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1 Introduction

The three-family N = 1 supersymmetric Pati-Salam models from intersecting D6-branes
have been studied extensively since we can generate the Yukawa couplings for the Standard
Model (SM) fermions, and break the Pati-Salam gauge symmetry down to the SM gauge
symmetry via the D-brane splitting and supersymmetry preserving Higgs mechanism [1–15].
Realizing the SM in D-brane vacua from Orbifold configuration and Gepner configurations
were also stuided in [16–29]. However, deriving all the possible Pati-Salam models is a
challenging topic due to the large amount of possible wrapping numbers [30–39]. The
full landscape of intersecting D-brane models have been under investigation via different
perspectives [40–49]. In the Type IIA string theory on T 6/(Z2 × Z2) orientifold with
intersecting D6-branes, we propose a systematic method to construct all the possible 202752
N = 1 supersymmetric Pati-Salam models [50, 51]. After modding out the equivalent classes,
we obtain 33 physical independent models with 33 types of gauge coupling relations. The
main idea is to solve the common solutions of three generation conditions, and RR tadpole
cancellation conditions iteratively. Thus, we complete the landscape for one particular type
of intersecting D-brane models for the first time. However, how to realize the string-scale
gauge coupling relations in these models is still a big challenge.

It is well-known that gauge coupling unification can be achieved in the Minimal Super-
symmetric SM (MSSM) [52–54], which strongly suggested the Grand Unified Theory (GUT).
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The unification scale or say GUT scale is around 2 × 1016 GeV. On the other hand, the
string scale is about one order larger. For example, in the weakly coupled heterotic string
theory, the string scale Mstring is given by [55]

Mstring = gstring × 5.27× 1017 GeV , (1.1)

where gstring is string coupling constant. Because gstring ∼ O(1) is an order one coupling
constant, we obtain

Mstring = 5× 1017 GeV . (1.2)

And then we have a factor about 25 between the GUT scale and string scale. Thus, how
to realize the string-scale gauge coupling unification is an important question in string
phenomenology. In principle, the string scale can be low due to the large volume of the extra-
dimension [56, 57]. However, recall that the Yang-Mills gauge coupling on the D6-brane
stack x at string scale is given by [55]

(gxYM )2 =
√

8πMstring
MPl

1∏3
i=1

√
(nix)2χ−1

i + (2−βil
i
x)2χi

(1.3)

where MPl is the 4-dimensional Planck scale. To have the proper Yang-Mills coupling
gYM ∼ O(1) at order one, the string scale is expected to be closer to the Planck scale MPl
to have proper gauge couplings. Therefore, we set the string scale at Mstring = 5× 1017 GeV.

Gauge coupling unification has been studied extensively previously from various physics
point of view [58–68]. In general, to achieve the string-scale gauge coupling unification, we
need to introduce the new particles at the intermediate scale, such as the SM vector-like
particles, and the SU(3)C/SU(2)L adjoint particles. In particular, we need to obtain these
new particles from string model building as well. Moreover, there are two kinds of the
string-scale gauge coupling unification: one-step unification [58], and two-step unification for
flipped SU(5)×U(1)X models [59, 62, 64, 65], where the SU(3)C×SU(2)L gauge symmetries
are unified around the traditional GUT scale, and then SU(5)×U(1)X gauge symmetries
are unified at the string scale.

In the three-family N = 1 supersymmetric Pati-Salam models from the Type IIA string
theory on T 6/(Z2 × Z2) orientifold with intersecting D6-branes [50, 51], there is one and
only one model with gauge coupling unification at the string scale. For the rest 32 models,
the gauge couplings for SU(4)C , SU(2)L, and SU(2)R are not unified at the string scale,
and then we have the gauge coupling relations at the string scale as follows

k3g
2
a = k2g

2
b = kY g

2
Y = ky

(5
3g

2
Y

)
= g2

U ∼ g
2
string , (1.4)

where ga, gb, and gY are respectively the gauge couplings for SU(3)C , SU(2)L, and U(1)Y ,
and k3, k2, kY , and ky are rational numbers. The canonical normalization in SU(5) and
SO(10) models give k3 = 1, k2 = 1 and kY = 5/3. For simplicity, we shall choose k3 = 1.

In the string model building, we generically have exotic particles, and thus need to study
how to decouple the exotic particles first. We explain that the exotic particles in most of
our models can be decoupled except Model 4, 23, and 32, which have chiral multiplets under
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SU(4)C symmetric representation. To realize the string-scale gauge coupling relations, we
assume that the exotic particles in these three models can be decoupled as well. Moreover,
we can have two scenarios to obtain the string-scale gauge coupling relations: traditional one
step, and two steps where the SM gauge symmetry becomes Pati-Salam gauge symmetry at
the intermediate scale, and then their gauge couplings satisfy the gauge coupling relations
at string scale. In this paper, we only consider the first scenario, and will study the second
scenario in the future. Furthermore, we consider the adjoint chiral mulitplets for SU(4)C
and SU(2)L gauge symmetries, the SM vector-like particles from D6-brane intersections,
as well as the vector-like particles from the N = 2 subsector. We show that the gauge
coupling relations at string scale can be achieved via two-loop renormalization group
equation (RGE) running for all these supersymmetric Pati-Salam models. Therefore, we
propose a concrete way to obtain the string-scale gauge coupling relations for the generic
intersecting D-brane models.

This paper is organized as follows. In section 2 we first review the construction of
supersymmetric Pati-Salam models and present the relevant knowledge. In section 3, we
discuss how to decouple the exotic particles. In section 4, we perform the two-loop RGEs
of gauge couplings as well as one-loop RGEs of Yukawa couplings. We show that the
string-scale gauge coupling relations are achieved after taking into account the contributions
from extra vector-like particles. In section 5 we finally conclude the results and make
an outlook.

2 The supersymmetric Pati-Salam models from Type IIA T 6/(Z2 × Z2)
orientifolds with intersecting D6-branes

The supersymmetric Pati-Salam models have been constructed on Type IIA T 6/(Z2 × Z2)
orientifolds with D6-branes intersecting at generic angles. The orbifold group Z2×Z2 results
in generators θ and ω and associated with twist vectors (1/2,−1/2, 0) and (0, 1/2,−1/2)
respectively. They act on the complex coordinates zi as [33, 45]

θ : (z1, z2, z3) 7→ (−z1,−z2, z3) , (2.1)
ω : (z1, z2, z3) 7→ (z1,−z2,−z3) .

The orientifold projection acts by gauging the ΩR symmetry, where Ω is world-sheet parity
and R acts on the complex coordinates as

R : (z1, z2, z3) 7→ (z1, z2, z3) . (2.2)

Overall there are four kinds of orientifold 6-planes (O6-planes) contributes to the actions
of ΩR, ΩRθ, ΩRω, and ΩRθω respectively [31, 33, 45, 69]. Three stacks of Na D6-branes
wraps on the factorized three-cycles cancelling the RR charges of these O6-planes.

The homology classes of these three cycles are wrapped by the D6-brane stack, taking
the form for a rectangular torus as nia[ai] +mi

a[bi] and for a tilted torus as nia[a
′
i] +mi

a[bi],
with [a′i] = [ai] + 1

2 [bi]. We label the generic the generic one cycle by (nia, l
i
a) in terms of the

so-called wrapping numbers, with lia ≡ m
i
a for a rectangular and lia ≡ 2m̃i

a = 2mi
a + nia for
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Orientifold action O6-Plane (n1, l1)× (n2, l2)× (n3, l3)

ΩR 1 (2β1 , 0)× (2β2 , 0)× (2β3 , 0)

ΩRω 2 (2β1 , 0)× (0,−2β2)× (0, 2β3)

ΩRθω 3 (0,−2β1)× (2β2 , 0)× (0, 2β3)

ΩRθ 4 (0,−2β1)× (0, 2β2)× (2β3 , 0)

Table 1. The wrapping numbers for four O6-planes.

tilted two-torus respectively. Here lia− n
i
a is even for tilted two-tori, yet odd for rectangular

torus. Therefore, the wrapping number for stack a of D6-branes along the cycle are denoted
by (nia, l

i
a), while the ΩR images a′ stack of Na D6-branes can be labeled by wrapping

numbers (nia,−l
i
a). The homology three-cycles for a stack of D6-branes and its orientifold

image a′ results in

[Πa] =
3∏
i=1

(
nia[ai] + 2−βi lia[bi]

)
,

[Πa
′ ] =

3∏
i=1

(
nia[ai]− 2−βi lia[bi]

)
,

in which βi = 0 when the i-th two-torus is rectangular while βi = 1 for tilted two-torus.
Furthermore, the homology three-cycles wrapped by the four O6-planes leads to

ΩR : [ΠΩR] = 23[a1]× [a2]× [a3] ,

ΩRω : [ΠΩRω] = −23−β2−β3 [a1]× [b2]× [b3] ,

ΩRθω : [ΠΩRθω] = −23−β1−β3 [b1]× [a2]× [b3] ,

ΩRθ : [ΠΩR] = −23−β1−β2 [b1]× [b2]× [a3] . (2.3)

Based on these, the RR tadpole cancellation condition provides the restriction rule [13, 14, 45]

−2kN (1) +
∑
a

NaAa = −2kN (2) +
∑
a

NaBa

= −2kN (3) +
∑
a

NaCa = −2kN (4) +
∑
a

NaDa = −16 (2.4)

where 2N (i) is the number of D6-branes wrapping along the i-th O6-plane (filler branes)
and the last term represents the O6-planes with −4 RR charges in D6-brane charge unit.
Note that for simplification, we denote Aa ≡ −n

1
an

2
an

3
a, Ba ≡ n1

al
2
al

3
a, Ca ≡ l1an

2
al

3
a, Da ≡

l1al
2
an

3
a, Ãa ≡ −l

1
al

2
al

3
a, B̃a ≡ l1an

2
an

3
a, C̃a ≡ n1

al
2
an

3
a, D̃a ≡ n1

an
2
al

3
a. These filler branes repre-

sent the USp group carrying the wrapping numbers with one of the O6-planes as shown in
table 1.

