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1 Introduction

The holographic AdS/CFT correspondence provides a useful arena to understand real-time
dynamics of thermal plasmas. Under the duality, the response functions and fluctuations
of the plasma map onto the study of perturbations of asymptotically AdS black holes.
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The response data is encoded in the quasinormal modes [2], while the thermal fluctu-
ations map onto the Hawking quanta. Of interest to us are the low-lying, or long-lived,
quasinormal modes that characterize near-equilibrium hydrodynamic behaviour [3, 4]. The
non-linear dissipative response of these modes is well understood within the context of the
fluid/gravity correspondence [5, 6], but it is only recently that we have begun to system-
atically understand the associated stochastic fluctuations.

A unified framework for capturing both the response and the fluctuations is in terms
of an open effective theory [7]. This description seeks to capture the real-time (Schwinger-
Keldysh) dynamics of the thermal plasma. This has been aided by the improved prescrip-
tions for analyzing real-time dynamics in holography [8], building on earlier works [9–12].

One can understand this open effective theory as follows: consider coupling the thermal
plasma to an external probe (measurement device). To obtain the low energy effective field
theory, we integrate out the fast modes of the plasma, in a suitable Born-Oppenheimer
approximation, and obtain the dynamics valid at long-distances and late-times. Since in
this limit, the low-lying modes are those that are associated to conserved currents, we
end up with an effective description of the hydrodynamic modes, allowing us thus to view
hydrodynamics as an open effective field theory.

Motivated by this logic, in a recent series of papers, the preliminary steps for construct-
ing such an open effective field theory have been undertaken. In particular, [13, 14] have
succeeded in constructing a description of a neutral plasma (dual to a Schwarzschild-AdS
black hole) at the Gaussian order. The first of these works focused on momentum diffu-
sion, while the second tackled attenuated sound propagation.1 For other works analyzing
thermal real-time dynamics from AdS black hole backgrounds see [15–22].

From a hydrodynamic viewpoint, the intrinsic challenge is to separate out the slow
and fast modes of the conserved current (energy-momentum tensor for a neutral plasma).
Moreover, the diffusive dynamics of momentum is qualitatively different from that of energy
transport (which produces sound). One way to proceed is to use symmetries: pick a
direction of spatial momentum in Rd−1,1 and decompose the energy-momentum tensor into
polarizations labeled by the transverse SO(d − 2) rotation group. Transverse traceless
tensors are short-lived, transverse vectors diffuse, and the remaining longitudinal mode
transports energy.

This perspective turns out to be particularly efficacious in the dual gravitational set-
ting. The real-time gravitational saddle is the gravitational Schwinger-Keldysh (grSK)
geometry introduced in [8], which is a two-sheeted complex spacetime with a thermal mon-
odromy condition around the horizon. As explained in [7] this geometry allows for directly
computing real-time thermal correlation functions of the dual field theory. Operationally,
one starts with the Lorentzian black hole solution and restricts attention to the domain of
outer communication to focus on the ingoing modes. This can be achieved by working in
ingoing coordinates that are smooth across the future horizon. Once one has obtained the
ingoing wavefunction, one can construct a suitable boundary-bulk propagator with sources

1Non-Gaussian effects, while straightforward to include in this framework [7], are yet to be analyzed in
the hydrodynamic context.
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on a boundary Schwinger-Keldysh contour. This involves an admixture of both ingoing
and outgoing modes, but as explained in [7], the latter can be obtained from the ingoing
solution by using a suitable covariance property under the discrete time-reflection isome-
try. Crucially, the thermal monodromy picked up by the outgoing mode is important in
ensuring that the correlation functions satisfy the thermal KMS condition.

We will here be interested in the correlation functions of stress tensor and charge cur-
rent of the dual plama. Since the conserved currents of the field theory map to gauge
fields in the bulk geometry, one has to additionally confront the issue of gauge choices and
boundary conditions. As argued in [13, 14] the oft-used radial gauge choice is not well
suited for the analysis. A natural way to proceed is to use the gauge invariant combination
of perturbations analyzed in [23, 24]. This description not only exploits the SO(d−2) rep-
resentation structure, but it also repackages the dynamics of dual gravitational fluctuations
into a set of designer scalar fields.

These designer fields are non-minimally coupled scalars, with their gravitational cou-
pling modulated radially in the AdS geometry, and fall into two very natural classes.
Short-lived modes, dubbed Markovian, have the dilaton blowing up (as a power law) near
the AdS boundary. On the other hand, long-lived non-Markovian modes have a dilatonic
coupling that is decaying near the boundary and growing somewhere in the interior of the
spacetime.

For Markovian fields, the asymptotically growing dilaton requires one to freeze its
source, the non-normalizable part, at the AdS boundary. Furthermore, we want to in-
tegrate out the dual boundary degrees of freedom to derive the open effective dynamics.
Operationally, therefore, Markovian modes have Dirichlet (standard) boundary conditions
imposed on them, both for the purposes of computing the generating function of correlators,
and for the purposes of obtaining the open effective field theory.

Non-Markovian fields, on the other hand, have a decaying dilatonic coupling, which
implies that the bulk wavefunctions are dominantly supported near the boundary. Associ-
ated to this is the fact that such fields naturally come with boundary terms which require
us to freeze the normalizable part. Thus, for purposes of computing the generating function
of correlators, we impose Neumann (alternate) boundary conditions on the non-Markovian
fields.

However, in deriving the open effective field theory, we should not integrate out the
non-Markovian modes. They are the physical low-energy degrees of freedom which must
be retained in the effective action. Therefore, [13] proposed to compute not the generating
function of correlators, but the Wilsonian influence functional (WIF), parameterized by
the boundary values of the non-Markovian fields. From the dual plasma viewpoint, we are
parameterizing the effective dynamics by the expectation value of long-lived modes. Oper-
ationally, this turns out to be quite easy to do: the switch from the generating functional to
the WIF is implemented by a Legendre transform. This step has the effect of removing the
boundary term that implements the Neumann boundary condition. The upshot is simply
that the computation of the WIF for non-Markovian fields is achieved by quantizing them
with Dirichlet boundary conditions.

As noted above, the analysis of [13, 14] made these ideas quite precise in the context
of a neutral fluid. A more challenging proposition is the dynamics of a charged plasma,
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where we have not only the energy-momentum tensor but also the conserved charge current.
There are certain additional novelties in this case: the non-zero density in the background
causes mode mixing between the two currents. In the transverse vector sector, we find a
mixing between the short-lived propagating current modes and the momentum diffusion
modes, while the scalar sector comprises two long-lived modes: sound and charge diffusion.

In [1] we initiated the analysis of such charged plasmas which are dual to Reissner-
Nordström-AdS black holes.2 Therein, we analyzed the transverse tensor and vector per-
turbations, demonstrating that the Markovian charge current can be decoupled from the
non-Markovian momentum diffusion at the Gaussian order. The gravitational description
helps provide this clean separation and allows one to find linear combination of currents
which correspond to the two different modes.

In the present work, we conclude the analysis of charged plasmas by including scalar
perturbations. The main novelty here is that for the first time we encounter mixing be-
tween two non-Markovian modes corresponding to energy transport and charge diffusion,
respectively. From a technical standpoint, scalar perturbations of Reissner-Nordström-AdS
are challenging: there are a-priori ten functions in the metric and gauge field, which need
to be distilled into two independent physical degrees of freedom. Furthermore, as discussed
in [14], the gravity dual of the sound mode is a designer scalar whose dialtonic coupling
is modulated as a function of spatial momentum.3 Heuristically, this can be traced to the
fact that energy transport results in a physical propagating Goldstone mode, the phonon,
whose attenuation only kicks in at higher orders in gradients.4 On the contrary, charge
diffusion is expected to behave as a long-lived non-Markovian field all through.

Despite these complications, we demonstrate that the dynamics of energy transport
and charge diffusion can be sensibly decoupled and packaged into two independent designer
scalars. The bulk dynamics of these fields is somewhat involved, but surprisingly tractable
in the gradient expansion analysis we undertake. To this end, we are guided by the previous
analysis in [1, 13, 14]; in fact, we use the function basis constructed in the latter two works
to find an efficient presentation of the bulk perturbation equations.

Using this data, we derive the Gaussian effective field theory for the scalar sector
of a charged plasma, and obtain a convenient parameterization of the conserved currents

2The dynamics of a probe charge current in a neutral plasma was discussed in [13]. This problem was
also analyzed before in [8, 15] and revisited in [20]. These references work in radial gauge, which is a poor
choice for reasons elucidated in [1, 13]. Physically, while the ingoing solutions are fine in radial gauge,
the time-reversed outgoing solutions are singular and lead to certain ambiguities, which were handled by
certain ad hoc choices in the aforementioned references.

3One consequence of this behaviour is that the mode is Markovian at low orders in the gradient expansion,
with its true non-Markovian character only emerging at quartic order in gradients.

4Relativistic conformal fluids are compressible, and thus always have a low-lying mode with linear
dispersion, which characterizes the physical sound mode in the fluid. This was first discussed in the context
of holography in [4]. We refer to this as the phonon Goldstone mode as we did in the neutral plasma
case [14]. This is natural from a holographic perspective, as originally explained in [5] in the context of
the fluid/gravity correspondence. Lest we cause confusion, we should remark that this phonon is produced
by compression and rarefaction of energy gradients and is a longitudinal mode. It is not associated to
translational symmetry breaking, which would be the case for phonon modes in solids, which have both
longitudinal and transverse components.
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in terms of the phonon and charge diffusion operators. We match our results with the
limited data available in the literature. Curiously, while there is a large body of work
analyzing the low-lying quasinormal modes of AdS black holes, much of the literature
on linearized hydrodynamics focuses on the vector perturbations of Reissner-Nordström-
AdS5 black holes. For the scalar sector there is little data available; our results agree to
low orders with data extracted from the fluid/gravity literature for d = 4, [25–27].5 As
a consequence, the results we describe herein are the first comprehensive analysis of the
longitudinal energy transport and charge diffusion mode in a holographic system. This
allows us not only the extraction of the dispersion relations, but also gives a clear picture
of the physical combinations of the energy momentum tensor and charge current which
drive these two independent modes (at quadratic order). We also give a heuristic picture
of the result from a hydrodynamic perspective. This discussion will be brief as we hope
to explain the connections of our linearized analysis with the non-linear effective actions
obtained using symmetry principles by various authors in the past decade in a separate
work.

The outline of the paper is as follows. In section 2 we will quickly review the back-
ground Reissner-Nordström-AdSd+1 solution and its grSK uplift, using this to establish our
conventions. In section 3 we describe how the perturbations of the black hole geometry are
packaged into designer fields. Using their dynamics, we extract the Wilsonian influence
functional and conserved currents in section 4 and discuss some physical implications. We
conclude with a brief discussion in section 5.

As much of the technicalities parallel earlier works, we have chosen to keep only the
salient details in the main text. Readers interested in the details of our computations are
invited to consult the appendices. Appendix A describes how to distill the dynamics into
two designer scalars. This discussion is inspired by the original work of [24], but we have
endeavored to clarify some of the aspects in our presentation. Appendix B, which is new,
explains how to obtain these dynamical equations from the Einstein-Maxwell action, de-
riving in the process the correct boundary conditions for the designer fields. In appendix C
we explain the gradient expansion solution of the designer fields and use it to construct
the physical metric and gauge field perturbations. This data is then used in appendix D
where we outline how to obtain the boundary observables.

2 Background

We give a brief summary of the background geometry, parameterizing the data of Reissner-
Nordström-AdSd+1 geometry, which is a solution to the Einstein-Maxwell theory, in a
suitable manner. We adhere to the conventions of [1], which the reader is encouraged to
consult for additional details.

5Note added in v2: we recently became aware of [28], who derive the dispersion relations for sound and
charge diffusion to quadratic order in momenta in d = 4. We give expressions for the dispersion relations
accurate to quartic order (in fact, a prediction of the sound dispersion to sextic order, cf., appendix C.2)
for arbitrary dimensions d > 3.
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We consider the Einstein-Maxwell theory in d+ 1 dimensions with a negative cosmo-
logical constant, viz.,

SEM = 1
16πGN

∫
dd+1x

√
−g

[
R+ d(d− 1)− 1

2 FAB F
AB
]

+ Sbdy + Sct ,

Sbdy = 1
8πGN

∫
ddx
√
−γ K .

(2.1)

Here gAB is the bulk metric, γµν the induced metric on the timelike asymptotic boundary,
and K is the extrinsic curvature of the boundary.6 The counterterm action Sct is necessary
to obtain finite physical answers; it is given in appendix A. We have chosen the electro-
magnetic coupling to simplify some expressions; it will lead to factors of two in boundary
conservation laws later.

The equations of motion following from (2.1) are

EEinAB ≡ RAB −
1
2 RgAB −

d(d− 1)
2 gAB = gCD FAC FBD −

1
4 gAB FCD F

CD ,

EMax
B ≡ ∇AFAB = 0 ,

(2.2)

with the Reissner-Nordström-AdSd+1 geometry being a two-parameter family of solutions,
parametrized by r+ (outer horizon scale) and Q (a measure of the charge). In ingoing
Eddington-Finkelstein coordinates the line element and gauge potential take the form

ds2 = 2dvdr − r2 f(r) dv2 + r2 dx2 , A = −a(r) dv , (2.3)

with

f(r) = 1− (1 +Q2)
(
r+
r

)d
+Q2

(
r+
r

)2(d−1)
, a(r) =

√
d− 1
d− 2 Q

rd−1
+
rd−2 . (2.4)

This solution describes a charged thermal plasma of the dual CFT, with intensive thermo-
dynamic parameters temperature and chemical potential being7

T = d− (d− 2)Q2

4π r+ , µ =

√
d− 1
d− 2 Qr+ . (2.5)

The parameter Q lives in a bounded domain

0 ≤ Q ≤

√
d

d− 2 . (2.6)

Q = 0 is the neutral Schwarzschild-AdSd+1 solution and the upper limit corresponds to the
extremal solution with vanishing temperature.

6Conventions: uppercase Latin alphabet (A,B, · · · ) indicate bulk spacetime indices, Greek alphabets
(µ, ν, · · · ) refer to boundary spacetime indices, and lowercase Latin alphabets (i, j, · · · ) are used to refer to
the spatial directions along the boundary.

7We define the effective central charge of the boundary theory as ceff = `d−1
AdS

16πGN
and work in units where

`AdS = 1. Dimensions of physical quantities can be restored using the latter, eg., T ∝ r+/`
2
AdS.
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r+
rc

rc+iε
Re(ζ)=0

Re(ζ)=1
rc−iε

Im(r)

Re(r)rQr−

Figure 1. The complex r plane with the locations of the two regulated boundaries (with cut-off
rc), the outer and inner horizons at r± and the ohmic radius r

Q
marked. The grSK contour is a

codimension-1 surface in this plane (drawn at fixed v). As indicated the direction of the contour
is counter-clockwise, and it encircles the branch point at the outer horizon with the cut running
out to the boundary. The cut emanating from the inner horizon and the ohmic radius, are not
encountered by the contour.

As described in [1], it will be useful to introduce a function parameterized by the ohmic
radius SQ (which determines the DC conductivity)

h(r) = 1−SQ

rd−2
+
rd−2 , (2.7)

where

SQ ≡
rd−2
Q

rd−2
+

, rd−2
Q

= d− 1
d

2Q2

1 +Q2 r
d−2
+ . (2.8)

For Schwarzschild-AdSd+1 SQ = 0, while SQ = 1 for the extremal Reissner-Nordström-
AdSd+1 solution. This parameter characterizes the DC conductivity, σdc = rd−3

+ (1−SQ)2,
and serves as a proxy for the charge. The physical ohmic radius rQ is sandwiched between
the inner and outer horizons (see [1, Fig 6]). We will call h the ohmic function.

Let us collect some useful thermodynamic and transport properties of the unperturbed
charged plasma. We have the pressure P0, the charge density ρ0, and the dc conductivity
σdc to be given (up to central charge factors) by

P0 = (1 +Q2) rd+ , (2.9a)
ρ0 = (d− 2)µ rd−2

+ , (2.9b)
σdc = rd−3

+ (1−SQ)2 . (2.9c)

The pressure and charge density can be read off directly from the thermodynamic formulae.
The aforementioned expression for the dc conductivity was introduced in [1], where it
demonstrated to be equivalent to the earlier result obtained in [29]. Note that we are
stripping off a factor of the central charge ceff from the energy-momentum tensor and a
factor of 2 ceff from the charge current in these expressions for convenience.8

Real-time correlation functions of the energy-momentum tensor and charge currents
are computed by uplifting this solution to an appropriate Schwinger-Keldysh form. This
results in the grSK geometry, a particular complexification of the Reissner-Nordström-
AdSd+1 geometry, with line element

ds2 = −r2 f dv2 + i βr2 f dv dζ + r2 dx2 ,
dr
dζ = i β

2 r2f . (2.10)

8The relative factor of 2 between the charge current and the energy-momentum tensor originates from
the normalization of the Maxwell term in (2.1), see also footnote 18.
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The coordinate ζ is the mock tortoise coordinate with β = T−1, defined on the complex
r plane along a contour that encircles the cut emanating from the horizon at r = r+, cf.,
figure 1. Our analysis employs the time-reversal9 covariant bases introduced in [13]. The
tangent space basis is {D+, ∂v, ∂i}, while { drr2f , dv −

dr
r2f , dx

i} provides the dual cotangent
space basis. The derivation D+ is defined to be a dressed radial derivative

D± = r2f
∂

∂r
± ∂

∂v
, D± = r2f

∂

∂r
∓ i ω , (2.11)

in the time and frequency domain, respectively.

