
J
H
E
P
0
3
(
2
0
2
3
)
1
1
6

Published for SISSA by Springer

Received: October 20, 2022
Revised: February 3, 2023
Accepted: March 2, 2023

Published: March 16, 2023

Spectral curves and W-representations of matrix
models

A. Mironovb,c,d and A. Morozova,c,d
aMIPT,
Institutskiy per. 9, Dolgoprudny 141701, Russia

bTheory Department, Lebedev Physical Institute,
Leninsky prospect, 53, Moscow 119991, Russia

cInstitute for Information Transmission Problems,
Bolshoy Karetny per. 19, build. 1, Moscow 127051 Russia

dKKTEP (former ITEP), NRC “Kurchatov Institute”,
acad. Kurchatov sq. 1, Moscow 117218, Russia

E-mail: mironov@lpi.ru, morozov@itep.ru

Abstract: We explain how the spectral curve can be extracted from theW-representation
of a matrix model. It emerges from the part of the W-operator, which is linear in time-
variables. A possibility of extracting the spectral curve in this way is important because
there are models where matrix integrals are not yet available, and still they possess all their
important features. We apply this reasoning to the family of WLZZ models and discuss
additional peculiarities which appear for the non-negative value of the family parameter
n, when the model depends on additional couplings (dual times). In this case, the relation
between topological and 1/N expansions is broken. On the other hand, all the WLZZ
partition functions are τ -functions of the Toda lattice hierarchy, and these models also
celebrate the superintegrability properties.

Keywords: Matrix Models, 1/N Expansion, Integrable Hierarchies

ArXiv ePrint: 2210.09993

Open Access, c© The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP03(2023)116

mailto:mironov@lpi.ru
mailto:morozov@itep.ru
https://arxiv.org/abs/2210.09993
https://doi.org/10.1007/JHEP03(2023)116


J
H
E
P
0
3
(
2
0
2
3
)
1
1
6

Contents

1 Introduction 1

2 Basic example: Hermitian Gaussian model 4
2.1 Description of the model 4
2.2 Spectral curve 4
2.3 Spectral curve from the W -representation 5

3 An infinite set of WLZZ models. Negative branch 6
3.1 Description of the models 6
3.2 Model with m ≥ 3 8

3.2.1 W-representation of the m = 3 model 8
3.2.2 Spectral curve 9
3.2.3 Spectral curve from the W-representation 9

3.3 Model with generic m 10

4 From Hurwitz model to Lambert curves 11
4.1 Hurwitz model and its spectral curve 11
4.2 Cut-and-join operators and higher Lambert curves 12
4.3 Completed cycles or not? 14
4.4 Spectral densities with trAk = δk,s 15

5 An infinite set of WLZZ models. Positive branch 16
5.1 Description of the models 16
5.2 Model with m = 2 17
5.3 Spectral curve, m = 2 18
5.4 Spectral curve vs. Ŵspec, m = 2 18
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1 Introduction

Many properties of matrix models [1–11] are defined by their spectral curves, which define
the distribution of eigenvalues in the large N limit, and is a generating function of all
the genus zero contributions to the single-trace correlators. This does not seem to be
much, still, if the whole set of Virasoro-like constrains is available, the spectral curve (with
some simple additional data) is sufficient to reproduce all correlators at all genera, the
relevant procedure is known as the AMM-EO topological recursion [12–18]. In this sense,
the knowledge of the spectral curve is nearly equivalent to that of the entire matrix model.

On the other hand, nowaday matrix model partition functions are defined not only by
an explicit matrix (or eigenvalue) integral, but also by action of an operator Ŵ on a trivial
state in the space of matrix model couplings pk:

Z{p} = eŴ{p} · 1 (1.1)

Such a realization is called W -representation [19–25] (see also similar realizations in [12–
14, 26–31]). Sometimes, it is better to present it in the form

Z{p} = eŴ{p} · e
∑

k
gkpk/k (1.2)

where gk are parameters. Such second form can be definitely reduced to (1.1) using the
Campbell-Hausdorff formula, but the resulting Ŵ-operator is too complicated. Hence, the
form (1.2) is more preferable in such a case.

It is a natural question to ask what is the spectral curve, and the topological recursion
in terms of this W -representation. Once understood, this would provide spectral curves
for models that are not defined through any integrals.

Our claim in this paper is that the spectral curve is associated with a peculiar part
Ŵspec of the Ŵ-operator. We demonstrate this in detail for the Gaussian model, and then
discuss implication for the other cases, mostly for the WLZZ models [32]. In particular, we
give a general recipe for constructing Ŵspec in these cases. More formally, our claims are:

• Ŵspec is made from all the terms of Ŵ, which are linear in p (but these terms can
be non-linear in p-derivatives, like ∂2

∂p2 in the Gaussian model)

• The action of eŴspec produces an exponential of an expression, which is linear in p

(and no longer contains p-derivatives)

eŴ
spec · 1 = exp (P) (1.3)

Thus we see a mysterious role of the exponential function.

• Making the substitution pk → zkpk allows one to generate the function (resolvent)
y(z) such that

P(z) =
∮
V (xz) y(x)dx (1.4)

where V (z) = ∑
k pkz

k/k is the matrix model potential. The resolvent y(z) satisfies
the spectral curve equation.
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• For WLZZ models [32] with negative grading m < 0, the resolvent

ym(z) =
∑
k

|m|k
z|m|k+1

∂ logZ
∂p|m|k

(1.5)

satisfies the spectral curve that is a simple generalization of the semicircle distribution
equation at m = −2:

y|m|m − zym + 1 = 0 (1.6)

This spectral curve equation describes the large N limit, and corresponds to the lead-
ing behaviour of the topological expansion. The complete expansion is constructed
from the full set of W -constraints(

n
∂

∂pn
+ W̃

(−,m)
n−m

)
Z = 0 (1.7)

where the operators Ŵ−m generating theW -representation are connected with W̃ (−,m)
n−m

by the relation

Ŵ−m =
∞∑
k=1

pkW̃
(−,m)
n−m (1.8)

• In the WLZZ model at m = 0, the W0 annihilates 1, and one should act on a non-
nontrivial state exp (βp1). The spectral curve is given by the Lambert curve. One
can naturally extend this W0-operator to a series of operators associated with the
generalized cut-and-join operators W[s], which gives rise to higher Lambert curves
(the W0 case corresponds to s = 2)

ye−z
s−1ys−1 = β

z2 (1.9)

• In the WLZZ model at m > 0, the Wm also annihilates 1, but one should act on
a non-nontrivial state exp (∑k gkpk). This makes the situation more involved and
intriguing, because one acquires new parameters (dual time-variables) gk. In this
case, the spectral curve is given by the equation

y =
∑
k=2

gk
zk+1

(
1 + z2m−1ym−1

)k−1
(1.10)

and is associated with the small(!) N expansion, so that the interpretation in terms
of topological expansion is no longer straightforward.

• Superintegrability relations trivialize in the large N limit: the averages become linear
in each sector of a given grading〈

SR
〉
∞

= N |R|SR{δk,n} (1.11)

and multiple correlators of characters factorize〈∏
i

SRi

〉
∞

=
∏
i

〈
SRi

〉
∞

(1.12)
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where SR are the Schur functions [33]. The Schur functions can be treated as sym-
metric polynomials of variables xi, or graded polynomials of power sums pk = ∑

i x
k
i .

In the later case, we use the notation SR{pk}. We also use the shortened notation
SR{N} = SR{pk = N} and SR{δk,m} = SR{pk = δk,m}.

In the paper, we are mostly considering the WLZZ partition functions [32], which are
introduced by W -representations:

Zm = eŴm/m ·

 1 for m < 0
exp

(∑
k
gkpk
k

)
for m > 0

(1.13)

and the Hurwitz partition function [27, 34, 35]

Z0 = eŴ0 · eβp1 (1.14)

These definitions are inverse to the ordinary definition, when one searches for a W-
representation for a given model with nice properties. There is no a priori reason to
expect that this new formulation is obliged to provide interesting results. However, we
demonstrate that it does. The results look relatively simple for the negative branch of the
WLZZ models. In this case, the WLZZ models are described by the two-matrix models
of the Hurwitz type [36–39] counting the isomorphism classes of Belyi pairs, arising in the
study of equilateral triangulations and Grothiendicks’s dessins d’enfant [40–43].

Things get more intriguing for m = 0, related both with the Hurwitz numbers and,
by the ELSV formula, with the Kontsevich model deformation involving the Hodge in-
tegrals [29, 30], and even more intriguing for positive m, when the WLZZ models are
described by two-matrix models in an external field [38, 39].

The WLZZ family includes two one-matrix model examples: for m = ±2. Another
example well-studied earlier is m = 0. We underline the subsections devoted to these three
particular cases.

Let us stress that our definition of the spectral curve follows the recursion procedure
worked out in [28]: one starts from the loop equation for the resolvent and than considers
the leading order that excludes terms with derivatives of the resolvent. In this leading
order, the loop equation becomes an algebraic equation, which is the spectral curve. The
recursion is further constructed as an expansion of the resolvent over this spectral curve. In
this paper, we directly applied this procedure in the cases of m = ±2 for the corresponding
one-matrix models, and managed to confirm our scheme for constructing the spectral curve
(in particular, the expansion parameters of large and small N for m = 2 and m = −2,
correspondingly).

Finally, let us note that manifest expressions for the results of action of theW -operators
like (3.31) in this paper are conjectural and checked by computer evaluations of many terms
of expansion of the exponential and at many values of m (both negative and positive). One
can prove such formulas in simple cases like (2.11), (3.26) reducing them to an equation
like (3.4), however, in other, more complicated cases this way of proof becomes already too
involved.
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2 Basic example: Hermitian Gaussian model

2.1 Description of the model

In this section, we explain how one can construct the spectral curve from the W -rep-
resentation in the simplest case of the Hermitian Gaussian matrix model. The partition
function of this model satisfies an infinite set of Virasoro constraints (generated by the
Borel subalgebra of the Virasoro algebra):

LnZ−2 = (n+ 2) ∂Z−2
∂pn+2

, n ≥ −1

Ln =
∑
k

(k + n)pk
∂

∂pk+n
+
n−1∑
a=1

a(n− a) ∂2

∂pa∂pn−a
+ 2Nn ∂

∂pn
+N2δn,0 +Np1δn+1,0

(2.1)

and has a W-representation of the form

Z−2 = e
1
2Ŵ−2 · 1 (2.2)

Ŵ−2 =
∑
k

pkL̂k−2 =
∑
k

(k + l − 2)pkpl
∂

∂pk+l−2
+
∑
k,l

klpk+l+2
∂2

∂pk∂pl
+ 2N

∑
k

kpk+2
∂

∂pk

+N2p2 +Np2
1

Because the r.h.s. of the Virasoro constraints is of different grading, this partition function
is an unambiguous solution to the non-trivial equation

(
l̂0 − Ŵ−2

)
Z−2 = 0, l̂0 :=

∑
k

kpk
∂

∂pk
(2.3)

This solution is actually equal to

Z−2 =
∑
R

SR{N}SR{δk,2}
dR

SR{pk} (2.4)

which is a sum over the Schur functions with factorized coefficients proportional to the
same Schur functions evaluated at special loci. Such specific form of a sum is nicknamed a
superintegrability property [44–46].

