
p are what we want to determine. For instance, the coefficient at

O(z−1
ij ) (i.e., the leading, singular part of the OPE) is

Uab
0 = fabc jc ei [µ i]+i [µ j] = fabc Uc

+(zj , κ̃i + κ̃j) , (3.11)

which corresponds to the well-known collinear splitting function for positive helicity glu-
ons [1, 66].

From (3.8), one identifies

Uab
p (zj , κ̃i, κ̃j) =

p∑
n=0

1
n! j

a
n−p j

b ei [µ j] ∂n
(
ei [µ i]

)
. (3.12)

In order to evaluate ∂n(ei [µ i]), one needs the following main identity: for any smooth f(z),
the nth derivative ∂nef(z) of its exponential is given by:

∂nef(z) = ef(z)
n∑
`=0

∑̀
k=0

(−1)`−k

k! (`− k)! f
`−k(z) ∂nfk(z) . (3.13)

We review a brief proof of this identity in appendix A. Applying it to f(z) = i [µ(z) i] gives

Uab
p =

p∑
n=0

1
n! j

a
n−p j

b ei [µ i]+i [µ j]
n∑
`=0

∑̀
k=0

(−1)`−k i`

k! (`− k)! [µ i]`−k ∂n
(
[µ i]k

)
. (3.14)
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A second useful identity, valid for any smooth f(z), states that:

∑̀
k=0

(−1)`−k

k!(`− k)! f
`−k ∂nfk = 0 , ∀ ` > n , (3.15)

see equation (A.6) of appendix A. Using this for f(z) = i [µ(z) i], the second sum in (3.14)
can be trivially extended from 0 ≤ ` ≤ n to 0 ≤ ` ≤ p, since the summands for n+1 ≤ ` ≤ p
vanish identically:

Uab
p =

p∑
n=0

1
n! j

a
n−p j

b ei [µ i]+i [µ j]
p∑
`=0

∑̀
k=0

(−1)`−k i`

k! (`− k)! [µ i]`−k ∂n
(
[µ i]k

)
. (3.16)

As a result, the sum over n can be commuted through the other sums. This expression is
now ready to be recast in terms of soft descendants of the gluon operator Uc

+(z, κ̃1 + κ̃2).
The OPE of a hard gluon Ub

+,j with a soft gluon Ja[k](zi, κ̃i) = ja(zi) [µ(zi) i]k can be
written out along the sames lines as (3.8), giving:

Ja[k](zi, κ̃i)Ub
+,j(zj , κ̃j) = ik

k! j
a(zi) jb(zj) [µ(zi) i]k ei [µ(zj) j]

= ik

k!

( ∞∑
m=0

zm−1
ij ja

−m j
b
)( ∞∑

n=0

znij
n! ei [µ j] ∂n

(
[µ i]k

))
. (3.17)

Comparing with (3.6), we see that a typical soft descendant has the explicit expression

Ja
−p[k](κ̃i)Ub

+,j(zj , κ̃j) = ik

k!

p∑
n=0

1
n! j

a
n−p j

b ∂n
(
[µ i]k

)
ei [µ j] . (3.18)

By shifting κ̃j 7→ κ̃j + κ̃i in this expression, one also obtains

Ja
−p[k](κ̃i)Ub

+(zj , κ̃i + κ̃j) = ik

k!

p∑
n=0

1
n! j

a
n−p j

b ∂n
(
[µ i]k

)
ei [µ i]+i [µ j] , (3.19)

which contains precisely the kind of terms entering (3.16).
Performing the sum over n in (3.16) using (3.19) gives all of the expansion coefficients

in the OPE between two positive helicity gluons in a basis of soft gluon descendants:

Uab
p =

p∑
`=0

∑̀
k=0

(−i [µ i])`−k

(`− k)! Ja
−p[k](κ̃i)Ub

+(zj , κ̃i + κ̃j) . (3.20)

Written in terms of these coefficients, we now obtain an all-order expression for the celes-
tial OPE