Some conventions: we adopt a short-hand notation for the measure on the Fourier
domain ∫

k
≡
∫
dω

2π

∫
dd−1k

(2π)d−1 (2.12)

to keep expressions compact. In writing various expressions, we will use the outer horizon
radius to scale out dimensions, in particular, defining

w = ω

r+
, q = k

r+
. (2.13)

3 Dynamics: designer sound and charge diffusion fields

We are interested in analyzing the dynamics of sound and charge diffusion in a charged
holographic plasma. On the dual gravitational side, the two modes correspond to pertur-
bations of the Reissner-Nordström-AdSd+1 black hole, specifically, the scalar polarizations
of gravitons and photons. We pick a direction for the spatial momentum and decompose
the fields into planar harmonics with respect to the transverse SO(d− 2) little group. The
scalar polarizations are the only modes we shall consider here, tensor and vector modes
having previously been analyzed in [1]. The metric and gauge field including linearized
perturbations, schematically are

ds2 = ds2
(0) + ds2

(1) , A = −a dv + AA dx
A , (3.1)

with the subscript ‘(0)’ referring to the background solution (2.3).
A priori there are seven metric components and three gauge potentials. Owing to dif-

feomorphism and gauge symmetry, not all of these ten functions are physical. By analyzing
gauge invariants (which are suitable components of the curvatures) and the transformation
under the time-reversal, charge conjugation Z2 involution, we can zero in onto a useful
gauge choice. We employ the Debye gauge, one where components that multiply deriva-
tives of the SO(d − 2) scalar harmonic are set to zero. This leaves behind six functions,
four in the metric and two in the gauge potential. Examining the component of the Ein-
stein equation that transforms as a tensor, we find that one of the metric functions can be
algebraically eliminated. The Maxwell constraint equation furthermore implies that the
vector potential itself can be parameterized in terms of a single scalar field. All told, we

9Time-reversal is a Z2 involution v 7→ iβζ − v which leaves (2.10) invariant.
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can, with a suitable rescaling of functions by powers of the radial coordinate, write the
perturbation ansatz as

ds2
(1) = ΦE − rf ΦW

rd−3 dv2 + 2
rd−1f

(ΦO − ΦE + rf ΦW) dv dr + r2 ΦW

rd−2 dx
2

− 1
rd+1f2 [2(ΦO − ΦE) + rf (d− 1) ΦW ] dr2 ,

AA dx
A = 1

rd−3

(
dvD+ − dr

d
dr

)
V .

(3.2)

The above ansatz does not yet account for the momentum constraint equation. This
can be solved by introducing a single field Θ to parameterize ΦE and ΦO . Consistency of
the parameterization for metric fields says that Θ and ΦW are not independent, but can
be expressed in terms of a single field Z. This parameterization takes the form:

ΦO = −iωΘ , ΦE = D+Θ− 2 a′ r2f V ,

Θ = r

Λk

[
D+ −

r2 f ′

2

]
Z + 2 (d− 1) r3f a′

Λk
V ,

ΦW = 1
Λk

[
rD+ + k2

d− 1

]
Z + 2 (d− 1) r3f a′

Λk
V .

(3.3)

The admixture of the function V, which encodes the gauge potential in the above
parameterization, originates from the coupling between the gravitational and gauge degrees
of freedom. As such one can show that V and Z obey a pair of coupled second order
equations, which in turn imply all of the Einstein-Maxwell equations of motion.

One can, however, do better. It is possible to decouple the dynamics with a final
change of variables. We introduce two functions V and Z, which are gravity duals of the
charge diffusion mode and the phonon mode, respectively, as

Z = Λk
Ch

V + hZ ,

V =
(
d− 2
C

a− r+
p2 + 2

2

)
V

2h +
(

(d− 2)a+ r+
2 C p2

)
h

2 Λk
Z .

(3.4)

We have introduced in the above a modulation function

Λk = k2 + 1
2(d− 1)r3f ′ , (3.5)

and a deformed momentum parameter10

p2 =

√
1 + 2 d νs

q2

C2 − 1 , C = (d− 2) µ

r+SQ

, νs = 2(d− 2)
d(d− 1) . (3.6)

10It is important to realize that p is defined with no approximations and satisfies p2 (2 + p2) = 2 d νs
C2 q2.

When we solve the equations (3.8) we will expand p in powers of q2. However, while computing boundary
data, especially the on-shell action and the boundary sources we will treat them exactly. There will be
instances in the computation of the spatial part of the stress tensor where we guess that certain terms
resum into p. These we shall highlight; therefore, unless otherwise noted all such factors can be traced back
to the diagonalization of the equations above.
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The function Λk is the charged analog of the sound modulation function that was encoun-
tered in the analysis of the neutral plasma [14]. The deformed momentum p arises from
the decoupling of the metric and gauge field perturbations. We note here a useful identity

ρ0
P0

= d (d− 2)
2C r+

, (3.7)

which we will employ in the sequel to simplify various expressions.
These two fields obey the following decoupled equations:

rd−3 h2 D+

( 1
rd−3 h2 D+V

)
+
(
ω2 − k2f + VV

)
V = 0 ,

rd−3 Λ2
k

h2 D+

(
h2

rd−3 Λ2
k

D+Z
)

+
(
ω2 −

(
1− (d− 2)

2
2 + p2

1 + p2
r3f ′

hΛk

)
k2f + VZ

)
Z = 0 .

(3.8)

The functions VV and VZ appearing in the effective potentials are somewhat involved;
they can be found in (A.25) and (A.26), respectively. These terms contribute only at
O
(
k2), i.e., they do not affect solutions in a boundary gradient expansion which solely

depend on temporal variations. What is crucial for our discussion is that the equations
are manifestly time-reversal invariant. In particular, this implies that it suffices to solve
them with ingoing boundary conditions for Z,V. The full grSK solution is then obtained by
using time-reversal properties as elucidated in [7]. The equations were originally obtained
in [24]; we give a clean presentation outlining various intermediate terms in appendix A.

The fields V and Z are generalizations of the designer scalars introduced in [1, 13, 14].
They are both non-Markovian, with index M = 3−d, and their bulk dynamics is modulated
by the dilatons:11

eχV = 1
r2(d−2)h2 ,

eχZ = h2

r2(d−2)Λ2
k

.
(3.9)

The non-Markovianity of V is explicit (since h → 1 asymptotically), while that for Z is
only valid for k 6= 0.12

The field V is the gravitational dual of the charge diffusion mode; in fact, taking Q→ 0
we recover the equation for a probe Maxwell field analyzed in [13] (see their equation
(8.14) with M = 3 − d). In that case the description corresponds to charge diffusion in
a neutral plasma, whereas here we are interested in the dynamics of charge diffusion in
a background with non-trivial charge density. This results in the effective dilaton having
further charge modulation through the ohmic function h. This behaviour is analogous to

11The Markovianity index was defined in [13] by the large r behaviour of the dilaton, specifically,
limr→∞ eχ → rM−d+1. In particular, that of a minimally coupled scalar is M = d− 1.

12Spatially homogeneous modes in the background can be understood by examining large diffeomorphisms
and gauge transformations in the background (2.3), as explained in [14]. We expect the dynamics of
gravitational zero modes be Markovian, similar to the zero momentum behaviour of a minimally coupled
scalar field.
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what we encountered in our analysis of charge propagation; the transverse vector photons
in the Reissner-Nordström-AdSd+1 background analyzed in [1] obey Markovian dynamics
with a similar modulation by h. The designer field in that case was denoted Yα and had
Markovianity index M = d−3. We will be able to use its solutions, with suitable analytical
continuations, to write down the solutions for V.

The field Z is the gravitational dual of the sound mode of the plasma. Setting Q→ 0
we recover the equation for the analogous field analyzed in [14] (denoted in that work as Z).
The modulation function Λk has similar origins — in fact, (3.5) is identical when expressed
in terms of the emblackening function f .

The main novelty here is that charge diffusion interacts with sound propagation. With
a judicious choice of variables they can be decoupled, as exemplified by the above equations.
We will interpret these in terms of the conserved current components in due course.

Plugging in the above ansatz and field redefinitions into the Einstein-Maxwell action
and the associated Gibbons-Hawking boundary term, one can obtain a (decoupled) action
for the fields V and Z. While our field redefinitions involve higher derivatives (eg., ΦE ∼
D2

+Z), the action is second order in the designer fields and can be shown to be

S[V,Z] = −
∫
dr

∫
k

√
−g

8 r2(d−1) f

[
Sbulk

V + Sbulk
Z

]
+ Sbdy[V,Z] ,

Sbulk
V = 8 NV(p)

h2 k2
[

(D+V)2 −
(
ω2 − k2f + VV

)
V2
]
,

Sbulk
Z = d νs NZ(p)k

2 h2

Λ2
k

[
(D+Z)2 −

(
ω2 −

(
1− (d− 2)

2
2 + p2

1 + p2
r3f ′

hΛk

)
k2f + VZ

)
Z2
]
,

(3.10)

with13

NV(p) =
r2

+
8
(
1 + p2

) (
2 + p2

)
,

NZ(p) =
C2 r2

+
d νs

p2
(
1 + p2

)
.

(3.11)

The complications of the field redefinitions are confined to the boundary term Sbdy[V,Z],
which is an involved functional of {V,Z,D+V,D+Z,D2

+V,D2
+Z}. The structure, however,

closely parallels the discussion of the designer field dynamics for the sound propagation in
a neutral plasma described in [14]. As we demonstrate in appendix B the boundary term
after various simplifications can be shown to be

Sbdy [V,Z] =
∫
k

{
(d− 6) (d− 1)P0

8 (d− 2)

(D+Θ
rd−1

)2
− 2 k2 NV(p) V ΠV −

2 NZ(p)
Λk

Z ΠZ + · · ·
}
.

(3.12)
The ellipses above indicate subleading terms which have a vanishing limit at the asymptotic
boundary (as r →∞). We have also expressed the final answer in terms of the background
plasma pressure P0 defined in (2.9a).

13The normalization of NZ (p) has been chosen to ensure that it limits to k2 as Q→ 0.
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The conjugate momenta for the fields V and Z are defined as

ΠV = − 1
rd−3D+V , ΠZ = −d νs8

1
rd−3D+Z . (3.13)

These have finite limit asymptotically, unlike the fields which need to be renormalized. It
is the presence of the ΠV V and ΠZ Z terms that dictates that these designer fields obey
Neumann boundary conditions asymptotically at large r, viz., δΠV = δΠZ = 0 in order
for the variational principle to give the equations of motion (3.8). We emphasize that
this statement applies to the computation of correlation function (or generating functional
thereof) using the standard AdS/CFT dictionary.

We will however, be interested in computing a different object: a Wilsonian influence
functional (WIF), in the grSK geometry, for which we will impose different boundary con-
ditions. This functional is a Legendre transform of the generating functional parameterized
by field values or operators, as opposed to sources in the generating functional. The Leg-
endre transform effectively amounts to removing the ΠV V and ΠZ Z boundary terms, and
changes the boundary conditions to Dirichlet for these decoupled non-Markovian fields.

4 Sound and charge diffusion in the grSK geometry

With the dynamics for the Einstein-Maxwell system distilled into that of the designer
scalars V and Z, we are now in a position to analyze the solutions on the grSK geometry.
We wish to obtain the full solution for the two fields parameterized by their boundary
values, i.e., by the expectation values of the dual boundary operator, on the two boundaries
of the grSK geometry. Thankfully, the decoupled dynamics obeys time-reversal invariant
equations of motion (3.8). Therefore, as explained in [7], it suffices for us to solve the
equations with ingoing boundary conditions; we can then use time-reversal invariance to
obtain the full grSK solution.

With this in mind, we characterize the solution in terms of the ingoing boundary to
bulk Green’s functions for the two fields, Gin

V and Gin
Z . We parameterize these in a boundary

gradient expansion as:

Gin
V,Z(r,w, q) = exp

 ∞∑
n,m=1

(−i)mwm q2n ϕm,2nV,Z (r)

 . (4.1)

We note that we have normalized the ingoing Green’s functions to be unity at the bound-
ary and are demanding regularity at the outer horizon. The functions ϕm,2nV,Z (r) can be
obtained by solving the equations of motion recursively. In fact, the natural way to param-
eterize them is using the basis of functions discussed in the context of tensor and vector
perturbations in [1].14 We demonstrate this explicitly in appendix C and construct the

14The solutions we are constructing are linearized versions (in amplitude) of the fluid/gravity solu-
tions [25–27] (all of who studied a four dimensional plasma). The operative point here is that those
solutions are characterized using SO(d− 1) representations, which is natural if one wants to parameterize
the currents by intensive thermodynamic quantities (temperature and chemical potential) and hydrody-
namic velocities. We, however, employ SO(d−2) representations, to disambiguate different physical modes
of the plasma. Nevertheless, the solutions in different sectors we study must have similar origins to be
assembled into complete SO(d− 1) irreps, which can then be checked explicitly.
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solutions to quartic order in the boundary gradients. For now, it suffices that there exists
a clean function basis to work in, and that one can extract the physical information such
as asymptotics therefrom.

4.1 The grSK solution for the designer fields

As explained above, we want to parameterize the grSK solution by the boundary values
of the fields themselves, i.e., the boundary data are the expectation values of the dual
operators, viz.,〈(

ŎV(ω,k)
)
L/R

〉
= V̆L/R(ω,k) ,

〈(
ŎZ(ω,k)

)
L/R

〉
= Z̆L/R(ω,k) , (4.2)

where

V̆L/R(ω,k) = lim
r→∞±i0

[V + counterterms] ,

Z̆L/R(ω,k) = lim
r→∞±i0

[Z + counterterms] .
(4.3)

In terms of this data, the full grSK solution is given using the ingoing Green’s func-
tion (4.1) as15

VSK(ζ, ω,k) = Gin
V V̆a +

[(
nB + 1

2

)
Gin

V − nB e
βω(1−ζ)Grev

V

]
V̆d ,

ZSK(ζ, ω,k) = Gin
Z Z̆a +

[(
nB + 1

2

)
Gin

Z − nB e
βω(1−ζ)Grev

Z

]
Z̆d ,

(4.4)

where Grev
V,Z(r, ω,k) = Gin

V,Z(r,−ω,k), and nB is the Bose-Einstein distribution:

nB = 1
eβω − 1 . (4.5)

The boundary sources for the fields V and Z, which we denote as ξ̆ and ζ̆, respectively,
are in fact the asymptotic values of the conjugate momenta, which as discussed in section 3
have finite limits. We define

lim
r→∞±i0

ΠV ≡ −ξ̆L/R , lim
r→∞±i0

ΠZ ≡ −k
2 ζ̆L/R . (4.6)

Using the grSK solution (4.4), together with the asymptotic behaviour of the functions
ϕm,2nV,Z worked in appendix C.2, we can determine the relation between the sources and the
expectation values. We will give the expressions below once we write down the boundary
influence functional.

4.2 The Wilsonian influence functional of designer fields

We now have all the data necessary to evaluate the Wilsonian influence functional for
charge diffusion and sound propagation from the designer fields. Evaluating the on-shell
action on the grSK solution, and implementing the Legendre transform to parameterize

15The average/difference basis is defined by a Keldysh rotation: φa = 1
2 (φR + φL) and φd = φR − φL.
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it in terms of the boundary operator expectation values, we find two contributions: a
Schwinger-Keldysh factorized contact term and an influence functional. To wit,

1
ceff

S
[
V̆, Z̆

]
= Scontact

[
V̆, Z̆

]
+ SWIF

[
V̆, Z̆

]
. (4.7)

Let us first examine the influence functional contribution; it is given by

SWIF
[
V̆, Z̆

]
= −

∫
k
k2
[
NV(p) V̆†dK

in
V

(
V̆a +

(
nB + 1

2

)
V̆d
)

+ cc
]

−
∫
k

[
NZ(p) Z̆†dK

in
Z

(
Z̆a +

(
nB + 1

2

)
Z̆d
)

+ cc
]
.

(4.8)

We have introduced here the inverse boundary Green’s functions for the fields K in
V,Z(ω,k)

and its time-reversed counterpart Krev
V,Z(ω,k) = K in

V,Z(−ω,k). These are themselves given
by the dispersion functions, up to some dimension and charge dependent factors as

K in
V (ω,k) = Kc(ω,k)

(1−SQ)2 rd−4
+

= r+
σdc

Kc(ω,k)

K in
Z (ω,k) = Ks(ω,k)

2 d (d− 1)2 rd−2
+ (1 +Q2)

=
r2

+
2 d (d− 1)2 P0

Ks(ω,k) ,
(4.9)

where we have employed the background data (2.9).
The function Kc(ω,k) characterizes the dispersion locus for charge diffusion. It is

given in terms of the horizon values of the gradient expansion functions characterizing the
solution16 for the field V

Kc(w, q) = −iw +
(

1−
SQ

d− 1

)
q2

d− 2 −∆2,0
Y

(r+)w2 − 2i ϕ0,2
V (r+)wq2

− i
(
2ϕ2,0

Y
(r+)−∆2,0

Y
(r+)2

)
w3 + · · · .

(4.10)

The reader can find the expression accurate to quartic order in (C.14).
Similarly, the function Ks(ω,k) characterizes the dispersion locus for sound propaga-

tion with attenuation. Once again it can be expressed in the boundary gradient expansion,
and takes the form:

Ks(w, q) = −w2 + q2

d− 1 + νs
1 +Q2 q2 Γs(w, q) ,

Γs(w, q) = −iw + ∆2,0
d−1(r+)w2 + d− 3

(d− 1)(d− 2)q
2 +

SQ

d− 2

(
w2 − q2

d− 1

)
+ · · · .

(4.11)

We have quoted here the sound attenuation function Γs accurate to quadratic order (and
thus the dispersion locus to quartic order). It is possible to extract a prediction for this
function to quartic order in gradients (even though we are only solving the equations

16Functions with subscript Y and d−1 correspond to the basis used to solve for the Markovian transverse
vector photon, and transverse tensor graviton polarizations, respectively, and were introduced in [1]. For
completeness, we give integral expressions and asymptotic expansions of these functions in appendix C.
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accurately to that order) as we explain in appendix C. We give our prediction for this
function in appendix C.2; see (C.27) and the discussion surrounding it.

From SWIF
[
V̆, Z̆

]
given in (4.8), we can determine the boundary Schwinger-Keldysh

sources corresponding to the designer fields to be

ξ̆a = K in
V V̆a +

(
nB + 1

2

)(
K in

V −K
rev
V

)
V̆d , ξ̆d = Krev

V V̆d ,

ζ̆a = K in
Z Z̆a +

(
nB + 1

2

)(
K in

Z −K
rev
Z

)
Z̆d , ζ̆d = Krev

Z Z̆d .
(4.12)

One can check that this relation is consistent with our identification (4.6), which employed
the standard asymptotic fall-off conditions to extract the sources.

Before turning to the contact term contribution, it is worth noting that we recover
pre-existing results when we switch off the charge Q → 0. The charge diffusion function
V simplifies considerably, and reduces to a non-Markovian probe Maxwell field of index
M = 3− d analyzed in [13] (see their section 8; the field V reduces to ϕ3−d studied there).
Likewise, the designer phonon field Z limits to the sound field Z analyzed in [14] (compare
with their eq. (5.2)). The normalization for NZ(p) specified below (3.11) ensures that
this works out naturally, modulo the fact that the prefactor is given here in terms of the
dimensionless momentum q2. Moreover, in the charged plasma, the normalization factors
NV(p) and NZ(p) are closely related to those obtained in [1] while decoupling the vector
perturbations. This is not altogether surprising given the unified origin of the perturbations
from a fluid/gravity perspective, but serves as simple sanity check of our results.

