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ABSTRACT: For a moving heavy quark antiquark (QQ) in a quark gluon plasma (QGP), we
use gauge/gravity duality to study both real and imaginary parts of the potential (ReVQQ
and ImVj5 respectively) in a gluon condensate (GC) theory. The complex potential is
derived from the Wilson loop by considering the thermal fluctuations of the worldsheet
of the Nambu-Goto holographic string. We calculate ReVyg and ImVjy5 in both cases
where the axis of the moving Q@) pair is transverse and parallel with respect to its direction
of movement in the plasma. Using the renormalization scheme for the ReVQQ, we find
that the inclusion of GC increases the dissociation length while rapidity has the opposite
effect. While for the ImV(,5, we observe that by considering the effect of GC, the ImV{,5 is
generated for larger distance thus decreasing quarkonium dissociation, while rapidity has
opposite effect. In particular, as the value of GC decreases in the deconfined phase, the
ImVQQ is generated for smaller distance thus enhancing quarkonium dissociation, and at
high temperatures it is nearly not modified by GC, consistent with previous findings of the
entropic force.
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1 Introduction

The heavy ion collisions at Relativistic Heavy Ion Collisions (RHIC) and Large Hadron
Collider (LHC) have produced a new state of matter called QGP [1-3]. One of the most
experimental signatures of QGP formation is the dissociation of quarkonia, like cc¢ in the
medium [4-8]. Most studies over the past years have found that the main mechanism
responsible for this dissociation is color screening [9], however, recent studies suggest a
more important reason than the screening, the ImVj5 [10]. Moreover, this quantity could
be used to estimate the thermal width which is an important subject in QGP [11, 12].
Calculations of the ImVy,5 associated with QCD and heavy ion collisions were performed
for static pairs using pQCD [13, 14]. However, theoretical analysis and experimental data
demonstrate that QGP is strongly coupled [15], then non-perturbative methods are needed.
The equation of state of the QGP at zero and finite temperature are given in [16, 17] and
the ImVi,5 was studied in [18-20] by using non-perturbative lattice QCD. Note that lattice
QCD is very useful but still very difficult to use to study real-time QCD dynamics. An
alternative method to study different aspects of QGP is the AdS/CFT correspondence.

AdS/CFT conjecture originally relates the type IIB string theory on AdSs x S° space-
time to the four-dimensional N' =4 SYM gauge theory [21]. In a holographic description of
AdS/CFT, a strongly coupled field theory at the boundary of the AdS space is mapped
onto the weakly coupled gravitational theory in the bulk of AdS [22]. Although SYM
differs from QCD in many properties (e.g., at zero temperatures, SYM is a conformal
theory with no particle spectrum while QCD is a confining theory with a sensible particle
interpretation), it reveals some qualitative features of QCD in strongly coupled regime
at non-zero temperatures (e.g., both theories describe hot, non-Abelian plasmas with
qualitatively similar hydrodynamic behavior [23]). Given that, one could use the AdS/CFT
correspondence to study various aspects of QGP. An example of the most known AdS/CFT
calculations is the ratio of shear viscosity to entropy density [23, 24].