Ua
+,i Ub

+,j =
∞∑
p=0

zp−1
ij

p∑
`=0

∑̀
k=0

(−[i ∂j ])`−k

(`− k)! Ja
−p[k](κ̃i)Ub

+(zj , κ̃i + κ̃j) , (3.21)

where factors of i [µ i] have been replaced with the differential operators

i [µ i]←→ [i ∂j ] ≡ κ̃α̇i
∂

∂κ̃α̇j
, (3.22)

when acting on ei [µ i]+i [µ j].
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Exchanging the sums over ` and k, then shifting ` 7→ `+k simplifies the result further to

Ua
+,i Ub

+,j =
∞∑
p=0

zp−1
ij

p∑
k=0

p−k∑
`=0

(−[i ∂j ])`

`! Ja
−p[k](κ̃i)Ub

+(zj , κ̃i + κ̃j) . (3.23)

This is the exact tree-level celestial OPE, to all orders in zij , for two positive helicity
gluons in the MHV sector in a momentum eigenstate basis. Note that this expression also
encodes all orders in the anti-holomorphic collinear limit as well: for each p ≥ 0, the soft
descendant Ja

−p[k](κ̃i)Ub
+(zj , κ̃i + κ̃j) can be Taylor expanded around κ̃i = κ̃j . Since this

anti-holomorphic dependence is exponential, this expansion generates all-order terms in
[i j] as well.

The calculation of the celestial OPE proceeds along identical lines for the mixed-helicity
configuration, involving one positive and one negative helicity gluon. In this case, the only
difference is the insertion of O(z) — built from the twistor fermions — which accompanies
the negative helicity vertex operator (2.14). The end result is a celestial OPE

Ua
+,i Ub

−,j =
∞∑
p=0

zp−1
ij

p∑
k=0

p−k∑
`=0

(−[i ∂j ])`

`! Ja
−p[k](κ̃i)Ub

−(zj , κ̃i + κ̃j) , (3.24)

with all the resulting terms proportional to soft gluon descendants of a negative helicity
gluon.

At first, it may seem that the result is incomplete: the leading collinear splitting
function for mixed-helicity gluons includes two terms, one for each helicity, whereas the
p = 0 term in (3.24) contains only the negative helicity contribution to this splitting
function. The key is to remember that (3.24) holds only for the MHV sector, where
positive helicity terms in the mixed-helicity OPE are identically zero. Phrased differently,
the MHV amplitude is homogeneous with respect to collinear limits (i.e., all collinear
limits of a MHV amplitude give lower-point MHV amplitudes), and positive helicity terms
on the right-hand-side of (3.24) would violate this homogeneity. Indeed, such terms would
correspond to generating a tree-level gluon scattering amplitude with only one negative
helicity particle, which are identically zero.

Finally, one can consider the OPE between two negative helicity vertex operators. This
OPE is on a different footing to the others due to the inherent chirality of the MHV sector;
this is captured in the fact that the OPE between Ua

−,i and Ub
−,j is proportional to

O(zi) O(zj) = O(zj)
∞∑
m=0

zmij
m! ∂

mO(zj) , (3.25)

where O(z) ≡ χ4(z). Since
χa(z) = θa0 + z θa1 , (3.26)

and there are only 8 degrees of freedom in the fermionic θaα, only the m = 4 term from the
expansion (3.25) survives, consistent with (2.19). The rest of the OPE calculation proceeds
as before, leaving:

Ua
−,i Ub

−,j = θ4

4!

∞∑
p=0

zp+3
ij

p∑
k=0

p−k∑
`=0

(−[i ∂j ])`

`! Ja
−p[k](κ̃i)Ub

−(zj , κ̃i + κ̃j) , (3.27)
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where

θ4 := εabcd
4! θa1 θb1 θc1 θd1 , (3.28)

denotes the combination of fermionic moduli produced by the expansion.
Note that this OPE has no singular term, as expected for the MHV sector. If this OPE

were singular, it would correspond to generating a collinear limit of the tree-level MHV
amplitude which had one negative helicity gluon, and such tree amplitudes are identically
zero. This is tied to the presence of θ4 in (3.27), which indicates that the OPE only makes
sense in the context of the complete correlator (2.18), where the d8θ integral must be
saturated. Regularity of this expression is also consistent with generating non-trivial form
factors for two anti-self-dual fields in self-dual Yang-Mills theory [45].