To write the contact term contribution it will be necessary to record the boundary
metric and gauge field source, parameterized by the sources for the fields V and Z. This
information can be extracted using the asymptotic behaviour of the designer fields, as we
explain in appendix C.2. We introduce the induced boundary chemical potential

CL/R = lim
r→∞±i0

Av

= −r+
2 + p2

4 ξ̆L/R + d (d− 1)
2

P0
ρ0

p2 ζ̆L/R ,
(4.13)

and the boundary metric induced on the two boundaries of the grSK geometry

(γL/R)µν = lim
r→∞±i0

[D+Θ
rd−1 dv

2 +
(

1 + ΦW

rd−2

)
ηµν dx

µ dxν
]

= −
(
1− (d− 3) WL/R

)
dv2 +

(
1 + WL/R

)
dx2 .

(4.14)

We have parameterized the above in terms of the boundary value of the metric fields ΦW

and D+Θ using the asymptotic relation ΦE = D+Θ + · · · , and

WL/R = 1
d− 2 lim

r→∞±i0

D+Θ
rd−1 = lim

r→∞±i0

ΦW

rd−2

=
ξ̆L/R
C

+ 8
d νs

ζ̆L/R .

(4.15)
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With the boundary sources identified, we can write down the contact term

1
ceff

Scontact
[
V̆, Z̆

]
= P0 + P0

∫
k

(d− 1) (d− 2)
2 (WR −WL) + 2 ρ0

∫
k

(CR −CL)

+ (d− 1) (d− 2) (d− 6)
8 P0

∫
k

(
W†

R WR −W†
L WL

)
.

(4.16)

This contact term includes the background free energy density, which is proportional to the
pressure P introduced in (2.9a). This entire contact term originates from the on-shell ideal
fluid action evaluated on the background (4.14). The ideal fluid additionally contributes
to part of the Wilsonian influence phase. The details of this calculation are similar to the
analogous analysis in [14]. We will add some further commentary in section 4.5, but en-
courage the reader to consult the aforementioned reference for a more complete discussion.
The main change is that we have mixing between the phonon mode and the charge diffusion
mode, but once we have diagonalized the modes, at Gaussian order, we have decoupled
effective dynamics, which allows us to infer the result directly from the boundary metric
deformation.

4.3 Conserved currents

The conserved charge current and energy-momentum tensor can be extracted from our
solution using standard techniques. We sketch the basic derivation of these results in
appendix D.2. There are two contributions that are relevant: the background Reissner-
Nordström-AdSd+1 black hole has a non-vanishing free energy and charge current, which
is corrected at linear order in amplitudes by contributions which can be expressed in terms
of the field operators V̆ and Z̆.

Charge current: to express the U(1) conserved current on the boundary, let us first
introduce the boundary charge diffusion operator

Q̆L/R =
[
r+
4 (2 + p2) ŎV −

2 ρ0
d (d− 1)P0

1
2 + p2 ŎZ

]
L/R

. (4.17)

This is a particular linear combination of the operators ŎV and ŎZ , which are the boundary
duals of the bulk fields V and Z, respectively. It can be identified as the renormalized
boundary operator dual to the field V which parameterizes the bulk gauge field fluctuations.
The factors of p in its definition originate from the diagonalization of the bulk equation,
and can be traced back to (3.4).

In terms of this operator we have a simple expression for the current,

1
2 ceff

(JCFT
µ )L/R dxµ = (Jcontact

µ )L/R dxµ +
∫
k

(
k2 S dv + iω k Si dxi

)
Q̆L/R ,

(Jcontact
µ )L/R dxµ = ρ0

[
−1 + (d− 2)

∫
k
SW

]
L/R

dv .
(4.18)

We have written the current in terms of the background charge density (2.9b).
The operator content is captured by the specific combination of the bulk charge diffu-

sion and sound modes introduced above. Once we identify the energy operator, we will be
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able to re-express the operators dual to the decoupled gravitational designer fields in terms
of the physical boundary operators. The second line includes the background charge den-
sity, and an additional polarization contribution arising from the change of the boundary
conformal frame (the W piece).

Current conservation demands that ∇γ µJ
µ = 0 on both the left and right boundaries

of the grSK geometry. If we examine the operator part of this statement, viz., the contri-
bution from Q̆, we find that the Ward identity is trivially satisfied, since Jv ∝ −k2 S and
J i ∝ −ω ki S. It is straightforward to check that the source term proportional to W is also
covariantly conserved (it cancels against the connection term for the background (4.14)).
As a result we should view the current as a sum of a polarization term on the deformed
boundary geometry, which is the second line of (4.18), and a physical operator part, pro-
portional to Q̆, as we have indicated.

Energy-momentum tensor: the boundary stress tensor is computed by the usual
Brown-York result supplemented with suitable counterterms. We give the details of how
to write this in terms of fields we are using to parameterize the metric in appendix D.2.
The result after some simplifications can be expressed in terms of an energy operator:

ĔL/R ≡
[
ŎZ + k2 ŎV

C

]
L/R

. (4.19)

Once again, this operator is the boundary value of the renormalized field Z, which is the
distillation of gravitational perturbations. One infers the relation above directly from the
definition (3.4), with the factor of k2 originating from the modulation function Λk.

In terms of this field, we can give a simple expression for the energy-momentum tensor
density.17 We decompose it again into separate contact and operator contributions:

(TµνCFT)L/R = 2
[
δS

δγµν

]
L/R

= ceff (Tµνcontact)L/R + ceff T̂
µν
L/R . (4.20)

The physical operator part of the stress tensor is quite simple and can be shown to be

(
T̂ v
v

)
L/R

= −
∫
k

k2

d− 1 S ĔL/R ,(
T̂ i
v

)
L/R

= i

∫
k

ω k

d− 1 Si ĔL/R ,(
T̂ j
i

)
L/R

= 1
d− 1

∫
k

[
k2

d− 1 S δ ji + d− 1
d− 2

(
k2

d− 1 − ω
2
)

(ST) ji

]
ĔL/R .

(4.21)

We have decomposed the spatial part of the stress tensor into a diagonal ‘pressure’ and a
traceless ‘shear-stress’ part, utilizing the invariant Kronecker delta and the traceless derived

17Working with the densities leads to simpler expressions and is also more natural from the computation
using the renormalized Brown-York tensor. Note that,

√
−γ = 1 +

∫
k

W S.
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scalar harmonic. The contact term is obtained as(
T contact
L/R

) v

v
= (d− 1)P0

[
−1 + d− 2

2

∫
k
SW

]
L/R

,

(
T contact
L/R

) j
i

= − 1
d− 1

(
T contact
L/R

) v

v
− d (d− 1)

2 P0

∫
k

(ST) ji
[
W + 4

d (d− 2)
ρ0
P0

C
]
L/R

.

(4.22)

We notice that the stress tensor is manifestly traceless (note that (ST)ii = 0). Furthermore,
the operator part and the contact terms are separately conserved. Note that since we have
a background charge density, the conservation law includes a Joule heating term18

∇γ µT
µν
CFT = Fγ νρ JCFT

ρ . (4.23)

Since we have a non-trivial boundary chemical potential, Aγ µ 6= 0, from (4.13), it follows
that there is a non-trivial boundary field strength Fγ µν which contributes to r.h.s. of the
conservation equation (4.23). Nevertheless, it turns out that the contact terms in the
currents conspire to cancel each other out, effectively implying that the ST

ij component of
the contact term is the gravitational response to the background charge density. We will
return to analyzing the currents from a hydrodynamic viewpoint in section 4.5.

4.4 Current correlators

For the purposes of computing physical correlation functions, it will be useful to record
the Green’s functions for the boundary charge diffusion and phonon operators, ŎV and ŎZ ,
respectively. From the influence functional (4.8) we infer that〈

ŎV(−ω,−k) ŎV(ω,k)
〉Ret

= −i 1
ceff k2 NV(p)K in

V (ω,k) ,〈
ŎZ(−ω,−k) ŎZ(ω,k)

〉Ret
= −i 1

ceff NZ(p)K in
Z (ω,k) ,

(4.24)

The Keldysh Green’s function can be determined by the fluctuation-dissipation relation

〈
ŎV(−ω,−k) ŎV(ω,k)

〉Kel
= − 1

2 ceff
coth

(
βω

2

) Im
[
K in

V (ω,k)
]

∣∣∣K in
V (ω,k)

∣∣∣2 ,

〈
ŎZ(−ω,−k) ŎZ(ω,k)

〉Kel
= − 1

2 ceff
coth

(
βω

2

) Im
[
K in

Z (ω,k)
]

∣∣∣K in
Z (ω,k)

∣∣∣2 .

(4.25)

We will therefore only quote the retarded Green’s functions below.
To write the current correlators we first pick a spatial direction for the propagating

modes, setting k = k x̂, decomposing Rd−1 coordinates into {x, xs} with s = 2, · · · , d− 1.
18Note that we have a bulk Maxwell term with unconventional normalization. The boundary charge

current defined in (4.18) consequently has an extra factor of 2, as indicated in footnote 8. This ensures that
the Joule heating term has the conventional normalization, consistent with what one would derive from a
diffeomorphism Ward identity.
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One can check that with this choice ST
ij = 1

d−1 diag{−(d− 2), 1, · · · , 1}. We will write the
correlation functions of the currents in terms of the corresponding answers for the operators
Q̆ and Ĕ , so let us therefore first record the retarded Green’s functions for these charge
diffusion and energy operators. From (4.17) and (4.19) we find

i ceff
〈
Q̆(−ω,−k) Q̆(ω,k)

〉Ret
= σdc

2 r+

2 + p2

1 + p2
1

k2Kc(w, q)

+ (d− 2)
rd−2

+ SQ

4 NV(p)
1

k2Ks(w, q) , (4.26a)

i ceff
〈
Ĕ(−ω,−k) Ĕ(ω,k)

〉Ret
= σdc r+

( 2ρ0
d(d− 2)P0

)2 1
NV(p)

k2

Kc(w, q)

+ d (d− 1)2 P0
r2

+

2 + p2

1 + p2
1

k2Ks(w, q) , (4.26b)

i ceff
〈
Q̆(−ω,−k) Ĕ(ω,k)

〉Ret
= 2σdc

r+

2ρ0
d(d− 2)P0

1
(1 + p2)

1
Kc(w, q)

− 2 (d− 1) ρ0
r2

+ (1 + p2)
1

k2Ks(w, q) . (4.26c)

In these equations we have used (4.9) to convert K in
V and K in

Z to the dispersion functions
Kc and Ks, respectively.

The correlation functions of the U(1) current and stress tensor are then compactly
presented in terms of these correlators as〈

JµCFT(−ω,−k) JνCFT(ω,k)
〉Ret
non-ideal

= 4 c2
eff J

µν(ω, k)
〈
Q̆(−ω,−k) Q̆(ω,k)

〉Ret
,〈

TµνCFT(−ω,−k)T ρσCFTν(ω,k)
〉Ret
non-ideal

= c2
eff

Gµν,ρσ(ω, k)
(d− 1)2

〈
Ĕ(−ω,−k) Ĕ(ω,k)

〉Ret
,〈

JµCFT(−ω,−k)T ρσCFTν(ω,k)
〉Ret
non-ideal

= 2 c2
eff

Kµ,ρσ(ω, k)
d− 1

〈
Q̆(−ω,−k) Ĕ(ω,k)

〉Ret
,

(4.27)

where we have parameterized the tensor structure data into certain momentum and fre-
quency dressings.

For the current-current correlators these are

Jvv(ω, k) = k4 , Jvx(ω, k) = ω k3 , Jxx(ω, k) = ω2 k2 , Jsµ(ω, k) = 0 . (4.28)

The naive pole at k = 0 from (4.26) is cancelled by the factor of k2 in this dressing tensor.
Likewise, we parameterize the energy-momentum tensor correlators using

Gvv,vv = k4 , Gvv,vx = ω k3 , Gvv,ss = k2

d− 2
(
k2 − ω2

)
,

Gvv,xx = ω2 k2 , Gvx,vx = ω2 k2, Gvx,ss = ω k

d− 2
(
k2 − ω2

)
,

Gvx,xx = ω3 k , Gxx,xx = ω4 , Gxx,ss = ω2

d− 2
(
k2 − ω2

)
,

Gss,ss = 1
(d− 2)2

(
k2 − ω2

)2
.

(4.29)
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Finally, the mixed current-stress tensor correlation functions depend on

Kv,vv = −k4 , Kv,vx = −ω k3 , Kv,xx = −ω2 k2 , Kv,ss = − k2

d− 2
(
k2 − ω2

)
,

Kx,vv = −ω k3 , Kx,vx = −ω2 k2 , Kx,xx = −ω3 k , Kx,ss = − ω k

d− 2
(
k2 − ω2

)
,

(4.30)

with Ks,µν = 0.
In writing these expressions, we have made a particular choice of the contact terms.

While this writing appears to suggest the presence of a double pole at k = 0, stemming from
the k2Ks factors in (4.26), these are spurious. They can be removed by adding suitable
contact terms. The only physical poles are at the vanishing loci of Ks and Kc, which
correspond to the dispersion relations for sound and charge diffusion. By adding suitable
contact terms we can replace of ω2 → k2

(
1
d−1 + νs

1+Q2 Γs
)
in Gµν,ρσ and Kµ,ρσ.19 This

manipulation does not affect the residue at the sound pole, which is the physical data, one
can extract from these results. We have refrained from implementing such contact terms
explicitly to retain the simplicity of the expressions above.

4.5 A fluid dynamical perspective

We have motivated our analysis by arguing that the low-lying modes in scalar sector of
the charged plasma are the phonon and a charge diffusion mode. With the correlation
functions at hand, we can see that they have poles at the dispersion loci characterizing
these modes. We can obtain the explicit dispersion relations and confirm that they can be
understood directly in terms of the transport data obtained in the earlier literature.

First, solving Kc(w, q) = 0 we obtain the result for the dispersion function governing
charge diffusion to be

w(q) = −i
d− 1−SQ

(d− 2) (d− 1) q
2
(
1 + c4 q

2 + · · ·
)
,

c4 =
d− 1−SQ

(d− 2) (d− 1) ∆2,0
Y

(r+)− 2ϕ0,2
V (r+)

+ d− 2
d− 1−SQ

[
(d− 1) (1−SQ)2 ∆0,4

V (r+) +
2 νsS2

Q

1 +Q2 ΞV(r+)
]
.

(4.31)

The constants appearing here are horizon values of functions defined in appendix C. In
obtaining this result we have used the expression for Kc accurate to quartic order in
gradients (C.14). From the quadratic part of the dispersion we can obtain a prediction for
the charge diffusion constant

Dc = 1
(d− 2) r+

(
1−

SQ

d− 1

)
. (4.32)

One can check that this agrees with the result obtained in d = 4 in [25].20

19In [4, 14] such a choice was made to simplify the stress tensor correlators of a neutral fluid.
20Much of the literature computing charge diffusion rate focuses on the diffusion of a current in a neutral

background. The general result for the charge diffusion constant in finite density medium (4.32), insofar as
we have been able to discern, is therefore new.
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The charge diffusion constant Dc and the dc conductivity (2.9c) are proportional to
each other:

σdc = δρ

T δ
( µ
T

) ∣∣∣∣
P fixed

Dc . (4.33)

To see this, recall that the leading dissipative contribution to the hydrodynamic charge
current can either be expressed as the gradient of the charge density or as the gradient of
chemical potential (normalized by temperature), viz.,21

1
2 ceff

Jµ = ρ uµ−Dc P
µν DWν ρ+· · · , 1

2 ceff
Jµ = ρ uµ−σdc T Pµν ∇ν

(
µ

T

)
+· · · , (4.34)

with Pµν being is the spatial projector orthogonal to the velocity. The two expressions
are the canonical and the grand canonical expressions for the charge current, respectively,
with the translation being made with fixed energy density or pressure (to ensure that we
are not turning on the phonon). Using the background charge density (2.9b) and the
thermodynamic data (2.5), we find

δρ

T δ
( µ
T

) ∣∣∣∣
P fixed

= (d− 2) rd−2
+

(1−SQ)2

1− S
Q

d−1

. (4.35)

This shows that the results (2.9c) and (4.32) are indeed related as claimed in (4.33).
For the sound dispersion locus, we solve Ks(w, q) = 0 with Ks given in (4.11) and

obtain

w(q) = q√
d− 1

− i νs
2 (1 +Q2) q

2 + νs h3

2
√
d− 1 (1 +Q2)2 q3 + · · · ,

h3 = d (d− 2)− 4
2 d (d− 2) + d− 3

d− 2 Q
2 + (1 +Q2) ∆2,0

d−1(r+) .
(4.36)

For simplicity, we have only quoted the positive branch of solution. Since sound has
a propagating mode there are two solutions which start off as ω = ± k√

d−1 + · · · . In
appendix C.2 we conjecture the cubic and quartic corrections to the sound attenuation
function and use it to derive the dispersion relation to quintic order, see eq. (C.30). This
exploits the asymptotic expansion of the metric functions and how the stress tensor is
assembled from the solution.

The quadratic term in (4.36) captures the leading sound attenuation which originates
from shear viscosity. The coefficient of the q2 term, denoted Dη, arises from viscous
damping of the sound mode. It is related to the shear viscosity of the conformal charged
plasma via,

Dη = d− 2
d− 1

η

ε0 + P0
=⇒ η = ceff r

d−1
+ = s

4π , (4.37)

reproducing the well-known result. The background energy density ε0 is given by the
conformal equation of state ε0 = (d− 1)P0.

21For conformal fluids, we can express the results in a Weyl covariant manner using the Weyl covariant
derivative DW , which is defined using the Weyl connection for the fluid. The charge density has Weyl
weight d− 1, implying that the contribution to current takes the form DWν ρ = (∇ν + (d− 1)uα∇αuν) ρ.

– 21 –



J
H
E
P
0
3
(
2
0
2
3
)
1
6
1

The cubic term in the dispersion (4.36), which gives the correction to sound atten-
uation, arises from a second order contribution in the constitutive relation for the cur-
rents. We can use the results of [25, 26] and the classification of second order transport
in [30] to argue that only a subset of second order transport data contributes to the linear
dispersion relations. Specifically, we can only have contribution from two terms in the
stress tensor, Tµν ⊃ τπ u

αDWασµν + τQ
1
ρ D

W
µ DWν ρ, and two terms in the charge current

Jµ ⊃ Cσ Pµνσν +Cω P
µνων , as these are the only terms which are non-vanishing at linear

order in the amplitude expansion. However, upon computing the equations of motion,
one finds that only τπ contributes to the dispersion relations at third order. The other
three contribute at fourth order, but their contribution mixes with third order constitutive
relations. In any event, solving the conservation equations, one finds:

w = q√
d− 1

− d− 2
d

η

P

q2

d− 1 +
(
d− 2
2 d

τπ
P
− (d− 2)2

2 d2
η2

P 2

)
q3

(d− 1)
3
2

+ · · · . (4.38)

Comparing the prediction from hydrodynamics with the gravity analysis, we deduce
that τπ is given in terms of the horizon value of the function ∆2,0

d−1 . This coefficient also
appears in the shear dispersion but only at fourth order [1]. Second order transport co-
efficients for a charged fluid have only been evaluated hitherto in the literature for d = 4
in [25, 26]. We have been able to evaluate ∆2,0

3 (r+) in closed form in this case, and find

∆2,0
3 (r+) = 1

2

(
1 + 1 +Q2√

1 + 4Q2 log
(

3−
√

1 + 4Q2

3 +
√

1 + 4Q2

))
. (4.39)

We have confirmed that this result agrees with the values for the transport coefficients
obtained earlier. The comparison with the result of [25] is straightforward (they refer to
the coefficient τπ as N1, while that to [26] (who instead use ητπ for their coefficient) requires
small algebraic manipulations to rewrite the temperature and chemical potential in terms
of the black hole parameters. The numerical result for ∆2,0

d−1 in other dimensions 3 ≤ d ≤ 6
can be found in figure 4 of [1].