To have three family of chiral fermions under SU(4)C × SU(2)L × SU(2)R gauge
symmetries, further constraints were imposed on the intersection numbers expressed in
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Sector Representation

aa U(Na/2) vector multiplet
3 adjoint chiral multiplets

ab+ ba Iab ( a, b) fermions

ab′ + b′a Iab′ ( a, b) fermions

aa′ + a′a 1
2(Iaa′ − 1

2Ia,O6) fermions
1
2(Iaa′ + 1

2Ia,O6) fermions

Table 2. General massless particle spectrum for intersecting D6-branes at generic angles.

terms of the wrapping numbers

Iab = [Πa][Πb] = 2−k
3∏
i=1

(nial
i
b − n

i
bl
i
a) ,

Iab′ = [Πa][Πb
′ ] = −2−k

3∏
i=1

(nial
i
b + nibl

i
a) ,

Iaa′ = [Πa][Πa
′ ] = −23−k

3∏
i=1

(nial
i
a) ,

IaO6 = [Πa][ΠO6] = 23−k(−l1al
2
al

3
a + l1an

2
an

3
a + n1

al
2
an

3
a + n1

an
2
al

3
a) (2.5)

where k = β1 + β2 + β3 is the total number of tilted two-tori, and [ΠO6] = [ΠΩR] + [ΠΩRω] +
[ΠΩRθω] + [ΠΩRθ] is the sum of four O6-plane homology three-cycles. And the intersection
numbers shall follow

Iab + Iab′ = 3 , Iac = −3 , Iac′ = 0 , (2.6)

with c and c′ exchange as well.
The massless particle spectrum for the supersymmetric Pati-Salam is listed in table 2,

where the gauge symmetry results from Z2×Z2 orbifold projection [60]. The representations
refer to U(Na/2) when the intersecting D6-branes are of number Na = 8, Nb = 4, Nc = 4.
Note that the chiral supermultiplets not only represents the scalars but also the fermions in
this supersymmetric constructions. Moreover, positive intersection numbers refer to the
left-handed chiral supermultiplets. In our later discussion, some of the introduced particles
for gauge coupling unification can be read off from the spectrum table as well.

In addition to the three generation conditions and tadpole cancellation condition, we
further need to require N = 1 supersymmetry preservation in four dimension, with the
equality and inequality conditions [5, 33]

xAÃa + xBB̃a + xCC̃a + xDD̃a = 0,
Aa/xA +Ba/xB + Ca/xC +Da/xD < 0, (2.7)
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where xA = λ, xB = λ2β2+β3/χ2χ3, xC = λ2β1+β3/χ1χ3, xD = λ2β1+β2/χ1χ2. Here
χi = R2

i /R
1
i represent the complex structure moduli of the i-th two-torus, and λ is

introduced as a positive parameter to put all the variables A, B, C, D at equal footing.
The supersymmetric Pati-Salam gauge symmetry SU(4)C × SU(2)L × SU(2)R can

then be broken down to the SM gauge symmetry via the D-brane splitting and Higgs
mechanism preserving supersymmetry. Concrete supersymmetric Pati-Salam models have
been constructed [46, 47], and such D-brane models have also been investigated with
powerful reinforcement machine learning methods [41, 42]. In [50, 51], we for the first
time propose a systematic method to construct all the three-family N = 1 supersymmetric
Pati-Salam models and conclude that there are in total 202752 models with 33 different
gauge coupling relations. Among which, there is one class of models with gauge coupling
unification at GUT scale, while the others do not. The absence of gauge coupling unification
at the string scale appear be a generic problem. In [50], we propose that by introducing
vector-like particles from N = 2 subsector the gauge unification problem may be solved. In
particular, the number of these exotic particles are fully determined by the brane intersection
number. These additional particles can be decoupled as discussed in [30], and its gauge
coupling relation can be realized at string scale via two-loop RGE running. This leads to
our exploration that whether this solved for all the supersymmetric Pati-Salam models in
general. We will discuss in details for all the 33 representative models.

3 Decoupling of the exotic particles

In the string model building, there exist exotic particles in general. So we need to discuss
how to decouple the exotic particles first. In our Pati-Salam models which are given
in appendix A, we can decouple most of the exotic particles via Higgs mechanism and
instanton effects, etc, except the chiral multiplets under SU(4)C symmetric representation.
The key point is the gauge anomaly cancellation. First, the chiral multiplets under SU(4)C
anti-symmetric representation do not contribute to the gauge anomaly. Their mass terms
are forbidden by the anomalous U(1) gauge symmetries, and can be generated via the
instanton effects [70–72]. Thus, they can be decoupled. Second, for the models without
the chiral multiplets under SU(4)C symmetric representation, all the exotic particles can
be decoupled via Higgs mechanism and instanton effects. For a concrete example, please
see [30, 31]. Third, for the models with the chiral multiplets under SU(4)C symmetric
representation, it seems to us that we cannot decouple the exotic particles. Therefore,
we cannot decouple the exotic particles only in Model 4, 23, and 32 in appendix A. To
study the gauge coupling unification, we assume the extoic particles in these models can be
decoupled as well.

4 String-scale gauge coupling relations

As presented with details in [50, 51], the full list of supersymmetric Pati-Salam models have
33 different gauge coupling relations, see appendix A. In these models, a stack of D6-branes
gives the U(4) gauge symmetry, b stack of D6-branes gives the U(2)L gauge symmetry, and
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c stack of D6-branes gives the U(2)R gauge symmetry. In particular, there is one class
of models with gauge coupling unification at GUT scale. Namely, the strong, weak and
hypercharge gauge couplings g2

a, g
2
b and 5

3g
2
Y satisfy g2

a = g2
b = g2

c = (5
3g

2
Y ) = 4

√
2
3πe

φ
4
,

where φ4 represents the dilaton field. However, not all the supersymmetry Pati-Salam models
are with gauge coupling unification at GUT scale. To have string-scale gauge coupling
relation, we utilize the Renormalization Group Equations (RGEs) evolution [50, 67, 68].

The RGEs for the gauge couplings at the two-loop level are given by [61, 63, 73, 74]

d

d lnµgi = bi

(4π)2 g
3
i + g3

i

(4π)4

 3∑
j=1

Bijg
2
j −

∑
α=u,d,e

dαi Tr
(
hα†hα

) , (4.1)

where gi(i = 1, 2, 3) are the SM gauge couplings and hα(α = u, d, e) are the Yukawa couplings.
The coefficients of beta functions in SM [75–78] and supersymmetric models [79–81] are
represented by

bSM =
(41

6
1
kY
,−19

6
1
k2
,−7

)
, BSM =


199
18

1
k

2
Y

27
6

1
kY k2

44
3

1
kY

3
2

1
kY k2

35
6

1
k

2
2

12 1
k2

11
6

1
kY

9
2

1
k2

−26

 , (4.2)

duSM =
(17

6
1
kY
,

3
2

1
k2
, 2
)
, ddSM = 0, deSM = 0, (4.3)

bSUSY =
(

11 1
kY
,

1
k2
,−3

)
, BSUSY =


199
9

1
k

2
Y

9 1
kY k2

88
3

1
kY

3 1
kY k2

25 1
k

2
2

24 1
k2

11
3

1
kY

9 1
k2

14

 , (4.4)

duSUSY =
(26

3
1
kY
, 6 1
k2
, 4
)
, ddSUSY = 0, deSUSY = 0, (4.5)

where kY and k2 are general normalization factors. By solving the two-loop RGEs for
SM gauge couplings, we perform numerically calculations including the one-loop RGEs for
Yukawa couplings and taking into account the new physics contributions and threshold.
The general one-loop RGEs for Yukawa couplings can be found in [74]. Starting from the
electroweak theory, we run the couplings up from Z boson mass scale MZ to high energies
with the boundary conditions for these equations at MZ as

g1(MZ) =
√
kY

gem
cos θW

, g2(MZ) =
√
k2

gem
sin θW

, g3(MZ) =
√

4παs . (4.6)

From MZ up to a supersymmetry breaking scale MS, we consider only the non-
supersymmetric SM spectrum including a top quark pole mass at mt = 173.34GeV.
From MS scale, we perform the supersymmetric RGEs with all the states including the
introduced exotic vector-like particles at MV . Moreover, the Z boson mass, the Higgs
vacuum expectation value, strong coupling constant, fine structure constant, and weak
mixing angle at MZ are choosen to be [82, 83]

MZ = 91.1876 GeV, mt = 173.34± 0.27(stat)± 0.71(syst) GeV, v = 174.10 GeV,
αs(MZ) = 0.1181± 0.0011, α−1

em(MZ) = 128.91± 0.02, sin2 θW (MZ) = 0.23122.
(4.7)
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Based on the experimental lower limits of supersymmetry and gauge hierarchy preservation,
we have the supersymmetry breaking scale MS at TeV scale, such as 2.5TeV or 3.0TeV.
The difference has effect less than 5% on the scale of unification MU while the larger value
for MS reduces the unification scale.

Utilizing the current precision electroweak data and setting the supersymmetry breaking
scale to be MS ' 3.0TeV, we study the gauge coupling unification around string scale by
solving two-loop RGEs, with

MU ∼Mstring ' 5× 1017 GeV. (4.8)

Recall that the generic gauge coupling relations at string scale for supersymmetric Pati-Salam
models read

g2
a = k2g

2
b = kY g

2
Y = g2

U ∼ g
2
string, (4.9)

where kY and k2 are constants for each model and will determine the value of the mixing
angel sin θW at the string scale. The string-scale gauge coupling relation in the evolution is
realized via

α−1
U ≡ α−1

1 = (α−1
2 + α−1

3 )/2 (4.10)

with α1 ≡ kY g
2
Y /4π, α2 ≡ k2g

2
b/4π, α3 ≡ g

2
a/4π, and the accuracy ∆ = |α−1

1 − α
−1
2 |/α

−1
1 is

limited to be less than 1.0%. Here, α1 and α2 are traditional gauge couplings if and only if
kY = 5/3 and k2 = 1, respectively.

As discussed in [50], Model 1 in table 8 has a canonical hypercharge normalization
kY = 5/3, and then the gauge coupling unification is naturally achieved at most MU ∼
2×1016 GeV, similar to the predicted unification scale in the MSSM. However, the unification
scale is about one order of magnitude smaller than string scale, where the discrepancy can
be diminished by the introducing additional vector-like particles [60].

Interestingly, we also find that the precise string-scale gauge coupling relation can be
achieved at two-loop level by introducing the extra vector-like particles from N = 2 subsector
or four-dimensional chiral sectors in other models. The quantum numbers for the vector-like
particles are the same as those of the SM fermions and their Hermitian conjugates. While,
the number nV and the quantum numbers of these particles are highly model dependent
and can be determined by brane construction. Particularly, in our calculations, multi-pair
of extra particles appears naturally, and we only need to fine tune their masses to unify
the gauge coupling near the string scale Mstring. From the numerical results, we find
that the mass of these extra particles approach to the string scale as the number of these
particles increase.