Hence, the expression (3.27) is not a self-contained celestial OPE, since it cannot be
written purely in terms of locations on the celestial sphere and descendants of the vertex
operators. This is due to the underlying chirality of the twistor string, for which the OPE
between negative helicity vertex operators is not really well defined. As such, (3.27) will
not provide good OPE data in the context of CCFT, and we will not consider this helicity
configuration in the MHV sector any further.

3.3 The OPE in celestial CFT

By Mellin transforming the results (3.23) and (3.24) to the conformal primary basis, we
can now obtain all-order celestial OPEs in the context of CCFT, which include all regular
contributions in the MHV sector. To do this, we follow the rule (2.15) to implement
the Mellin transform while making all dependence on the frequencies explicit using (2.10)
and (3.19). In doing this, it is easier to replace [i ∂j ] with i [µ i] according to (3.22) at the
beginning of the calculation.

Starting with the OPE between positive helicity gluons, the Mellin transformed OPE is

Ua,εi
+,∆i

(zi, z̄i)U
b,εj
+,∆j

(zj , z̄j)

=
∫
R2

+

dωi ω∆i−2
i dωj ω

∆j−2
j

∞∑
p=0

zp−1
ij

p∑
k=0

p−k∑
`=0

(εi ωi)`
(−i [µ z̄i])`

`! (εi ωi)k

× Ja
−p[k](z̄i) jb eiεiωi[µz̄i]+iεjωj [µz̄j ] , (3.29)

where all fields are evaluated at zj with implicit normal-ordering on the right-hand-side of
the OPE relation, and we have abbreviated z̄ij α̇ ≡ z̄i α̇ − z̄j α̇ = (0, z̄ij) (with z̄ij = z̄i − z̄j
as usual). Now, the argument of the exponential in this expression can be conveniently
rewritten as

i εi ωi [µ z̄i] + i εj ωj [µ z̄j ] = i (εiωi + εjωj)
(

[µ z̄j ] + [µ z̄ij ]
1 + εjωj

εiωi

)
, (3.30)
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and combined with rescaling the first Mellin integral by ωi → ωiωj this leaves

Ua,εi
+,∆i
Ub,εj

+,∆j
=
∞∑
p=0

zp−1
ij

p∑
k=0

p−k∑
`=0

∫
R2

+

dωi ω`+k+∆i−2
i dωj ω

k+`+∆i+∆j−3
j (3.31)

× ε`+ki

(−i [µ z̄i])`

`! Ja
−p[k](z̄i) jb exp

[
i (εiωi + εj)ωj

(
[µ z̄j ] + [µ z̄ij ]

1 + εj
εiωi

)]
.

After rescaling the second Mellin integral by ωj → ωj
|εj+εiωi| , it is possible to Taylor expand

the exponential in z̄ij :

Ua,εi
+,∆i
Ub,εj

+,∆j
=
∞∑
p=0

zp−1
ij

p∑
k=0

p−k∑
`=0

∞∑
m=0

∫
R2

+

dωi ω`+k+m+∆i−2
i

|εj + εiωi|∆i+∆j+k+`+m−2 dωj ω
∆i+∆j+k+`−3
j

× ε`+k+m
i [sgn(εiωi + εj)]m Ja

−p[k](z̄i) jb z̄
m
ij

m!
(−i [µ z̄i])`

`!
× ∂̄mj exp

[
i sgn(εiωi + εj)ωj [µ z̄j ]

]
, (3.32)

where ∂̄j ≡ ∂
∂z̄j

. Already, we see that the expression explicitly contains all orders in both
zij and z̄ij .

Using the fact that [µ z̄i] = µ0̇ + z̄i µ
1̇, a short calculation demonstrates that

− i [µ z̄i]←→
1

ωj sgn(εi ωi + εj)

(
−z̄ij ∂̄j − ωj

∂

∂ωj

)
, (3.33)

when acting on the exponential in (3.32). The Euler vector ωj ∂
∂ωj

can then be integrated-
by-parts to extract the homogeneity in ωj of all non-exponential factors in each term of
the expression. This results in:

Ua,εi
+,∆i
Ub,εj

+,∆j
=
∞∑
p=0

zp−1
ij

p∑
k=0

p−k∑
`=0

∞∑
m=0

z̄mij
m! ε

m+`+k
i

D̄`
k

`! J
a
−p[k](z̄i) jb ∂̄mj (3.34)

×
∫
R2

+

dωi ω`+k+m+∆i−2
i dωj ω

∆i+∆j+k−3
j∣∣∣1 + εiωi

εj

∣∣∣∆i+∆j+k+`+m−2 [sgn(εi ωi+εj)]m+` ei sgn(εiωi+εj)ωj [µ z̄j ],

where
D̄k := −z̄ij ∂̄j + ∆i + ∆j + k − 3 , (3.35)

is a differential operator on the celestial sphere, dependent on the conformal dimensions as
well as the summation index k.