Let us finally turn to understanding the boundary currents from a fluid dynamical
perspective. We will examine the thermal one-point function of the stress tensor, which we
express using (4.2). As explained in [14], there is an interesting complication with energy
transport. The sound mode has a propagating degree of freedom, one that is already visible
at the level of an ideal fluid. Therefore, any decomposition in fluid dynamical terms must
treat the contributions from Z and V asymmetrically. In particular, we will have to break
up the simpler packaging in terms of the charge diffusion and energy operators Q̆ and Ĕ ,
and treat the contributions from Z̆ and V̆ asymmetrically.

We claim that the currents can be decomposed into an ideal, a non-ideal,22 and a
polarization contribution, respectively, in the following manner:

1
2 ceff

〈
JCFT
µ

〉
= Jµideal[W, Z̆] + Jµnon-ideal[V̆, Z̆] ,

1
ceff
〈TµνCFT〉 = Tµνideal[W, Z̆] + Tµνnon-ideal[V̆, Z̆] + Tµνpol[ξ̆, ζ̆] .

(4.40)

22We refrain from characterizing the non-ideal part as dissipative, since this part includes non-dissipative
contributions as well starting at second order in gradients.
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This separation works independently on both the R and L boundaries, so we will drop the
corresponding subscripts in the expressions henceforth. The ideal fluid currents are of the
standard form

Tµνideal =
√
−γ P (d uµ uν + γµν) , Jµideal = ρ uµ . (4.41)

We need to ascertain if we can isolate the deformed expressions for pressure P , charge den-
sity ρ, and velocity uµ, noting the background values P0 and ρ0 given in (2.9a) and (2.9b).

To motivate this split, we first rewrite the stress tensor density as follows:

〈(TCFT) v
v 〉L/R = (d− 1)P0

[
−1 + d− 2

2

∫
k
SWL/R

]
−
∫
k

k2

d− 1 S
(
Z̆L/R + k2 V̆L/R

C

)
,

〈
(TCFT) i

v

〉
L/R

= i

∫
k

ω k

d− 1 Si
(
Z̆L/R + k2 V̆L/R

C

)
,

〈
(TCFT) ji

〉
L/R

= − 1
d− 1 〈(TCFT) v

v 〉L/R δ
j
i −

∫
k

k2

d− 2
νs Γs(w, q)

1 +Q2 (ST) ji Z̆L/R

+
∫
k

(ST) ji

[
k2

d− 2

(
k2

d− 1 − ω
2
)
V̆L/R
C

+ d− 1
2 (d− 2) p

2
(
ρ0 r+ ξ̆L/R − 2 d (d− 1)P0 ζ̆L/R

)]
.

(4.42)

In obtaining this expression we have separated the contributions from V̆ and Z̆ (and their
sources). Furthermore, in the spatial part of the stress tensor we have replaced ζ̆ in terms of
Z̆ using (4.12), and used the explicit form of Ks (4.11). The upshot is that the contribution
of Z̆ to the stress tensor is now considerably simpler with the spatial shear-stress part being
proportional to the sound attenuation function.

In the limit where we switch off sound attenuation Γs → 0, we see that the entire
contribution of Z̆ to the stress tensor density can be understood as that of an ideal fluid
with

PL/R = P0

(
1− d

2

∫
k
SWL/R

)
+
∫
k

k2

(d− 1)2 S Z̆L/R ,

uµ dx
µ = −

[
1− d− 3

2

∫
k
SWL/R

]
dv − i

∫
k

ω k

d (d− 1)P0
Si Z̆L/R dx

i .

(4.43)

In the absence of charges, this result coincides with that obtained for neutral fluid in [14].
Note that the temporal component of the velocity is arising from the background red-shift
uv = −

√
−γvv.

– 23 –



J
H
E
P
0
3
(
2
0
2
3
)
1
6
1

In the present case we have additional contributions from the charge diffusion mode.
These are captured in the dynamical and polarization terms. To wit,

〈(Tnon-ideal) v
v 〉L/R = −

∫
k

k4

d− 1 S
V̆L/R
C

,

〈
(Tnon-ideal) i

v

〉
L/R

= i

∫
k

ω k3

d− 1 Si
V̆L/R
C

,

〈
(Tnon-ideal) ji

〉
L/R

=
∫
k

k2

(d− 1)2

[
k2 δ ji S + (d− 1)2

d− 2

(
k2

d− 1 − ω
2
)

(ST) ji

]
V̆L/R
C

−
∫
k

k2

d− 2
νs Γs(w, q)

1 +Q2 (ST) ji Z̆L/R ,

(4.44)

and 〈
(Tpol) ji

〉
L/R

= d− 1
2 (d− 2)

∫
k
p2 (ST) ji

[
ρ0 r+ ξ̆L/R − 2 d (d− 1)P0 ζ̆L/R

]
. (4.45)

Since the charge diffusion is dissipative, it follows that the contribution from V̆ cannot be
included in the ideal fluid part. For similar reasons the Γs, Z̆ contribution is also non-ideal.
The novel feature is the additional polarization in the spatial part of the stress tensor
proportional to the sources. This term is present to account for the Joule heating effect,
but we do not have a heuristic explanation for its presence.

Given the decomposition of the stress tensor, we can examine what it implies for the
charge current. We have the modified charge density

ρL/R = ρ0

[
1− (d− 1)

∫
k
S
(

1
2 WL/R −

k2

d (d− 1)2 P0
Z̆L/R

)]
, (4.46)

with the background density (2.9b). Along with the velocity field determined from the
stress tensor in (4.43) these charge densities reproduce the contact term of the current as
an ideal fluid contribution. The additional piece is purely dynamical and can be shown
to be: 〈

Jnon-ideal
v

〉
L/R

=
∫
k
k2 S

〈
Q̆non-ideal

L/R

〉
,〈

Jnon-ideal
i

〉
L/R

= i

∫
k
ω k Si

〈
Q̆non-ideal

L/R

〉
,

(4.47)

where (using the identity (3.7))

Q̆non-ideal
L/R =

[
r+
4 (2 + p2) ŎV + ρ0

d (d− 1)P0

p2

2 + p2 ŎZ

]
L/R

. (4.48)

Owing to the fact that the ideal fluid already supports a propagating sound mode, we
see that the non-ideal part of the charge diffusion operator is not quite (4.17), but a
modification thereof to Q̆non-ideal

L/R .
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Not only can one give a simple interpretation for the conserved currents, but it also
turns out to be possible to give a similar decomposition of the on-shell action. First of all
one can check that∫

k

[1
2 T

µν
CFT δγµν +

√
−γ JµCFT δ A

γ
µ

]
Legendre−→
transform

1
ceff

S[V̆, Z̆] . (4.49)

In writing this expression we are assuming that the currents are correctly normalized as
indicated in footnote 18. The ideal fluid contribution is isolated by setting Γs → 0 and
dropping the contribution from V̆. The contributions from V̆ are associated with charge
diffusion, which is non-ideal. On the other hand, the phonon, owing to its propagating
degree of freedom, contributes non-trivially to the ideal fluid part. Switching off Γs ensures
that we ignore the non-ideal sound attenuation piece. Specifically, turning off all the sources
of dissipation, we anticipate that the surviving part of the WIF can be obtained by a
Legendre transformation of the ideal fluid action (the integrated pressure), viz.,

Sideal,LT = S
[
V̆ = 0, Z̆

] ∣∣∣∣
Γs→ 0

. (4.50)

The ideal fluid action for a charged plasma is given by the zeroth order Class L action
of [30]. We can view this as a functional of the background metric γµν , the vector bµ, and
scalar Λb ≡ µ/r+, which are the related to the thermal vector and thermal twist introduced
in the aforementioned reference. The variation of this ideal fluid action has pieces that lead
to the stress tensor and the current, as in the r.h.s. of (4.49), but additionally it also has
contributions proportional to δbµ and δΛb, which are the change of these variables from
their background value. Once we account for this effect, the Legendre transform of the
ideal fluid action should reproduce the contact term and the propagating part of the sound
mode. We have not checked this explicitly, but the fact that (4.49) holds provides strong
evidence for our statement.

In recent years, various groups have constructed effective actions for non-linear, dissipa-
tive hydrodynamics using symmetry arguments. These actions are argued to be universal,
governing the low-energy behaviour, with the dynamical equations of motion being the
energy-momentum and charge conservation. The dynamical fields in this approach are
target maps from an auxiliary space, the worldvolume, onto the physical fluid (cf., [31]).
The physical temperature and chemical potential are pushforwards of reference data (fixed
thermal vector and twist) from the worldvolume into the fluid target under these maps.
These non-linear analyses, while interesting in their own right, are per se not optimal for
understanding loop effects in the effective field theory. For these it suffices to have an action
which isolates the physical modes. For a charged plasma, these are the shear and charge
diffusion waves, and the sound mode. An effective action parameterized by the associated
operators suffices to understand the dynamics in an amplitude expansion.

In [1] we have obtained the Gaussian effective action for the shear modes, while the
results (4.8) herein give the corresponding results for the charge diffusion and sound modes.
Using the bulk graviton vertices one can work out non-Gaussian corrections systematically.
This data is useful since thus far there does not exist in the literature a precise proposal

– 25 –



J
H
E
P
0
3
(
2
0
2
3
)
1
6
1

for a charged plasma. Even the adiabatic Class L action for such systems has not been
constructed, though [30] classified the various tensor structures under the eightfold classifi-
cation of transport up to second order in gradients. Moreover, the non-linear fluid/gravity
dual of a charged plasma has also not been constructed in general dimensions. The original
works [25, 26] focused on d = 4 with no background sources, while [27] turned on general
boundary metric sources (also in d = 4) but not background gauge field sources. The com-
bined results of the current work and [1] are the first steps towards a better understanding
of charged fluids from holography.

5 Discussion

We have used holography to understand the dynamics of charge diffusion and sound propa-
gation in a charged plasma. Both of these physical effects arise from the longitudinal scalar
modes of the energy-momentum tensor and charge current, but owing to the presence of
background charge density they mix non-trivially. One advantage of the holographic mod-
eling is that it provides a clear mechanism to decouple the modes and indicates which
combination of the currents leads to the diffusive dynamics of charges, and which leads
to the phonon mode. The fact that one can decouple the modes at the Gaussian order is
not a surprise per se, since one only needs to find a suitable diagonal basis of the physi-
cal modes. The gravitational modeling simplifies this considerably, since one is essentially
diagonalizing a pair of coupled differential equations. While this result dates back to the
analysis of [24], it has thus far not been employed to extract general lessons for a charged
plasma.

During our analysis, we have simplified the derivation of the linearized Einstein-
Maxwell equations. In addition, we have undertaken a careful analysis of the variational
problem for the decoupled modes, an exercise that had not been carried out earlier. In par-
ticular, we note that the decoupled fields parameterizing the perturbations of the Reissner-
Nordström-AdS black hole are to be quantized with Neumann boundary conditions for
purposes of computing the generating function of boundary current correlators. Further-
more, we have solved these equations in a gradient expansion to quartic order. Note that
the non-linear fluid/gravity analysis for charged AdS black holes has only been analyzed
to quadratic order in gradients, and that too only in d = 4. Thus, our results for the
most part are largely new, a surprising fact considering the extensive investigation into
hydrodynamics using holography.

For the boundary theory we are not interested in computing the generating function of
current correlators as a functional of the sources as one is wont to do conventionally in the
AdS/CFT context. The conserved current correlators have hydrodynamic poles, and the
resulting generating function does not admit a well-behaved low-energy expansion. Rather,
we are interested in developing a systematic low energy effective field theory parameterized
by the physical low-lying degrees of freedom: the phonon and the charge diffusion mode.
This is achieved by a suitable Legendre transform of the generating function, but oper-
ationally, as argued in [13], it amounts to quantizing the dual bulk fields with Dirichlet
boundary conditions. We have obtained the Gaussian part of the real-time effective action,
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and the Wilsonian influence phase for the charge diffusion and sound modes. This can
then be used to recover (and extend) the Schwinger-Keldysh two-point functions of the
conserved currents.

The physical results of the boundary currents and the Wilsonian influence phase can
be nicely understood in hydrodynamic language. We have demonstrated that the currents
can be separated into an ideal part, a non-ideal part (which includes both dissipative and
non-dissipative contributions), and background polarization terms. A similar statement
holds for the effective action. The non-ideal part includes non-dissipative contributions
in the functions Kc and Γs, which can be extracted. These should be matched against
the higher order gradient terms in the Class L charged fluid action. The latter is easy to
construct following the analysis of [30]. However, it has not yet been analyzed explicitly
in the literature; we therefore leave a detailed hydrodynamic analysis to the future.

Together with our earlier analysis of momentum diffusion and charge propagation
modes in [1], the analysis of this paper completes the derivation of the effective action for a
charged plasma. The rapidly decaying Markovian modes are the d (d−3)

2 modes of the tensor
sector and the (d − 2) modes that correspond to transverse photons. The hydrodynamic
modes are the (d − 2) momentum diffusion modes, and the two modes analyzed herein.
Altogether these make up the set of a stress tensor and charge current, modulo tracelessness,
and the d+ 1 conservation equations.

An interesting physical output of our analysis is the identification of the combination
of currents which correspond to the physical charge diffusion mode and the sound mode.
The charge current is parameterized by an operator Q̆ and the stress tensor by Ĕ , cf., (4.17)
and (4.19), respectively. Inverting these, we find

ŎV = 2
(1 + p2) r+

[
Q̆+ 2

d (d− 1)
ρ0
P0

Ĕ
2 + p2

]
,

ŎZ = 2 + p2

2 (1 + p2) Ĕ −
d (d− 1)

4
P0
ρ0

p2 (2 + p2)
1 + p2 Q̆ .

(5.1)

We employed the identity noted in footnote 10 to simplify the above. What is curious
in these expressions is the presence of the deformed momentum factor p defined in (3.6).
These factors, we emphasize, are exact, arising as they do from the decoupling of the
gravitational equations of motion. This quantity p is an interesting prediction of gravity,
and its origins deserve to be better understood. The occurrence of such momentum factors
is, in fact, quite ubiquitous in the analysis of probe fields in a black hole background.
They have been encountered in various explorations in the AdS/CMT literature. While
it is not therefore a surprise to see them in the context of linearized photon and graviton
fluctuations, one ought to understand their presence more clearly. One could speculate,
without any evidence, that such factors appear even in weakly coupled charged plasmas, a
possibility that should be investigated further.

While we have focused herein on obtaining the Gaussian part of the real-time effective
action, the grSK geometry, as explained in [7], is sufficient to allow one to obtain the non-
Gaussian terms in the influence functional, which can be computed by standard Witten
diagram techniques suitably adapted to this two-sheeted geometry. The only ingredient one
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needs are the bulk vertices for the various fields. These can be obtained from the Einstein-
Maxwell action. Note however that there is mixing between the scalar, vector and tensor
modes, from the cubic order onward. One can however combine the parameterization of
the scalar modes in this paper, together with that adapted for the tensor and vector modes
in [1] to compute the vertices. This computation is straightforward, albeit technically
challenging, and has the potential to shed further light on the nature of hydrodynamic
effective field theories.
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A Dynamics

The dynamics we study is governed by the Einstein-Maxwell action with its Gibbons-
Hawking variational boundary term and appropriate counterterms. As we work to quartic
order in boundary gradients, we expect that we would need counterterms accurate to
that order. While it will transpire that we can make do with the quadratic gravitational
counterterms, we nevertheless include below the full set for completeness.

The gravitational dynamics we consider is23

Sgrav =
∫
dd+1x

√
−g
(
R+d(d−1)− 1

2 FAB F
AB
)

+
∫
ddx
√
−γ (2K+LEH,ct+LMax,ct) ,

LEH,ct =−2(d−1)− 1
d−2 Rγ − 1

(d−4)(d−2)2

(
Rγ µν Rγ µν− d

4(d−1) Rγ 2
)
,

LMax,ct = 1
4(d−4)

(
Fγ µν Fγ µν+ 1

(d−4)(d−6) Fγ µν�γ Fγ µν
)
.

(A.1)

The counterterm action accurate to quartic order was originally obtained in [32, 33]. The
equations of motion have been recorded in (2.2). We will first analyze them, before turning
to understanding the variational principle.

The perturbations of the background are parameterized in terms of the metric functions
and gauge potentials recorded in (A.3). As explained in [24] and in our earlier works [1, 14],

23In the appendices we will drop the normalization factor 16πGN to keep the expressions simple. We
also work in units where `AdS = 1. Boundary quantities can be easily obtained by scaling up the results by
a factor of ceff = `d−1

AdS
16πGN

at the end.
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we can work with suitable gauge invariant combinations made out of curvatures. We work
in the two-dimensional {v, r} spacetime, the orbit space, which has a connection24

Υ ≡ d
dr
(
r2f

)
. (A.2)

The discussion of the metric perturbations parameterized in terms of ΨAB, as presented
in (A.3), is unchanged from [14], since the organization into SO(d − 2) harmonics and
orbit space transformations are unaffected. The main change is the addition of data from
the Maxwell potential, but this has also been previously explored in [13], who analyzed
the dynamics of probe Maxwell fields in the Schwarzschild-AdSd+1 background. Much
of that can again be imported with some slight modifications. Indeed, we shall see that
the dynamical equations can be suitably understood by combining the analysis of the
aforementioned two papers.

A.1 Dynamics in the Debye gauge

A generic perturbation of the background is captured by ten functions, encoded in ΨAB

and AA, for we can parameterize them in terms of SO(d− 2) harmonics as

ds2
(1) =

∫
k

{(
2 ΨS ds

2
(0) + Ψvv dv

2 + 2 Ψvr dvdr + Ψrr dr
2
)
S

−
[
2 r (Ψvx dv + Ψrx dr) Si dxi − 2 r2 ΨT ST

ij dx
idxj

]}
,

AA dx
A =

∫
k

{(
Ψ̂v dv + Ψ̂r dr

)
S + Ψ̂x Si dxi

}
.