On the other hand, the AdS/CFT correspondence has been generalized to more realistic
QCD, e.g, bottom-up holographic model [25, 26]. The bottom-up approach begins with a
five-dimensional effective field theory somehow motivated by string theory and tries to fit
it to QCD as much as possible. In the gravitational dual of QCD, the presence of probe
branes in the AdS bulk breaks the conformal symmetry and sets the energy scales, so
corrections in AdSs are useful to find more phenomenological results. Holographic GC
model [27-29] is a type of bottom-up model with phenomenological applicability as an
effective model for the QGP. It is known that GC is a measure of the non-perturbative
physics in zero-temperature QCD [30], it is also an order parameter for (de)confinement
hence could be a condition for the phase transition (the usual order parameter for the
deconfinement transition at finite temperature is the Polyakov loop. Also the Wilson loop
can be used to identify the (de)confined phases of pure YM theory by its area law behavior).
Although there is no order parameter for the real-world QGP, GC model may be useful to
study the nonperturbative nature of the QGP [31-40], such as in RHIC physics [41]. In the
mentioned references it is shown that QCD sum rules is used to study the nonperturbative
physics of the strong interaction at zero temperature. In this approach, the nonperturbative
nature of the vacuum is summarized in terms of quark and gluon condensates. To study hot
systems, one generalizes the technique to finite temperature. The non-perturbative physics
remaining even at high temperatures, is manifested through the non-vanishing of some of
the vacuum condensates. Furthermore, using the GC model, the thermodynamic properties
of the system are discussed in [31], in which the well-known Stephan-Boltzmann law with
no condensation case can be recovered, also the energy density for high temperature is given
but for low temperature other back ground is dominating. In the same reference, the dilaton
(or GC) contribution of the energy momentum tensor is identified as the difference of the
total and the thermal gluon, the GC contributes negative energy which is a reminiscent
of the zero temperature result of Shifman, Vainstein and Zakharov [30]. In both cases,
the negativeness is coming from the renormalization. Also in [31] the pressure, the trace
anomaly and the entropy density are given in presence of GC, as it is expected, the entropy
in condensed state is less than that in thermal state. On the other hand, various observables
or quantities have been studied in Holographic GC model. For instance, the GC dependency
of the heavy quark potential was studied in [42] and the results indicate that the potential
becomes deeper as the GC in the deconfined phase decreases and the mass of the quarkonium
drops near the deconfinement temperature 7. (lattice QCD results [43, 44] show that the
GC appears a drastic change near T;.). The GC dependency of the jet quenching parameter
and drag force was analyzed in [45] and it was found that the two quantities both decrease
as the GC decreases in the deconfined phase, indicating that the energy loss decreases near
T¢. In [46] it is shown that the dropping GC near T, increases the entropic force and thus
enhances the quarkonium dissociation.

The aim of this work is to analyze the ImViy4 of moving QQ in holographic GC model
using the world-sheet thermal fluctuations method [47-49]. Note that the effect of the
medium in the motion of a QQ should be taken into account and the pair’s rapidity through
the plasma has some effects on their interactions. In the LHC, the heavy quarkonia are not
only produced in large numbers but also with high momenta so it is essential to consider



the effect of bound state speed on dissociation [50]. As discussed in [49], one can adopt
the saddle point approximation and discuss the motion of a heavy quarkonia in a plasma
and its imaginary potential. The imaginary potential of the QQ results from the effect
of thermal fluctuations due to the interactions between quarks and the strongly coupled
medium. By integrating out thermal long wavelength fluctuations in the path integral of the
Nambu-Goto action in the background spacetime, a formula for the imaginary part of the
Wilson loop can be found in this approach that is valid for any gauge theory dual to classical
gravity. Already, different holographic models were applied to study the ImVj)5 of the
QQ [25, 51-72]. It is worth to mention that in [49] the ImV,5 of moving QQ is considered
in strongly coupled plasma (associated with pure AdS), while in this work we extend it to
the AdS with GC. In [51] the ImVj,5 of moving QQ in OKS model (a type of holographic
model) is discussed, by delving into the solution beyond the critical separation of the
pair, which leads to the complex-valued string configurations, not the world-sheet thermal
fluctuations method as we use here. In [52] the ImV,,5 of moving QQ in a soft wall model
with broken conformal invariance and finite chemical potential is discussed. As holographic
examples, such as [49, 51-53] and [60] considered the moving cases, and they concluded
that increasing rapidity leads to decreasing the dissociation length, implying the pair will be
dissolved easier into a moving medium compared to the static medium, consistent with our
findings here. However, from EFT point of view, the reference [73] explored the in-medium
modifications of heavy quarkonium states moving through a medium for two plausible
situations: mg > 1/r > T > E > mp and mg > T > 1/r,mp > E, results are relevant
for moderate temperatures and for studying dissociation, respectively. The width decreases
with the velocity for the former situation whereas for the latter regime the width increases
monotonically with the velocity.

This paper is organized as follows: in the next section we study the ReV,5 for both
cases in which the dipole moves transversely and parallel to the dipole axis. We proceed
to calculate the ImVj,5 for the two cases mentioned in the section 3. Section 4 contains
results and conclusions.

2 Potential of moving QQ in presence of gluon condensation

In this section we evaluate the ReVj,5 of the moving QQ. The heavy quark potential
(the vacuum interaction energy) is related to the vacuum expectation value of the Wilson
loop [74-76] as,

lim (W(C))o ~ €7 Vaa®) (2.1)

7‘—)0

where C is a rectangular loop of spatial length L and extended over 7 in the time direction.
The expectation value of the Wilson loop can be evaluated in a thermal state of the gauge
theory with the temperature T'. From this point of view VQQ(L) is the heavy quark potential
at finite temperature and its imaginary part defines a thermal decay width. To estimate
the ImVj,5 mentioned, one can use worldsheet fluctuations of the Nambu-Goto action [47].