2.2 Spectral curve

Let us now make the following trick:

1) introduce the variables tk := pk
k~ ,

2) introduce t0 such that ∂Z−2
∂t0

:= NZ−2.

– 4 –
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Then, one can rewrite the Virasoro generators (2.1) in the form

Ln =
∑
k=0

ktk
∂

∂tk+n
+ ~2 ∑

k≥0

∂2

∂tk∂tn−k
(2.5)

Let us now define the resolvent

ρ−2(z|tk) := ∇̂zF−2 =
∑
k≥0

1
zk+1

∂F−2
∂tk

F−2 := ~2 logZ−2 (2.6)

Then, the generating function of all the Virasoro constraints by converting Ln’s with z−n−2

can be rewritten in the form:

ρ−2(z|tk)2 − zρ−2(z|tk) +N + ~2∇̂zρ−2(z|tk) +
[
V ′(z)ρ−2(z|tk)

]
−

(2.7)

where V (z) := ∑
k=1

pk
k z

k = ∑
k=1 tkz

k is the potential of the matrix model, and
[
. . .
]
−

denotes projection to the negative powers of z.
Consider now the solution at the leading (spherical) order at small ~ and at zero pk at

all k, y := ρ−2(z|0)
∣∣∣
~→0

. Then, one obtains the equation

y2 − zy +N = 0 (2.8)

which is exactly the spectral curve. Actually, in this particular case this the Riemann
sphere in hyperelliptic representation.

Parameter ~ can be used to define topological expansion [28, 47–49] and AMM-EO
topological recursion [12–18]. In this case, one can identify ~ = 1/N by rescaling time-
variables tk −→ Ntk (i.e. by making the substitution logZ−2 = N2F−2): this allows one
to identify topological and 1/N expansions. As we shall see, this identification appears
consistent for all WLZZ models with m < 0, but breaks down for m ≥ 0.

2.3 Spectral curve from the W -representation

Now let us note that the leading order in the loop equations is completely due to the second
derivatives terms in L̂n and, hence, in Ŵ−2. Hence, one could naturally expect that, in
order to generate the leading term F0, one has to truncate the W-representation to the
second derivative terms only:

Ŵspec
−2 :=

∑
a,b≥0

(a+ b+ 2)ta+b+2
∂2

∂ta∂tb
=
∑
a,b≥1

abpa+b+2
∂2

∂pa∂pb
+ 2N

∑
a≥1

apa+2
∂

∂pa
+N2p2

(2.9)
Now we define

e
z2
2 Ŵ

spec
−2 · 1 = eP−2(z) (2.10)

and realize that
P−2(z) = N

∞∑
k=1

p2k
2k

2 · Γ(2k)
Γ
(
k + 2

)
Γ(k)

(Nz2)k (2.11)

– 5 –
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Note that the exponential P is linear in pk. This exponentiation phenomenon in (2.10)
takes place for all other models in this text. It is not a priori that obvious, and it is
explained by the structure of the Campbell-Hausdorff formula, see section 6.

On the other hand, expanding (2.8) at large z, one obtains

y(z) = z −
√
z2 − 4N
2 = y(z) = N

z
+
∞∑
k=1

2 · Γ(2k)
Γ
(
k + 2

)
Γ(k)

· z−2k−1Nk+1 (2.12)

Thus, one obtains
P−2(z) =

∮
V (xz) y(x)dx (2.13)

As we already pointed out, one expects that P−2(z) is a leading contribution to the partition
function at small g. Indeed, this formula can be compared with [50, eq. (48)] to see
this is really the case. Here we derived this contribution completely in terms of the W -
representation.

Note that the N -dependence for Ŵspec can be fully eliminated by the change of vari-
ables pk −→ pk/N and z2 −→ z2/N . Remarkably, this is a kind of opposite to the change
pk −→ Npk, relevant for the definition of the 1/N expansion at the end of the section 2.2.

Note that the true partition function corresponds to the particular value z2 = 1
in (2.10) with the full-fledged operator Ŵ−2. Spectral curve, however, appears when we
truncate the operator to Ŵspec

−2 and release z. As we explain in sections 4–5, this procedure
can be formulated in another, more universal way by making a substitution pk → zkpk
instead of releasing z.

3 An infinite set of WLZZ models. Negative branch

3.1 Description of the models

The authors of [32] proposed an infinite set of models parameterized by integers. The
models parameterized by negative integers generalize the Hermitian Gaussian model and
are described by the following procedure: one constructs the W-representations of these
models using the operators built by a recursive procedure

Ŵ−m−1 = 1
m! [Ŵ−1, Ŵ−m], m ≥ 2 (3.1)

where

Ŵ−1 :=
∑
k

(k + l − 1)pkpl
∂

∂pk+l−1
+
∑
k,l

klpk+l+1
∂2

∂pk∂pl
+ 2N

∑
k

kpk+1
∂

∂pk
+N2p1

(3.2)
Every such operator gives rise to a partition function

Z−m = e
1
m
Ŵ−m · 1 (3.3)

which is an unambiguous solution to the equation(
l̂0 −mŴ−m

)
Z−n = 0, l̂0 :=

∑
k

kpk
∂

∂pk
(3.4)

– 6 –
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Among other things, this means that the matrix models that describes Z−m could not be
of the Xm-potential type: there should be only one possible integration contour. This is,
indeed, the case, see (3.7).

The partition function, (3.3) is equal (for m ≥ 2) to

Z−m =
∑
R

SR{N}SR{δk,m}
dR

SR{pk} (3.5)

and is a KP τ -function of the hypergeometric type [36, 51–54].
Representation (3.5) for the partition function implies the superintegrability relation

for the correlator [45], 〈
SR{Pk}

〉
= SR{N}SR{δk,m}

SR{δk,1}
(3.6)

where Pk = trMk are traces of matrices at the matrix WLZZ model.
This partition function (3.5) can be realized by the two-matrix integral [36, 37]

Z−m =
∫∫

N×N
dXdY exp

(
−TrXY +

∑
k

pk
k

TrXk + 1
m

TrY m

)
(3.7)

Here the integral is understood as integration of a power series in pk, and X are Hermitian
N ×N matrices, while Y are anti-Hermitian N ×N ones. Such partition function satisfies
the so called W̃ -algebra constraints [55]:

W̃ (−,m)
n Z−m = (n+m) ∂Z−m

∂pn+m
, n ≥ −m+ 1 (3.8)

There are spin m W̃ -algebras of two types which we denote W̃ (±,m), their generators being
defined [55, 56] (see also [36, section 7]) by any of the following three relations:(

∂

∂Λ

)m+1
f(pk) =

∑
n≥1

Λ±n−1W̃
(±,m+1)
n±m (pk)f(pk)

∣∣∣∣∣∣
pk=TrΛ±k

(3.9)

or1

W̃
(±,m+1)
n±m (t)e

∑
k≥0 tkTrΛ∓k

= Tr
{(

∂

∂Λ

)m
Λ∓n

}
e
∑

k≥0 tkTrΛ∓k

(3.10)
or

W̃ (±,m+1)
n (p) =

∑
k≥1

pkW̃
(±,m)
n+k (p) +

n∓(m−1/2)−1/2∑
k=1

k
∂

∂pk
W̃

(±,m)
n−k (p) +NW̃ (±,m−1)

n (3.11)

The last recurrence relation should be supplemented by “the initial condition”

W̃ (±,1)
n = n

∂

∂pn
, n ≥ 1

W̃
(±,1)
0 = N

(3.12)

and one generally requires that

W̃ (±,m)
n = 0, n ≤ −m (3.13)

1In eq. (3.10), we again introduced tk := pk/k in order to switch on the variable t0, which makes the
formulas simpler.
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3.2 Model with m ≥ 3

3.2.1 W-representation of the m = 3 model

Let us start from the simplest example of m = 3. Then, one can obtain from (3.1) and (2.2)

Ŵ−3 = 1
2[Ŵ−1, Ŵ−2] =

∑
k,l,m

mpkplpm−k−l+3
∂

∂pm
+ 3

2
∑
k,l,m

kmplpk+m−l+3
∂2

∂pm∂pk

+
∑
k,l,m

klmpk+l+m+3
∂3

∂pk∂pl∂pm
+ 1

2
∑
k

k(k + 1)(k + 2)pk+3
∂

∂pk

+3N
∑
k,l

klpk+l+3
∂2

∂pk∂pl
+ 3N

∑
k,l

lpkpl−k+3
∂

∂pl
+N(p3

1 + p3)

+2N2∑
k

kpk+3
∂

∂pk
+ 3N2p1p2 +N3p3 (3.14)

In accordance with the general rule of constructing W-representations [24], this operator
can be rewritten as

Ŵ−3 =
∑
k

pkŴ
(3)
k−3 (3.15)

with a simple and immediate operator

Ŵ (3)
n =

∑
m,l

(n+m+ l)plpm
∂

∂pm+l+n
+ 3

2
∑
m,l

lmpl+m−n
∂2

∂pl∂pm

+
∑
m,l

(n−m− l)ml ∂3

∂pm∂pl∂pn−m−l
+ n(n+ 1)(n+ 2)

2
∂

∂pn

+3N
∑
k

(k + n)pk
∂

∂pk+n
+ 3N

∑
k

k(n− k) ∂2

∂pk∂pn−k
+ 3N2n

∂

∂pn

+N(N2 + 1)δn,0 + 3N2p1δn,−1 +Np2
1δn,−2 (3.16)

One may think that again, similarly to the m = −2 case, the infinite set of constraints
satisfied by the partition function is

Ŵ (3)
n Z−3

?= (n+ 3) ∂Z−3
∂pn+3

, n ≥ −2 (3.17)

However, this is not the case: for instance,

Ŵ
(3)
−2Z−3 −

∂Z−3
∂p1

= −2N2p2 + . . .

Ŵ
(3)
−1Z−3 − 2∂Z−3

∂p2
= 2N2p1 + . . . (3.18)

and only in the sum (3.15) the first terms cancel with each other. It is related to the fact
is that the set of equations (3.17) does not admit any non-trivial solutions.