(A.3)

Here S = eik·x−iωv is the scalar plane wave on Rd−1,1 and Si and ST
ij are derived harmonics,

defined as
Si = 1

k
∂i S , ST

ij = 1
k2

(
∂i ∂j −

δij
d− 1 ∂

2
)

S . (A.4)

ST
ij is traceless but not transverse, ∂iST

ij = d−2
d−1 ∂

2 ∂j . It is to be distinguished from the
derived harmonic Sij defined in [13], which is neither transverse nor traceless.

We can use the gauge invariant combinations to help choose a specific gauge and
simplify the linearized equations. The natural choice is to use an analog of the Debye
gauge employed in [14]. The idea is that we set to zero, a priori, the perturbations that
depend on the derived harmonics Si and ST

ij . To wit, we have the gauge conditions:

Debye Gauge: Ψvx = Ψrx = ΨT = 0 , Ψ̂x = 0 . (A.5)

This immediately reduces us to six functions {ΨS ,Ψvv,Ψvr,Ψrr,Av,Ar}.25

24In this appendix, we use lowercase early alphabet Latin characters to indicate orbit space tensors in
addition to the conventions specified in footnote 6.

25As described in [14] there is a subtlety with the spatially homogeneous modes, but we will not analyze
them in any detail, focusing instead only on the spatially inhomogeneous modes. One issue is that (A.12)
no longer holds at k = 0, so one has to treat Ψrr or ΦB as an independent degree of freedom.
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To proceed further, we introduced a certain parameterization of the metric perturba-
tions inspired by the discussion of sound modes in neutral fluids [14]. Let us introduce
rescaled variables ΦE ,ΦO ,ΦW :

ΦE = rd−3 Ψvv , ΦO = rd−3
(
Ψvv + r2f Ψvr

)
, ΦW = 2 rd−2 ΨS . (A.6)

Furthermore, we express Ψrr in terms of these functions and a new function ΦB as

Ψrr = − 1
rd+1f2 [2(ΦO − ΦE) + rf (d− 1) ΦW + ΦB ] . (A.7)

All told the perturbative corrections now take the following form:

ds2
(1) = ΦE − rf ΦW

rd−3 dv2 + 2
rd−1f

(ΦO − ΦE + rf ΦW) dv dr + r2 ΦW

rd−2 dx
2

− 1
rd+1f2 [2(ΦO − ΦE) + rf (d− 1) ΦW + ΦB ] dr2 ,

AA dx
A = Ψ̂v dv + Ψ̂r dr .

(A.8)

For simplicity this has been written directly in position space. Importantly, the metric
perturbation is unchanged from the analysis of [14]. We will now present the linearized
Einstein-Maxwell equations in terms of these fields by decomposing (2.2) into plane waves.

Maxwell equations: the analysis of Maxwell’s equations parallels the discussion in [13,
section 8]. We find a constraint equation

r2f
d
dr
(
rd−3 Ψ̂v

)
+ D+

(
rd−1 f Ψ̂r

)
= 0 . (A.9)

This can be trivialized by introducing a designer scalar V, in terms of which

Ψ̂v = 1
rd−3D+V , Ψ̂r = − 1

rd−3
d
drV . (A.10)

The remaining equation is the radial component of the Maxwell equation, which can then
be shown to be equivalent to

EMax
r = − iω

rd−1 f
E0 ,

E0 = rd−3 D+

( 1
rd−3 D+V

)
− (k2 f − ω2)V + (d− 2)2 a

[
f ΦW + 1

2 (d− 2) rΦB

]
.

(A.11)

Einstein’s equations: it will be helpful to assemble the equations of motion (2.2) into
time-reversal invariant orbit space tensor combinations. The scalar equation involves only
ΦB and takes a simple form:

ET = − k2

2 rd−1 ΦB . (A.12)

This allows us to eliminate another function algebraically.
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The orbit space tensor equations assembled again into time-reversal invariant combi-
nations, which when judiciously combined with the Maxwell equation E0 result in

E1 ≡
2

d− 1
(
rd−1 Evv − a′ r2 E0

)
= D+ (T − rΦB) + k2

d− 1 (ΦE − ΦB) + 2 a′

d− 1 r
2 k2 f V ,

E2 ≡
2 rd−1

d− 1 (Evv + r2f Evr)

= −iω (T − rΦB) + k2

d− 1ΦO ,

EB ≡
2 rd+1f

d− 1

(
Evr + 1

2 r
2f Err

)
+ 2 a′

d− 1 r
2 E0

= −D+

(
T − r

2 ΦB

)
− iω rΦO −

r

2 (D+ −Υ + rf) [D+ΦW − (d− 2) rf ΦW ]

+ r

2 (ω2 − k2f) ΦW + k2 + d(d− 1) r2 − (d− 2)2 a2

2 (d− 1) ΦB −
2 a′

d− 1 k
2 r2 V .

(A.13)

The function T introduced above is defined as

T ≡ rΦE −
(
D+ −

Υ
2

)
(rΦW) = r

[
ΦE − D+ΦW + r2f ′

2 ΦW

]
. (A.14)

This leaves us with the vector equations, which are the coefficients of Si and have an explicit
momentum factor. We find

E4 ≡ 2 rd−1f Evi = iki Ẽ4

= iki
[
D+ΦO + iω (ΦE − ΦB) + 2 iω r2 f a′ V

]
,

E5 ≡ 2 rd−1f
(
Evi + r2f Eri

)
= iki Ẽ5

= iki

[
D+ΦE + iωΦO − (d− 1)

(
D+ −

1
2 Υ

)
(rfΦW)− r

2

(
(d− 1)f + rf ′

2

)
ΦB

−2 a′ r2f D+V
]
.

(A.15)

The tilded equations strip out the momentum factor. The remaining equations, which are
orbit space scalars picking out the trace and the Sij part of the spatial harmonics, can be
naturally expressed in terms of them as

E6 ≡ −
2 rd−1f

d− 1

d−1∑
i=1

Eii

= D+

(
Ẽ5
f

)
+ iω

Ẽ4
f

+ 2 d− 2
d− 1 r

d−1 ET ,

E7 ≡ f Eij = ki kj
k2 ET .

(A.16)
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Finally, a natural way to combine the equations involves taking a particular combination
of EB and E5:

E3 = 2
r
EB + Ẽ5

= (D+ + 2rf) [D+ΦW − ΦE + ΦB ]− iωΦO + Λk
(d− 1) rΦB

+
(
ω2 − k2f − 1

2 r
3 f
[
(d+ 5) f ′ + 2r f ′′

])
ΦW − 2 a′ rf

(
rD+ + 2k2

d− 1

)
V .

(A.17)

Apart from the contribution from the Maxwell potential, the equations for the most
part are identical to the ones obtained for the scalar polarizations of the gravitons presented
in [14]. As noted earlier, the expressions in terms of the function f and its derivatives are
in fact unchanged.26

A.2 Parameterizing the solution space: k 6= 0

There are five physical functions {ΦE ,ΦO ,ΦW ,ΦB ,V}, which implies that the equations of
motion are not all independent. Some of the relations are manifest (e.g., E6 and E7), but
we can check that there are only four independent Einstein’s equations. An efficient choice
turns out to be the set {E0,ET ,E1,E2,E3}; satisfying them will ensure that the reminder
are also upheld (for k 6= 0). We will now analyze the equations introducing Θ and Z to
simplify the dynamics in the process.

We first use ET = 0 to set ΦB(r, ω, k) = 0 for non-zero k and simplify the Einstein’s
equations to the set

E1 = D+T + k2

d− 1 ΦE + 2 a′

d− 1 k
2 r2f V ,

E2 = −iω T + k2

d− 1 ΦO ,

E3 = (D+ + 2 rf) [D+ΦW − ΦE ]− iωΦO +
(
ω2 − k2f − 1

2 r
3 f
[
(d+ 5) f ′ + 2r f ′′

])
ΦW

− 2 a′ rf
(
rD+ + 2k2

d− 1

)
V .

(A.18)

These three together with E0 (with now the ΦB term set to zero) comprise the full dynamical
content of the action (A.1).

The Weyl factor and momentum flux fields: to solve these equations we proceed to
analyze the constraint equations, trivializing them by a suitable field redefinition. Let

T = − k2

d− 1 Θ , ΦO = −iωΘ , ΦE = D+Θ− 2 a′ r2f V . (A.19)

26The main difference is that [14] used an identity specific to the Schwarzschild-AdSd+1 background to
simplify expressions.
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This ensures that the first two equations in (A.18) are satisfied. The third equation E3,
which is a relation between ΦW and Θ, can be converted into a dynamical equation. We
implement one more redefinition motivated by observing that ΦW and Θ are not indepen-
dent but related to each other through the relation (notice now a shift compared to [14]
due to the function determining the Maxwell potential V)

ΦE −
1
r
T =

(
D+ −

1
2 r

2 f ′
)

ΦW =
(
D+ + k2

d− 1
1
r

)
Θ− 2 a′ r2f V . (A.20)

The first equality follows from (A.14) and the second from (A.19). We solve this system
by introducing a field Z as in [14]:

Θ = r

Λk

[
D+ −

r2 f ′

2

]
Z + 2 (d− 1) r3f a′

Λk
V ,

ΦW = 1
Λk

[
rD+ + k2

d− 1

]
Z + 2 (d− 1) r3f a′

Λk
V .

(A.21)

Note that these two fields satisfy a linear relation

Θ = ΦW −
1

(d− 1) Z . (A.22)

Armed with this reparameterization we can further simplify the system. Using the relation
D+ΦW−ΦE = D+ΦW−D+Θ+2 a′ r2f V = 1

d−1 D+Z+2 a′ r2f V, we find that the remaining
Einstein’s equation, E3, reduces to a second order ODE for Z.

The coupled Einstein-Maxwell dynamics: after the dust settles, our redefinitions
have resulted in reducing the dynamical content to two fields: Z and V. The dynam-
ics of these fields is described by a system of two coupled equations, which after some
simplification read

rd−3D+
(
r3−dD+V

)
+
(
ω2 − k2f − 2(d− 3)3(d− 1)

Λk
r2a2f2

)
V

+(d− 2)2af

Λk

(
rD+Z + k2

d− 1Z
)

= 0 ,

rd−3Λ2
kD+

(
1

rd−3Λ2
k

D+Z

)
+
(
w2 − k2f

(
1− 2(d− 2)2

Λk
a2
(2h− 1

1− h

)))
Z

+4(d− 2)af
[
Λk + (d− 1)r2 ((d− 3)f − rf ′

)
− (d− 1)2(d− 2)2 r

2a2f

Λk

(2h− 1
1− h

)]
V = 0 .

(A.23)

For purposes of computing real-time correlators on the grSK geometry, it is important that
the dynamics is governed by time-reversal invariant equations. As explained in [7], it is
this fact that allows one to construct smooth solutions on the grSK geometry.
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A.3 Decoupling the scalar modes

The equations (A.23) can be decoupled by the following field redefinitions:

Z = Λk
h

V + hZ , V = d− 2
2

a

Λk
Z + r+

4 Λk

(
C p2 hZ− (2 + p2)Λk

h
V
)
, (A.24)

where p2 was defined in (3.6). Using (A.24) in (A.23) we obtain the equations (3.8). While
the kinetic terms work out straightforwardly, we note that the equations have potential
functions which are quite involved. We have simplified them to the extent possible, group-
ing together terms by powers of Λk.

For the field V we find the following expression for the potential VV:

VV = (d− 2) k2 f

(1 + p2) Λ2
k

(1− h) V(1)
V + (d− 2) r3f ′f

4 (1 + p2)h2 Λ2
k

p2 V
(2)
V ,

V
(1)
V = − 4

d− 1 Λ2
k + (d− 2) (d− 1) r5f ′f

(1− 2h
h

)2
− p2 (2f(h− (d− 2)) + rf ′ h

) r2 Λk
h2

+ 2
[
(d− 2− (1 + 2(d− 3)h)h) f + (2h− 1) rf ′ h

] r2 Λk
h2 ,

V
(2)
V = 2 (2h− 1)hΛ2

k + 2(d− 1)
[
2 (d− 2) f − (5d− 9) fh+

(
4 (d− 2) f − rf ′

)
h2
]
r2 Λk

− (d− 2) (d− 1)2 (2h− 1)2 r5f ′f .

(A.25)

On the other hand the potential for Z takes the form

VZ = d− 2
(1 + p2) Λ2

k

k2 (1− h)f V
(1)
Z −

(d− 1) (d− 2) r5f ′

2 (1 + p2) Λ2
k h

2 p2f V
(2)
Z ,

V
(1)
Z = 4

d− 1 Λ2
k + 2

[
2
(
(d− 3) f − rf ′

)
h− (d− 3) (1 + p2)f

] r2 Λk
h

+ (d− 1) (d− 2) r5ff ′

h2

(
1 + p2 − 2h

)
(2h− 1) ,

V
(2)
Z =

(
(d− 3) f − 1

2rf
′
)
hΛk −

1
2 (d− 1) (d− 2) r3ff ′ (2h− 1) ,

(A.26)

As noted earlier, these expressions were derived in [24], but our presentation and rewriting
of them should make some of the structure more transparent. It is important that the
modulation function Λk only appears in the potential terms in the dynamics of V.

B Variational principle in the scalar sector

The dynamics of the gravitational system is governed by the Einstein-Maxwell system
with the appropriate Gibbons-Hawking boundary term and counterterms, as indicated
in (A.1). We now describe how the effective action for the decoupled designer fields, and
the variational principle that leads to their equations of motion (3.8), can be derived. As in
the neutral case discussed in [14], we will find it helpful to proceed in stages: first we work
out the action for the fields parameterizing the perturbations in the Debye gauge, then
pass to the V and Z variables (where we can already decipher the variational principle),
before finally explaining the desired result in terms of the decoupled designer field V and Z.
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B.1 Action in the Debye gauge

We can write the action first in terms of (3.2). The bulk piece of the action can be
decomposed as
√
−g

(
R+ d(d− 1)− 1

2FABF
AB
)

= Lbulk
EOW + ∂

∂r
Lbdy

EOW +Lbulk
V

+∂rLbdy
V

+ 1
rd−1 f2 E2

0 . (B.1)

The final term on the decomposition has been written in terms of the simplified Maxwell
equation (A.11). Since it does not contribute to the variational principle or the on-shell
action, we shall ignore it in all future analysis. The bulk contributions are

Lbulk
EOW = d− 1

4 f rd

{
d r (D+ΦW)2 − 2

f
D+ΦWD+ΦE + 2 (d− 3) rΦED+ΦW

+ 2 (d− 2) rΦW D+ΦE + 2 r2 (d− (d− 2) (d+ 1) f) ΦW D+ΦW

+ 4
(d− 1) f

[
(d− 2) ∂vΦW D+ΦO+∂vΦO D+ΦW+ 1

r f
(∂vΦO D+ΦE − ∂vΦE D+ΦO)

]
+ 2 r

(d− 1) f
(
d (d− 3) + (d2 − 5d+ 8) f

)
ΦW ∂vΦO −

8 (d− f)
(d− 1) f2 ΦE ∂vΦO

+ 2 k2

(d− 1) r f
(
Φ2

O − Φ2
E

)
− 2
f

[
ω2 − k2 f + (d− 3) (d− 2) r2 f2

]
ΦE ΦW

+ r
[
(d− 2) (ω2 − k2f) + r2f

(
−2 d (2 d− 5) + (d+ 2) (d− 2)2 f

)]
Φ2

W

−
((d− 2)
d− 1

a

rf

)2 [
(d− 2) (d− 1)(4 d− 7) r3f3 Φ2

W

+ 2 (d− 3) rf ΦW ∂vΦO − 8 ΦE ∂vΦO

]}
,

Lbulk
V

= − k2

rd−1f

(
D+VD+V− (ω2 − k2f)V2 − 2 (d− 2)2 a f VΦW

)
.

(B.2)

Similarly, we can expand the Gibbons-Hawking boundary term as

2
√
−γ K = LGH

EOW − L
bdy
EOW . (B.3)

The second term Lbdy
EOW precisely cancels with the boundary term arising from the Einstein-

Hilbert part of the bulk action in (B.1). We will therefore not indicate this term explicitly,
as it plays no role in our analysis, apart from providing a consistency check of our evalua-
tion. The rest of the contribution evaluates to:

LGH
EOW = 1

rd−1 f2 ((d− 2) r f ΦW ∂vΦO − ΦE ∂vΦO)− (d− 1) (d− 2)
rd−3 ΦW ΦE

+ d− 1
4 rd−4

(
(d− 2) r f ′ + (2 d+ 1)(d− 2) f − d

)
Φ2

W .

(B.4)

The remaining boundary term in (B.1) comes from integration by parts of the Maxwell
term and reads

Lbdy
V

= 2 k2

rd−3 VD+V . (B.5)
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We note that the structure of this action can be pretty much guessed by judiciously
combining the corresponding analysis in the Schwarzschild-AdSd+1 case. In particular, the
Einstein-Hilbert and Gibbons-Hawking terms work very similarly to the analysis described
in appendix B.1 of [14], while the Maxwell part can be inferred from the probe designer
gauge field analysis reported in section 8.3 of [13]. The main changes are a contribution
from the background Maxwell field strength to the gravitational action and the difference
in the background function f(r) (see also footnote 26).

Finally, we have the counterterms for the Einstein-Hilbert and Maxwell actions:

Lct = Lct
EOW + Lct

Max . (B.6)

We consider the counterterms to leading and next-to-leading order in the asymptotic ex-
pansion, i.e., to quartic order in boundary gradients. The gravitational contributions are

Lct
EOW = −

√
−γ

[
2 (d− 1) + 1

d− 2
γR+ 1

(d− 4) (d− 2)2

(
Rγ µν Rγ µν − d

4(d− 1) Rγ 2
)]

= d− 1
4 rd−2 f3/2

[
1− 1

(d− 1)2 (d− 2) (d− 4)
k4

r4

]
Φ2

E

+ d− 1
4 rd−2√f

(
ω2 − k2 f − d (d− 2) r2f

)
Φ2

W

+ 1
2 rd−1√f

(
k2 + (d− 1) (d− 2) r2

)
ΦE ΦW ,

(B.7)

while the Maxwell contributions are

Lct
Max = 1

4 (d− 4)
√
−γ

(
γFµν

γFµν + 1
(d− 4) (d− 6)

γFµν�γ
γFµν

)
= − k2

2 (d− 4) rd−2√f

(
1 + ω2 − k2 f

(d− 4) (d− 6) r2f

)
(D+V)2 .