At this stage, we observe that

∫ ∞
0

dωj ω
∆i+∆j+k−3
j jb(zj) exp

[
i sgn(εiωi + εj)ωj [µ z̄j ]

]
= Ub,sgn(εiωi+εj)

+,∆i+∆j+k−1(zj , z̄j) , (3.36)
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by virtue of (2.15). Combined with some trivial algebraic rearrangements, we are left with
the all-orders celestial OPE in the conformal primary basis

Ua,εi
+,∆i

(zi, z̄i)U
b,εj
+,∆j

(zj , z̄j)

=
∞∑
p=0

zp−1
ij

p∑
k=0

p−k∑
`=0

∞∑
m=0

z̄mij
m! ε

m+`+k
i

D̄`
k

`! J
a
−p[k](z̄i)

×
∞∫
0

dωi ω`+k+m+∆i−2
i∣∣∣ εiωiεj

+ 1
∣∣∣∆i+∆j+k+`+m−2 [sgn(εi ωi + εj)]m+` ∂̄mj U

b,sgn(εiω+εj)
+,∆i+∆j+k−1(zj , z̄j) .

(3.37)

This provides a ‘master’ formula for the celestial OPE, valid for any configuration of in-
coming/outgoing positive helicity gluons in the MHV sector.

It is easy to see that the p = 0 terms in (3.37) correctly reproduce the master formula
for the singular contribution to the OPE [43]. It is illustrative to evaluate the OPE for
explicit incoming/outgoing configurations, where the remaining Mellin frequency integral
can be performed explicitly. For instance, when both gluons are in the same configuration
(εi = εj = ε), one obtains

Ua,ε
+,∆i
Ub,ε

+,∆j
=
∞∑
p=0

zp−1
ij

p∑
k=0

p−k∑
`=0

∞∑
m=0

z̄mij
m!

D̄`
k

`! J
a
−p[k](z̄i)

×B(∆i + k + `+m− 1, ∆j − 1) ∂̄mj U
b,ε
+,∆i+∆j+k−1(zj , z̄j) , (3.38)

where B(x, y) denotes the Euler Beta function. The p = 0 terms in this expression con-
tain the single tower of SL(2,R) descendants that come with the pole in zij which were
previously determined in the literature [6, 7, 43]; while these singular terms are valid in
general, all terms for p > 0 hold only for the celestial OPE within the MHV sector of gluon
scattering.

The Mellin transform of the celestial OPE between a positive and a negative helicity
gluon (3.24) follows similar lines; the only difference is in the initial definition of the
transform with respect to the frequency of the negative helicity particle via (2.15). The
resulting master formula is:

Ua,εi
+,∆i

(zi, z̄i)U
b,εj
−,∆j

(zj , z̄j)

=
∞∑
p=0

zp−1
ij

p∑
k=0

p−k∑
`=0

∞∑
m=0

z̄mij
m! ε

m+`+k
i

D̄′ `k
`! Ja

−p[k](z̄i)

×
∞∫
0

dωi ω`+k+m+∆i−2
i∣∣∣ εiωiεj

+ 1
∣∣∣∆i+∆j+k+`+m [sgn(εi ωi + εj)]m+` ∂̄mj U

b,sgn(εiω+εj)
−,∆i+∆j+k−1(zj , z̄j) ,

(3.39)

where
D̄′k := −z̄ij ∂̄j + ∆i + ∆j + k − 1 , . (3.40)

As in momentum space, this OPE features only contributions from soft gluon descendants
of the negative helicity gluon on the celestial sphere. Indeed, the p = 0 terms in (3.39)
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only contain one (chiral) half of those appearing in the master formula for the singular,
mixed helicity celestial OPE [43]. This is, once again, an intrinsic feature of the mixed
helicity OPE in the MHV sector (as discussed above). Whereas the singular terms in the
same helicity OPE (3.37) are valid beyond the MHV sector, even the singular terms in the
mixed helicity OPE are sensitive to the helicity configuration on the celestial sphere.