The quantum numbers of vector-like particles under SU(3)C × SU(2)L × U(1)Y and
their contributions to one-loop level beta functions [62, 63] are

XQ+XQ =
(

3,2, 16

)
+
(

3̄,2,−1
6

)
, ∆b =

(1
5 , 3, 2

)
; (4.11)

XU +XU =
(

3,1, 23

)
+
(

3̄,1,−2
3

)
, ∆b =

(8
5 , 0, 1

)
; (4.12)

XD +XD =
(

3,1,−1
3

)
+
(

3̄,1, 13

)
, ∆b =

(2
5 , 0, 1

)
; (4.13)
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XL+XL =
(

1,2, 12

)
+
(

1,2,−1
2

)
, ∆b =

(3
5 , 1, 0

)
; (4.14)

XE +XE = (1,1,1) + (1,1,−1) , ∆b =
(6

5 , 0, 0
)

; (4.15)

XG = (8,1,0) , ∆b = (0, 0, 3) ; (4.16)
XW = (1,3,0) , ∆b = (0, 2, 0) . (4.17)

In our numerical calculations, the two-loop level beta functions from these particles are
used in supersymmetric models from eqs. (B8)-(B11) in [63]. We integrate the renormaliza-
tion group equations in eq. (4.1) fromMZ up toMstring with three sections, from MZ toMS,
from MS to MV , and from MV to Mstring. The precise energy scale where we realize the
string-scale gauge coupling relations depends on the number of the introduced particle, the
coefficients bi, Bij and d

α
i of the beta-function. The values of MXG, MXW are determined

by the intersection energy scale of section 2 (from MS to MV ), and section 3 (from MV

to Mstring) in the plot, where these exotic particles are introduced. Thus, the mass of the
exotic particles are determined by both the number of the particles, the beta functions and
the precise energy scale where we realize the string-scale gauge coupling relations.

Once these particles are included with mass MV , the evolution of α−1
i (t) is depressed

if ∆bi 6= 0 and the turning point is at µ = MV . Taking Model 1 as example, we find that
there are two bending points for the running of gauge couplings in figure 1; the first one is
corresponding to the supersymmetry breaking scale MS ' 3.0TeV, while the second one
corresponds to the introduced particle MV with chiral multiplets XG and XW obtain the
same mass, i.e., MXG = MXW = MV . Recall that ∆b2(XW ) = 2, the plotted lines for α−1

2
bend atMXW where the particle XW is introduced. In the same way, the lines for α−1

3 bend
at the point MXG due to ∆b3(XG) = 3. Moreover, the degree of depression will increase as
∆bi increases. That’s to say, the inverse hypercharge coupling α−1

1 decreases more rapidly
in models with the particles XU + XU than that in models with XD + XD. And the
depression of the inverse strong coupling α−1

3 from both pairs of vector-like particles are the
same. Note that when both particles XU +XU and XD+XD are added, there will be two
bending points at MS and MV as these particles have the same mass MV = MXU = MXD,
while there will be three bending points at MS, MXU and MXD as the mass of these
particles are different.

4.1 Chiral multiplets from adjoint representations of SU(4)C and SU(2)L

For the Model 1 with ky = k2 = 1, the gauge couplings naturally unifies at the traditional
GUT scale, one order of magnitude smaller than the string scale. Instead of introducing
the vector-like particle from a N = 2 subsector, we consider up to three chiral multiplets
in the adjoint representations of SU(4)C and SU(2)L with masses MV (V = XG and XW ).
These two particles XG and XW arise from the aa and bb sectors in the spectrum table 2,
and thus the maximum number is 3. The gauge couplings can be unified at close to the
string scale, MU = 5.0× 1017 GeV. The two-loop RGE running for the guage couplings are
shown in figure 1. As the number of particles increases, the mass of the particles increases
and approaches the string scale. Moreover, the splitting between the XW and XG masses
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Figure 1. Two-loop evolution of gauge couplings for the Model 1 with vector-like particles. In the
model, kY = 1× 5

3 and k2 = 1. The string-scale gauge coupling relations can be achieved by adding
3(XG+XW ) (a), 2(XG+XW ) (b) and (XG+XW ) (c).

will be reduced. Thus in the following calculations, we choose to add 3 (XG+XW ). The
energy scale, number of the particles, and the mass of the particles for the Model 1–12 are
shown in table 3. Above MV , the running of SU(3)C coupling and SU(2)L coupling are
reducing due to the non-zero beta functions ∆b3(XG) and ∆b2(XW ). For the models with
ky > 1 and k2 < 1, the string-scale gauge coupling relation can also be achieved by adding
XW +XG from adjoint representation of SU(4) and SU(2). The two-loop RGE running for
the gauge couplings of the Model 2 is plotted in figure 2. Here we include the contributions
from 3(XW +XG) to reduce the mass splitting of these added particles. And the two-loop
RGE running of the gauge couplings for Model 3–5 are shown in figures 3, 4, 5, for Model
6–12 in figures 11, 12, 13, 14, 15, 16, 17 in appendix B, for Model 13–14 in figures 6 and 7.

4.2 The vector-like particles from N = 2 subsector with ky > 1 and k2 < 1

For the models like Model 2 in table 9, the evolution of α−1
1 (µ) is depressed when ky > 1

and the evolution of α−1
2 (t) is raised when k2 < 1. They induces that the intersection

point of α−1
1 (t) and α−1

3 (t) lines is below the line of α−1
2 (t), as illustrated in figure 2(a). In

this case, to get an string-scale gauge coupling relation, we need introduce extra particles
XQ+XQ or XW as well as XG into the models, which will mainly modify the evolution
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Model
No.

ky k2 nV MXG(GeV) MXW (GeV) MU(GeV)

1 1 1
3 1.60× 1016 1.60× 1016 5.00× 1017

2 2.87× 1015 2.87× 1015 5.00× 1017

1 1.65× 1013 1.65× 1013 5.00× 1017

2 85/61 4/9 3 2.76× 1014 7.84× 109 5.00× 1017

3 65/44 1/2 3 1.28× 1014 1.34× 1010 5.00× 1017

4 35/32 5/6 3 3.50× 1015 1.23× 1014 5.00× 1017

5 10/7 2/3 3 2.87× 1014 2.00× 1011 5.85× 1017

6 11/8 5/6 3 3.13× 1014 3.06× 1012 5.00× 1017

7 25/19 1 3 3.98× 1014 1.19× 1014 5.00× 1017

8 10/7 1 3 1.73× 1014 3.17× 1013 5.00× 1017

9 11/8 1/6 3 2.63× 1014 2.06× 108 5.00× 1017

10 50/47 4/9 3 5.10× 1015 6.90× 1010 5.00× 1017

11 1 1/3 3 1.21× 1016 1.18× 1012 5.00× 1017

12 35/32 1/6 3 1.22× 1016 4.49× 108 5.00× 1017

13 11/8 5/14 3 3.18× 1014 2.45× 109 5.00× 1017

14 35/32 35/66 3 4.62× 1014 2.33× 1011 5.00× 1017

Table 3. String-scale gauge coupling relations achieved with XG+XW , from adjoint representation
of SU(4) and SU(2).
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Figure 2. Two-loop evolution of gauge couplings for the Model 2 with vector-like particles. In
the model, kY = 85

61 ×
5
3 and k2 = 4

9 . The string-scale gauge coupling relations can be achieved by
adding 3(XW +XG) (a) and 5(XQ+XQ) (b).
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Model
No.

ky k2 nXQ MXQ(GeV) MU(GeV)

2 85/61 4/9 5 2.51× 1014 3.75× 1017

3 65/44 1/2 3 1.26× 1012 1.81× 1017

4 25/32 5/6 7 1.07× 1016 1.09× 1017

Model
No.

ky k2 nXQ MXQ(GeV) nXG MXG(GeV) MU(GeV)

5 10/7 2/3 5 1.03× 1015 3 1.18× 1017 5.00× 1017

6 11/8 5/6 7 1.51× 1016 3 3.69× 1016 5.00× 1017

7 25/19 1 3 1.43× 1014 3 1.41× 1016 5.00× 1017

8 10/7 1 3 4.73× 1014 3 1.50× 1016 5.00× 1017

Model
No.

ky k2 nXQ MXQ(GeV) nXW MXW (GeV) MU(GeV)

9 11/8 1/6 5 3.84× 1014 3 8.10× 1015 5.00× 1017

10 50/47 4/9 5 5.13× 1015 3 4.39× 1016 5.00× 1017

11 1 1/3 5 1.60× 1016 3 4.12× 1013 5.00× 1017

12 35/32 1/6 5 1.66× 1016 3 1.44× 1012 5.00× 1017

Table 4. String-scale gauge coupling relations achieved by adding vector-like particles XQ+XQ

as well as XG or XW , from N = 2 subsector. The number of vector-like particles are defined by
the intersection number on a and b stacks, nv = Iab.

of the electroweak and strong couplings without substantially affecting the U(1) coupling.
This is owing to the large contributions to ∆b2 and ∆b3, rather relatively small contributions
to ∆b1. So as the energy rises from mass scaleMXQ, α

−1
2 and α−1

3 reduce rapidly. Therefore,
string-scale gauge coupling relations are achieved near MU = 3.75× 1017 GeV by adding 5
sets of XQ+XQ at MXQ = 2.51× 1014 GeV. The evolution of gauge couplings for Model
2 with ky = 85/61 and k2 = 4/9 is shown in figure 2(b) and the energy scale, the number
and mass of the added vector-like particles XQ+XQ are list in table 4.

Similarly, for Model 3 and 4, the non-canonical constants are ky = 65/44, k2 = 1/2
and ky = 25/32, k2 = 5/6. The string-scale gauge coupling relation are also achieved by
bringing particles XQ+XQ into Model 3 at 1.26×1012 GeV and Model 4 at 1.07×1016 GeV,
respectively. The evolution of gauge couplings are shown in figures 3 and 4, in which the
number of pairs of the new vector-like particles is 3 and 7, respectively. We note that the
mass of the extra particles is related to the number of pairs of particles. As the number
increases, the mass scale is pushed up to the high energy scale and thus the vector-like
particles decay at high energy scale.

Of course, the number of these extra vector-like particles is not random, yet from
brane constructions. From eqs. (4.11) and (4.17), the quantum numbers of these particles
under SU(3)C × SU(2)L × U(1)Y are XQ = (3, 2, 1/6), and XQ = (3̄, 2,−1/6). In the
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Figure 3. Two-loop evolution of gauge couplings for the Model 3 with vector-like particles. In
the model, kY = 65

44 ×
5
3 and k2 = 1

2 . The string-scale gauge coupling relations can be achieved by
adding 3(XW +XG) (a) and 3(XQ+XQ) (b).
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Figure 4. Two-loop evolution of gauge couplings for the Model 4 with vector-like particles. In
the model, kY = 35

32 ×
5
3 and k2 = 5

6 . The string-scale gauge coupling relations can be achieved by
adding 3(XW +XG) (a) and 7(XQ+XQ) (b).

supersymmetric Pati-Salam models, these vector-like particles (XQ+XQ) arise from the
intersections between a and b stacks of D6-branes or a and b′ stacks of D6-brane. The
particle XW arise from bb sector of the adjoint representation of SU(2)L.