(B.8)

This completes the basic analysis for the action. From the nature of the boundary
terms, it is clear that ΦE ,ΦO ,ΦW have Dirichlet boundary conditions, since (B.4) is a
functional of these fields alone. On the other hand, V obeys Neumann boundary conditions,
owing to the boundary term (B.5).

B.2 Action for designer scalars

Now we would like to write the action in terms of the designer field Z eliminating the
gravitational fields ΦE ,ΦO ,ΦW . To this end we simply plug in (A.19), (A.20), and (A.21)
into the action obtained hitherto. For reasons explained in [14], despite the fact that the
redefinitions above involve Z, D+Z, and even D2

+Z, we obtain a simple two-derivative action
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in the bulk. After a series of simplifications, we find that the bulk action takes the form

Lbulk
Z,V

=−A1

{
(D+Z)2−

[
ω2−k2 f

(
1− 2(d−2)2

Λk
2h−1
1−h a2

)]
Z2
}
− (d−2)3a2k4

2(d−1)rd−1Λ2
k

Z2

− k2

rd−1f

{
(D+V)2−

(
ω2−k2 f− 2(d−2)3 (d−1)

Λk
r2a2 f2

)
V2
}

− 2(d−2)2a2 k2

rd−1 Λk

[
Λk+(d−1)r2 ((d−3)f−rf ′

)
−(d−2)2 (d−1)2

(2h−1
1−h

)
a2 r2 f

Λk

]
V2

+ (d−2)2ak2

rd−1 Λ2
k

(
k2+(d−2)(d−1)a2

)(
rVD+Z+ 2k2

d−1 VZ

)

+ (d−2)ak2

rd−1 Λk f
(
D+VD+Z−(ω2−k2f)VZ

)
,

(B.9)

where
A1 = (d− 2)

(
k2 + (d− 2) (d− 1) a2) k2

4 (d− 1) rd−1f Λ2
k

. (B.10)

One can check that the variation of this action reproduces the equations of motion (A.23).
All the higher derivative terms arising from the field redefinitions can be packaged into

boundary terms. This is now complicated when written in terms of V and Z. We find it
efficacious to write the boundary action in terms of fields Θ and ΦW . The final result can
be written in the form

Lbdy
Z,V

= − d− 1
4 rd−2 f

[
(D+Θ)2 + c1 ΦW D+Θ + c2 ZD+Θ + c3 Φ2

W + c4 ZΘ + c5 Z
2
]

+ 2 k2

rd−3 VD+V−
1
2 (d− 2)2 (d− 1)2 a2 f

rd−4 Λk

(
4 k2

d− 1 + r3f ′
)
V2

− (d− 2) (d− 1) a
2 rd−2

[
2 rVD+Θ +

(
4 k2

d− 1 + r2 (2 (d− 2) f + r f ′
))

ΘV

+ r2

Λk

(2 ((d− 2) f + r f ′) Λk
d− 1 − 1

2 r
4f ′2

)
VZ

]
,

(B.11)

with

c1 = 2k2

(d−1)r+r
(
2(d−2)f+rf ′

)
,

c2 =− 2k2

(d−1)2 r
,

c3 = rf ′

2(d−1) Λk+ d

2 r
2f
(
2f+rf ′−2(d−1)

)
+(ω2−k2 f) ,

c4 =− k2

(d−1)2 rf
′ ,

c5 = (d−2)k4 (2(d−2)a2−r3 f ′
)
f

2(d−1)2 Λ2
k

− k
2 (k2+(d−1)r3f ′

)
rf ′

2(d−1)3 Λk
− k2

(d−1)2 Λk
(ω2−k2 f) .

(B.12)
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Finally, the counterterms (B.7), (B.8) can themselves be combined and written as
(retaining only quadratic counterterms)

Lct
Z,V

= d− 1
4 rd−2f3/2

(
(D+Θ)2 + b1 ΦWD+Θ + b2 Φ2

W

)
+ (d− 1) (d− 2) a

2 rd−3√f
(2VD+Θ + b1 ΦW V)

− k2

2 (d− 4) rd−2√f

(
1 + ω2 − k2 f

(d− 4) (d− 6) r2f

)
(D+V)2 + (d− 1) (d− 2)2 a2√f

rd−4 V2 ,

(B.13)

where

b1 = 2 k2 f

(d− 1) r + 2 (d− 2) rf ,

b2 = (ω2 − k2 f)f − d (d− 2) r2 f2 .

(B.14)

While the boundary terms and the counterterms are complicated, we can achieve a
great deal of simplification by combining them. This leads to no effect on the variational
principle, but has the advantage of making clear what are the terms that dominate in the
asymptotic region, which then inform us what the nature of the boundary condition is. In
any event, putting the two terms in (B.11) and (B.13), we find the combination simplifies
to

Lbdy
Z,V

+ Lct
Z,V

= − d− 1
4 rd−2f

[(
1− 1√

f

)
(D+Θ)2 +

(
c1 −

b1√
f

)
ΦW D+Θ + c2 ZD+Θ

+
(
c3 −

b2√
f

)
Φ2

W + c4 ZΘ + c5 Z
2
]

+ 2 k2 1
rd−3 VD+V

− (d− 1)2 (d− 2)2 a2f

rd−4Λk

(
2 k2

d− 1 + 1
2 r

3f ′ − Λk
(d− 1)

√
f

)
V2

− 2 (d− 1) (d− 2) a
2 rd−3

(
1− 1√

f

)
VD+Θ

− (d− 1) (d− 2) a
2 rd−3

[(
4 k2

(d− 1) r + r
(
2 (d− 2) f + rf ′

)
− b1√

f

)
ΦW V

− k2

(d− 1) rΛk

(
4 k2

d− 1 + r3 f ′
)
ZV

]

− k2

2 (d− 4) rd−2√f

(
1 + ω2 − k2 f

(d− 4) (d− 6) r2f

)
(D+V)2 .

(B.15)

Written in this form, we can evaluate the coefficients in front of various terms at large
r. Additionally we can also use an asymptotic relation obtained from our solutions in
appendix C.2:

1
rd−1D+Θ = (d− 2) ΦW

rd−2 . (B.16)

With these data, we can then show that the total boundary action can be whittled down to

Lbdy
Z,V

+ Lct
Z,V

= (d− 6)(d− 1)
8(d− 2) P0

(D+Θ
rd−1

)2
+ k2

2 (d− 1) Z
D+Θ
rd−1 + 2 k2

rd−3 VD+V

+ subleading .
(B.17)
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The essential part of the action is pretty simple in this form, and the subleading pieces
capture all the terms which have subleading divergences, starting at order rd−4. It is not
hard to check from this action that the fields V and Z obey Neumann boundary conditions.

B.3 Variational principle for diagonal fields

We conclude our analysis of the action by finally obtaining the effective action in terms
of the diagonal fields V and Z. Our starting point is the bulk action (B.9), into which we
plug in the field redefinitions (A.24) and then simplify to obtain

Lbulk
Z,V = − d νs

8 rd−1
h2 k2

f Λ2
k

NZ

[
(D+Z)2 −

(
ω2 −

(
1− (d− 2)

2
2 + p2

1 + p2
r3f ′

hΛk

)
k2f + VZ

)
Z2
]

− k2 NV

rd−1 fh2

[
(D+V)2 −

(
ω2 − k2f + VV

)
V2
]
.

(B.18)

As expected this action is diagonal, and its variation reproduces the equations (3.8). In
deriving this part we have carried out a set of integration by parts to remove some total
derivative terms (terms of the form VD+V can be rewritten this way). The coefficients NZ

and NV were introduced in (3.11) and originate from this final simplification.
Next, we simplify the boundary term (B.17), including the terms that arise from

integrating by parts to bring bulk action into the form given in (B.18). We find

Lbdy
Z,V = (d− 1) (d− 6)P0

8 (d− 2)

(D+Θ
rd−1

)2
+ h k2

2 (d− 1) Z D+Θ
rd−1 + k2 Λk

2 (d− 1)hC V D+Θ
rd−1

+ d1 k
2

d− 2 Z D+Θ
rd−1 + d2 k

2

d− 2 V D+Θ
rd−1 + d3 k

2 V D+V
rd−3 + d4 k

2 Z D+V
rd−3 + subleading ,

(B.19)

where

d1 = hC2

8 Λk

(
p2 + 2 (1− h)

)2
,

d2 = − C

8h
(
(2 + p2)p2 + 4 (1− h)h

)
,

d3 = (1 + p2)
4h2

(
p2 + 2h

)
,

d4 = −(1 + p2)C
4 Λk

(
p2 + 2 (1− h)

)
.

(B.20)

At this point, we have gathered all the pieces necessary to begin deciding what bound-
ary conditions the designer fields Z and V satisfy. Recall that their conjugate momenta
were defined in (3.13). What is of import is that they satisfy a simple asymptotic relation:

k2

rd−1 D+Θ = (d− 2) k2 ΦW

rd−2

= −4(d− 1) ΠZ − (d− 2) k
2

C
ΠV .

(B.21)
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Using this relation, we can further distill the boundary action into the form

Lbdy
Z,V = (d− 1) (d− 1)P0

8 (d− 2)

(D+Θ
rd−1

)2
− 2 NZ

Λk
Z ΠZ − 2 k2 NV V ΠV + subleading . (B.22)

Putting all the pieces together we can write the full action for the designer fields as

S[V,Z] =
∫
dr

∫
k
Lbulk

Z,V +
∫
k
Lbdy

Z,V (B.23)

Now we have all the necessary ingredients to obtain the boundary conditions for the diag-
onal master fields. Making use of the definitions (3.13), the total variation of the action,
up to equations of motion, is

δS [Z,V] =
∫
k

[
−2 NZ

Λk
Z δΠZ − 2 k2 NV V δΠV + (d− 1) (d− 6)P0

4 (d− 2)

(D+Θ
rd−1

)
δ

(D+Θ
rd−1

)]
,

(B.24)
which together with (B.21) implies that, when computing the gravitational on-shell action,
the master fields must obey Neumann boundary conditions: δΠV = δΠZ = 0.

C Solutions in the boundary gradient expansion

We describe the general solution in a boundary gradient expansion (in powers of w and q,
working in the limit w, q � 1) for the designer fields V and Z. We find it convenient to
use the basis of functions that appears in the SO(d − 2) tensor and vector perturbations
of the Reissner-Nordström-AdSd+1 black hole. This has the advantage of not only utilizing
functions that have been understood in [1], but it also helps demonstrate the unified origin
of these results from a fluid/gravity perspective. We try to be self-contained below, but
the reader might find it useful to consult appendices B–D of [1] in parallel.

It will be convenient to introduce a dimensionless inverse radius coordinate

% = r+
r
, (C.1)

and to parameterize the solution in terms of boundary to bulk Green’s functions for the
fields. We will solve for the ingoing Green’s function, parameterizing it by unit bound-
ary expectation values of the corresponding field and demanding regularity at the future
horizon. We therefore adopt an ansatz:

Gin
Z,V(%,w, q) = exp

 ∞∑
n,m=1

(−i)mwm q2n ϕm,2nZ,V (%)

 . (C.2)

We utilize the following two integral transforms to give compact expressions. The first
of these depends only on the metric function f :

T
[
g
]
(%) ≡

∫ %

0

du

f(u) g(u), T̂
[
g
]
(%) ≡

∫ %

1

du

f(u) g(u) . (C.3)

On the other hand, the second transform also depends on the ohmic function h and is
defined to be

H
[
g
]
(%) ≡

∫ %

0

du

f(u)h(u)2 g(u), Ĥ
[
g
]
(%) ≡

∫ %

1

du

f(u)h(u)2 g(u) . (C.4)
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C.1 Gradient expansion of the decoupled fields

Modulo introducing a few new functions, we will for the most part employ a function basis
comprising of solutions to the Markovian minimally coupled scalar field (index M = d−1).
Additionally, we will also use the functions appearing in the solution for the physical
photons in the Reissner-Nordström-AdSd+1 background. These were captured by a designer
scalar Y in [1]. We tabulate the function basis obtained in the aforementioned reference in
tables 1 and 2.

In writing the asymptotic expansions for the auxiliary functions appearing in the gra-
dient expansion, we have set f(u) = h(u) = 1 in the integrals, thus only indicating the
leading contribution from each piece of the integrand. In general, there are subleading
pieces, since f(u) = 1 + O

(
ud
)
and h(u) = 1 + O

(
ud−2

)
, which lie betwixt the terms we

have quoted. We have refrained from indicated these to keep the expressions simple; these
terms have been carefully accounted for in the computation of the physical data. Later
when we give the expressions for the physical fields, we will indicate the full asymptotic
expansion.

The charge diffusion field V: the solutions appearing in the gradient expansion at zero
spatial momentum are given by the corresponding solutions to the field Y:

ϕ1,0
V (%) = ϕ1,0

Y
(%) + ∆2,0

Y
(%) ,

ϕ2,0
V (%) = −ϕ2,0

Y
(%) + ∆2,0

Y
(1)∆2,0

Y
(%)− 1

2∆2,0
Y

(%)2 ,

ϕ3,0
V (%) = −ϕ3,0

Y
(%)−∆3,0

Y
(%) + 2∆2,0

Y
(%)ϕ̂2,0

Y
(%)

+ ∆2,0
Y

(1)
(
∆2,0

Y
(1)∆2,0

Y
(%)−∆2,0

Y
(%)2 − 2ϕ2,0

Y
(%)
)

+ 1
3∆2,0

Y
(%)3 ,

ϕ4,0
V (%) = −ϕ4,0

Y
(%) + 2∆2,0

Y
(%)ϕ̂3,0

Y
(%)− 2∆2,0

Y
(1)ϕ3,0

Y
(%) + ∆2,0

Y
(%)∆̂3,0

Y
(%)

+ 2∆2,0
Y

(%)ϕ̂2,0
Y

(%)
(
∆2,0

Y
(1)− ∆̂2,0

Y
(%)
)
−∆2,0

Y
(1) ∆3,0

Y
(%) + ∆2,0

Y
(1)3 ∆2,0

Y
(%)

+ ∆2,0
Y

(1)2
(

∆2,0
Y

(1)∆2,0
Y

(%)− 3
2∆2,0

Y
(%)2 − 2ϕ2,0

Y
(%)
)
− 1

4∆2,0
Y

(%)4 .

(C.5)

Once we consider solutions with non-zero spatial momentum, the potentials will modify
the solution drastically. Remarkably, at leading order we can still write the solution in
terms of previously defined functions as (nb: h(1) = 1−SQ)

h(1)ϕ0,2
V (%) = −d− 4

d− 2ϕ
0,2
d−3(%) + 1

d− 2∆2,0
d−3(%) + SQ

h(1)
d− 1∆2,0

Y
(%)

+ SQ

[
−ϕ0,2

d−1(%) + h(1)
d− 1

(
ϕ1,0

Y
(%)− ϕ1,0

d−1(%)
)]
− νs
d− 2

S2
Q

1 +Q2
h(1)
h(%) %

d−2 .

(C.6)
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H
[
g
]

g Asymptotics

ϕ1,0
Y

h(%)2 − h(1)2%d−3 %− h(1)2

d−2 %
d−2

ϕ2,0
Y

−h(1)2%d−3∆̂2,0
Y

(%) − %2

2(d−4) + h(1)2∆2,0
Y

(1)
d−2 %d−2 −

(d−2)S
Q

d(d−4) %
d

ϕ3,0
Y

2h(1)2%d−3ϕ̂2,0
Y

(%) −2h(1)2ϕ2,0
Y

(1)
d−2 %d−2 − h(1)2

d(d−4)%
d

ϕ4,0
Y

2h(1)2%d−3
(
ϕ̂3,0

Y
(%) + 1

2∆̂3,0
Y

(%)
)

%4

2(d−6)(d−4)2 + ∆0,4
Y

(1)
d−2 %d−2

+
(

1
d(d−4)

(
1
d−4 + S

Q

2 +
S2
Q

d −
S3
Q

2(d−1)

)
−

S
Q

4dC2

)
%d

∆2,0
Y

h(1)2%d−3 − h(%)4

h(1)2 %
3−d 1

(d−4)h(1)2 %
4−d + h(1)2

d−2 %
d−2

∆3,0
Y

−h(1)2%d−3∆̂2,0
Y

(%)2 1
(d−6)(d−4)2h(1)2 %

6−d − h(1)2∆2,0
Y

(1)
d−2 %d−2

− 2h(1)2

d(d−4)(d−2)%
d + ∆2,0

Y
(1)

d−4 %2

Table 1. Functions used to parameterize the gradient expansion of the Markovian transverse photon
modes in [1]. We have collected the essential functions defined using the integral transform (C.3).
We also indicate the leading asymptotic behavior; note that only the last two functions diverge as
%→ 0.