– 8 –
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The point is that the representation of Ŵ−3 as a sum (3.15) is not unique, and one
can equivalently realize Ŵ−3 instead of (3.15) as

Ŵ−3 =
∑
k

pkW̃
(−,3)
k−3 (3.19)

with

W̃ (−,3)
n =

∑
a+b+c=n

abc
∂3

∂pa∂pb∂pc
+
∑
k=1

pk

(
n+1∑
a=1

+
n+k−1∑

a=1

)
a(k+n− a) ∂2

∂pa∂pk+n−a

+
∑

a,b=1
(a+ b+n)papb

∂

∂pa+b+n
+ n(n+ 1)(n+ 2)

2
∂

∂pn

+3N
n−1∑
a=1

a(n− a) ∂2

∂pa∂pn−a
+ 3N

∑
k=1

(n+ k)pk
∂

∂pn+k
+ 3N2n

∂

∂pn
+N(n+ 1)p1

∂

∂pn+1

+N(N2 + 1)δn,0 + 2N2p1δn,−1 +N(p2
1 +Np2)δn,−2−N

∑
k

kpk+2
∂

∂pk
δn,−2 (3.20)

and the equation
W̃ (−,3)
n Z−3 = (n+ 3) ∂Z−3

∂pn+3
, n ≥ −2 (3.21)

is satisfied, in accordance with (3.8).

3.2.2 Spectral curve

In order to construct the loop equation, one has to repeat the procedure of section 2.2.
The only difference is that now one has to convert the constraints (3.21) at m = 3 with
z−n−3. Again,

ρ−3(z|tk) := ∇̂zF−3 =
∑
k≥0

1
zk+1

∂F−3
∂tk

(3.22)

and introducing y := ρ−3(z|0)
∣∣∣
g→0

, one obtains the spectral curve equation

y3 − zy +N = 0 (3.23)

3.2.3 Spectral curve from the W-representation

In order to relate solution of the spectral curve equation, (3.23) with theW-representation,
we again truncate the W-representation to the third derivative terms only:

Ŵspec
−3 :=

∑
a,b,c≥0

(a+ b+ c+ 3)ta+b+c+3
∂3

∂ta∂tb∂tc

= N3p3 + 3N2
∞∑

a=1
apa+3

∂

∂pa
+ 3N

∞∑
a,b=1

abpa+b+3
∂2

∂pa∂pb
+

∞∑
a,b,c=1

abcpa+b+c+3
∂3

∂pa∂pb∂pc

(3.24)

We again define
e

z3
3 Ŵ

spec
−3 · 1 = eP−3(z) (3.25)
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and realize that
P−3(z) = N

∞∑
k=1

3Γ(3k)(z3N2)k
Γ(2k + 2)Γ(k)

p3k
3k (3.26)

On the other hand, expanding (3.23) at large z, one obtains

y(z) = N

z
+
∞∑
k=1

3 · Γ(3k)
Γ
(
2k + 2

)
Γ(k)

· z−3k−1N2k+1 (3.27)

Thus, one obtains
P−3(z) =

∮
V (xz) y(x)dx (3.28)

3.3 Model with generic m

Formulas are just the same for any Ŵspec
−m , for example

Ŵspec
−4 := N4p4 + 4N3

∞∑
a=1

apa+4
∂

∂pa
+ 6N2

∞∑
a,b=1

abpa+b+4
∂2

∂pa∂pb

+4N
∞∑

a,b,c=1
abcpa+b+c+4

∂3

∂pa∂pb∂pc
+

∞∑
a,b,c,d=1

abcdpa+b+c+d+4
∂4

∂pa∂pb∂pc∂pd

(3.29)

Defining again
e

zm

m
Ŵspec
−m · 1 = eP−m(z) (3.30)

one obtains
P−m(z) = N

∞∑
k=1

mΓ(mk)(zmNm−1)k
Γ((m− 1)k + 2)Γ(k)

pmk
mk

(3.31)

The spectral curve equation in this case is

ym − zy +N = 0 (3.32)

Expanding its solution at large z, one obtains

y(z) = N

z
+
∞∑
k=1

m · Γ(mk)
Γ
(
(m− 1)k + 2

)
Γ(k)

· z−mk−1N (m−1)k+1 (3.33)

Thus, one again obtains
P−m(z) =

∮
V (xz) y(x)dx (3.34)

One can always invert the procedure and start from the W-representation, pick up the
terms with maximal number of derivatives, and calculate the corresponding P. After this,
one calculates y(x) (up to the first term, which is always N/z) and then find an equation
that is satisfied by this y. This equation is exactly the spectral curve. When only p-linear
terms are kept, i.e. when we deal with Ŵspec, the matrix size N can always be eliminated
by the change pk −→ pk/N , z −→ z/N

m−1
m . This scheme works for all the models we

considered so far, however, it has to be improved in some points as we shall see in the next
two sections.
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4 From Hurwitz model to Lambert curves

4.1 Hurwitz model and its spectral curve

There is also a model in between negative and positive branches of the WLZZ models.2
This model is given by the W-representation

Ŵ0 =
∑
a,b

abpa+b
∂2

∂pa∂pb
+
∑
a,b

(a+ b)papb
∂

∂pa+b
+N

∑
a

apa
∂

∂pa
(4.1)

and is nothing but the Hurwitz partition function [34, 35, 57]

Z0 = exŴ0 · eβp1 =
∑
R

β|R|SR{δk,1}SR{pk}exC2(R) (4.2)

where C2(R) denotes the eigenvalue of second Casimir operator: C2(R) = ∑
i,j∈R(N+j−i).

This partition function is also a KP τ -function of the hypergeometric type [27, 36, 51, 54].
Now the spherical limit again is governed by the part of this operator with maximal

number of derivatives:

Ŵspec
0 =

∑
a,b

abpa+b
∂2

∂pa∂pb
+N

∑
a

apa
∂

∂pa
(4.3)

One obtains
exŴ

spec
0 · eβp1 = eP0(x) (4.4)

with
P0(x) = 1

x

∑
k≥1

(2k)k−1

k!
(
βexNx

)k pk
k

(4.5)

This is the first time, when we can observe that the coefficient in front of the W-operator,
x does not provide a good spectral parameter, since it no longer provides grading (because
of the term exN ). This is because the exponential of W-operator acts not on the unity, but
on the exponential of times. Hence, from now on, we use another procedure, which does
not give anything new in the earlier considered cases, but will be of use in the forthcoming
considerations. That is, we use x as a free parameter that can be chosen in a convenient
way (it can be removed by rescalings of other parameters), and instead we introduce the
spectral parameter z by making a substitution pk → zkpk.

Hence, our general prescription for making the spectral curve from the Ŵspec-
operator is:

2The operator (4.1) of this model generates both the operator

Ŵ1 =
[
Ŵ0,

[
Ŵ0,

∂

∂p1

]]
and the operator

Ŵ−1 =
[
Ŵ0,

[
Ŵ0, p1

]]
generating the positive and negative branches accordingly, sections 5 and 3.
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(i) to use this operator instead of the full operator in the W-representation;
(ii) to demonstrate that this produces a linear exponential in pk’s, and gives

rise to P(z), where the z-dependence is introduced by making the substi-
tution pk → zkpk;

(iii) to use the formula

P0(z) =
∮
V (wz) y(w)dw

in order to generate y(z), which satisfies the spectral curve equation.

In particular, in the model under consideration, we obtain from (4.5)

y(z) = 1
2x
∑
k≥1

kk−1
(
2xβexN

)k
k! z−k−1 (4.6)

This is a large z expansion of the spectral curve

2xye−2xyz = ξ

z2 , ξ = 4βx2exN (4.7)

which is the Lambert curve, in accordance with what should be the spectral curve for the
Hurwitz theory, [29, 30]. Since the parameter x provides just a trivial rescaling, we choose
it, for the sake of simplicity, equal to 1/2. Hence, the spectral curve finally has the form3

ye−yz = βeN/2

z2 (4.8)

Note that N is now eliminated by the change of variables pk −→ pk/N , z −→ z/N ,
β −→ βN . However, because of additional exponential dependence of x and additional
factor of β in (4.5), the full N -dependence gets very different from that in the m < 0 mod-
els. In particular, it no longer has any straightforward relation to topological expansion.
Because of it, and since the N -dependence reduces just to simple rescalings, for the sake of
simplicity, we just ignore a possibility of adding N -dependent terms in the next subsection.

4.2 Cut-and-join operators and higher Lambert curves

Let us note that the W-operator Ŵ0, (4.1) is nothing but the cut-and-join operator
Ŵ[2] [34, 35, 57]. Hence, let us consider the next non-trivial generalized cut-and-join oper-
ator Ŵ[3] [34, 35]:

Ŵ[3] =
∞∑

a,b,c≥1
abcpa+b+c

∂3

∂pa∂pb∂pc
+ 3

2
∑

a+b=c+d
cd (1− δacδbd) papb

∂2

∂pc∂pd

+
∑

a,b,c≥1
(a+ b+ c) (papbpc + pa+b+c)

∂

∂pa+b+c
(4.9)

3The parameterization of the Lambert curve here is different from that in [29], since, in accordance with
the definition of the resolvent [28], we choose to work at the vicinity of infinity (at large z) with the local
parameter 1

z
instead of x around x = 0 in [29, eq. (2.18)], and the leading term is 1

z
. Thus, this formula

and [29, eq. (2.16)] are identified upon the redefinition z → 1/x and y → yx.
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As we explained in the previous subsection, we do not need to add any N -dependent terms.
This operator generates the Hurwitz partition function [34, 35]

Z[3] = exŴ[3] · eβp1 =
∑
R

β|R|SR{δk,1}SR{pk}exC3(R) (4.10)

where C3(R) denotes the eigenvalue of second Casimir operator: C3(R) = ∑
Ri

[
(Ri − i+

1/2)3 − (−i+ 1/2)3
]
.