Note that although the Nambu-Goto action on top of a background with a non-trivial
dilaton field contains a coupling of this field with the Ricci scalar as it is shown in [77], but



the contribution of this term is small. Therefore the well-known modified holographic model
introducing the GC in the boundary theory is given by the following background action,

__ [ 12 15 oo
5= 2k2/dm\/§(R+R2 000 go), (2.2)

where k is the gravitational coupling in 5-dimensions, R is Ricci scalar, R is the radius of
the asymptotic AdSs spacetime, and ¢ is a massless scalar which is coupled with the gluon
operator on the boundary. By considering the following ansatz the equations of the above
action could be solved [27-29],
R2

ds? =

7

> (A(Z)d;g2 — B(2)dt® + dz2) : (2.3)

where in this dilaton black hole background, A(z), B(z), f are defined as,

f+a f—a
A() = (U f2 5 (1= g2 o7
f—=3a f+3a
B(z) = (14 £21) 7 (1= f24) 57",
f2 — aQ + CQ, (24)
a is related to the temperature by a = (ﬁ?4 and the dilaton field is given by,
c [3. 1+ f2*
=—y/=In——— . 2.
o(2) 7 2n1—fz4+¢0 (2.5)

In (2.3) i« = 1,2,3 are orthogonal spatial boundary coordinates, z denotes the 5th
dimension, radial coordinate and z = 0 sets the boundary. ¢g in (2.5) is a constant. We
work in the unit where R = 1. Note that the dilaton black hole solution is well defined

only in the range 0 < z < f~1/4

, where f determines the position of the singularity and z;
behaves as an IR cutoff. For a = 0, it reduces to the dilaton-wall solution. Meanwhile, for
¢ =0, it becomes the Schwarzschild black hole solution. Also, for both solutions, expanding

the dilaton profile near z = 0 will give,
d(2) = ¢+ V6ezt 4 ... (2.6)

¢ is nothing but the holographic GC parameter. As discussed in [31], there exists a Hawking
page transition between the dilaton wall solution and dilaton blackhole solution at some
critical value of a. So the former is for the confined phase, while the latter describes the
deconfined phase. The term G5 is the vacuum expectation value of the operator %GZVG“”“’
where GY,, is the gluon field strength tensor. A non-zero trace of the energy-momentum
tensor appears in a full quantum theory of QCD. The anomaly implies a non-zero GC
which can be calculated as [37, 38, 78],

AG(T) = Ga(T) — Gs(0) = —(=(T) — 3 P(T)), (2.7)

where G2(T') denotes the thermal GC, G2(0), being equal to the condensate value at the
deconfinement transition temperature, is the zero temperature condensate value, (7") is
the energy density, P(T') is the pressure of the QGP system.



To account for the effect of rapidity, one starts from a reference frame where the plasma
is at rest and the dipole is moving with a constant velocity so it can be boosted to a
reference frame where the dipole is at rest but the plasma is moving past it [49]. Consider
a QQ pair moving along x3 direction with rapidity 1. Correspondingly, we can consider a
reference frame in which the plasma is at rest and the dipole moves with a constant rapidity
—n in the z3 direction. The usual way is to boost the pair into a frame which is at rest
while the hot wind of QGP moves against it, so one can consider the following boost to a
reference frame in which the dipole is at rest but the plasma is moving past it [49],

dt — dt coshn — dxs sinhn
dxy — —dtsinhn + dx3 coshn, (2.8)

if we transform the metric (2.3) with (2.8) we obtain,

1
22
— 2[A(z) — B(z)] sinhn coshndxs dt + sz), (2.9)

ds* = (A(z) da? + [cosh? n A(z) — sinh? i B(2)] dx3 — [cosh? ) B(z) — sinh? 1) A(z)] dt*

from now on, we can consider the dipole in the gauge theory, which has a gravitational
dual with metric (2.9). In continue, we will consider the dipole in two different ways, one
transverse to the wind and one parallel to it as,

t=71, 1 =0, z=2z(0), transverse to the wind, (2.10)

t=71, x3=o0, z=2z(c), parallel tothe wind, (2.11)
remind that in static gauge z = z(o, 7) = 2(0).