T
[
g
]

g Asymptotics
ϕ1,0

M
1− %M %− %1+M

1+M

ϕ0,2
M

%
1−M

(
1− %M−1

)
1

1−M

(
%2

2 −
%1+M

1+M

)
ϕ2,0

M
−%M∆̂2,0

M
(%) 1

2(1−M)%
2 + ∆2,0

M
(1)

1+M
%1+M

ϕ3,0
M

2%Mϕ̂2,0
M

(%) −2ϕ2,0
M

(1)
1+M

%1+M + %3+M

(3+M)(1−M)

ϕ1,2
M

2%Mϕ̂0,2
M

(%) −2ϕ0,2
M

(1)
1+M

%1+M + %3+M

(3+M)(1−M)

ϕ4,0
M

2%M
(
ϕ̂3,0

M
(%) + 1

2∆̂3,0
M

(%)
)

− %4

4(3−M)(1−M)2 −
∆3,0

M
(1)+2ϕ3,0

M
(1)

1+M
%1+M−

∆2,0
M

(1)
(3+M)(1−M)%

3+M

ϕ2,2
M

2%M
(
ϕ̂1,2

M
(%)− 1

1−M

(
∆̂1,2

M
(%)− ϕ̂2,0

M
(%)
))

1
2(M−3)(1−M)2 %

4 +
1−(1−M)∆2,0

M
(1)

(3+M)(1−M)2 %3+M

−
2
(
ϕ2,0
M

(1)−∆1,2
M

(1)+(1−M)ϕ1,2
M

(1)
)

(1+M)(1−M) %1+M

ϕ0,4
M

1
1−M

(
ϕ̂0,2

M
(%)− ϕ̂0,2

2−M
(%)
)

− %4

4(3−M)(1−M)2 −
ϕ0,2
M

(1)−ϕ0,2
2−M

(1)

1−M2 %1+M + %3+M

(3+M)(1−M)2

∆2,0
M

%M − %−M − 1
1−M

%1−M + 1
1+M

%1+M

∆3,0
M

−%M∆̂2,0
M

(%)2 − 1
(3−M)(1−M)2%3−M + 2

(3+M)(1+M)%
3+M

−
∆2,0

M
(1)

1−M
%2 −

∆2,0
M

(1)2

1+M
%1+M

∆1,2
M

−%∆̂2,0
M

(%) 1
(3−M)(1−M)%

3−M − 1
(3+M)(1+M)%

3+M +
∆2,0

M
(1)

2 %2

Table 2. Functions appearing in the gradient expansion of probe Markovian fields of index M in
the Reissner-Nordström-AdSd+1 background from [1]. We have expressed the solutions using the
integral transform (C.3). The two cases of interest are M = d− 1 which corresponds to minimally
coupled scalars (the transverse traceless tensor gravitons) and M = d−3 which analytically continues
to the non-Markovian solutions of index M = 3− d (with appropriately chosen constants to ensure
the quoted asymptotic fall-offs).
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Higher order solutions can be found recursively as

ϕ1,2
V (%) = 2

h(1)2T
[
h(%)2%3−dϕ̂0,2

V (%)
]
,

ϕ2,2
V (%) = 2T

[
h(%)2%3−d

( 1
h(1)2 ϕ̂

1,2
V (%)− ∆̂2,2

V (%)
)]

,

ϕ0,4
V (%) = T̂

[
h(%)2%3−d

(
∆̂0,4

V (%) + 4(d− 2)
d(d− 1)2

S2
Q

1 +Q2 Ξ̂V(%)
)]

,

(C.7)

where we define some additional auxiliary functions:

∆̂2,2
V (%) = T̂

[
f(%)2

h(%)2 %
d−3 d

d%
ϕ0,2

V (%) d
d%
ϕ2,0

V (%)
]
,

∆̂0,4
V (%) = −

∫ %

1
du
f(u)ud−3

h(u)2

(
d

du
ϕ0,2

V (u)
)2

,

Ξ̂V(%) =
∫ %

1

du

h(u)4u
2d−7

(
u2
(
h(u)2 − 2

)
− 2SQf(u)

(
(d− 1)h(u)2 + h(u)− 3(d− 2)

)
d(1 +Q2)h(u)2

)
.

(C.8)

The sound field Z: we begin with the solutions of Z, which, as noted above, satisfies a
second order equation that changes character from being Markovian of index M = d− 1 to
a non-Markovian field of index M = 3− d. This change of character owes to the function
Λk, which being only dependent on the spatial momentum indicates that the frequency
dependent parts are captured by previously encountered solutions. In fact, the situation
is even better, since the solutions for non-vanishing spatial momentum can themselves be
given in terms of solutions of the minimally coupled scalar solutions.

First, note that the functions appearing at O
(
q0), i.e., those that determine the fre-

quency dependent pieces, are in fact very simple. They are the Markovian minimally
coupled scalar solutions

ϕm,0Z (%) = ϕm,0
d−1 (%) . (C.9)

The momentum dependent pieces start to involve additional complications owing to the
nature of the potential in the wave equation for Z, but at low orders one can significantly
simplify the analysis. We will write the answers in a manner suggested by the analysis
of the neutral plasma. Let us introduce a class of functions ϕn,mZ (%), which are charged
analogs of the functions seen in the gradient expansion of the scalar graviton mode in [14].
These functions solve ODEs with specified sources — the only distinction from [14] is
that the function f(%) appearing in the equations is the one appropriate for the Reissner-
Nordström-AdSd+1 geometry.

At second order in momenta, we find for instance

ϕ0,2
Z (%) = ϕ0,2

Z
(%) + 2

d(d− 1)
S2
Q

1 +Q2
%d−2

h(%) , (C.10)

where the first term is simply the solution found in [14] (with the charge dependent f(%)),
while the second term accounts for the additional modification coming from the coupling
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to the charged background. At higher orders we have

ϕ1,2
Z (%) =ϕ1,2

Z
(%)− 2(d−2)

(d−1)2 SQϕ
0,2
d−1(%) ,

ϕ2,2
Z (%) =ϕ2,2

Z
(%)+

SQ

(d−1)2

[
%4−d

(d−2)(d−4)−2∆1,2
d−1(%)−(d−2)(3+Q2)ϕ1,2

d−1(%)+
∆2,2

Z (%)
d−2

]
,

∆2,2
Z (%) =T

[
%d−1(1−%2)

]
,

ϕ0,4
Z (%) =ϕ0,4

Z
(%)+SQ

(d−4)ϕ0,2
d−3(%)−∆2,0

d−3(%)
(d−1)3(d−2) − 2d−5

(d−1)3SQϕ
0,2
d−1(%)

−
2S2

Q

d2(d−1)2(1+Q2)2

(1+h(%)
h(%)

)2
+

8S2
Q

d2(d−1)2(1+Q2)2 .

(C.11)

The functions ϕn,mZ themselves can be expressed in terms of the minimally coupled
scalar solutions and a few additional auxiliary functions. For completeness we write them
below; the interested reader can find further details in appendix D of [14], though we again
caution that the functions appearing herein require f(%) to be the Reissner-Nordström-
AdSd+1 function.

ϕ0,2
Z

(%) = −d− 3
d− 1 ϕ

0,2
d−1(%) ,

ϕ1,2
Z

(%) = −d− 3
d− 1 ϕ

1,2
d−1(%) + 4 (d− 2)

d (d− 1) ϕ
0,2
d−1(%) ,

ϕ2,2
Z

(%) = −d− 3
d− 1 ϕ

2,2
d−1(%)− 4

d (d− 1) ϕ
2,0
d−1(%) + 4

d (d− 1) ϕ
0,2
d−1(%)

+ 2
d (d− 1) ∆2,2

Z
(%) + 4

d (d− 1) ∆1,2
d−1(%)− 2

d (d− 1) (d− 2) (d− 4) %
4−d ,

ϕ0,4
Z

(%) = (d− 3)2

(d− 1)2 ϕ
0,4
d−1(%) + 4 (d− 3)

d(d− 1)2 ϕ
0,2
d−1(%) + 2

d (d− 1)2(d− 2) ∆0,4
Z

(%) ,

∆0,4
Z

(%) = −T
[
%3−d − %d−1],

∆2,2
Z

(%) = T

[
%d−1

(
2 ∆̂0,4

Z
(%)− 1

d− 2

)
+ 1
d− 2 %

3
]
.

(C.12)

C.2 Asymptotic data of designer fields and physical functions

The asymptotics of the charge diffusion mode V and the designer sound field Z can be
captured by giving the behaviour of the ingoing Green’s function. Note that we are nor-
malizing the solution so that the physical solution on the grSK contour is parameterized
by the moduli V̆L,R and Z̆L,R, which, in particular, demands that the constant part of Gin

V,Z

is unity.

The charge diffusion mode V: let us begin with the charge diffusion field V, which
is explicitly non-Markovian of index M = 3 − d at every order in the gradient expansion.
It therefore diverges as %4−d, with a coefficient that is related to the charge diffusion
dispersion function Kc. There are several subleading divergences, and additionally, some
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convergent terms. We collect here the terms that are necessary to compute the near-
boundary expansion of the metric and gauge potential to the order where they contribute
to the physical conserved currents.

Gin
V (%, ω,k) = Kc

(1−SQ)2
%4−d

d− 4 (1− iw %)
[
1− q2 + (d− 7)w2

2 (d− 6) %2
]
− w4 %7−d

3 (1−SQ)2 (d− 4)

+ (1− iw %)
[
1 +

(
1− d− 3

(d− 2) (d− 4)
νsSQ

1 +Q2 q2
)(

SQ Kc

(1−SQ)2

+ d− 1
2 (d− 2)

(
q2

d− 1 −w2
))

%2
]
− iw3

3 %3 +O
(
%4
)
.

(C.13)

In writing this expression, we have assumed d > 7 for simplicity, so that we can dis-
ambiguate the constant term from the divergent terms. For low dimensions we run into
the issue that both the fast and slow fall-off modes can be normalizable with appropriate
boundary conditions. This is clear from the fact that the leading %4−d divergence can be
rendered normalizable with alternate boundary conditions in d ≤ 4 [34, 35]. The sub-
leading divergences with d− 6 factors signal the higher order counterterms. We have also
assembled the terms factoring out 1 − iw % factors, which indicates that the terms arise
from a D+ action and again makes it clear that V is non-Markovian (since the source term
is the conjugate momentum given by D+V).

The charge dispersion function Kc can be computed accurate to quartic order in gra-
dients, extending the result quoted in the main text in (4.10). The resulting answer is

Kc(w, q) = −iw +
(

1−
SQ

d− 1

)
q2

d− 2 −∆2,0
Y

(1)w2 − i
(
2ϕ2,0

Y
(1)−∆2,0

Y
(1)2

)
w3

− 2i ϕ0,2
V (1)wq2 − 2

(
ϕ1,2

V (1)− h(1)2 ∆2,2
V (1)

)
w2 q2

+
[
h(1)2 ∆0,4

V (1) + 2 νs
d− 1

S2
Q

1 +Q2 ΞV(1)
]
q4

−
(
2ϕ3,0

Y
(1) + 4ϕ2,0

Y
(1) ∆2,0

Y
(1)−∆2,0

Y
(1)3 + ∆3,0

Y
(1)
)
w4 .

(C.14)

The sound mode Z: we can similarly work out the asymptotics of the sound mode Z.
The main novelty here, as in the neutral case, is that the solution is Markovian at low
orders in the gradient expansion, and picks up non-Markovian behaviour only at fourth
order, in O

(
q4) and O

(
w2 q2). Therefore, the low order solutions and all the frequency

dependent pieces are simple. We also find a simpler structure of subleading divergences.
Retaining the pieces that enter into the corresponding asymptotics of the boundary metric
and gauge potential, we find

Gin
Z (%, ω,k) = νs q

2Ks

(d− 2)2 (1 +Q2)
%4−d

d− 4 + 1− iw %+
4∑
i=2

ai %
i + ad−2 %

d−2

+ ad−1 %
d−1 − ad

d
%d + · · ·+ a2d−4 %

2d−4 +O
(
%2d−3

)
,

(C.15)
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where (we use S
Q

1+Q2 = d(d−2)
2C2 to keep some terms simple)

a2 = d− 3
2 (d− 2) Ks −

q2

d (1 +Q2)

(
Γs +

2SQ

(d− 1) (d− 2)

(
q2

d− 1 −w2
))

,

a3 = iw

6 (d− 2)

[
(d− 5)w2 − 3d− 3

d− 1 q2
]

+ d νs
2SQ C2 w2 q2 ,

a4 = d− 1
8 (d− 2) (d− 4)

( 16
d (d− 1) + d− 5

)
K2
s −

d+ 3
12 d w4 ,

ad−2 = d νs
2C2 SQ q2

(
1− d νs

C2 q2
)
,

ad−1 = − d νs2C2 SQ (iwq2) ,

ad = Γs + Ωs −
SQ

d− 2

(
w2 − q2

d− 1

)
− d (d− 3)

2 (d− 1)
SQ

C2 q2Ks ,

a2d−4 = d νs
2C2 S2

Q

(
1− 5 d νs

4C2 q2
)
.

(C.16)

The coefficient of %d has been singled out above. It in fact agrees with the sound atten-
uation function Γs defined in (4.11) up to quadratic order in gradients (since w = ± q√

d−1
on the dispersion locus defined by Ks = 0) . However, it has higher order corrections; we
have parameterized these by Ωs, which is

Ωs = 2i ϕ2,0
d−1(1)w3 + 2i

(
νs

d− 2 + d− 3
d− 1 ϕ

0,2
d−1(1)−

SQ

(d− 1)2

)
wq2

+ λω w
4 + λk q

4 + λωk w
2 q2 .

(C.17)

We defined the coefficients λω, λk, and λωk to simplify the expressions above. They are

λω = 2ϕ3,0
d−1(1) + ∆3,0

d−1(1) ,

λk = −2 d− 5
SQ

1
(d− 1)2 C2 + (d− 3)2

(d− 1)2 (d− 2)
[
ϕ0,2
d−1(1)− ϕ0,2

3−d(1)
]
,

λωk = νs
d− 2

[
d (d− 3)

(
∆1,2
d−1(1)− ϕ2,0

d−1(1)
d− 2 + ϕ1,2

d−1(1)
)
− 2

(
∆2,0
d−1(1) + ∆0,4

Z
(1)
)

+ d (d− 2)
d− 1 (3 +Q2)SQ ϕ

0,2
d−1(1) + d (1 + 2Q2)

2C2 SQ

]
.

(C.18)

In [14], it was argued that this function has the correct properties to define the sound
attenuation to quartic order; we will return to this point when we compute the asymptotics
of ΦW , where we will be able to make a clear statement.

The gauge potential: the first physical function we will examine is the gauge potential
for the Maxwell field A. Our convention is to parameterize the solution using the boundary
sources for V and Z, which will allow us to read off the boundary gauge potential Aµ dxµ

directly. For simplicity, we focus on the temporal component (which has a limiting bound-
ary value), and refrain from writing similar expressions for the radial component. Given
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our parameterization of the gauge field in (3.1) and (3.2) implies that the boundary gauge
potential is27

lim
%→0

AA dx
A = %d−3 D+V dv ≡ Av dv . (C.19)

We obtain upon direct evaluation

Av = C (1− iw %) +O
(
%2
)

(C.20)

with

C = −2 + p2

4
r+Kc

(1−SQ)2 V̆ +
r+ CSQ

(1 +Q2)2
νs q

2Ks

d (d− 1) (d− 2)2 Z̆

= r+

[
−2 + p2

4 ξ̆ + 2
d νs

C p2 ζ̆

]
.

(C.21)

We can view C as a chemical potential induced on the boundary from the solution when
we are off the dispersion locus. The contribution from the charge diffusion, encoded in ξ̆,
is intuitive, but we also have a contribution proportional to ζ̆, which arises from the sound
mode. The latter can be understood as being due to the coupling between the two modes.
Indeed, when Q = 0 we can see that this piece switches off, as it must for a probe charge
field in a black hole background.

The metric functions: the rescaled metric functions {ΦE ,ΦO ,ΦW} and the field Θ can
be similarly recovered from the solutions for V and Z. We start with ΦW , focusing on terms
that enter computation of physical quantities, eschewing subleading divergences that are
canceled by counterterms. It is helpful to first write an expression for ΦW directly in terms
of the fields V and Z. Using (3.3) and (3.4) one can check that

ΦW = h(r)
Λk(r)

(
rD+ + k2

d− 1

)
Z + 1

h(r)

(
rD+ + k2

d− 1

)
V
C

+ (d− 2)
(
q2 SQ −

d (d− 1)
4 (1 +Q2) p2 h(r)

)
rd+ f(r)

rd−4 Λk(r)

( Z
Λk(r)

− V
Ch(r)2

)
.

(C.22)

This form is particularly helpful to ascertain the asymptotics. The modulation function
Λk has terms divergent near the boundary when expanded in gradients, but the structure
is such that these are cancelled between the D+Z and Z

Λk terms (this is not an issue for V).
Carrying through the computation, we find at the end of the day

ΦW = W rd−2 +
5∑
j=3

Wj r
d−j + G + · · · , (C.23)

where the ellipses are the decaying terms in ΦW (behaving as %k with k > 0). We have
checked that the subleading divergences in Wk are taken care of by counterterms and do

27The expressions below are valid both on the left and right boundary of the grSK geometry, but we do
not indicate that explicitly in our notation to keep the expressions clean.
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not enter in any physical answer. The quantities of relevance are the non-normalizable
mode W and the constant piece G.

The coefficient W is related to the boundary metric source, and can be parameterized
in terms of the sources for the designer fields V and Z as

W = Kc

(1−SQ)2 rd−4
+

V̆
C

+ 2Ks

d (d− 1) (d− 2) rd−2
+ (1 +Q2)

Z̆

= ξ̆

C
+ 8
d νs

ζ̆ .

(C.24)

Once again, the source which parameterizes the induced boundary metric is an admixture
of the charge diffusion and sound mode pieces. In this case we see that the contribution
from the charge part vanishes when Q→ 0, recovering the phonon source obtained in [14].

On the other hand the constant piece in ΦW is

G =
[

1
d− 2

(
w2 − q2

d− 1

)
−
(

1− d νs
2C2 q2

)
SQ Kc

(1−SQ)2

]
r2

+
C
V̆

+ d νs
2C2 SQ

(
1− d νs

2C2 q2
)(

Γs + Ωs −
SQ

d− 2

(
w2 − q2

d− 1

))
Z̆ .

(C.25)

This expression can be rewritten in terms of the boundary sources for the fields V̆ and Z̆
as28

G = 1
d− 2

[(
w2 − q2

d− 1

)
r2

+
V̆
C

+ νs
1 +Q2 Γ̃s(ω,k) Z̆

]

−
(

1− d νs
2C2 q2

)
rd−2

+ SQ

ξ̆

C
+ 2 d (d− 1)P0

r2
+ C2

2
2 + p2 ζ̆ .

(C.26)

We have defined a new function

Γ̃s(ω,k) =
(

1− d νs
C2 q2

)
Γs(ω,k) + Ωs(ω,k) , (C.27)

which we argue below is the sound attenuation function accurate to quartic order.
This constant piece G is important for, as we shall see, it enters into the expression

for the spatial part of the stress tensor (all other components either care about the source
terms, or about the normalizable part Zren, which we discuss below). The contribution
from V is straightforward, and includes both a source piece (proportional to ξ̆) and the
field operator V̆. The latter furthermore involves the non-dissipative part of the phonon
kinetic term.

On the other hand the contribution from Z, while superficially similar, is a bit more
involved. The operator contribution proportional to Z̆ picks up the coefficient ad in (C.16).
We will try to justify below that we should treat Γ̃s(ω,k) defined above in (C.27) as the
sound attenuation function accurate to quartic order in gradients. We have written it

28In writing this expression we have made an educated guess that 1 − d νs
2 C2 q2 resums into 2

2+p2 , see
footnote 10.
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in this particular manner to make the similarity with the neutral fluid analysis of [14]
manifest.

The leading divergence in Θ is the same as for ΦW , as can be inferred from (3.3), since
Z diverges as %4−d. From here we can quickly check that the leading divergence in D+Θ
and thence in ΦE is also simply related to that of ΦW . One can, for instance, check that
the following asymptotic relations hold:

ΦE

rd−1 = D+Θ
rd−1 + 2 (d− 2) af V

rd−2 = D+Θ
rd−1 +O

(
r2−d

)
= (d− 2) ΦW

rd−2 + · · · .
(C.28)

This information is all we will need for the evaluation of the boundary observables: induced
metric, on-shell action, and conserved currents, so we will refrain from giving expressions
for Θ and ΦE .