In order to construct Ŵspec
[3] , as before, we pick up only the terms with maximal number

of derivatives. Then,

Ŵspec
[3] =

∞∑
a,b,c≥1

abcpa+b+c
∂3

∂pa∂pb∂pc
(4.11)

and
e

x
3 Ŵ

spec
[3] · eβp1 = exp

(
β
∑
n=0

(2n+ 1)n−1

n! (xβ2)n p2n+1
2n+ 1

)
(4.12)

This leads to the spectral curve (we choose x = 1)

ye−z
2y2 = β

z2 (4.13)

which is the higher Lambert curve.
Similarly, the higher generalized cut-and-join operators Ŵ[s] [34, 35] generate higher

Hurwitz partition function [34, 35] associated with “completed cycles” [58, 59] (or r-spin
Hurwitz numbers [60–62])

Z[r] = exŴ[r] · eβp1 =
∑
R

β|R|SR{δk,1}SR{pk}exCr(R) (4.14)

where Cr(R) denotes the eigenvalue of second Casimir operator: Cr(R) = ∑
Ri

[
(Ri − i +

1/2)r − (−i+ 1/2)r
]
. They corresponds to

Ŵspec
[s] =

∑
{ai}

(
s∏
i=1

ai

)
p∑

i
ai

∂s

∂a1 . . . ∂as
(4.15)

and

e
x
k
Ŵspec

[s] · eβp1 = exp
(
β
∑
n=0

((s− 1)n+ 1)n−1

n! (xβs−1)n
p(s−1)n+1

(s− 1)n+ 1

)
(4.16)

which leads to the higher Lambert curve (x = 1)

ye−z
s−1ys−1 = β

z2 (4.17)

The higher Lambert curves as the spectral curves for the r-spin Hurwitz numbers were
earlier discussed in [60–62].
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Note that one could consider a generic generalized cut-and-join operator Ŵ∆ with ∆
being an arbitrary partition [34, 35]. However, it acts trivially on eβp1 if the partition ∆
has more than one part, or more than one line in terms of Young diagrams. Consider, for
instance, ∆ = [2, 1]. Then,

Ŵspec
[2,1] =

∑
a,b=1

ab(a+ b− 2)pa+b
∂2

∂pa∂pb
= 2p3

∂2

∂p1∂p2
+ . . . (4.18)

Similarly,

Ŵspec
[2,2] =

∑
a,b=1

abc(a+ b− 2)pa+b+c
∂3

∂pa∂pb∂pc
= 2p4

∂3

∂p2
1∂p2

+ . . .

Ŵspec
[3,1] =

∑
a,b=1

abc(a+ b+ c− 3)pa+b+c
∂3

∂pa∂pb∂pc
= 2p4

∂3

∂p2
1∂p2

+ . . .

Ŵspec
[2,1,1] =

∑
a,b=1

ab(a+ b− 2)(a+ b− 3)pa+b
∂2

∂pa∂pb
= 6p4

∂2

∂p1∂p3
+ 8p4

∂2

∂p2
2

+ . . .

Ŵspec
[1k] =

∑
a,b=1

a(a− 1) . . . (a− k + 1)pa
∂

∂pa
= k!pk

∂

∂pk
+ . . . (4.19)

and, in all these cases,
eŴ

spec
∆ · eβp1 = eβp1 ∆ 6= [s] (4.20)

4.3 Completed cycles or not?

One can also consider linear and even multi-linear combinations of W∆-operators. Adding
lower order operators does not change the Ŵspec-operator and, hence, does not change
the answer for the spectral curve obtained by our procedure. However, among all these
combinations, there are some distinguished ones, which provide integrable partition func-
tions [34, 35, 51, 54]. They are exactly those associated with completed cycles (4.14). For
instance, for s = 1, 2, 3, 4, these are the operators (one at each level)

Ŵ[1], Ŵ[2], Ŵ[3] + 1
2Ŵ

2
[1], Ŵ[4] + 2Ŵ[1]Ŵ[2] (4.21)

and their arbitrary linear combinations. We expect that our procedure of getting spectral
curves is most immediately applied exactly to such W -operators.

Alternatively, one can take other combinations and claim that, perhaps, integrability
is not that necessary for superintegrability of the system, since the partition function (α∆,k
are arbitrary coefficients)

e
∑

∆ α∆,kŴ
k
∆ · eβp1 =

∑
R

β|R|SR{δk,1}SR{pk}e
∑

∆ α∆,kφR(∆)k (4.22)

has a clear superintegrable structure despite not being integrable at generic α∆,k [54].
In this expression, φR(∆) is a peculiarly normalized character of the symmetric group
S∞ [34, 35], and the formula is based on the defining property of the Ŵ∆-operators [34, 35]

Ŵ∆SR = φR(∆)SR (4.23)

– 14 –



J
H
E
P
0
3
(
2
0
2
3
)
1
1
6

Thus, these models at m = 0 and at higher s allows one to study the questions of con-
nections of integrability and superintegrability as well as of relation to the topological
recursion and topological expansions, which were difficult to ask in simpler cases. Note
that the topological recursion in the completed cycle case was studied earlier in [60–62].

4.4 Spectral densities with trAk = δk,s

Note that the higher Lambert curves are surprisingly related to the negative branch of the
WLZZ models: their superintegrability relation essentially involves SR{δk,m}, see (3.5),
i.e., if the variables pk are expressed through the matrices A, pk = trAk, it is related to
solutions to the equation

trAk = δk,s for all k ∈ Z+ (4.24)

Equivalently, one may ask what are the variables ai, or the eigenvalues of the matrix A

such that ∑
i=1

aki = δk,s for all k ∈ Z+ (4.25)

This is a very natural question since the Schur function SR is a symmetric function just
of ai.

In fact, this problem is difficult to solve, however, one may consider the matrix A of a
large size N , and to study the density of ai in the large N limit:

ρ(z)dz =
N∑
i=1

δ(z − ai) (4.26)

so that ∫
zkρ(z)dz = trAk (4.27)

Hence, one has to solve the equation∫
zkρ(z)dz = δk,s (4.28)

A solution to this equation is related to a remarkable property at the large N limit [63]:
the variables z lying on the higher Lambert curve

ze−z
s = w = eiφ (4.29)

satisfies the relation ∮
z−kdφ = δk,s (4.30)

i.e. only for k = s the series z−k does not have the term w0 (this is non-trivial for all
k = ms with m > 1).
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5 An infinite set of WLZZ models. Positive branch

5.1 Description of the models

The WLZZ proposal at positive integers is to use another pair of operators in order to
generateW-representations, and act with it on an exponential linear in variables pk instead
of unity. More precisely, the procedure is as follows. One starts with the two operators

Ŵ1 =
∑
k,l

(k+ l+ 1)pkpl
∂

∂pk+l+1
+
∑
k,l

klpk+l−1
∂2

∂pk∂pl
+ 2N

∑
k

(k+ 1)pk
∂

∂pk+1
+N2 ∂

∂p1
(5.1)

Ŵ2 =
∑
k,l

(k+ l+ 2)pkpl
∂

∂pk+l+2
+
∑
k,l

klpk+l−2
∂2

∂pk∂pl
+ 2N

∑
k

(k+ 2)pk
∂

∂pk+2
+ 2N2 ∂

∂p2
+N

∂2

∂p2
1

(5.2)

which give rise to an infinite set of operators

Ŵm+1 = 1
m

[Ŵm, Ŵ1], m ≥ 2 (5.3)

In fact, these operators can be manifestly described as invariant operators on matrices:
with an N ×N matrix Λ, one can define

Ŵm = Tr
(
∂m

∂Λm
)
, m ≥ 2 (5.4)

When acting on invariant functions, i.e. functions of pk = Tr Λk, these operators coin-
cide [32] with (5.3).

In fact, these operators can be constructed from the generators of the W̃ -algebra of
section 3.1. Indeed, from relation (3.9) it follows that

Ŵm = Tr
(
∂m

∂Λm
)

=
∑
n=1

pnW̃
(+,m)
n+m +NW̃ (+,m)

m (5.5)

This implies that the partition function of the corresponding matrix model satisfies the
W̃ (+)-constraints (see a particular case in the next subsection). Note that, in variance
with the negative branch of WLZZ models, where each degree of N was associated with
the t0-derivative, for the positive branch of WLZZ models, N is just p0, and this formula
can be rewritten in the form

Ŵm =
∑
n=0

pnW̃
(+,m)
n+m (5.6)

In particular,

W̃ (+,2)
n =

∑
k=1

(k + n)pk
∂

∂pk+n
+
n−1∑
k=1

k(n− k) ∂2

∂pn−k∂pk
+Nn

∂

∂pn
+N2δn,0 +Np1δn+1,0

(5.7)
The operators Ŵm (5.3), (5.4) generate the partition function

Zm = e
Ŵm

m · e
∑

k
gkpk/k (5.8)
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where gk are just arbitrary parameters. These partition functions have the superintegrable
representations

Z1 =
∑
R,Q

(
SR{N}SQ{δk,1}
SQ{N}SR{δk,1}

)2

SR/Q{δk,1}SR{gk}SQ{pk}

Zm =
∑
R,Q

SR{N}SQ{δk,1}
SQ{N}SR{δk,1}

SR/Q{δk,m}SR{gk}SQ{pk} at m > 1 (5.9)

where SR/Q is the skew Schur function [33]. This is a KP τ -function in variables pk. It
does not come as a surprise, since e

∑
k
gkpk/k is a KP τ -function, and Ŵn is an element of

w∞-algebra [36, 64]. However, it turns out that this partition function is also a τ -function
w.r.t. the second set of variables, gk, which is far less evident. Moreover, even a more
strong property is correct: Zn is a τ -function of the Toda lattice hierarchy with N being
the Toda zero time. It follows from the fact that it is a KP τ -function to the both sets of
time variables4 kpk and kgk, and it satisfies to the lowest Toda-chain hierarchy.5

Representation (5.9) for the partition function implies that the superintegrability re-
lation for the correlator〈

SQ{Pk}
〉

=
∑
R

SR{N}SQ{δk,1}
SQ{N}SR{δk,1}

SR/Q{δk,m}SR{gk} (5.10)

where, as previously, Pk = trMk are traces of matrices at the matrix WLZZ model.
Note that all the underlined terms in (5.1) and (5.2) break homogeneity in N under

the substitution pk −→ pk/N , this is already a signal that they all should be eliminated
from Ŵspec, see below.

5.2 Model with m = 2

Like in the case of negative m, for one particular value m = 2 there is a known one-matrix
model realization [32, 65]. In this case, this is the Hermitian matrix model in the external
field Λ [56]:

Z2 =
∫
dM exp

(
−1

2 TrM2 +
∑
k

gk
k
· Tr(M + Λ)k

)
(5.11)

and pk = Tr Λk.
Shifting the variable of integrationM →M−Λ, one can rewrite this partition function

in the form

Z2 = e−
1
2p2

∫
dM exp

(
−1

2 TrM2 + TrMΛ +
∑
k

gk
k
· TrMk

)
(5.12)

4Note that the traditional choice tk of time variables of the KP hierarchy as compared with power sums
pk of variables in symmetric functions is tk = kpk.

5Indeed, one can check that the equation

Zm(N) · ∂
2Zm(N)
∂p1∂g1

− ∂Zm(N)
∂p1

∂Zm(N)
∂g1

= Zm(N + 1)Zm(N − 1)

is satisfied. We checked it up to grading 10 with the computer. This equation along with the KP hierarchies
w.r.t. to the two sets of time variables guarantees that Zm(N) is a τ -function of the Toda lattice hierarchy.
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When only g1 and g2 are non-vanishing, we have the Gaussian integral, while when g3 6= 0,
we get a more complicated integral, which requires a more advanced approach.