Base on the brane construction, the number of vector-like particles (XQ+XQ) can be
determined by the intersection number of the a and b stacks of D6-brane, Iab, or a and b′

stacks of D6-brane, Iab′ . For example, the intersection number is Iab′ = −20(4 + 1)(1) = −5
in Model 2 (table 9) and the corresponding number of the additional particles (XQ+XQ)
is 5. If the wrapping numbers (nia, l

i
a) and (nib, l

i
b) have the same value, indicating that

the D6-branes warpping on the i− torus are parallel to each other. Therefore, there is no
intersection on the i-torus, but only on the other two torus. From table 10, we see that
(n3
a, l

3
a) and (n3

b , l
3
b ) for Model 3 are the same, thus the intersection number of the a and b

stacks are only calculated on the first two torus, i.e., Iab = 20(−2− 5)(1) = 7. Namely, 7
pairs of XQ+XQ naturally arise from brane intersection.
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Figure 5. Two-loop evolution of gauge couplings for the Model 5 with vector-like particles. In
the model, kY = 10

7 ×
5
3 and k2 = 2

3 . The string-scale gauge coupling relations can be achieved by
adding 3(XW +XG) (a) and 5(XQ+XQ) + 3XG (b).

Based on the calculations, we know that the energy scale is pushed up to high energy
scale as ky or k2 deceases. Thus, for the models with ky > 1, to obtain a string-scale gauge
coupling relation, the constant k2 of the model should be smaller than 1/2. Otherwise, the
gauge couplings are unified at an intermediate energy scale 1014 − 1016 GeV, little smaller
than the string scale. For Model 5 with ky > 1 and k2 > 1/2, the gauge coupling relation
can be achieved at the string scale MU ' 5 × 1017 GeV by adding 5 pairs of XQ + XQ

and 3 XG. For Models 5–8, the parameter ky is almost equal. And the parameter k2 in
Models 6–8 is larger than that in Model 5. Thus, the energy scale is smaller than that in
Model 5. To increase the energy scale, we also need to introduce adjoint particle XG for
Models 6–8. The evolution of gauge couplings for Models 5–8 with vector-like particles
and XG are presented in figures 5, 11, 12 and 13, respectively. However, the parameter k2
should not be too small either, as this would realize the gauge coupling relation beyond
Planck level, where we do not know how to quantize gravity. This thorny issue will arise
when we deal with models 9–12. The evolution of gauge couplings for Models 9–12 is
shown in figures 14, 15, 16, 17, in appendix B. Note that the U(1) and strong couplings
are unified below the Planck scale. We find that the electroweak coupling can be unified
with other two couplings below the Planck scale by introducing XW , which only affects
the running of electroweak coupling due to ∆b2 6= 0. Take Model 11 as example, the U(1)
and strong couplings are unified at 1× 1018 GeV, while the gauge couplings are unified at
same energy scale after introducing 3 XW at 1.4× 1012 GeV. To obtain string-scale gauge
coupling relation for these models, the additional particles are XQ+XQ as well as XW .
The numbers and the masses of these particles are given in the gauge revolution figures.

4.3 The vector-like particles from four-dimensional chiral sectors

On the other hand, Model 13 in table 20 with ky = 11/8 and k2 = 5/14 also can achieve
string-scale gauge coupling relation while the vector-like particles XQ+XQ are added. The
number of these vector-like particles are defined by the fundamental minus anti-fundamental
representation, with 6− 3 ≡ 3. The evolution of gauge couplings for the model are shown in
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Figure 6. Two-loop evolution of gauge couplings for the Model 13 with vector-like particles. In
the model, kY = 11

8 ×
5
3 and k2 = 5

14 . The string-scale gauge coupling relations can be achieved by
adding 3(XW +XG) (a) and 3(XQ+XQ) (b).

Model
No.

ky k2 nXQ MXQ

(GeV)
nXW MXW MU(GeV)

13 11/8 5/14 3 1.99× 1012 8.53× 1017

14 35/32 35/66 3
1.525×1014 1 1.525×1014

5.00× 10171.34× 1014 2 1.30× 1016

1.70× 1014 3 2.75× 1016

Table 5. String-scale gauge coupling relations achieved by adding vector-like particles XQ+XQ

from four-dimensional chiral sectors as well as XW from bb sector.

figure 6. The energy scale is around 8× 1017 GeV, and the new vector-like particles decay
to the corresponding SM fermions below MXQ ' 2× 1012 GeV. The number and mass of
new vector-like particles are also shown in the plot. Unlike Model 2–12 discussed above,
the vector-like particles entered in this model come from the four-dimensional chiral sector
of the brane building. Furthermore, Model 14 in table 21 with ky = 35/32 and k2 = 35/66,
also have a energy scale at 1.8 × 1018 GeV moderately larger than the string scale. As
discussed before, the contributions of the particle XW are also included in this model.
The particle XW comes from the bb sector of the brane configuration. Comparison of the
masses of vector-like particles with different XW numbers shows that the mass splitting
between XQ and XW increases with the number of XW . When XW (s) is (are) added, the
XW acquires the same mass as the XQ from the naturalness point of view. Therefore, the
number of XW needs to be carefully chosen in order to reduce their mass splitting. The
evolution of gauge couplings for the model are shown in figure 7. The string-scale gauge
coupling relations for Model 13–14 are listed in table. 5.

4.4 The vector-like particles from N = 2 subsector with ky < 1 and k2 > 1

On the contrary, when ky < 1 or k2 > 1, the intersection of α−1
1 and α−1

3 lines lies above the
line of α−1

2 (t), which can be seen from Model 15 without vector-like particle in figure 8(a).
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Figure 7. Two-loop evolution of gauge couplings for the Model 14 with vector-like particles. In
the model, kY = 35

32 ×
5
3 and k2 = 35

66 . The string-scale gauge coupling relation can be achieved by
adding 3(XW +XG) (a) and 3(XQ+XQ) +XW (b).

And thus, if we want to push or pull back the energy scale to string scale Mstring, the extra
particles arise from N = 2 subsector, like (XD +XD) and (XU +XU), which will modify
the evolution of the U(1) and strong couplings rather than electroweak coupling. This is
due to the non-zero ∆b1 and ∆b3. As we mentioned earlier, since ∆b1(XD) < ∆b1(XU),
the suppression of α−1

1 is stronger in the models with XD +XD particles than that with
XU +XU particles. And thus, the energy scale is higher in the models with (XD +XD)
than that with (XU + XU). Of course, in some models with much smaller ky or much
larger k2, we need to add both particles to obtain the string-scale gauge coupling relation.
Additional, there is mass splitting between these two particles. The energy scale, the
number and mass of the added vector-like particles (XD+XD) and (XU +XU) are list in
table 6. Another vector-like particle (XE +XE), from N = 2 subsector, will only modify
the running of the U(1) coupling due to ∆b1(XE) 6= 0. When used with XG, from aa
sectors, the results are similar or even better than those of (XD +XD) and (XU +XU).
The energy scale, the number and mass of the added vector-like particles (XE +XE) and
XG are list in table 7.

Base on the brane construction, the number of vector-like particles (XD + XD),
(XU +XU) and (XE +XE) can be determined by the intersection number of the a and
c stacks Iac. For example, the intersection number is Iac = 20(1)(−2− 5) = −7 in Model
15 (table 22) and the corresponding number of the vector-like particles (XD +XD) is 7.
In this model, the wrapping numbers (n3

a, l
3
a) and (n3

c , l
3
c) have the same value yet with

opposite sign, indicating that the D6-branes warpping on the third torus are parallel to
each other. Therefore, the intersection number of the a and c stacks are only calculated on
the first two torus.

For Model 15, the parameters ky = 25/28 and k2 = 7/6 slightly deviate from 1, the
string-scale gauge coupling relation can be achieved by introducing vector-like particles, e.g.,
a string-scale gauge coupling relation obtained at MU = 7.22× 1017 GeV by adding 7 pair
of XD +XD. During the evolution of gauge couplings, the extra particles are introduced
around 5.6× 1015 GeV. While, when the same number of vector-like particles XU +XU are
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Figure 8. Two-loop evolution of gauge couplings for the Model 15 with vector-like particles. In
the model, kY = 25

28 ×
5
3 and k2 = 7

6 . The string-scale gauge coupling relation can be achieved by
adding 7(XD +XD) (a) as well as 7(XU +XE) (b).

Model
No.

ky k2 nv MXD(GeV) MXU (GeV) MU(GeV)

15 25/28 7/6 7 5.60× 1016 7.22× 1017

16 10/7 2 3 6.9× 104 1.2× 1017

17 1/4 11/6 3 3.70× 1010 1.43× 1017

18 10/7 18/5 3 8.90× 103 1.60× 1014 3.25× 1017

19 1 5/3 3 2.00× 108 1.40× 1017 4.90× 1017

20 1 2 3 3.71× 107 1.05× 1014 5.00× 1017

21 1 54/19 3 2.13× 106 2.43× 1013 5.00× 1017

22 1 9/5 3 1.80× 108 6.20× 1015 5.50× 1017

23 5/8 13/6 3 8.20× 1010 8.20× 1010 3.60× 1017

24 10/13 2 5 9.00× 1012 8.00× 1014 5.58× 1017

25 4/7 17/9 5 1.08× 1014 1.08× 1014 6.61× 1017

26 25/28 11/6 7 8.71× 1013 2.75× 1015 3.43× 1017

Table 6. String-scale gauge coupling relations achieved by adding vector-like particles XD +XD

or/and XU +XU from N = 2 subsector. The number of vector-like particles are defined by the
intersection number on a and c stacks, nv = Iac.

added at 7× 1014 GeV, a GUT scale gauge coupling relation is obtained at 1.8× 1016 GeV.
Furthermore, adding both particles and fine-tuning their masses, MU = 5.0× 1017 GeV can
be achieved and the accuracy is as small as 0.39%. The evolution of gauge couplings for the
model with vector-like particles are show in figure 8. Models 16 is similar and the evolution
of their gauge coupling is shown in figure 18.