2.1 Pair alignment transverse to the wind, ReV,5

Consider the dipole is moving in the z; direction that is transverse to the x3. From (2.10)
the spacetime target functions X* are t = 7, x1 = x = 0, x9 = x3 = constant,z(c). The
heavy QQ potential energy Vg of this system is related to the expectation value of a
rectangular Wilson loop,

(W(C)) ~ e Wstr (2.12)

Sstr 18 the classical Nambu-Goto action of a string in the bulk, so, on the dilaton black hole
background, the Nambu-Goto action is given by [42],

1 $(z) »
Sstr = %/ddd’f@ 2 \/—det(GWGQX”QBX ). (2.13)

9(2)
The dilaton factor e™2 accounts for the fact that G, is the five-dimensional Einstein

metric while the target space metric is in the string frame. Therefore, the non-zero coupled
dilaton field (2.5) to the background metric (2.3) should be considered when writing the
Nambu-Goto action of a test string.



Plugging back Sy (2.13) in (2.12) we extract the ReV,5 of QQ. Starting from the
metric (2.9), dilaton field (2.5), and the spacetime target functions we get,

T [ 2 2 2 2
Setr = —— da\/fl(z) cosh”n — fa(z) sinh® n + (f3(2) cosh® n — f4(2) sinh® n)2"2(0).
2w )2
(2.14)
The quarks are located at x3 = % and z3 = —%, Z = g—j and we defined,
w?(2)
fl(Z) - A A(Z) B(z)v
w?(z
fa() = D 2(2)
w(z
() = 2 ),
w?(z
f) = ), (215)
and,
o) 1+ fztie /7
w(e) = F = ((TETVA (216)
We also write,
F(z) = fi(z) cosh® n — fa(z) sinh? 1),
G(z) = f3(2) cosh? ) — f4(z) sinh? 1. (2.17)
So action (2.14) could be written as,
T L/2
= — F 2(g). 2.1
1= et |y p V) +GR)20) (2.18)

The action depends only on ¢ = x and the associated Hamiltonian is a constant of the
motion. With the corresponding position of the deepest position in the bulk being z,,
Hamiltonian is,
F(z)
H = =cte =/ F(z4). 2.19
VFE + GO0) =) 219

From the Hamiltonian (2.19), we can write the equation of motion for z(zx) as,

dz  [F(2)/ F(z) 2
i [G@ (7o) - )" (2.20)
Therefore, .
F(z)/ F(z 2
da = [ng; (F((Z*)) - 1)] dz, (2.21)
and we can relate L to z, as follows,
L [=[F(z), F(2) -2
5 :/0 [G(z) (F(Z*) - 1)} dz. (2.22)
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Figure 1. Re V5 as a function of L for a QQ pair oriented transverse to the axis of the quarks,
from top to bottom for n = 0.8, 0.4, 0 respectively, T = 200 MeV, in the presence of GC, for a)
c=0.02 GeV* and b) c=0.9 GeV*

From (2.22) we find the length of the line connecting both quarks as,

2% G(Z) %
L:g,/F(z*)/o [F(Z)(F<z) _F(Z*)J dz. (2.23)

In the literature [79, 80] the maximum value of the above length has been used to define a
dissociation length for the moving QQ pair, where the dominant configuration for S, is

two straight strings (two heavy quarks) running from the boundary to the horizon.
If we put (2.20) in (2.18) the action is written as follows,
71 /2

Sstr = / F e [P : (2.24)

Note that (2.24) is divergent, which is characteristic of Wilson loops, due to the fact
that the string must stretch from the bulk to the boundary in the holographic approach.

To regularize the above integral, one can subtract the divergence in S, and obtain the
regularized Wilson loop as [48, 49]

—1 /2
§Ted
ST — 7/ G 55 7 - dZ\/fgi (2.25)
where f3(2) = f3(2) |a—so0 (quark self energy). Finally, we proceed from Re Voo =8Su9)T

to,

Re Vg = \f/o dz+/G(z) FF((Z*>) [5((23) _ 1} e ‘f/o dn[13(),  (2.26)

where \ = ﬁ is the 't Hooft coupling of the gauge theory. Figure 1 shows the ReVypg as a
function of L with the Q@ pair oriented transverse to the axis of the quarks, in the presence
of GC. In this figure and all other plots from now on, we consider 7" = 200 M eV, because
at low temperature the heavy quarkonia are hard to dissociate and as the temperature
increases the dissociation is more likely to happen [42]. The results show that increasing
rapidity leads to a decrease in dissociation length while ¢ has the opposite effect.
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Figure 2. Re V(5 as a function of L for a QQ pair oriented parallel to the axis of the quarks, from
top to bottom for n = 0.8, 0.4, 0 respectively, T' = 200 M eV, in the presence of GC, for a) ¢ = 0.02
GeV* and b) ¢ = 0.9 GeV4.