This kind of models was studied in [56], and this partition function describes a gen-
eralized Kontsevich model in the character phase. It satisfies the Ward identities [56,
section 2.4.2]g1δn,1 + δn,2 − n

∂

∂pn
+
∑
k>1

gkW̃
(+,k−1)
k+n−2

 e
1
2p2Z2 = 0, n ≥ 1 (5.13)

5.3 Spectral curve, m = 2

Let us convert the Ward identities (5.13) with z−s−3 and, for the sake of simplicity, preserve
only g1, g2 and g3. Then, one gets the spectral curve

g1z
2 + g3Nz

2 + g2z+ g3
z6 + g3Nz

2 + (g2− 1)z+ 2g3
z3

(
y− N

z

)
− g3Nα

z3 + g3

(
y− N

z

)2
= 0

(5.14)
where we used (3.12) and (5.7). Here α is an arbitrary constant, i.e. the spectral curve and
the Ward identities have ambiguous solutions (parameterized by one constant).

Indeed, the set of Ward identities (5.13) can be rewritten as

Wn Z =
(

(g1 + g3N)δn,1 + g2δn,2 + g3δn,3 + (g2− 1)n ∂

∂pn
+ 2g3(n− 1) ∂

∂pn−1
+ g3N(n+ 1) ∂

∂pn+1

+ g3W̃
(+,2)
n

)
Z2 = 0, n ≥ 1 (5.15)

where W̃ (+,2)
n is given in (5.7).

Now, following the general procedure, one converts this infinite set of constraints with
powers of z, rescales pk → pk/~, introduces F := ~2 logZ, and rewrites the sum as an
equation for the resolvent

ρ(z|pk) := ∇̂zF =
∑
k≥0

k

zk+1
∂F
∂pk

(5.16)

similarly to (2.7). It remains to puts all pk zero and take the leading behaviour at small ~
in order to obtain for y := ρ−2(z|0)

∣∣∣
~→0

equation (5.14).

5.4 Spectral curve vs. Ŵspec, m = 2

Now again let us compare this result with an alternative procedure, which we advocate in
this paper. Namely, keep the highest derivatives terms in (5.2):

Ŵspec
2 =

∑
k,l

klpk+l−2
∂2

∂pk∂pl
+ 2N

∑
k

(k + 2)pk
∂

∂pk+2
+ 2N2 ∂

∂p2
+N

∂2

∂p2
1

(5.17)

As we shall see, the underlined terms should better be omitted, i.e. the true definition of
Ŵspec should be reduced to terms, which are linear in p. Then,

exŴ
spec
2 · eg1p1 = exNg

2
1 · eg1p1 (5.18)
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and

exŴ
spec
2 · eg1p1+ g2p2

2 = e
xNg2

1
1−2g2x

(1− 2g2x)N2/2 · e
1

1−2g2x

(
g1p1+ g2p2

2

)
(5.19)

In fact, in this case, one can just evaluate the Gaussian integral (5.12) to obtain the r.h.s.
of this formula at x = 1

2 . Indeed, the action of Ŵspec
2 generates the full answer, since the

first term in Ŵ2 (5.2) does not contribute when all pk’s but p1 and p2 are vanishing in the
exponential (5.8).

The ugly prefactor at the r.h.s., which is independent of times, is generated by the
underlined terms in (5.17). Omitting them from Ŵspec

2 , we get just

exŴ
spec
2 · eg1p1+ g2p2

2 = e
1

1−2g2x

(
g1p1+ g2p2

2

)
(5.20)

Note that, at the moment, our general principle is to leave in Ŵspec only the terms with
maximum number of derivatives. However, this principle in all cases considered earlier
was equivalent to leaving only terms linear in time variables pk. In the case of Ŵspec

2 we
observe, for the first time, the difference between these two principles, and it becomes clear
that we need to follow the second one.

Now note that from (5.14) it follows that, in the case of only g1 and g2 non-zero,

y = N

z
+ g1z + g2

(1− g2)z3 (5.21)

Inserting this y into
∮
V (xz) y(x)dx, one gets in the exponential

P2 = 1
1− g2

(
zg1p1 + z2g2p2

2

)
(5.22)

instead of
P ′2 = 1

1− 2g2x

(
zg1p1 + z2g2p2

2

)
(5.23)

in (5.20) after making the substitution pk → zkpk. One could make these two expressions
consistent choosing x = 1

2 .
Now consider a more involved case of non-vanishing g3. To simplify the formulas, let

g2 = g1 = 0. Then

exŴ
spec
2 · eg3p3/3 = exp

g3
∑
k=1

(2k)!
(k + 1)!k! (2g3x)k−1 pk+2

k + 2 +N
∑
k=1

(2k − 1)!
k!(k − 1)!(2g3x)k pk

k

+
∑
m=1

(Ng2
3x

3)m ·
∑
k=1

Nα
(m)
k · (2g3x)k pk

k

 (5.24)

Numeric coefficients α(m)
k are quite complicated, but all the underlined terms come with

extra powers of Ng2
3. This provides a selection rule, which allows one to eliminate them in

a regular way.
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Now let us again choose x = 1
2 . Then, the spectral curve is associated with the main

terms, which are not underlined is (in accordance with P2 =
∮
V (xz) y(x)dx)

y2(z) =
∑
k=1

2k!
(k + 1)!k!

gk3
zk+3 +N

∑
k=1

(2k − 1)!
k!(k − 1)!

gk3
zk+1

= 1
2g3z2

(
1−

√
1− 4g3

z

)
− 1
z3 + N

2z

 1√
1− 4g3

z

+ 1

+O(N2) (5.25)

In order to compare this curve with (5.14) note that, like in section 4.1, elimination of
the underlined terms in (5.17) is done by the rescaling pk −→ pk/N and considering small
N limit. Hence, the relation of topological and 1/N -expansion breaks down (similarly to
what happened in section 4.1).

Consider now the leading order of (5.14) at small N :
g3
z6 + 2g3 − z

z3 y(0) + g3
(
y(0)

)2
= 0 (5.26)

Its solution is exactly the curve (5.25) at small N , the first two terms:

y(0)(z) = 1
2g3z2

(
1−

√
1− 4g3

z

)
− 1
z3 = y

(0)
2 (z) (5.27)

Now, one can consider the first small N correction to (5.14). It gives rise to a more
complicated formula than just

y
(1)
2 (z) = N

2z

 1√
1− 4g3

z

+ 1

 (5.28)

in (5.25):

y(1)(z) = N

2z

1− 2αg3 + 2g3
z (α− 1)√

1− 4g3
z

+ 1

 (5.29)

However, note that the rescaling pk −→ pk/N would imply also the rescaling gk −→ Ngk
in order to preserve exponential intact. This means that one also has to consider a leading
behaviour at small g3. The leading contribution at small g3 in (5.29) (after the rescaling
of z → g3z) is exactly (5.28) upon the choice of α = 1: y(1)(z) → y

(1)
2 (z), and finally we

come to (5.25).
Note that one can introduce new variables Y2 = z3y

(0)
2 and x = Z/g3 such that the

spectral curve (5.26) becomes

(ZY2)1/2 − Y2 − 1 = 0 (5.30)

To summarize, we see that the spectral curve (5.14), which can be extracted from the
matrix model realization (5.11), is consistent with our universal definition from the p-linear
part Ŵspec of the Ŵ operator. However, in this case, one needs to deal with the small N
limit, and the idea of large N expansion, which continued to be safe for the WLZZ models
with m < 0 needs to be changed for its opposite at m > 0.
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Thus, we finally can formulate the general prescription: in order to construct
the operator Ŵspec, one has to leave in the original operator Ŵ linear in pk
terms with maximum number of derivatives.

As for the large or small N limit and the topological expansion, as we demonstrated,
it depends on the concrete model.

5.5 Spectral curve in the m = 1 model

Now consider models at other values of m. We consider only the leading small N order of
the spectral curve.

We start with the very first example, m = 1. In this case, the Ŵ -operator is given by
formula (5.1), and, in accordance with our general rule,

Ŵspec
1 =

∑
k,l

klpk+l−1
∂2

∂pk∂pl
+N2 ∂

∂p1
(5.31)

Since we deal with the small N limit, we drop out the underline term. Then,

exŴ
spec
1 · eg1p1+g2p2/2 = exp

 g1
1− xg1

p1 + 1
x(1− xg1)

∑
n≥1

1
n
C3n
n−1

(
xg2

(1− xg1)3

)n pn+1
n+ 1


(5.32)

where Cnk are the binomial coefficients.
In order to get the spectral curve, we choose x = 1. Then, the spectral curve is

associated with the leading term at small N (in accordance with P1 =
∮
V (xz) y(x)dx)

y
(0)
1 = 1

(1− g1)z2

g1 +
∑
n≥1

1
n
C3n
n−1

(
g2

z(1− g1)3

)n
︸ ︷︷ ︸

Y1−1

 := 1
(1− g1)z2 (g1 − 1 + Y1) (5.33)

Upon introducing also a new variable Z = z(1 − g1)3/g2, this sum satisfies the equation
for the spectral curve

Z−1Y 3
1 − Y1 − 1 = 0 (5.34)

Thus, one can see that the role of g1 is basically to rescale g2 for g2/(1−g1)3, much similar
to the rescaling with 1/(1− g2) in the m = 2 case.

Hence, now we drop g1, and switch on the g3 parameter instead:

exŴ
spec
1 · eg2p2/2+g3p3/3 = exp

1
x

∑
n≥1,k≥0

1
n
C3n+2k
n−1 Cnk (xg2)n−k(xg3)k pn+k+1

n+ k + 1


(5.35)

The equation for the spectral curve for

y
(0)
1 =

∑
n≥1,k≥0

1
n
C3n+2k
n−1 Cnk g

n−k
2 gk3z

−n−k−2 = Y1 − 1
z2 (5.36)
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is rather simple:
g3
z2Y

5
1 + g2

z
Y 3

1 − Y1 + 1 = 0 (5.37)

One can also easily restore the parameter g1 in (5.35):

exŴ
spec
1 · eg1p1+g2p2/2+g3p3/3

= exp

 g1
1−xg1

p1 + 1
x(1−xg1)

∑
n≥1,k≥0

1
n
C3n+2k
n−1 Cnk

(
xg2

(1−xg1)3

)n−k ( xg3
(1−xg1)5

)k pn+k+1
n+ k+ 1


(5.38)

It again reduces to the rescalings g2 → g2/(1− xg1)3, g3 → g3/(1− xg1)5.
Now the general formula is clear: adding on more parameters gk, k = 2, . . . ,K gives

rise to the spectral curve
K∑
k=2

gk
zk−1Y

2k−1
1 − Y1 + 1 = 0 (5.39)

and, the parameters rescalings upon switching on g1 are: gk→gk/(1−g1)2k−1, k=1, . . . ,K.