For Model 17, the parameters ky = 1/4 and k2 = 11/6 deviate significantly from 1,
the evolution for U(1) coupling α−1

1 cannot intersect the other two couplings. In order to
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Figure 9. Two-loop evolution of gauge couplings for the Model 17 with vector-like particles. In
the model, kY = 1

4 ×
5
3 and k2 = 11

6 . The string-scale gauge coupling relations can be achieved by
adding 5(XU +XU) (a) as well as 5(XD +XD) (b).
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Figure 10. Two-loop evolution of gauge couplings for the Model 27 with vector-like particles. In
this model, kY = 4

9 ×
5
3 and k2 = 10

9 . The string-scale gauge coupling relations can be achieved by
adding 5(XE +XE) +XG around 1013 GeV.

get a string-scale gauge coupling relation, we choose to introduce 5 pairs of XU +XU at
3.7×1010 GeV. The evolution of gauge couplings for this model without and with vector-like
particles are shown in figure 9. Note that the energy scale is pushed above the Planck
scale by adding XD + XD. This is common for models with parameters ky � 1 and
k2 � 1. In such case, we introduce additional XU +XU particles to pull the energy scale
to intermediate scales 1014 − 1015 GeV. Therefore, a string-scale gauge coupling relation
can be achieved by adding both XD +XD and XU +XU and fine-tuning their masses.
The masses for these vector-like particles MV and the energy scales for Models 18–26 are
listed in table 6, and the corresponding evolution of gauge couplings are illustrated in
figures 19, 20 and 21, in appendix B.

However, if one and only one of parameters ky and k2 deviates significantly from 1,
the situations are more complicated. When k2 ∼ 1 and ky � 1, by adding (XD + XD)
and (XU + XU) the string-scale gauge coupling realtion is pushed too high and above
the Planck scale. Another kind of vector-like particles (XE +XE) from N = 2 subsector
as well as XG from aa sector are added in these models to obtain the string-scale gauge
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Model
No.

ky k2 nXE MXE(GeV) nXG MXG(GeV) MU(GeV)

27 4/9 10/9 5 3.40× 1013 1 6.20× 1013 5.00× 1017

28 5/11 1 5 5.50× 1012 1 3.80× 1015 5.00× 1017

29 1/4 7/6 5 7.80× 109 1 1.70× 1012 5.00× 1017

30 10/7 27/11 3 1.51× 1012 3 3.11× 1012 5.00× 1017

31 5/3 13/5 3 1.36× 1013 3 4.98× 1012 5.00× 1017

32 7/4 21/10 3 5.72× 1016 3 1.94× 1013 5.00× 1017

33 2 26/5 3 3.44× 108 2 4.92× 107 5.00× 1017

Table 7. String-scale gauge coupling relations achieved by adding vector-like particles XE +XE

from N = 2 subsector and XG from the adjiont sector. The number of XE +XE is defined by the
intersection number on a and c stacks, nXE = Iac.

coupling relations. For Model 27 with ky = 4/9 and k2 = 10/9, the gauge coupling relation
can be realized at the string scale MU = 5.00× 1017 GeV by adding 5(XE +XE) +XG at
1013 GeV. The details for Model 27, and 28–29 are listed in table 7 and the corresponding
running of gauge couplings are plotted in figures 10, and 22.

For Model 30–33, even the parameter ky is greater than 1, the intersection of α−1
1 and

α−1
3 is still above the line of α−1

2 because k2 is too large. Thus, to get a string-scale gauge
coupling relation, the vector-like particles added are (XE +XE) from N = 2 subsector as
well as XG from aa sectors. For Model 30, a string-scale gauge coupling relation is achieved
at 5.00× 1017 GeV by fine-tuning the masses of XE and XG as well as the number of XG.
The appropriate number of XG are chosen to reduce the mass splitting. For Model 30–33,
the energy scales, number and mass of these additional particles are listed in table 7 and
the corresponding evolution are figured in figure 23 in appendix B.

5 Discussion and conclusions

In [51], we have constructed all the three-family N = 1 supersymmetric Pati-Salam models
in the Type IIA string theory on T 6/(Z2 × Z2) orientifold with intersecting D6-branes,
and obtained all the possible 33 independent models in total. However, how to realize
the string-scale gauge coupling relations for these models is still a big challenge. In this
paper, we systematically studied the string-scale gauge coupling relations for all these
models. First, we discussed how to decouple the exotic particles in these models. Second,
utilizing the two-loop RGEs revolutions, we obtained string-scale gauge coupling relations
by introducing additional particles from the adjoint representations of SU(4)C and SU(2)L
gauge symmetries, SM vector-like particles from four-dimensional chiral sectors, as well
as vector-like particles from N = 2 subsector. Although most of these supersymmetric
Pati-Salam models do not directly have traditional gauge coupling unification at string scale,
their gauge coupling relations can indeed be realized at string scale. Therefore, we solved
the string-scale gauge coupling relation problems for the generic intersecting D6-brane
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models. It seems to us that this systematic method can be applied to the other intersecting
D-brane model building as well.
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A Supersymmetric Pati-Salam models

In this appendix, we present the supersymmetric Pati-Salam models with 33 types of allowed
gauge coupling relations on the landscape of supersymmetric Pati-Salam model building.

Model 1 U(4)×U(2)L ×U(2)R ×USp(2)4

stack N (n1, l1)× (n2, l2)× (n3, l3) n n b b′ c c′ 1 2 3 4

a 8 (1, 1)× (1, 0)× (1,−1) 0 0 3 0 0 −3 0 1 0 −1
b 4 (−1, 0)× (−1, 3)× (1, 1) 2 −2 — — 0 0 0 0 −3 1
c 4 (0, 1)× (−1, 3)× (−1, 1) 2 −2 — — — — −3 1 0 0
1 2 (1, 0)× (1, 0)× (2, 0) xA = 1

3xB = xC = 1
3xD

2 2 (1, 0)× (0,−1)× (0, 2) βg1 = βg2 = βg3 = βg4 = −3
3 2 (0,−1)× (1, 0)× (0, 2) χ1 = 1, χ2 = 1

3 , χ3 = 2
4 2 (0,−1)× (0, 1)× (2, 0)

Table 8. D6-brane configurations and intersection numbers of Model 1, and its gauge coupling
relation is g2

a = g2
b = g2

c = ( 5
3g

2
Y ) = 4

√
2
3πe

φ
4

.

Model 2 U(4)×U(2)L ×U(2)R ×USp(2)3

stack N (n1, l1)× (n2, l2)× (n3, l3) n n b b′ c c′ 2 3 4

a 8 (1,−1)× (1, 0)× (1, 1) 0 0 3 0 0 −3 −1 0 1
b 4 (−1, 4)× (0, 1)× (−1, 1) 3 −3 — — −7 0 0 1 0
c 4 (−2, 1)× (−1, 1)× (1, 1) −2 −6 — — — — −1 −2 2
2 2 (1, 0)× (0,−1)× (0, 2) xA = 1

9xB = 1
4xC = 1

9xD

3 2 (0,−1)× (1, 0)× (0, 2) βg2 = −3, βg3 = −3, βg4 = −2
4 2 (0,−1)× (0, 1)× (2, 0) χ1 = 1

2 , χ2 = 2
9 , χ3 = 1

Table 9. D6-brane configurations and intersection numbers of Model 2, and its MSSM gauge

coupling relation is g2
a = 4

9g
2
b = 17

9 g
2
c = 85

61 ( 5
3g

2
Y ) = 32πeφ

4

15 .
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Model 3 U(4)×U(2)L ×U(2)R ×USp(2)2

stack N (n1, l1)× (n2, l2)× (n3, l3) n n b b′ c c′ 1 4

a 8 (−1,−1)× (1, 1)× (1, 1) 0 −4 0 3 0 −3 1 −1
b 4 (−5, 2)× (−1, 0)× (1, 1) −3 3 — — 0 1 0 5
c 4 (−2,−1)× (0, 1)× (1, 1) 1 −1 — — — — 1 0
1 2 (1, 0)× (1, 0)× (2, 0) xA = 14

5 xB = 2xC = 7xD
4 2 (0,−1)× (0, 1)× (2, 0) βg1 = −3, βg4 = 1

χ1 =
√

5, χ2 = 7√
5 , χ3 = 4√

5

Table 10. D6-brane configurations and intersection numbers of Model 3, and its gauge coupling
relation is g2

a = 5
6g

2
b = 7

6g
2
c = 35

32 ( 5
3g

2
Y ) = 8

27 53/4√7πeφ
4

.

Model 4 U(4)×U(2)L ×U(2)R ×USp(4)

stack N (n1, l1)× (n2, l2)× (n3, l3) n n b b′ c c′ 4

a 8 (2, 1)× (1, 0)× (1,−1) 1 −1 3 0 0 −3 −2
b 4 (1, 0)× (1,−3)× (1, 1) 2 −2 — — −4 0 1
c 4 (−1, 2)× (−1, 1)× (−1, 1) 2 6 — — — — 1
4 4 (0,−1)× (0, 1)× (2, 0) xA = 4

3xB = 8xC = 8
3xD

βg4 = 0
χ1 = 4, χ2 = 2

3 , χ3 = 4

Table 11. D6-brane configurations and intersection numbers of Model 4, and its MSSM gauge
coupling relation is g2

a = 1
2g

2
b = 13

6 g
2
c = 65

44 ( 5
3g

2
Y ) = 16

5

√
2
3πe

φ
4

.

Model 5 U(4)×U(2)L ×U(2)R ×USp(4)

stack N (n1, l1)× (n2, l2)× (n3, l3) n n b b′ c c′ 3

a 8 (−1, 1)× (−1, 0)× (1, 1) 0 0 3 0 0 −3 0
b 4 (−1, 4)× (0, 1)× (−1, 1) 3 −3 — — −8 0 1
c 4 (1, 0)× (2,−3)× (1, 1) 1 −1 — — — — −3
3 4 (0,−1)× (1, 0)× (0, 2) xA = 1

6xB = 1
4xC = 1

6xD

βg3 = −2
χ1 = 1

2 , χ2 = 1
3 , χ3 = 1

Table 12. D6-brane configurations and intersection numbers of Model 5, and its MSSM gauge
coupling relation is g2

a = 2
3g

2
b = 2g2

c = 10
7 ( 5

3g
2
Y ) = 16

5

√
2
3πe

φ
4

.
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Model 6 U(4)×U(2)L ×U(2)R ×USp(2)

stack N (n1, l1)× (n2, l2)× (n3, l3) n n b b′ c c′ 3

a 8 (1,−1)× (1, 0)× (1, 1) 0 0 3 0 0 −3 0
b 4 (−2, 5)× (0, 1)× (−1, 1) 3 −3 — — −8 0 2
c 4 (−2, 1)× (−1, 1)× (1, 1) −2 −6 — — — — −2
3 2 (0,−1)× (1, 0)× (0, 2) xA = 1

6xB = 2
5xC = 1

6xD

βg3 = −2

χ1 =
√

2
5 , χ2 =

√
5
2

6 , χ3 = 2
√

2
5

Table 13. D6-brane configurations and intersection numbers of Model 6, and its MSSM gauge

coupling relation is g2
a = 5

6g
2
b = 11

6 g
2
c = 11

8 ( 5
3g

2
Y ) = 8 4√253/4

πe
φ

4

7
√

3 .