2.2 Pair alignment parallel to the wind, ReV,5

In this step we consider that the dipole moves parallel to the z3 direction. From (2.11) the
spacetime target functions X* are t = 7,21 = w9 = constant,z3 = x = 0, z(0). Using steps
similar to (2.18) we get the action with the new worldsheet as,

L/2
Setr = T s da\/fl(z) + G(2)2"%(0), (2.27)

2ma!

where G(z) and f1(z) are defined as (2.17) and (2.15). Similar to the transverse case, we
find the line connecting both quarks as,

B Zx G(Z) %
L=2/5) [ [ 5eme o) 22

and the ReVg as,

Zx Py z —-1/2 0o
Re Voo = \f/o dz,/G(z)m[£1((Z*)) _1] - \f/o dz\/%, (2.29)

Figure 2 shows the ReV,; as a function of LT for some choices of 1 where QQ pair

oriented parallel to the axis of the quarks, in presence of GC. Similar to previous case,
increasing rapidity leads to decreasing the dissociation length while ¢ has the opposite effect.

Figure 3 shows a comparison between the ReVj)5 for the parallel and the transverse
cases. Although the difference is not significant, the plots show that the effect of the GC is
slightly stronger for the parallel case. In other words, increasing ¢ increases the dissociation
length in both the transverse and the parallel cases (previous figures), this effect appears
stronger when the dipole moves parallel to the axis of the quarks.
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Figure 3. Re V(5 as a function of L, for fixed value of 7 and fixed value of ¢, T' =200 M€V, as a
comparison between the parallel and the transverse cases. The solid black line shows parallel case
and the dashed red line shows transverse case.

3 Imaginary potential of moving QQ in presence of gluon condensation

In this section, we calculate the ImV{,5 using the thermal worldsheet fluctuations method
for both the transverse and parallel cases.

3.1 Pair alignment transverse to the wind, ImVy5

Consider the effect of worldsheet fluctuations around the classical configuration r = %,

r(x) =r(z) = r(z) = ro(x) + dr(z), (3.1)

then the fluctuations in the partition function should be considered as follows,
Dsty ~ /D&r(w)eiSNG(r*(x)Hr(”")). (3.2)

Hence there is an imaginary part of the potential in the action. Dividing the interval of z
into 2N points (where N — o0) we obtain,

Lsir ~ hm /d [0r(z ...d[or(zN)] exp z - Z /G ,2 +F (3.3)

where G and F are functions of rj. We expand r,(z;) around & = 0 and keep only terms

up to second order of it because thermal fluctuations are important around r, which
means x = 0,

T*(xj) Tyt 7‘77‘;’(0)7 (34)

considering small fluctuations we have,

(3.5)



where F, = F(r,) and F! = F'(r,). The action is written as,

TA
SNG — 2m”f \JCia? + Ca, (3.6)

where C; and C5 are given as follows,

!
Cy = T*éo) 2G.r(0) + FL] (3.7)
_ R

to have [ mVQQ # 0, the function in the square root (3.6) should be negative. Then, we
consider the j-th contribution to Zg,. as,

6ijax
TAx
L= [ D) exp i /Gl + G| (3.9)
6ijin
D(dr;) = Craj + Ca(0ry), (3.10)
F
Sr — _]37/’ (3.11)

so, D(0rj) < 0 = —x, < xj < x4 leads to an imaginary part in the square root. We write,

1| F2 o

= 1| — o — F., 3.12

! J ol [QF;’ 1 (8.12)

if the square root is not real we should take z, = 0. With all these conditions we can

approximate D(ér) by D(—;%) in I; as,

TAzx - Fr2

I] ~ exp [Z 27{'0/\]01x?+F*_ ﬁ (313)
*

The total contribution to the imaginary part, will be available with a continuum limit. So,