5.6 Spectral curve in the m = 3 model

Our next example is m = 3, and the Ŵ3-operator is

Ŵ3 =
∑

a,b,c≥1
abcpa+b+c−3

∂3

∂pa∂pb∂pc
+
∑
b,c≥1

b+c+2∑
a=1

a(b+ c− a+ 3)pbpc
∂2

∂pa∂pb+c−a+3

+
∑
b,c≥1

b+1∑
a=1

a(b+ c− a+ 3)pbpc
∂2

∂pa∂pb+c−a+3
+

∑
a,b,c≥1

(a+ b+ c+ 3)papbpc
∂

∂pa+b+c+3

+3N
∑
b≥1

b+2∑
a=1

a(sb− a+ 3)pb
∂2

∂pa∂pb−a+3
+ 3N

∑
a,b≥1

(a+ b+ 3)papb
∂

∂pa+b+3

+
∑
a≥1

(a+ 1)(a+ 2)(a+ 3)
2 pa

∂

∂pa+3
+ 3N2 ∑

a≥1
(a+ 3)pa

∂

∂pa+3

+N ∂3

∂p3
1

+ 6N2 ∂2

∂p1∂p2
+ 3N(N2 + 1) ∂

∂p3
(5.40)

To get the operator Ŵspec
3 , in accordance with the general principle, we leave only the first

term in this expression:

Ŵspec
3 =

∑
a,b,c

abcpa+b+c−3
∂3

∂pa∂pb∂pc
(5.41)

In this case, the action of exŴ
spec
3 on eg1p1 is trivial:

exŴ
spec
3 · eg1p1 = eg1p1 (5.42)
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while the actions of exŴ
spec
3 on e

g2p2
2 and e

g3p3
3 are

exŴ
spec
3 · e

g2p2
2 = exp

(∑
n=0

g2
n+ 1C

2n
n (xg2

2)n pn+2
n+ 2

)
(5.43)

exŴ
spec
3 · e

g3p3
3 = exp

(∑
n=0

2g3
3n+ 2C

4n+1
n (xg2

3)n p3n+3
3n+ 3

)
(5.44)

Switching on the g1 parameter in these cases, as previously, just rescales the parameters
gk. For instance, g2 → g2/

√
1− 4xg1g2. This also adds a contribution proportional to p1

similar to g1
(1−g1)z2 in (5.33).

The spectral curves associated with (5.43) and (5.44) are accordingly

z3

g2
y3 = 1 + z5y2

3

z4

g3
y3 = (1 + z5y2

3)2 (5.45)

where we omitted the superscript 0 of y(0), for the sake of brevity.
Now the natural conjecture is that, for a non-zero parameter gk, the curve looks like

zk+1

gk
y3 = (1 + z5y2

3)k−1 (5.46)

Indeed, let us consider the action of exŴ
spec
3 on e

g4p4
4 :

exŴ
spec
3 · e

g4p4
4 = exp

{∑
k=1

3(6k − 4)!
(k − 1)!(5k − 2)!(3x)k−1g2k−1

4
p5k−1
5k − 1

}
(5.47)

In order to get the spectral curve, we choose x = 1
3 . Then, the spectral curve is

associated with the leading term at small N is (in accordance with P3 =
∮
V (xz) y(x)dx)

y3 = 3
g4

∑
k=1

(6k − 4)!
(k − 1)!(5k − 2)!

(
g2

4
z5

)k
(5.48)

This sum satisfies the equation for the spectral curve (5.46).
At last, when the first K parameters gk are non-zero, the spectral curve is

y3 =
K∑
k=2

gk
zk+1 (1 + z5y2

3)k−1 (5.49)

Note that, upon introducing new variables Y3 = g4y
(0)
3 , Z = z5/g2

4, sum (5.48) can be
rewritten in the form

(ZY3)1/3 − ZY 2
3 − 1 = 0 (5.50)
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5.7 Generic m

Generalization to all the WLZZ models with arbitrary m > 0 is now straightforward. For
any m > 0, relevant in Ŵspec

m is just the term:

Ŵspec
m =

∑
{ai}

(
m∏
i=1

ai

)
p∑

i
ai−m

∂m

∂a1 . . . ∂am
(5.51)

In the most interesting case, one gets

exŴ
spec
m · e

gm+1pm+1
m+1 = exp

{∑
k=0

1
nk
Cnk
k m(mx)kg(m−1)k+1

m+1 · pnk−k+1
nk − k + 1

}
(5.52)

where nk = (m− 1)(mk + 1) + 1.
As before, in order to get the spectral curve, we choose x = 1

m . Then, the spectral curve
is associated with the leading term at small N (in accordance with Pm =

∮
V (xz) y(x)dx)

ym = g2−m
m+1z

(m+1)(m−3) ∑
k=0

m

nk
Cnk
k

(
gm−1
m+1

zm2−m−1

)k+1

(5.53)

Upon introducing new variables Ym = gm−2
m+1z

(m+1)(3−m)y
(0)
m , Z = zm

2−m−1/gm−1
m+1, this sum

satisfies the equation for the spectral curve

(ZYm)1/m − Zm−2Y m−1 − 1 = 0 (5.54)

At the same time, the counterpart of (5.49) is

y =
K∑
k=2

gk
zk+1 (1 + z2m−1ym−1)k−1 (5.55)

6 Exponentiation principle

We did not comment so far a miraculously looking property that action of the Ŵspec

operator on the exponential linear in pk’s produces also an exponential linear in pk’s. In fact,
this property follows from the Campbell-Hausdorff formula (CHF) as we will discuss now.

Consider first the simplest case. Even getting the formula

exp
( ∞∑
k=1

kpk+1
∂

∂pk
+Np1

)
· 1 = exp

(
N
∑
k=1

pk
k

)
(6.1)

requires a few steps.
In fact, it results from a multiple application of the CHF, e.g.

exp
(
y
∂

∂x
+Nx

)
· 1 = e−

Ny
2 ey

∂
∂x eNx · 1 = e−

Ny
2 eN(x+y) = e

Ny
2 +Nx (6.2)

where we used the CHF in the form

eA+B = eAeBe−
[A,B]

2 (6.3)
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which is valid when the commutator [A,B] commutes with both A and B. Further,

exp
(

2z ∂
∂y

+ y
∂

∂x
+Nx

)
· 1 = e

2z ∂
∂y ey

∂
∂x e−z

∂
∂x e−

Ny
2 e

Nz
3 eNx · 1 = e

2z ∂
∂y e−

2Nz
3 + Ny

2 +Nx = e
Nz
3 + Ny

2 +Nx

(6.4)
and so on. At this stage, we used the CHF in the form

eA+B+C = eAeBe−
[A,B]

2 e−
[B,C]

2 e
[[A,B],C]

3 eC (6.5)

where [[A,B], C] commutes with all other quantities in this formula.
One can easily change the weights in (6.1):

exp
( ∞∑
k=1

ckpk+1
∂

∂pk
+Np1

)
· 1 = exp

(
N
∑
k=1

c1 . . . ck−1pk
k!

)
(6.6)

However, if one attempts to substitute the exponential functions by anything else:

G

( ∞∑
k=1

kpk+1
∂

∂pk
+Np1

)
· 1 = H

(
N
∑
k=1

pk
k

)
(6.7)

there will be no solutions different from H(x) = G(x) = ex. In this sense, the exponential
function is distinguished.

Our example demonstrates that, since Ŵspec is linear in pk’s though may involve
higher derivatives, exp

(
Ŵspec

)
upon acting on unity produces an exponential linear in

pk’s. In more involved examples of exp
(
Ŵspec

)
, the calculations are more tedious, however,

they work same way. An even more complicated case is when exp
(
Ŵspec

)
is acting on

exp (∑k gkpk/k). However, the result is still an exponential linear in pk’s. In order to prove
this, one has to use the Dynkin form of the CHF [66, 67]:

exp(Â) · exp(B̂) = exp

∑
n

(−1)n
n

∑
{ri+si>0}

1∏n
i=1 ri!si! ·

∑n
i=1(ri + si)

× [Â, [Â, . . . [Â,︸ ︷︷ ︸
r1

[B̂, [B̂, . . . [B̂,︸ ︷︷ ︸
s1

. . . [Â, [Â, . . . [Â,︸ ︷︷ ︸
rn

[B̂, [B̂, . . . , B̂]︸ ︷︷ ︸
sn

]] . . .]


(6.8)

where [X̂] := X̂.
It is clear from this formula that exp

(
Ŵspec

)
· exp (∑k gkpk/k) contains only commu-

tators of operators of the form ∑
pkD̂k, where D̂k is a pure differential operator of a finite

order, and commutators of these operators have also this form. Hence, we ultimately come
to conclusion that exp

(
Ŵspec

)
· exp (∑k gkpk/k) = exp

(∑
pkD̂k

)
· 1, and we return to our

example above.

7 Comments

In this subsection, we mention some other promising directions for further development of
the spectral curve theory for the WLZZ models. We do not elaborate on any of them, but
hopefully they will attract attention in the future.
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7.1 W-representation vs. W -constrains

Actually, W-representation (1.1) is naturally exponential, if Z{p} satisfies the W -con-
straints [23–25].

For instance, as we discussed in sections 2–3 (eqs. (2.2), (3.19), etc.), the W-represen-
tation in the negative branch WLZZ models is of the form

Ŵ−m =
∞∑
k=1

pkW̃
(−,m)
k−m (7.1)

This allows one immediately to obtain the W-representation: since the partition function
Z−m satisfies the set of W̃ (−,m)-algebra constraints (3.8),(

k
∂

∂pk
− W̃ (−,m)

k−m

)
Z = 0 (7.2)

summing it up with pk, we obtain(
l̂0 −

∑
k

pkW̃
(−,m)
k−m {p}︸ ︷︷ ︸

Ŵ−m{p}

)
Z{p} = 0 (7.3)

with the grading operator l̂0 := ∑
k kpk

∂
∂pk

, and with Ŵ−m having a given grading, m
so that

[l̂0, Ŵ−m] = mŴ−m (7.4)

Now, it is immediate to prove that

Z = e
1
m
Ŵ−m · 1 (7.5)

satisfies (7.3). Since the solution to (7.2) is unique, which can be checked following the line
of [28], (or, equivalently, the solution to (7.3) is unique, which can be checked following the
line of [22]), we obtain that (7.2) are equivalent to the W -representation.

This is a generalization of the elementary fact(
x
d

dx
− xm

)
Z = 0 =⇒ Z ∼ exm/m (7.6)

An interesting question is if we know a single Ŵ in a more generic situation, can we
find the entire set of constraints (7.2)? In particular, what is the set of constraints in
the positive branch WLZZ models? This question stands from [30], where it was shown
that a very simple Ŵ is associated with somewhat non-trivial, “conjugate or deformed
continuous” Virasoro constraints.

7.2 Large N limit of superintegrability relation

In this subsection, we again return to the superintegrability relation (3.6) in the case of
the negative branch of the WLZZ models.