Model 7 U(4)×U(2)L ×U(2)R ×USp(4)2

stack N (n1, l1)× (n2, l2)× (n3, l3) n n b b′ c c′ 2 4

a 8 (1, 1)× (1, 0)× (1,−1) 0 0 3 0 0 −3 1 −1
b 4 (1, 0)× (1,−3)× (1, 1) 2 −2 — — −4 0 0 1
c 4 (1, 2)× (−1, 1)× (−1, 1) −2 −6 — — — — 2 −1
2 4 (1, 0)× (0,−1)× (0, 2) xA = 1

3xB = xC = 1
3xD

4 4 (0,−1)× (0, 1)× (2, 0) βg2 = −2, βg4 = −2
χ1 = 1, χ2 = 1

3 , χ3 = 2

Table 14. D6-brane configurations and intersection numbers of Model 7, and its MSSM gauge
coupling relation is g2

a = g2
b = 5

3g
2
c = 25

19 ( 5
3g

2
Y ) = 4

√
2
3πe

φ
4

.

Model 8 U(4)×U(2)L ×U(2)R ×USp(2)3

stack N (n1, l1)× (n2, l2)× (n3, l3) n n b b′ c c′ 1 2 4

a 8 (1, 1)× (1, 0)× (1,−1) 0 0 3 0 0 −3 0 1 −1
b 4 (−1, 0)× (−1, 3)× (1, 1) 2 −2 — — −3 0 0 0 1
c 4 (0, 1)× (−2, 3)× (−1, 1) 1 −1 — — — — −3 2 0
1 2 (1, 0)× (1, 0)× (2, 0) xA = 2

3xB = 2xC = 2
3xD

2 2 (1, 0)× (0,−1)× (0, 2) βg1 = −3, βg2 = −2, βg4 = −3
4 2 (0,−1)× (0, 1)× (2, 0) χ1 =

√
2, χ2 =

√
2

3 , χ3 = 2
√

2

Table 15. D6-brane configurations and intersection numbers of Model 8, and its MSSM gauge

coupling relation is g2
a = g2

b = 2g2
c = 10

7 ( 5
3g

2
Y ) = 16 4√2πeφ

4

3
√

3 .
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Model 9 U(4)×U(2)L ×U(2)R ×USp(2)2

stack N (n1, l1)× (n2, l2)× (n3, l3) n n b b′ c c′ 1 4

a 8 (1,−1)× (−1, 1)× (1,−1) 0 4 3 0 0 −3 −1 1
b 4 (1,−4)× (1, 0)× (1, 1) 3 −3 — — −7 0 0 1
c 4 (−2, 1)× (2, 1)× (−1, 1) −3 −13 — — — — −1 −4
1 2 (1, 0)× (1, 0)× (2, 0) xA = 28xB = 28

23xC = 7xD
4 2 (0,−1)× (0, 1)× (2, 0) βg1 = −3, βg4 = 1

χ1 =
√

7
23 , χ2 =

√
161, χ3 = 8

√
7
23

Table 16. D6-brane configurations and intersection numbers of Model 9, and its MSSM gauge
coupling relation is g2

a = 1
6g

2
b = 11

6 g
2
c = 11

8 ( 5
3g

2
Y ) = 8

405 1613/4√2πeφ
4

.

Model 10 U(4)×U(2)L ×U(2)R ×USp(2)2 ×USp(4)

stack N (n1, l1)× (n2, l2)× (n3, l3) n n b b′ c c′ 1 3 4

a 8 (−1,−1)× (1, 1)× (1, 1) 0 −4 0 3 0 −3 1 −1 −1
b 4 (−4, 1)× (−1, 0)× (1, 1) −3 3 — — 0 2 0 0 4
c 4 (−2,−1)× (0, 1)× (1, 1) 1 −1 — — — — 1 −2 0
1 4 (1, 0)× (1, 0)× (2, 0) xA = 5

2xB = 2xC = 10xD
3 2 (0,−1)× (1, 0)× (0, 2) βg1 = −3, βg3 = −2, βg4 = 0
4 2 (0,−1)× (0, 1)× (2, 0) χ1 = 2

√
2, χ2 = 5√

2 , χ3 =
√

2

Table 17. D6-brane configurations and intersection numbers of Model 10, and its MSSM gauge
coupling relation is g2

a = 4
9g

2
b = 10

9 g
2
c = 50

47 ( 5
3g

2
Y ) = 16

27 23/4√5πeφ
4

.

Model 11 U(4)×U(2)L ×U(2)R ×USp(2)×USp(4)

stack N (n1, l1)× (n2, l2)× (n3, l3) n n b b′ c c′ 1 3

a 8 (−1, 1)× (−1, 0)× (1, 1) 0 0 3 0 0 −3 0 0
b 4 (−1, 4)× (0, 1)× (−1, 1) 3 −3 — — −4 0 −4 1
c 4 (1, 0)× (1,−3)× (1, 1) 2 −2 — — — — 0 −3
1 2 (1, 0)× (1, 0)× (2, 0) xA = 1

12xB = 1
4xC = 1

12xD

3 4 (0,−1)× (1, 0)× (0, 2) βg1 = −2, βg3 = −2
χ1 = 1

2 , χ2 = 1
6 , χ3 = 1

Table 18. D6-brane configurations and intersection numbers of Model 11, and its MSSM gauge

coupling relation is g2
a = 1

3g
2
b = g2

c = ( 5
3g

2
Y ) = 16πeφ

4

5
√

3 .
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Model 12 U(4)×U(2)L ×U(2)R ×USp(2)×USp(4)

stack N (n1, l1)× (n2, l2)× (n3, l3) n n b b′ c c′ 1 4

a 8 (−1,−1)× (2, 1)× (1, 1) 0 −8 0 3 0 −3 1 −2
b 4 (4,−1)× (1, 0)× (1, 1) −3 3 — — 0 2 0 4
c 4 (−2,−1)× (−1, 1)× (1, 1) 2 6 — — — — 1 2
1 4 (1, 0)× (1, 0)× (2, 0) xA = 13

2 xB = 13
8 xC = 26xD

4 2 (0,−1)× (0, 1)× (2, 0) βg1 = −3, βg4 = 4

χ1 =
√

13
2 , χ2 = 2

√
26, χ3 =

√
13
2

2

Table 19. D6-brane configurations and intersection numbers of Model 12, and its MSSM gauge
coupling relation is g2

a = 1
6g

2
b = 7

6g
2
c = 35

32 ( 5
3g

2
Y ) = 16

135 263/4πeφ
4

.

Model 13 U(4)×U(2)L ×U(2)R ×USp(2)2

stack N (n1, l1)× (n2, l2)× (n3, l3) n n b b′ c c′ 1 4

a 8 (−1,−1)× (1, 1)× (1, 1) 0 −4 6 −3 0 −3 1 −1
b 4 (−1, 2)× (−1, 0)× (5, 1) 9 −9 — — −10 −9 0 1
c 4 (−2,−1)× (0, 1)× (1, 1) 1 −1 — — — — 1 0
1 2 (1, 0)× (1, 0)× (2, 0) xA = 22xB = 2xC = 11

5 xD

4 2 (0,−1)× (0, 1)× (2, 0) βg1 = −3, βg4 = −3
χ1 = 1√

5 , χ2 = 11√
5 , χ3 = 4

√
5

Table 20. D6-brane configurations and intersection numbers of Model 13, and its MSSM gauge
coupling relation is g2

a = 5
14g

2
b = 11

6 g
2
c = 11

8 ( 5
3g

2
Y ) = 8

63 53/4√11πeφ
4

.

Model 14 U(4)×U(2)L ×U(2)R ×USp(2)

stack N (n1, l1)× (n2, l2)× (n3, l3) n n b b′ c c′ 3

a 8 (1,−1)× (1, 0)× (1, 1) 0 0 −3 6 0 −3 0
b 4 (−2, 1)× (0, 1)× (−5, 1) −9 9 — — 0 8 10
c 4 (−2, 1)× (−1, 1)× (1, 1) −2 −6 — — — — −2
3 2 (0,−1)× (1, 0)× (0, 2) xA = 5

6xB = 10xC = 5
6xD

βg3 = 6

χ1 =
√

10, χ2 =
√

5
2

6 , χ3 = 2
√

10

Table 21. D6-brane configurations and intersection numbers of Model 14, and its MSSM gauge

coupling relation is g2
a = 35

66g
2
b = 7

6g
2
c = 35

32 ( 5
3g

2
Y ) = 8 4√253/4

πe
φ

4

11
√

3 .
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Model 15 U(4)×U(2)L ×U(2)R ×USp(2)2

stack N (n1, l1)× (n2, l2)× (n3, l3) n n b b′ c c′ 1 4

a 8 (1,−1)× (−1, 1)× (1,−1) 0 4 0 3 0 −3 −1 1
b 4 (0, 1)× (−2, 1)× (−1, 1) −1 1 — — 0 −1 −1 0
c 4 (−1, 0)× (5, 2)× (−1, 1) 3 −3 — — — — 0 −5
1 2 (1, 0)× (1, 0)× (2, 0) xA = 2xB = 14

5 xC = 7xD
4 2 (0,−1)× (0, 1)× (2, 0) βg1 = −3, βg4 = 1

χ1 = 7√
5 , χ2 =

√
5, χ3 = 4√

5

Table 22. D6-brane configurations and intersection numbers of Model 15, and its gauge coupling
relation is g2

a = 7
6g

2
b = 5

6g
2
c = 25

28 ( 5
3g

2
Y ) = 8

27 53/4√7πeφ
4

.

Model 16 U(4)×U(2)L ×U(2)R ×USp(2)2

stack N (n1, l1)× (n2, l2)× (n3, l3) n n b b′ c c′ 2 4

a 8 (1, 1)× (1, 0)× (1,−1) 0 0 2 1 0 −3 1 −1
b 4 (−1, 0)× (−2, 1)× (1, 3) −5 5 — — 8 8 0 6
c 4 (0, 1)× (−2, 3)× (−1, 1) 1 −1 — — — — 2 0
2 2 (1, 0)× (0,−1)× (0, 2) xA = 2

3xB = 1
9xC = 2

3xD

4 2 (0,−1)× (0, 1)× (2, 0) βg2 = −2, βg4 = 2
χ1 = 1

3 , χ2 = 2, χ3 = 2
3

Table 23. D6-brane configurations and intersection numbers of Model 16, and its MSSM gauge

coupling relation is g2
a = 18

5 g
2
b = 2g2

c = 10
7 ( 5

3g
2
Y ) = 24πeφ

4

5 .