For the sake of concreteness, one can consider the mixed helicity OPE for gluons in the
same incoming/outgoing configuration (εi = εj = ε). This leads to an explicit all-orders
tower of OPE coefficients

Ua,ε
+,∆i
Ub,ε
−,∆j

=
∞∑
p=0

zp−1
ij

p∑
k=0

p−k∑
`=0

∞∑
m=0

z̄mij
m!

D̄′ `k
`! Ja

−p[k](z̄i)

×B(∆i + k + `+m− 1, ∆j + 1) ∂̄mj U
b,ε
−,∆i+∆j+k−1(zj , z̄j) , (3.41)

defined in terms of the Euler Beta function. It is easy to see that the p = 0 terms
in this expression coincide with one chiral half of the singular terms for one SL(2,R)
descendant tower in the OPE of mixed helicity celestial gluons which have been appeared
previously [7, 43].

3.4 Null states

Comparing our results with previous expressions at subleading level in the literature [28]
is an involved process. This is due to the fact that we use soft-descendants to organize
the OPE expansion, while the expression in [28] is written in terms of Kac-Moody and
Virasoro descendants. The way to bridge this gap is to consider the existence of null states
in CCFT. On these states, we expect that the action of the soft currents can be recast in
terms of the Kac-Moody and Virasoro currents. That is, soft descendants of these states
can be rewritten in a basis of Kac-Moody and Virasoro descendants.

While these null relations are not a priori known, we can leverage our free field real-
ization of the target space algebra at MHV level to calculate them explicitly. This is rather
trivial at first order. In this case the leading soft current is given by the residue around
∆ = 1 of the hard particle U∆ (cf., [43, 67, 68]). In our model, this is the residue of the
vertex operator (2.15) which is the Kac-Moody current ja itself; this is just a restatement
of (3.4), where Ja[0, 0] = ja. The next soft current is more interesting. From (3.4), it is a
combination of the Kac-Moody current and the µ operators. In a conformal basis it can
be written as

Ja[1] = Ja[1, 0] + z̄ Ja[0, 1] = ja [µ(z) z̄] , (3.42)

and its descendant as
Ja
−1[1] = ja

0 [µ−1 z̄] + ja
−1 [µ0 z̄]. (3.43)

The descendants of µα̇ acting on a gluon operator are given by a Taylor expansion, since
there is no short distance singularity:

µα̇(zi)Ua
∆(zj) =

∞∑
n=0

znij
n! ∂

nµα̇ Ua
∆(zj) ≡

∞∑
p=1

zp−1
ij µα̇−p Ua

∆(zj) , (3.44)
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suppressing irrelevant helicity and incoming/outgoing labels. This means that

[µ0 z̄]Ua
∆(z) = [µ z̄]Ua

∆(z) = (∆− 2)Ua
∆−1(z) , (3.45)

and
[µ−1 z̄]Ua

∆(z) = [∂µ z̄]Ua
∆(z) , (3.46)

in terms of the modes appearing in the soft gluon descendant (3.43).
Using these relations, the action of Ja

−1[1] on a hard gluon in the conformal primary
basis can be written as

Ja
−1[1]Ub

∆ = (∆− 1) ja
−1 U b∆−1 − jb

−1 Ua
∆−1 − fabc L−1 Uc

∆−1 , (3.47)

to lowest order in z̄, where L−1 = ∂ is the SL(2,C)/Virasoro generator. Equation (3.47)
is the same as the null state condition of [29], and can be used to rewrite the OPE at
subleading order in a basis of Kac-Moody and Virasoro descendants matching the sublead-
ing terms found in [28]. We expect that similar null relations hold for other soft current
descendants. These can, in principle, be derived from the representation (3.4) for the soft
currents and their action on hard particles using the effective OPEs, though the process
quickly becomes rather cumbersome.