Higher order sound attenuation: in the non-normalizable mode of ΦW and D+Θ, the
contribution from the sound field Z is given by Ks, which to quartic order in gradients is
given in (4.11). We note that both the ad in Z and the constant term G of ΦW are given
by a combination of Γs and Ωs defined as Γ̃s(ω,k) in (C.27). The function Ωs starts out
at cubic order in gradients, so it could indeed be viewed as updating Γs.

Much of our intuition for identification here comes from the manner in which G enters
the stress tensor (see discussion below (D.14)). That will make clear that we should actually
treat Ωs as the cubic and quartic corrections to sound attenuation. In other words, we
conjecture Γ̃s(ω,k) to be the sound attenuation function. In fact, we can further simplify
this function. We note

Γ̃s(ω,k) = Γs + Ωs −
SQ

d− 2

(
w2 − q2

d− 1

)
−

2SQ

d− 2 Ks + · · ·

= −iw + ∆2,0
d−1(r+)w2 + d− 3

(d− 1)(d− 2)q
2 + Ωs + · · · .

(C.29)

In the first line, we rearranged terms, recognizing that the factors can be reassembled into
the sound dispersion function Ks (which contains a factor of Γs). In the second line we
used the explicit form of Γs from (4.11) and dropped the dispersion function contribution
(its vanishing sets the on-shell condition, so this contribution is of higher order). The
correction to Γs comes from non Ks terms in the first line, but these we note are at least of
cubic order. Ωs is manifestly so from (C.17), but so is S

Q

d−2

(
w2 − q2

d−1

)
, since on the sound

locus ω = ± k√
d−1 +O

(
k2).

With these identifications we can solve for the sound dispersion locus accurate to
quintic order. The crucial point is that written this way, Γ̃s(ω,k) and ad agree on the
sound dispersion locus. In particular, our conjecture implies that the sound dispersion
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locus accurate to quintic order in gradients takes the form

w(q) = q√
d− 1

− i νs
2 (1 +Q2) q

2 + νs h3

2
√
d− 1 (1 +Q2)2 q3 + iνsh4

d (d− 1) (1 +Q2)2 q4

+ νs h5
(d− 1)3/2 q5 + · · · ,

h3 = d (d− 2)− 4
2 d (d− 2) + d− 3

d− 2 Q
2 + (1 +Q2) ∆2,0

d−1(1) ,

h4 = d
(
(d− 3)ϕ0,2

d−1(1) + ϕ2,0
d−1(1)

) (
1 +Q2

)
+ 2− (d− 2) ∆2,0

d−1(1) ,

h5 =
(d− 2)

(
3ϕ2,0

d−1(1) + (d− 3)ϕ0,2
d−1(1)

)
d (1 +Q2) + d (7 + 5Q2)− 1

d3 (d− 2) (1 +Q2)4

+
(
d (2 (d− 3)Q2 − (d− 6))− 12

)
∆2,0
d−1(1)

4 d4 (1 +Q2)3 +
3 (d− 2) ∆2,0

d−1(1)2

4 d (1 +Q2)2

+ 4 d(9 +Q2(13 + 6Q2))− 4 (31 +Q2 (34 + 9Q2))
16 d (d− 2) (1 +Q2)4

− (d− 1)2

2 (1 +Q2)λk + λω
2 (1 +Q2) + d− 1

2 (1 +Q2) λωk ,

(C.30)

where the functions λω, λk, λωk were previously defined in (C.18). This upgrades the ex-
pression (4.36) given in the main text.

A priori, it is surprising that we can obtain results for the sound pole accurate to
sextic order; we expect to find Ks only to quartic order. Moreover, if we identify Ks

as the leading divergence in Z, we can only learn its behaviour to quadratic order, cf.,
appendix C.2. It is when we translate this information to the metric functions that we see
that non-normalizable part of ΦW picks up contributions that assemble into the quartic
order expression for Ks, which predicts Γs as indicated in (4.11). But we are able to push
this further, by exploiting the nature of the stress tensor, and how the Ward identities
work, to glean information beyond the remit of our solution. While we do not prove that
our identification is correct, we offer it is as an interesting conjecture for the higher order
transport data damping sound propagation in the charged plasma.

D Boundary observables

With the solutions for the designer fields V and Z we can proceed to analyze the physical
data of the dual charged fluid on the boundary. Below we collect the information necessary
to parametrize the boundary sources and expectation values of the conserved currents.

To aid with this analysis it will be useful to have some intermediate results. While
we will most often directly use the fields V and Z, it is helpful to use their asymptotics to
obtain the asymptotic behaviour of our intermediate variables V and Z. We only need the
renormalized value of these fields. To obtain these we can, for instance, use the fact that
the D+V term is the leading counterterm that renormalizes V, viz.,

Vren = V− 1
(d− 4) r

√
f
D+V + · · · , (D.1)
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with the ellipses denoting higher order counterterms. Likewise, one can check that

Zren = Z− k2

(d− 2) (d− 4)
D+Θ
rd−1 r

d−4 + · · · . (D.2)

Using the relation to the designer fields (3.4) we can then infer

Zren = k2

C
V̆ + Z̆ ,

Vren = −r+
4 (2 + p2) V̆ + d νs

2 r+ C

1
2 + p2 Z̆ ,

(D.3)

where we are once again leaving implicit the boundary (L and R) labels to avoid clutter.
This data will be helpful when we evaluate the conserved current operators.

D.1 The boundary sources and operators

Let us begin with the boundary metric. From (3.2) one can deduce the induced metric on
the boundary to be

γµν dx
µ dxν =

(
1 + ΦW

rd−2

)
ηµν dx

µ dxν + D+Θ
rd−1 dv

2 . (D.4)

We can now use the asymptotic data derived in appendix C.2, especially (C.28) and (C.23),
to infer that

lim
r→∞±i0

D+Θ
rd−1 = lim

r→∞±i0
(d− 2) ΦW

rd−2

= (d− 2) WL/R

= (d− 2)
ξ̆L/R
C

+
(

1− d νs
2C2 q2

)
4 (d− 1) ζ̆L/R .

(D.5)

As noted earlier, in the limit Q → 0, the charge contributions drop out and the last
expression above limits to 4(d − 1) ζ̆L/R, which was the result obtained in [14, eq. (C.3)].
Likewise, the boundary chemical potential is given by the result in (C.21), which we record
here as

lim
r→∞±i0

AA dx
A = CL/R dv . (D.6)

D.2 The boundary currents

We can now compute the conserved currents from the boundary action. We will give the
general expression for these in terms of the fields used to parameterize the perturbations,
and then show that the result can be written in terms of the renormalized fields, up to
source terms.

Charge current: let us begin with the charge current. It is given in terms of asymptotic
behaviour of the bulk Maxwell field, or equivalently by varying the boundary action with
respect to the (boundary) gauge potential. One has

1
2 J

CFT
v = − lim

r→∞
rd−1

[
Frv −

1
d− 4

1
r3√f

∂i Fvi + · · ·
]
,

1
2 J

CFT
i = − lim

r→∞
rd−3

[
r2f Fri + Fvi −

1
d− 4

1
r
√
f

(∂vFvi − f ∂jFji) + · · ·
]
.

(D.7)
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We have indicated here the leading order counterterm contribution given in (A.1) which
suffice for d ≤ 6; there are higher order terms necessary beyond that. Evaluating this on
our linear perturbations we find a background contribution and a term proportional to V.

The background contribution to the charge current is simple: it is just given by the
background charge density ρ0, cf., (2.9b). Taking this into account the contribution from
the scalar component of Maxwell dynamics assembles into the following:

1
2 J

CFT
v = −ρ0 +

(
−E0
f

+ k2
[ 1

(d− 4) r
√
f
D+ − 1

]
V + (d− 2)2 aΦW

)
S

= −ρ0 +
(
−k2 Vren + (d− 2)CSQ r

d−1
+

ΦW

rd−2

)
S ,

1
2 J

CFT
i = iω

[ 1
(d− 4) r

√
f
D+ − 1

]
V Si

= −iω k Vren Si .

(D.8)

We have assembled this in a particular fashion, using the Maxwell equation (A.11) to
simplify the presentation (which is why ΦW enters in the above). The renormalized field
Vren is an admixture of the charge diffusion and the phonon fields, and is given in (D.3).

Stress tensor: the boundary stress tensor density is given by varying the boundary
Gibbons-Hawking term and the counterterms given in (A.1). This leads to the following
expression accurate to quartic order in gradients:

TCFT
µν = lim

r→∞
2
√
−γ
r2

[
K γµν −Kµν − (d− 1) γµν + 1

d− 2 Gγ µν

+ 1
(d− 2)2 (d− 4)

(
∇γ 2 Rγ µν + 2 Rγ µρνσ Rγ ρσ

+ 1
2 (d− 1)

[
−(d− 2) ∇γ µ ∇γ ν Rγ − d Rγ Rγ µν

]
− 1

2 γµν
(
Rγ ρσ Rγ ρσ − d

4(d− 1) Rγ 2 + 1
d− 1 ∇

γ 2 Rγ
))]

.

(D.9)

Once again the stress tensor has a background contribution and a correction arising
from the perturbations. We present the results for (TCFT) ν

µ which makes it easier to see the
traceless condition by inspection. The background ideal fluid contribution is determined
by the pressure P0 given in (2.9a):

(T bg) ν
µ = rd+ (1 +Q2) diag{−(d− 1), 1, . . . , 1} = P0 diag{−(d− 1), 1, . . . , 1} . (D.10)

At the first order in amplitudes of the perturbations one evaluates the components of the
stress tensor from the Brown-York analysis supplemented with counterterms (D.9). We
quote the results for the individual components in turn.
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Firstly, the spatio-temporal pieces are

(TCFT) i
v = −f (TCFT) vi = − lim

r→∞
ik Si T1 ,

T1 = iΦO − ω
√
f ΦW −

ω k2

(d− 1) (d− 2) (d− 4)
1

r3√f
ΦE

= − ω

d− 1 Zren + ω
(
1−

√
f
)

ΦW

= − ω

d− 1 Zren .

(D.11)

We have used (A.22) to write the expression in terms of Z. Additionally, the ΦE term has
been used to renormalize this field, and thus the final answer involves the renormalized
field Zren , which was obtained in (D.3).

The temporal component is a bit more complicated, but it can be evaluated straight-
forwardly to be

(TCFT) v
v = −(d− 1)P0 + lim

r→∞
ST2 ,

T2 = (d− 1) r
[
D+ΦW −

(
2− 1√

f

)
ΦE − d (1−

√
f) r

√
f ΦW + ΦB

]
− k2√f ΦW −

k4

(d− 1) (d− 2) (d− 4)
1

r3√f
ΦE

= (d− 1) 1 +Q2

2
ΦE

rd−1 −
k2

d− 1 Zren

= (d− 1) (d− 2)
2 P0 W− k2

d− 1 Zren .

(D.12)

We have written the coefficient of the source W in terms of the background pressure (2.9a).
Finally, the spatial stress tensor has contributions from two tensor structures, δij and

ST
ij , which we can think of as the pressure and shear-stress contribution. They are

(TCFT) ji = P0 δ
j
i + lim

r→∞±i0

[ 1
f
TP δ

j
i S + TY (ST) ji

]
. (D.13)

The shear-stress part is actually quite simple, and is given by

TY = − k2

r
√
f

[
rf ΦW −

ΦE

d− 2

]
= −k2 G .

(D.14)

On the other hand, the pressure term, which has more intricate structure, can be shown
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to be

TP = (d− 1)r
√
f(1−

√
f) ΦE − iωΦO + ω2√f ΦW + k2

d− 1

√
f

r
(ΦE − (d− 2) rf ΦW)

+ r2

2

[
d (d− 1)

(
1−

√
f
)2
f − rf ′ + d (1− f)

]
ΦW − 2a′ r2f D+V− Ẽ5

= d− 1
2 (1 +Q2) ΦE

rd−1 + ω2

d− 1 Zren −
d− 2
d− 1 k

2 G + 2 (d− 2)µ rd−2
+

1
rd−3 D+V

= (d− 2)P0

[
d− 1

2 W + d
C
r+ C

]
+ ω2

d− 1Zren −
d− 2
d− 1 k

2 G ,

(D.15)

where we used 2µ
r+(1+Q2) = d

C in the last line.
We refrained from writing out the quartic order counterterm term, but have used its

presence to renormalize the field Z. Another simplification we exploited is the fact that
part of TP can be expressed in terms of the equation of motion E5. The contribution from
the constant part in the asymptotic expansion of ΦW , G, assembles cleanly into the sound
attenuation function. While we find the contribution to be k2 G, which to the order we are
working in, truncates the result in (C.26) to k2 Γs, one can show using the Ward identities
that the shear-stress part has to be the complete sound attenuation function. It is this
observation that motivates our identification (C.27).

We can simplify the spatial part of the stress tensor. Let us start with the term k2 G
that enters in TP and TY . We first notice that the Γ̃s(ω,k) contribution to G in (C.26),
when multiplied by k2, can be simplified considerably:

k2 νs
1 +Q2 Γ̃s(ω,k) Z̆ = r2

+Ks Z̆ −
(
−ω2 + k2

d− 1

)
Z̆

=
(
ω2 − k2

d− 1

)
Z̆ + 2 d (d− 1)2 P0 ζ̆ .

(D.16)

In the second line we replaced Ks Z̆ by the source term ζ̆. The above manipulation is
independent of our conjectured form for the corrected dispersion function. In computing
k2Γ̃s(ω,k), we only care about the Γs contribution since all the other pieces are at least of
quintic order in gradients, and we can use the definition of Ks in (4.11).

Therefore, we can rewrite k2 G using the original definition (C.26) as

k2 G = 1
d− 2

(
ω2 − k2

d− 1

)(
Z̆ + k2 V̆

C

)
+ Gsources

= 1
d− 2

(
ω2 − k2

d− 1

)
Zren + Gsources .

(D.17)

We have simplified the operator contribution above, and isolated all the source contribu-
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tions into Gsources which in turn is

Gsources = 4 (d− 1)
νs

P0 ζ̆ − rd+ SQ q2
(

1− d νs
2C2 q2

)
ξ̆

C
+ 2 d (d− 1)P0

C2
2 q2

2 + p2 ζ̆

= 4 (d− 1)
νs

P0 ζ̆ −
d (d− 1)

2 P0
d νs
2C2 q2

(
1− d νs

2C2 q2
)
ξ̆

C
+ 2 (d− 1)P0

νs
p2 ζ̆

= d(d− 1)
2 P0

[
W−

(
1 + d νs

2C2 q2 −
(
d νs
2C2 q2

)2) ξ̆
C

+ 4
d νs

p2 ζ̆

]

≈ d(d− 1)
2 P0

[
W− 2 + p2

2
ξ̆

C
+ 4 p2

d νs
ζ̆

]

= d (d− 1)P0

[1
2 W + C

r+ C

]
.

(D.18)

In the second line we used the definition of p from (3.6) to simplify the ratio q2

2+p2 , cf.,
footnote 10. The next step was to exploit (C.24) to rewrite part of the ζ̆ source in terms of
W. We then guessed that the contributions multiplying ξ̆ resum into 1+ 1

2 p
2.29 Finally, we

rewrote the combination of sources in terms of the deformed chemical potential using (C.21)
in the last line. One useful identity in deriving these expressions is

SQ

1 +Q2 = d(d− 2)
2C2 = d (d− 1)

2
d νs
2C2 . (D.19)

Hence we altogether claim

k2 G = 1
d− 2

(
ω2 − k2

d− 1

)
Zren + d (d− 1)P0

[1
2 W + C

r+ C

]
. (D.20)

It is only in this derivation of k2 G that we have allowed ourselves to assemble terms in
the momentum gradient expansion into functions of p — these are the terms that combine
into C.

One justification for this bold leap is the fact that the deformed chemical potential
contribution is necessary to satisfy the conservation equation, since the Joule heating term
in (4.23) produces a contribution proportional to the deformed chemical potential. Fur-
thermore, with this rewriting we can simplify the pressure term TP considerably. Plug-
ging (D.17) into (D.15) we find

TP = k2

(d− 1)2 Zren −
d− 2

2 W = − T2
d− 1 . (D.21)

This ensures that the stress tensor we obtain is manifestly trace-free.

29This is the second instance after (C.26) where we are assuming that we can resum terms into a function
of p.
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D.3 The on-shell action

The on-shell action of the grSK solution can be evaluated starting from the final answer
for S[V,Z] in (B.23). At quadratic order this is just a boundary term, which will give the
generating function of boundary correlation functions with sources on the two boundaries
of the grSK geometry.

To evaluate the Wilsonian influence function, we Legendre transform the resulting
generating functional. The two steps can be concatenated by adding a suitable boundary
term to implement the Legendre transform. To wit, consider the following:

S[V,Z] + 2
∫
k

(
k2 NV ΠV V + NZ

Λk
ΠZ Z

)
. (D.22)

This additional boundary term cancels the δV and δZ variational terms in (B.24), effectively
quantizing the fields with (renormalized) Dirichlet boundary conditions.

The evaluation of the on-shell action produces two sets of contributions. Terms of
the form ΠV V and ΠZ Z combine from the bulk action, the variational boundary terms,
and the Legendre transform, to produce the dynamical piece of the WIF, i.e., the terms
in (4.8). One can write this down by inspection since with renormalized Dirichlet boundary
conditions, the boundary sources are ΠV and ΠZ with the renormalized field values being
the boundary operator expectation values (4.3). We end up with

SWIF[V̆, Z̆] =
∫
k

1
2

[
k2 NV(p)

(
V†ren ΠV + Π†V Vren

)
+ NZ(p)

k2

(
Z†ren ΠZ + Π†Z Zren

)] ∣∣∣∣r=rc−i0
r=rc+i0

= −
∫
k
k2
(
r+
σdc

NV(p) V̆†dKc(ω,k)
[
V̆a +

(
nB + 1

2

)
V̆d
]

+ cc
)

−
∫
k

(
r2

+
2 d (d− 1)2 P0

NZ(p) Z̆†dKs(ω,k)
[
Z̆a +

(
nB + 1

2

)
Z̆d
]

+ cc
)
.

(D.23)

We introduced a large radius regulator at r = rc to aid the extraction of the on-shell action.
The second contribution is a contact term, which originates from the (D+Θ)2 boundary

term in (B.22). It can be also evaluated directly using (D.5), and the contribution factorizes
on the grSK contour. We end up with

Scontact[V,Z] ⊃
∫
k

(d− 1) (d− 2) (d− 6)
8 P0

[
W†

R WR −W†
L WL

]
. (D.24)

This is the quadratic piece of the contact term quoted in (4.16). The additional pieces
originate from the fact that the Reissner-Nordström-AdS geometry has a non-vanishing
free energy, leading to the constant and linear terms in the first line of (4.16).
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