Model 17 U(4)×U(2)L ×U(2)R ×USp(2)2

stack N (n1, l1)× (n2, l2)× (n3, l3) n n b b′ c c′ 2 4

a 8 (1, 1)× (1, 0)× (1,−1) 0 0 3 0 0 −3 1 −1
b 4 (−1, 0)× (−2, 3)× (1, 1) 1 −1 — — 0 0 0 2
c 4 (0, 1)× (−2, 3)× (−1, 1) 1 −1 — — — — 2 0
2 2 (1, 0)× (0,−1)× (0, 2) xA = 2

3xB = xC = 2
3xD

4 2 (0,−1)× (0, 1)× (2, 0) βg2 = −2, βg4 = −2
χ1 = 1, χ2 = 2

3 , χ3 = 2

Table 24. D6-brane configurations and intersection numbers of Model 17, and its MSSM gauge

coupling relation is g2
a = 2g2

b = 2g2
c = 10

7 ( 5
3g

2
Y ) = 8πeφ

4

√
3 .
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Model 18 U(4)×U(2)L ×U(2)R ×USp(2)2

stack N (n1, l1)× (n2, l2)× (n3, l3) n n b b′ c c′ 1 4

a 8 (−1,−1)× (1, 1)× (1, 1) 0 −4 3 0 0 −3 1 −1
b 4 (−2, 1)× (2, 1)× (−1, 1) −3 −13 — — 7 0 −1 −4
c 4 (1,−4)× (1, 0)× (1, 1) 3 −3 — — — — 0 1
1 2 (1, 0)× (1, 0)× (2, 0) xA = 28xB = 28

23xC = 7xD
4 2 (0,−1)× (0, 1)× (2, 0) βg1 = −3, βg4 = 1

χ1 =
√

7
23 , χ2 =

√
161, χ3 = 8

√
7
23

Table 25. D6-brane configurations and intersection numbers of Model 18, and its MSSM gauge
coupling relation is g2

a = 11
6 g

2
b = 1

6g
2
c = 1

4 ( 5
3g

2
Y ) = 8

405
√

21613/4πeφ
4

.

Model 19 U(4)×U(2)L ×U(2)R ×USp(4)2

stack N (n1, l1)× (n2, l2)× (n3, l3) n n b b′ c c′ 2 4

a 8 (1, 1)× (1, 0)× (1,−1) 0 0 3 0 0 −3 1 −1
b 4 (−2, 1)× (−1, 1)× (1, 1) −2 −6 — — 4 0 −1 2
c 4 (0, 1)× (−1, 3)× (−1, 1) 2 −2 — — — — 1 0
2 4 (1, 0)× (0,−1)× (0, 2) xA = 1

3xB = xC = 1
3xD

4 4 (0,−1)× (0, 1)× (2, 0) βg2 = −2, βg4 = −2
χ1 = 1, χ2 = 1

3 , χ3 = 2

Table 26. D6-brane configurations and intersection numbers of Model 19, and its MSSM gauge
coupling relation is g2

a = 5
3g

2
b = g2

c = ( 5
3g

2
Y ) = 4

√
2
3πe

φ
4

.

Model 20 U(4)×U(2)L ×U(2)R ×USp(2)3

stack N (n1, l1)× (n2, l2)× (n3, l3) n n b b′ c c′ 2 3 4

a 8 (1, 1)× (1, 0)× (1,−1) 0 0 3 0 0 −3 1 0 −1
b 4 (−1, 0)× (−2, 3)× (1, 1) 1 −1 — — 3 0 0 −3 2
c 4 (0, 1)× (−1, 3)× (−1, 1) 2 −2 — — — — 1 0 0
2 2 (1, 0)× (0,−1)× (0, 2) xA = 1

3xB = 1
2xC = 1

3xD

3 2 (0,−1)× (1, 0)× (0, 2) βg2 = −3, βg3 = −3, βg4 = −2
4 2 (0,−1)× (0, 1)× (2, 0) χ1 = 1√

2 , χ2 =
√

2
3 , χ3 =

√
2

Table 27. D6-brane configurations and intersection numbers of Model 20, and its MSSM gauge

coupling relation is g2
a = 2g2

b = g2
c = ( 5

3g
2
Y ) = 16 4√2πeφ

4

3
√

3 .
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Model 21 U(4)×U(2)L ×U(2)R ×USp(2)3

stack N (n1, l1)× (n2, l2)× (n3, l3) n n b b′ c c′ 2 3 4

a 8 (1, 1)× (1, 0)× (1,−1) 0 0 2 1 0 −3 1 0 −1
b 4 (−1, 0)× (−2, 1)× (1, 3) −5 5 — — 10 7 0 −1 6
c 4 (0, 1)× (−1, 3)× (−1, 1) 2 −2 — — — — 1 0 0
2 2 (1, 0)× (0,−1)× (0, 2) xA = 1

3xB = 1
18xC = 1

3xD

3 2 (0,−1)× (1, 0)× (0, 2) βg2 = −3, βg3 = −5, βg4 = 2
4 2 (0,−1)× (0, 1)× (2, 0) χ1 = 1

3
√

2 , χ2 =
√

2, χ3 =
√

2
3

Table 28. D6-brane configurations and intersection numbers of Model 21, and its MSSM gauge
coupling relation is g2

a = 54
19g

2
b = g2

c = ( 5
3g

2
Y ) = 48

19
4
√

2πeφ
4

.

Model 22 U(4)×U(2)L ×U(2)R ×USp(2)4

stack N (n1, l1)× (n2, l2)× (n3, l3) n n b b′ c c′ 1 2 3 4

a 8 (1, 1)× (1, 0)× (1,−1) 0 0 2 1 0 −3 0 1 0 −1
b 4 (−1, 0)× (−1, 1)× (1, 3) −2 2 — — 4 4 0 0 −1 3
c 4 (0, 1)× (−1, 3)× (−1, 1) 2 −2 — — — — −3 1 0 0
1 2 (1, 0)× (1, 0)× (2, 0) xA = 1

3xB = 1
9xC = 1

3xD

2 2 (1, 0)× (0,−1)× (0, 2) βg1 = −3, βg2 = −3, βg3 = −5, βg4 = −1
3 2 (0,−1)× (1, 0)× (0, 2) χ1 = 1

3 , χ2 = 1, χ3 = 2
3

4 2 (0,−1)× (0, 1)× (2, 0)

Table 29. D6-brane configurations and intersection numbers of Model 22, and its MSSM gauge
coupling relation is g2

a = 9
5g

2
b = g2

c = ( 5
3g

2
Y ) = 12

5
√

2πeφ
4

.

Model 23 U(4)×U(2)L ×U(2)R ×USp(4)

stack N (n1, l1)× (n2, l2)× (n3, l3) n n b b′ c c′ 4

a 8 (−2, 1)× (−1, 0)× (1, 1) −1 1 3 0 0 −3 2
b 4 (−1, 2)× (−1, 1)× (−1, 1) 2 6 — — 4 0 1
c 4 (1, 0)× (1,−3)× (1, 1) 2 −2 — — — — 1
4 4 (0,−1)× (0, 1)× (2, 0) xA = 4

3xB = 8xC = 8
3xD

βg4 = 0
χ1 = 4, χ2 = 2

3 , χ3 = 4

Table 30. D6-brane configurations and intersection numbers of Model 23, and its MSSM gauge
coupling relation is g2

a = 13
6 g

2
b = 1

2g
2
c = 5

8 ( 5
3g

2
Y ) = 16

5

√
2
3πe

φ
4

.
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Model 24 U(4)×U(2)L ×U(2)R ×USp(4)

stack N (n1, l1)× (n2, l2)× (n3, l3) n n b b′ c c′ 3

a 8 (1, 1)× (−1, 0)× (−1, 1) 0 0 3 0 0 −3 0
b 4 (1, 0)× (2,−3)× (1, 1) 1 −1 — — 8 0 −3
c 4 (−1, 4)× (0, 1)× (−1, 1) 3 −3 — — — — 1
3 4 (0,−1)× (1, 0)× (0, 2) xA = 1

6xB = 1
4xC = 1

6xD

βg3 = −2
χ1 = 1

2 , χ2 = 1
3 , χ3 = 1

Table 31. D6-brane configurations and intersection numbers of Model 24, and its MSSM gauge
coupling relation is g2

a = 2g2
b = 2

3g
2
c = 10

13 ( 5
3g

2
Y ) = 16

5

√
2
3πe

φ
4

.

Model 25 U(4)×U(2)L ×U(2)R ×USp(2)3

stack N (n1, l1)× (n2, l2)× (n3, l3) n n b b′ c c′ 2 3 4

a 8 (1, 1)× (1, 0)× (1,−1) 0 0 3 0 0 −3 1 0 −1
b 4 (2,−1)× (1,−1)× (1, 1) −2 −6 — — 7 0 −1 −2 2
c 4 (−1, 4)× (0, 1)× (−1, 1) 3 −3 — — — — 0 1 0
2 2 (1, 0)× (0,−1)× (0, 2) xA = 1

9xB = 1
4xC = 1

9xD

3 2 (0,−1)× (1, 0)× (0, 2) βg2 = −3, βg3 = −3, βg4 = −2
4 2 (0,−1)× (0, 1)× (2, 0) χ1 = 1

2 , χ2 = 2
9 , χ3 = 1

Table 32. D6-brane configurations and intersection numbers of Model 25, and its MSSM gauge

coupling relation is g2
a = 17

9 g
2
b = 4

9g
2
c = 4

7 ( 5
3g

2
Y ) = 32πeφ

4

15 .

Model 26 U(4)×U(2)L ×U(2)R ×USp(2)

stack N (n1, l1)× (n2, l2)× (n3, l3) n n b b′ c c′ 3

a 8 (1, 1)× (1, 0)× (1,−1) 0 0 3 0 0 −3 0
b 4 (2,−1)× (1,−1)× (1, 1) −2 −6 — — 8 0 −2
c 4 (−2, 5)× (0, 1)× (−1, 1) 3 −3 — — — — 2
3 2 (0,−1)× (1, 0)× (0, 2) xA = 1

6xB = 2
5xC = 1

6xD

βg3 = −2

χ1 =
√

2
5 , χ2 =

√
5
2

6 , χ3 = 2
√

2
5

Table 33. D6-brane configurations and intersection numbers of Model 26, and its MSSM gauge

coupling relation is g2
a = 11

6 g
2
b = 5

6g
2
c = 25

28 ( 5
3g

2
Y ) = 8 4√253/4

πe
φ

4

7
√

3 .
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Model 27 U(4)×U(2)L ×U(2)R ×USp(2)2 ×USp(4)

stack N (n1, l1)× (n2, l2)× (n3, l3) n n b b′ c c′ 1 2 4

a 8 (1,−1)× (−1, 1)× (1,−1) 0 4 0 3 0 −3 −1 1 1
b 4 (0, 1)× (−2, 1)× (−1, 1) −1 1 — — 0 −2 −1 2 0
c 4 (−1, 0)× (4, 1)× (−1, 1) 3 −3 — — — — 0 0 −4
1 4 (1, 0)× (1, 0)× (2, 0) xA = 2xB = 5

2xC = 10xD
2 2 (1, 0)× (0,−1)× (0, 2) βg1 = −3, βg2 = −2, βg4 = 0
4 2 (0,−1)× (0, 1)× (2, 0) χ1 = 5√

2 , χ2 = 2
√

2, χ3 =
√

2

Table 34. D6-brane configurations and intersection numbers of Model 27, and its MSSM gauge
coupling relation is g2

a = 10
9 g

2
b = 4

9g
2
c = 4

7 ( 5
3g

2
Y ) = 16

27 23/4√5πeφ
4

.