1 2 - Fﬂ/<2
|z <. *
which leads to,
1 /4| E
ImVyp = ———+—\/Gys | — — = | . 3.15
Hree T Y B [21{,{' FJ (3.15)
Note that (3.15) is the ImV,5 with the r coordinate. Changing the variable back to the
coordinate z = % according to our background, we will have,
1 5 | Fli 22F!
M Voq = =5 g Ve lQF AREFL+ 220 Y| 219

~10 -
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Figure 4. ImV,,; as a function of LT for a QQ pair oriented transverse to the axis of the quarks,
from left to right for n = 0.8, 0.4, 0 respectively, T' = 200 M eV, in the presence of GC, for a) ¢ = 0.02
GeV* and b) ¢ = 0.9 GeV4.

where F' is again a function of z. In (3.16) the following condition should be satisfied for
the square root,
B(z)

2
A0 > tanh®n. (3.17)

Figure 4 shows the ImVj)5 as a function of LT for some choices of  where QQ pair
oriented transverse to the axis of the quarks, in the presence of GC. With increasing
rapidity the ImVy)5 is generated for smaller values of LT, implying quarkonium melts more
easily, consistent with the results of [81]. Also, by comparing the two panels, one finds ¢
has opposite effects, i.e. by increasing GC, the ImV(,4 is generated for larger distance thus
decreasing quarkonium dissociation.

3.2 Pair alignment parallel to the wind, ImVQQ

Taking action (2.27) and using the same approach we followed to find (3.16), we get the
ImVQC—2 of a pair moving parallel to the axis of the quarks as,

1
- G*
ov2ar ¥ 2L T 4B, 22 A

Figure 5 shows the ImVy,5 as a function of LT for some choices of 1 where QQ pair
oriented parallel to the axis of the quarks, in the presence of GC. Similar to the transverse
case, by considering the effect of GC, the ImV(,5 is generated for larger distance thus
decreasing quarkonium dissociation, while rapidity has opposite effect. Figure 6 shows
a comparison between the ImVQQ for the parallel and the transverse cases. Similar to
ReVyg in figure 3, the plots show that the effect of the GC is stronger for the parallel case.
While the magnetic field [55] and the chemical potential effects were more important for
the transverse case, in the parallel case the GC has a stronger impact.
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Figure 5. ImV(,5 as a function of LT for a QQ pair oriented parallel to the axis of the quarks, from
left to right for n = 0.8, 0.4, 0 respectively, T = 200 M eV, in the presence of GC, for a) ¢ = 0.02
GeV* and b) ¢ = 0.9 GeV4.
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Figure 6. ImV, as a function of LT, for fixed value of  and fixed value of ¢, T' = 200 MeV, as a
comparison between the parallel and the transverse cases. The (right) black line shows parallel case
and the (left) red line shows transverse case.

4 Conclusions

In this work, we investigated the heavy quark potential of a moving QQ pair in a plasma
considering the effect of GC. We calculated the ReV(,5 and ImV(,5 for the cases where the
axis of the moving pair is transverse and parallel with respect to its rapidity in the plasma,
respectively. For the ReV(,5, we used the renormalization scheme proposed in [48, 49] and
observed the inclusion of GC decreases ReVQQ and increases the dissociation length, opposite
to the effect of the rapidity. For the ImVi)5, we adopted the world-sheet thermal fluctuations
method [47-49] and found increasing GC, the ImVy)5 is generated for larger distance thus
decreasing quarkonium dissociation, while rapidity has opposite effect, consistent with the
findings of the entropic force [46]. However, we have to admit that the model considered
here has a shortcoming: GC is constant implying temperature dependence is absent. An
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analogous situation happens in [42]. But the existing research, e.g., [43, 44] indicates
that the GC appears a drastic change near T,. In addition, [37] shows that, when T
(temperature) is not very high, GC strongly depends on T and p (chemical potential), and
at high temperatures, GC becomes independent of T and p. From the above analysis, one
may infer that as GC decreases in the deconfined phase, ImVj,5 is generated for smaller
distance thus enhancing quarkonium dissociation, and at high temperatures ImV(,s is nearly
not modified by GC. It should be noted that we could not give a concrete conclusion on
the ImVQQ at intermediate or low temperatures. To solve this problem we would need to
study the competitive effects of GC, pr and T on the ImVj)5 and also the correlation among
those three. We hope to work on this topic in future.
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