For the sake of definiteness, we start with the Gaussian case m = 2. In this case, the
resolvent (2.12) satisfies the spectral curve equation (2.8), and its imaginary part (jump
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at the branch cut) ρ(z) = 1
2πi limε→0

(
y(z − iε) − y(z + iε)

)
= =y(z)

2π ∼
√

4N − z2 is
sometimes called spectral density since it provides the distribution of eigenvalues [1–5, 47–
50] reasonable at large N , when multi-trace correlators factorize. This means that〈

Pk1Pk2

〉
∞

=
〈
Pk1

〉
∞

〈
Pk2

〉
∞

(7.7)

and 〈
Pk
〉
∞

=
∫
zkρ(z)dz (7.8)

It is instructive to see how the superintegrability relations (3.6) trivialize in this limit.
Since in Gaussian case

〈
P2k

〉
∞
∼ Nk+1, dominating in the Schur average is the item

with maximal number of P2:〈
SR
〉
∞

=
〈
SR{δk,2} · P

|R|/2
2

〉
∞

= SR{δk,2} ·
〈
P2
〉|R|/2
∞

= N |R|SR{δk,2} (7.9)

At the same time, this is exactly the large N limit of the r.h.s. of the superintegrability
relation:

SR{δk,2}
SR{N}
SR{δk,1}

N→∞−−−−→ N |R| SR{δk,2} (7.10)

since dominating is the contribution from the maximal power of pk = N , which is p|R|1 .
The main point is that the superintegrability relation in the large N limit is just trivial:

no requirements are imposed on actual values of
〈
P2k

〉
∞

for other k 6= 1. Completely the
same consideration can be repeated for any negative branch WLZZ model.

To put it differently, the superintegrability relations in the large N limit become linear
in the sector with definite grading |R|:〈

SR
〉
∞

= N |R|SR{δk,m} (7.11)

This means that they are not longer restricted to characters, one can take any linear
combination of SR with the same |R|:〈

F
〉
∞

= N |R|F{δk,m} (7.12)

for any F = ∑
R with a given |R| fRSR. In particular, one obtains a factorization: since

SR1SR2 =
∑

R3: |R3|=|R1|+|R2|
NR3
R1R2

SR3 (7.13)

one gets〈
SR1SR2

〉
∞

=
∑
R3

NR3
R1R2

〈
SR3

〉
∞

= N |R1|+|R2|
∑
R3

NR3
R1R2

SR3{δk,m}

= N |R1|+|R2| · SR1{δk,m}SR2{δk,m} =
〈
SR1

〉
∞

〈
SR2

〉
∞

(7.14)
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7.3 Large N limit of double averages

Note that the factorization of correlators at large N should not be taken for granted.
Consider, for instance, double averages in the negative branch WLZZ models that are
factorized due to the superintegrability [64, 68]. These correlators are generated by the
action of the W -operators Ŵm on the Schur function SR as functions of Pk,〈

SQ{Ŵk} · SR{Pk}
〉
WLZZ−m

=
SR/Q{δk,m}SR{N}

SR{δk,1}
(7.15)

It is curious that, though these W -operators generate the positive branch of the WLZZ
models, the correlators we are talking about are those in the negative branch models.

As we demonstrated in [64] for the Gaussian (m = 2) model, the averages (7.15) can
be reduced to a correlator of the form〈

SQ{Ŵk} · SR{Pk}
〉

=
〈
KQ{Pk} · SR{Pk}

〉
(7.16)

where the polynomials KR form a complete basis, and celebrate the property〈
KR ·KQ

〉
= SR{N}
SR{δk,1}

δRQ (7.17)

Examples of these polynomials can be found in [64, appendix].6
Now the point is that these double averages are not factorized. This is because the

operators do not have a definite grading. Moreover, terms of different gradings come with
N -dependent coefficients and are carefully matched to cancel the N -dependent contribu-
tions. In result, the average

〈
KQSR

〉
does not grow as N |Q|+|R|, it is rather ∼ N |R|. More-

over,
〈
KQPR

〉
for individual time-variables PR can grow even slower, e.g.

〈
K[1,1]P2

〉
= 0,

while
〈
P2
〉

= N2.
This is consistent with the fact that the “eigenvalues” µ in

〈
KQSR

〉
= µQ,R ·

〈
SR
〉
, µQ,R =

SR/Q{δk,2}
SR{δk,2}

(7.18)

do not depend on N (instead of growing like N |Q|).

8 Conclusion

The main goal of this paper was to learn how the spectral curve for the resolvent y(z)
emerges from the W-representation of the partition function. We demonstrated that, in

6Note that, throughout the paper [64], we discussed another basis of polynomials, K∆, the two related
by the Fröbenius formula

KR =
∑

∆

ψR(∆)
z∆

K∆

where ψR(∆) is the symmetric group character, and z∆ is the standard symmetric factor of the Young
diagram (order of the automorphism) [69].
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the standard examples of matrix models, it is described by a truncated version of W-
operator, Ŵspec. In order to construct the operator Ŵspec from the full Ŵ, one has to
leave in Ŵ linear in pk terms with maximum number of derivatives (taking into account
that the coefficient N is also a derivative with respect to a variable t0). Then,

eŴ
spec · 1 = exp (P) (8.1)

and P is linear in time variables. We explained in section 6 why this linearization happens
exactly to the exponential functions on the both sides of (8.1). Now, the substitution
pk → zkpk makes P depending on a spectral parameter z, and allows one to generate the
function (resolvent) y(z) such that

P(z) =
∮
V (xz) y(x)dx (8.2)

where V (z) = ∑
k pkz

k/k is the matrix model potential. The resolvent y(z) satisfies the
spectral curve equation.

As a highly non-trivial check of this conjecture, we applied it to the intriguing family
of WLZZ models [32], which so far were defined only through W-representations. These
models have a parameterm, which characterizes at once the grading of the operator and the
maximal number of derivatives, the two a priori independent parameters. Somehow their
identification seems to provide an especially interesting class of partition functions, which
possess, apart from integrability, also a simple superintegrability property. We showed
that, for negative m, the above prescription for Ŵspec is just the correct one and leads to
the family of spectral curves

y|m| − zy +N = 0 (8.3)

which generalize the one for the case of m = −2, the ordinary Hermitian model at the
Gaussian point.

In order to check it, we needed to restore the W -constraints on the partition function
in this case: (

n
∂

∂pn
+ W̃

(−,m)
n−m

)
Z = 0 (8.4)

where the operators Ŵ (m)
n are obtained from the relation

Ŵ−m =
∞∑
k=1

pkW̃
(−,m)
k−m (8.5)

and then to construct the loop equations, the leading large N behaviour of them just giving
rise to the spectral curve.

However, for positivem the situation is more complicated: in this case, there is no large
N topological expansion, and the spectral curve limit rather corresponds to the small N
limit. On the other hand, there is neither known a set of the W -constraints on the partition
function. Hence, though, by our general procedure, we obtained the spectral curve

y =
∑
k=2

gk
zk+1

(
1 + z2m−1ym−1

)k−1
(8.6)
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we could check that it coincides with the correct one only in the case of m = 2 when there
exists a realization of the partition function as the Gaussian matrix model in the external
field [32, 56].

At the boundary between positive and negative m lies the case of m = 0, where it still
makes sense to untie the number of derivatives s from the grading m = 0. This gives rise
to a whole family of Lambert spectral curves

ye−z
s−1ys−1 = β

z2 (8.7)

of which s = 1 is the standard example of the Hurwitz model [29, 30]. In this case, the N
dependence is already not quite simple, and the spectral curve is not described by a naive
large N limit (one should rather substitute β → e−N/2β).

To conclude, our approach allows one to construct the spectral curves for the WLZZ
models. The point is that the model defined via a W-representation may be nice (in
particular, superintegrable), and a nice expression is available for the would-be spectral
curve even if a matrix model representation, or even a set of W -constraints on the partition
function are unavailable. Moreover, the spectral curves are not obligatory related to the
large N limit: the positive branch of WLZZ models is rather associated with the small
N limit. What this means for the topological expansion and topological recursion still
remains to be understood.

This study provides new insights into the notion of spectral curve, and thus of the
AMM-EO topological recursion [12–18, 28]. It is an interesting question how the later
one is constructed from W-representations, and what are the restrictions (if any) on the
possible choice of Ŵ and the “vacuum” state. This is also related to the ambiguity problem
of W-representations [22, 28].

One of the straightforward generalizations of this investigation can be to confirm our
general recipe for generating the spectral curve in the case of β-deformations, which are
readily available for the WLZZ models [32].

To summarize, the WLZZ models provide us with entire three families of superinte-
grable theories: for m < 0; m = 0, s ≥ 2 and m > 0, which generalize known and rather
non-trivial examples at m = ±2 and m = 0, s = 2. This opens an opportunity of studying
problems that could not be fully addressed before, like relation between super- and ordi-
nary integrability (seemingly broken for s > 2), or relation between the spectral curves
and the topological recursion and the large N expansion (broken at m > 0), or relation
between the W -representations and the Ward identities. This makes further study of these
models very promising and challenging. At the same time, it remains unclear what makes
these models so successful, and which properties of the W-operator are responsible for (su-
per)integrability and even for the peculiar shape of the spectral curves. This adds to the
older questions of ambiguity of W -representations and of possibility of selecting operators
Ŵ belonging to the w∞ algebra. We hope that many of these questions will attract interest
and will be addressed and answered in the near future.

– 30 –



J
H
E
P
0
3
(
2
0
2
3
)
1
1
6

Acknowledgments

We are grateful to V. Mishnyakov and A. Popolitov for useful discussions. We are also
indebted to the referee of this paper for stimulating questions. This work was supported
by the Russian Science Foundation (Grant No. 21-12-00400).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
the goals of the International Year of Basic Sciences for Sustainable Development.

References

[1] E.P. Wigner, On a class of analytic functions from the quantum theory of collisions, Ann.
Math. 53 (1951) 36.

[2] F.J. Dyson, Statistical theory of the energy levels of complex systems. Part I, J. Math. Phys.
3 (1962) 140 [INSPIRE].

[3] M.L. Mehta, Random matrices, 2nd edition, Academic Press, New York, NY, U.S.A. (1991).

[4] J. Ginibre, Statistical Ensembles of Complex, Quaternion and Real Matrices, J. Math. Phys.
6 (1965) 440 [INSPIRE].

[5] E. Brezin, C. Itzykson, G. Parisi and J.B. Zuber, Planar Diagrams, Commun. Math. Phys.
59 (1978) 35 [INSPIRE].

[6] A. Morozov, Integrability and matrix models, Usp. Fiz. Nauk 164 (1994) 3 [Phys. Usp. 37
(1994) 1] [hep-th/9303139].