Model 28 U(4)×U(2)L ×U(2)R ×USp(2)×USp(4)

stack N (n1, l1)× (n2, l2)× (n3, l3) n n b b′ c c′ 1 3

a 8 (1, 1)× (−1, 0)× (−1, 1) 0 0 3 0 0 −3 0 0
b 4 (1, 0)× (1,−3)× (1, 1) 2 −2 — — 4 0 0 −3
c 4 (−1, 4)× (0, 1)× (−1, 1) 3 −3 — — — — −4 1
1 2 (1, 0)× (1, 0)× (2, 0) xA = 1

12xB = 1
4xC = 1

12xD

3 4 (0,−1)× (1, 0)× (0, 2) βg1 = −2, βg3 = −2
χ1 = 1

2 , χ2 = 1
6 , χ3 = 1

Table 35. D6-brane configurations and intersection numbers of Model 28, and its MSSM gauge

coupling relation is g2
a = g2

b = 1
3g

2
c = 5

11 ( 5
3g

2
Y ) = 16πeφ

4

5
√

3 .

Model 29 U(4)×U(2)L ×U(2)R ×USp(2)×USp(4)

stack N (n1, l1)× (n2, l2)× (n3, l3) n n b b′ c c′ 1 4

a 8 (1,−1)× (−2, 1)× (1,−1) 0 8 0 3 0 −3 −1 2
b 4 (−2, 1)× (1, 1)× (−1, 1) −2 −6 — — 0 −2 −1 −2
c 4 (−4,−1)× (1, 0)× (−1, 1) 3 −3 — — — — 0 −4
1 4 (1, 0)× (1, 0)× (2, 0) xA = 13

2 xB = 13
8 xC = 26xD

4 2 (0,−1)× (0, 1)× (2, 0) βg1 = −3, βg4 = 4

χ1 =
√

13
2 , χ2 = 2

√
26, χ3 =

√
13
2

2

Table 36. D6-brane configurations and intersection numbers of Model 29, and its MSSM gauge
coupling relation is g2

a = 7
6g

2
b = 1

6g
2
c = 1

4 ( 5
3g

2
Y ) = 16

135 263/4πeφ
4

.
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Model 30 U(4)×U(2)L ×U(2)R ×USp(2)3

stack N (n1, l1)× (n2, l2)× (n3, l3) n n b b′ c c′ 1 2 4

a 8 (1, 1)× (1, 0)× (1,−1) 0 0 2 1 0 −3 0 1 −1
b 4 (−1, 0)× (−1, 1)× (1, 3) −2 2 — — 2 5 0 0 3
c 4 (0, 1)× (−2, 3)× (−1, 1) 1 −1 — — — — −3 2 0
1 2 (1, 0)× (1, 0)× (2, 0) xA = 2

3xB = 2
9xC = 2

3xD

2 2 (1, 0)× (0,−1)× (0, 2) βg1 = −3, βg2 = −2, βg4 = −1
4 2 (0,−1)× (0, 1)× (2, 0) χ1 =

√
2

3 , χ2 =
√

2, χ3 = 2
√

2
3

Table 37. D6-brane configurations and intersection numbers of Model 30, and its MSSM gauge
coupling relation is g2

a = 27
11g

2
b = 2g2

c = 10
7 ( 5

3g
2
Y ) = 48

11
4
√

2πeφ
4

.

Model 31 U(4)×U(2)L ×U(2)R ×USp(2)×USp(4)

stack N (n1, l1)× (n2, l2)× (n3, l3) n n b b′ c c′ 1 3

a 8 (1, 1)× (−1, 0)× (−1, 1) 0 0 2 1 0 −3 0 0
b 4 (1, 0)× (1,−1)× (1, 3) −2 2 — — 8 4 0 −1
c 4 (−1, 4)× (0, 1)× (−1, 1) 3 −3 — — — — −4 1
1 2 (1, 0)× (1, 0)× (2, 0) xA = 3

4xB = 1
4xC = 3

4xD

3 4 (0,−1)× (1, 0)× (0, 2) βg1 = −2, βg3 = −4
χ1 = 1

2 , χ2 = 3
2 , χ3 = 1

Table 38. D6-brane configurations and intersection numbers of Model 31, and its MSSM gauge
coupling relation is g2

a = 13
5 g

2
b = 3g2

c = 5
3 ( 5

3g
2
Y ) = 16

5
√

3πeφ
4

.

Model 32 U(4)×U(2)L ×U(2)R ×USp(4)

stack N (n1, l1)× (n2, l2)× (n3, l3) n n b b′ c c′ 4

a 8 (2, 1)× (1, 0)× (1,−1) 1 −1 2 1 0 −3 −2
b 4 (1, 0)× (1,−1)× (1, 3) −2 2 — — 0 4 3
c 4 (−1, 2)× (−1, 1)× (−1, 1) 2 6 — — — — 1
4 4 (0,−1)× (0, 1)× (2, 0) xA = 2xB = 4

3xC = 4xD
βg4 = 2

χ1 = 2
√

2
3 , χ2 =

√
6, χ3 = 2

√
2
3

Table 39. D6-brane configurations and intersection numbers of Model 32, and its MSSM gauge
coupling relation is g2

a = 21
10g

2
b = 7

2g
2
c = 7

4 ( 5
3g

2
Y ) = 8

5 63/4πeφ
4

.
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Model 33 U(4)×U(2)L ×U(2)R ×USp(4)

stack N (n1, l1)× (n2, l2)× (n3, l3) n n b b′ c c′ 3

a 8 (1, 1)× (−1, 0)× (−1, 1) 0 0 2 1 0 −3 0
b 4 (1, 0)× (2,−1)× (1, 3) −5 5 — — 16 8 −1
c 4 (−1, 4)× (0, 1)× (−1, 1) 3 −3 — — — — 1
3 4 (0,−1)× (1, 0)× (0, 2) xA = 3

2xB = 1
4xC = 3

2xD

βg3 = −4
χ1 = 1

2 , χ2 = 3, χ3 = 1

Table 40. D6-brane configurations and intersection numbers of Model 33, and its MSSM gauge
coupling relation is g2

a = 26
5 g

2
b = 6g2

c = 2( 5
3g

2
Y ) = 16

5
√

6πeφ
4

.
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B The evolution for the gauge couplings
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Figure 11. Two-loop evolution of gauge couplings for the Model 6 with vector-like particles. In
the model, kY = 1× 11

8 and k2 = 5
6 . The string-scale gauge coupling relations can be achieved by

adding 3(XG+XW ) (a) and 7(XQ+XQ) + 3XG (b).
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Figure 12. Two-loop evolution of gauge couplings for the Model 7 with vector-like particles. In
the model, kY = 25

19 ×
5
3 and k2 = 1. The string-scale gauge coupling relations can be achieved by

adding 3(XG+XW ) (a) and 3(XQ+XQ) + 3XG (b).
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Figure 13. Two-loop evolution of gauge couplings for the Model 8 with vector-like particles. In
the model, kY = 10

7 ×
5
3 and k2 = 1. The string-scale gauge coupling relations can be achieved by

adding 3(XG+XW ) (a) and 3(XQ+XQ) + 3XG (b).
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Figure 14. Two-loop evolution of gauge couplings for the Model 9 with vector-like particles. In
the model, kY = 11

8 ×
5
3 and k2 = 1

6 . The string-scale gauge coupling relation can be achieved by
adding 3(XG+XW ) (a) and 5(XQ+XQ) + 3XW (b).
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Figure 15. Two-loop evolution of gauge couplings for the Model 10 with vector-like particles. In
the model, kY = 50

47 ×
5
3 and k2 = 4

9 . The string-scale gauge coupling relation can be achieved by
adding 3(XG+XW ) (a) and 5(XQ+XQ) + 3XW (b).
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Figure 16. Two-loop evolution of gauge couplings for the Model 11 without and with vector-like
particles. In the model, kY = 1× 5

3 and k2 = 1
3 . The string-scale gauge coupling relation can be

achieved by adding 3(XG+XW ) (a) and 5(XQ+XQ) + 3XW (b).
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Figure 17. Two-loop evolution of gauge couplings for the Model 12 with vector-like particles. In
the model, kY = 35

32 ×
5
3 and k2 = 1

6 . The string-scale gauge coupling relation can be achieved by
adding 3(XG+XW ) (a) and 5(XQ+XQ) + 3XW (b).
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Figure 18. Two-loop evolution of gauge couplings for the Model 16 with vector-like particles. In
this model, kY = 10

7 ×
5
3 and k2 = 2. The string-scale gauge coupling relation can be achieved by

adding 3(XD +XD) (a) as well as 3(XU +XU) (b).
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Figure 19. Two-loop evolution of gauge couplings for the Model 18 (a), Model 19 (b), Model
20 (c), Model 21 (d), Model 22 (e) and Model 23 (f) with vector-like particles. The string-scale
gauge coupling relation can be achieved by adding 3(XD +XD) + 3(XU +XU).
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Figure 20. Two-loop evolution of gauge couplings for the Model 24 (a) and Model 25 (b) with
vector-like particles. In this model, kY = 10

13 ×
5
3 and k2 = 2. The string-scale gauge coupling relation

can be achieved by adding 5(XD +XD) + 5(XU +XU).
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Figure 21. Two-loop evolution of gauge couplings for the Model 26 with vector-like particles. In
this model, kY = 25

28 ×
5
3 and k2 = 11

6 . The string-scale gauge coupling relation can be achieved by
adding 7(XD +XD) + 7(XU +XU).
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Figure 22. Two-loop evolution of gauge couplings for the Model 28 (a) and Model29 (b)
with vector-like particles. The string-scale gauge coupling relation can be achieved by adding
5(XE +XE) +XG.
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Figure 23. Two-loop evolution of gauge couplings for the Model 30 (a), Model 31 (b), Model
32 (c) and Model 33 (d) with vector-like particles. The string-scale gauge coupling relation can be
achieved by adding 3(XE +XE) + 3XG.
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