4 Discussion

In this paper, we used twistor string theory to provide all-order expressions for tree-level
celestial OPEs of gluons in the MHV sector. The results (3.23), (3.24), (3.37) and (3.39)
are organized in terms of soft gluon descendants, when enables the OPE to close on the
gluon vertex operators. These provide the first instances where all regular contributions to
the celestial OPE, needed to constrain any putative CCFT, are captured in their entirety.

There are many interesting directions which can be explored following on from this
work. While the twistor string provides a dynamical principle for generating the celestial
OPEs, it is natural to ask if there are alternative ways to obtain our results using more
standard amplitudes technology; we will return to this in future work [69]. It should also
be possible to obtain all-order celestial OPEs for the MHV sector of graviton scattering; we
attempted to do this using the twistor string of [50] for N = 8 supergravity, but ran into
technical obstructions related to the worldsheet supersymmetry of that model. A more
straightforward route is probably to use chiral twistor sigma models [41, 70, 71], which
describe the MHV sector in terms of a classical 2d CFT on the celestial sphere directly.

In addition, one can ask to what extent it is possible to push these all-order results
beyond the MHV sector. From the perspective of twistor string theory, it is unclear how to
achieve this: NkMHV scattering corresponds to degree k + 1 holomorphic maps from the
Riemann sphere to twistor space, so the worldsheet is no longer identified with the celestial
sphere at generic points in the moduli space. While this identification does emerge in the
strict OPE limit on the worldsheet [43], it only captures the singular contributions to the
celestial OPE.
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A Useful identities

Let ∂ ≡ ∂/∂z. In deriving the celestial OPE, we needed the functional identity

∂nef = ef
n∑
k=0

k∑
j=0

(−f)k−j ∂nf j

j! (k − j)! , (A.1)

that computes z derivatives of ef(z) for a given smooth function f(z). This is a special
case of Hoppe’s formula for the derivatives of composite functions. In this appendix, we
review a proof of this identity that is adapted from the more general presentation in [72]
and references therein.

Consider the slightly more general problem of computing derivatives of etf(z) in the
presence of an auxiliary parameter t. It is straightforward to inductively verify that the
nth derivative ∂netf is etf times a polynomial of degree n in t,

∂netf = etf
n∑
k=0

an,k t
k (A.2)

where the coefficients an,k depend on f and its derivatives but not on t. If we can determine
the an,k, we can compute derivatives of ef by setting t = 1.

In order to find an,k, we will relate these to the derivatives ∂nf j for 0 ≤ j ≤ n,

∂nf j = ∂jt
(
∂netf

)∣∣
t=0 =

n∑
r=0

an,r ∂
j
t (tretf )

∣∣
t=0 =

j∑
r=0

j!
(j − r)! f

j−r an,r (A.3)

where we have substituted (A.2) to evaluate the t derivatives. These provide a system of
algebraic equations for an,r. To invert them, we compute for 0 ≤ k ≤ n:

k∑
j=0

(−f)k−j∂nf j

j!(k − j)! =
k∑
j=0

j∑
r=0

(−1)k−jfk−ran,r
(k − j)!(j − r)!

=
k∑
r=0

(−f)k−ran,r
(k − r)!

k∑
j=r

(
k − r
j − r

)
(−1)j−r

=
k∑
r=0

(−f)k−ran,r
(k − r)! (1− 1)k−r

= an,k , (A.4)
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having exchanged the sums over j and r in the second line, and applied the binomial
theorem in the third. Inserting this solution for an,k in (A.2) and setting t = 1 gives us the
required identity (A.1).

A further useful identity needed for the simplification of the OPE is obtained by
repeating this computation for k > n. The calculation of (A.3) can be generalized to
arbitrary j ∈ Z>0 in terms of gamma functions,

∂nf j =
n∑
r=0

Γ(j + 1)
Γ(j − r + 1) f

j−r an,r . (A.5)

Whenever j ≤ n, the sum truncates at r = j due to the poles in Γ(j − r + 1), reproduc-
ing (A.3). Repeating the steps in (A.4) using (A.5) leads to

k∑
j=0

(−f)k−j∂nf j

j!(k − j)! = 0 , k > n , (A.6)

for arbitrary smooth f(z). This identity is essentially a consequence of the fact that there
are no terms of O(tn+1) or higher in (A.2).
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