[7] A. Morozov, Matrix models as integrable systems, in proceedings of the the CRM-CAP
Summer School on Particles and Fields ’94, Banff, AB, Canada, 16–24 August 1994,
pp. 127–210 [hep-th/9502091] [INSPIRE].

[8] A. Morozov, Challenges of matrix models, in proceedings of the the NATO Advanced Study
Institute and EC Summer School on String Theory: From Gauge Interactions to Cosmology,
Cargese, France, 7–19 June 2004, pp. 129–162 [DOI:10.1007/1-4020-3733-3_6]
[hep-th/0502010] [INSPIRE].

[9] A. Mironov, 2-d gravity and matrix models. Part 1. 2-d gravity, Int. J. Mod. Phys. A 9
(1994) 4355 [hep-th/9312212] [INSPIRE].

[10] A. Mironov, Matrix models of two-dimensional gravity, Phys. Part. Nucl. 33 (2002) 537
[INSPIRE].

[11] A. Mironov, Quantum Deformations of τ -functions, Bilinear Identities and Representation
Theory, Electron. Res. Announ. 9 (1996) 219 [hep-th/9409190] [INSPIRE].

[12] A.S. Alexandrov, A. Mironov and A. Morozov, Instantons and merons in matrix models,
Physica D 235 (2007) 126 [hep-th/0608228] [INSPIRE].

[13] A.S. Alexandrov, A. Mironov and A. Morozov, M-theory of matrix models, Theor. Math.
Phys. 150 (2007) 153 [hep-th/0605171] [INSPIRE].

[14] A.S. Alexandrov, A. Mironov and A. Morozov, BGWM as Second Constituent of Complex
Matrix Model, JHEP 12 (2009) 053 [arXiv:0906.3305] [INSPIRE].

– 31 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1063/1.1703773
https://doi.org/10.1063/1.1703773
https://inspirehep.net/literature/42424
https://doi.org/10.1063/1.1704292
https://doi.org/10.1063/1.1704292
https://inspirehep.net/literature/858912
https://doi.org/10.1007/BF01614153
https://doi.org/10.1007/BF01614153
https://inspirehep.net/literature/122559
https://doi.org/10.3367/UFNr.0164.199401a.0003
https://doi.org/10.1070/PU1994v037n01ABEH000001
https://doi.org/10.1070/PU1994v037n01ABEH000001
https://arxiv.org/abs/hep-th/9303139
https://arxiv.org/abs/hep-th/9502091
https://inspirehep.net/literature/392799
https://doi.org/10.1007/1-4020-3733-3_6
https://arxiv.org/abs/hep-th/0502010
https://inspirehep.net/literature/675956
https://doi.org/10.1142/S0217751X94001746
https://doi.org/10.1142/S0217751X94001746
https://arxiv.org/abs/hep-th/9312212
https://inspirehep.net/literature/361498
https://inspirehep.net/literature/606081
https://arxiv.org/abs/hep-th/9409190
https://inspirehep.net/literature/377509
https://doi.org/10.1016/j.physd.2007.04.018
https://arxiv.org/abs/hep-th/0608228
https://inspirehep.net/literature/725123
https://doi.org/10.1007/s11232-007-0011-6
https://doi.org/10.1007/s11232-007-0011-6
https://arxiv.org/abs/hep-th/0605171
https://inspirehep.net/literature/717227
https://doi.org/10.1088/1126-6708/2009/12/053
https://arxiv.org/abs/0906.3305
https://inspirehep.net/literature/823514


J
H
E
P
0
3
(
2
0
2
3
)
1
1
6

[15] L. Chekhov and B. Eynard, Hermitean matrix model free energy: Feynman graph technique
for all genera, JHEP 03 (2006) 014 [hep-th/0504116] [INSPIRE].

[16] L. Chekhov and B. Eynard, Matrix eigenvalue model: Feynman graph technique for all
genera, JHEP 12 (2006) 026 [math-ph/0604014] [INSPIRE].

[17] B. Eynard and N. Orantin, Invariants of algebraic curves and topological expansion,
Commun. Num. Theor. Phys. 1 (2007) 347 [math-ph/0702045] [INSPIRE].

[18] N. Orantin, Symplectic invariants, Virasoro constraints and Givental decomposition,
arXiv:0808.0635 [INSPIRE].

[19] A. Morozov and S. Shakirov, Generation of Matrix Models by W-operators, JHEP 04 (2009)
064 [arXiv:0902.2627] [INSPIRE].

[20] A.S. Alexandrov, Cut-and-Join operator representation for Kontsewich-Witten tau-function,
Mod. Phys. Lett. A 26 (2011) 2193 [arXiv:1009.4887] [INSPIRE].

[21] A.S. Alexandrov, Cut-and-join description of generalized Brezin-Gross-Witten model, Adv.
Theor. Math. Phys. 22 (2018) 1347 [arXiv:1608.01627] [INSPIRE].

[22] L. Cassia, R. Lodin and M. Zabzine, On matrix models and their q-deformations, JHEP 10
(2020) 126 [arXiv:2007.10354] [INSPIRE].

[23] L. Cassia, R. Lodin and M. Zabzine, Virasoro Constraints Revisited, Commun. Math. Phys.
387 (2021) 1729 [arXiv:2102.05682] [INSPIRE].

[24] A. Mironov, V. Mishnyakov, A. Morozov and R. Rashkov, Matrix model partition function by
a single constraint, Eur. Phys. J. C 81 (2021) 1140 [arXiv:2105.09920] [INSPIRE].

[25] A. Mironov, V. Mishnyakov and A. Morozov, Non-Abelian W-representation for GKM, Phys.
Lett. B 823 (2021) 136721 [arXiv:2107.02210] [INSPIRE].

[26] A. Givental, Semisimple Frobenius structures at higher genus, Int. Math. Res. Not. 2001
(2001) 1265 [math/0008067] [INSPIRE].

[27] A. Okounkov, Toda equations for Hurwitz numbers, Math. Res. Lett. 7 (2000) 447
[math/0004128] [INSPIRE].

[28] A.S. Alexandrov, A. Mironov and A. Morozov, Partition functions of matrix models as the
first special functions of string theory. Part 1. Finite size Hermitean one matrix model, Int.
J. Mod. Phys. A 19 (2004) 4127 [hep-th/0310113] [INSPIRE].

[29] V. Bouchard and M. Mariño, Hurwitz numbers, matrix models and enumerative geometry, in
From Hodge Theory to Integrability and tQFT: tt*-geometry, Proceedings of Symposia in
Pure Mathematics 78, American Mathematical Society, Providence, RI, U.S.A. (2008),
pp. 263–283 [DOI:10.1090/pspum/078/2483754] [arXiv:0709.1458] [INSPIRE].

[30] A. Mironov and A. Morozov, Virasoro constraints for Kontsevich-Hurwitz partition function,
JHEP 02 (2009) 024 [arXiv:0807.2843] [INSPIRE].

[31] M. Kazarian, KP hierarchy for Hodge integrals, based on the talk at the Moscow Workshop
on Combinatorics of moduli spaces, Hurwitz numbers and cluster algebras, Moscow, Russian
Federation, 2–7 June 2008, Adv. Math. 221 (2009) 1 [arXiv:0809.3263] [INSPIRE].

[32] R. Wang, F. Liu, C.-H. Zhang and W.-Z. Zhao, Superintegrability for (β-deformed) partition
function hierarchies with W-representations, Eur. Phys. J. C 82 (2022) 902
[arXiv:2206.13038] [INSPIRE].

– 32 –

https://doi.org/10.1088/1126-6708/2006/03/014
https://arxiv.org/abs/hep-th/0504116
https://inspirehep.net/literature/680483
https://doi.org/10.1088/1126-6708/2006/12/026
https://arxiv.org/abs/math-ph/0604014
https://inspirehep.net/literature/714083
https://doi.org/10.4310/CNTP.2007.v1.n2.a4
https://arxiv.org/abs/math-ph/0702045
https://inspirehep.net/literature/744649
https://arxiv.org/abs/0808.0635
https://inspirehep.net/literature/792396
https://doi.org/10.1088/1126-6708/2009/04/064
https://doi.org/10.1088/1126-6708/2009/04/064
https://arxiv.org/abs/0902.2627
https://inspirehep.net/literature/813390
https://doi.org/10.1142/S0217732311036607
https://arxiv.org/abs/1009.4887
https://inspirehep.net/literature/870926
https://doi.org/10.4310/ATMP.2018.v22.n6.a1
https://doi.org/10.4310/ATMP.2018.v22.n6.a1
https://arxiv.org/abs/1608.01627
https://inspirehep.net/literature/1479477
https://doi.org/10.1007/JHEP10(2020)126
https://doi.org/10.1007/JHEP10(2020)126
https://arxiv.org/abs/2007.10354
https://inspirehep.net/literature/1808103
https://doi.org/10.1007/s00220-021-04138-3
https://doi.org/10.1007/s00220-021-04138-3
https://arxiv.org/abs/2102.05682
https://inspirehep.net/literature/1846040
https://doi.org/10.1140/epjc/s10052-021-09912-0
https://arxiv.org/abs/2105.09920
https://inspirehep.net/literature/1864387
https://doi.org/10.1016/j.physletb.2021.136721
https://doi.org/10.1016/j.physletb.2021.136721
https://arxiv.org/abs/2107.02210
https://inspirehep.net/literature/1877614
https://doi.org/10.1155/S1073792801000605
https://doi.org/10.1155/S1073792801000605
https://arxiv.org/abs/math/0008067
https://inspirehep.net/literature/1340770
https://doi.org/10.4310/MRL.2000.v7.n4.a10
https://arxiv.org/abs/math/0004128
https://inspirehep.net/literature/1342203
https://doi.org/10.1142/S0217751X04018245
https://doi.org/10.1142/S0217751X04018245
https://arxiv.org/abs/hep-th/0310113
https://inspirehep.net/literature/630434
https://doi.org/10.1090/pspum/078/2483754
https://arxiv.org/abs/0709.1458
https://inspirehep.net/literature/774047
https://doi.org/10.1088/1126-6708/2009/02/024
https://arxiv.org/abs/0807.2843
https://inspirehep.net/literature/791007
https://doi.org/10.1016/j.aim.2008.10.017
https://arxiv.org/abs/0809.3263
https://inspirehep.net/literature/1340779
https://doi.org/10.1140/epjc/s10052-022-10875-z
https://arxiv.org/abs/2206.13038
https://inspirehep.net/literature/2101880


J
H
E
P
0
3
(
2
0
2
3
)
1
1
6

[33] I.G. Macdonald, Symmetric functions and Hall polynomials, second edition, Oxford
University Press, Oxford, U.K. (1995).

[34] A. Mironov, A. Morozov and S. Natanzon, Integrability properties of Hurwitz partition
functions. Part II. Multiplication of cut-and-join operators and WDVV equations, JHEP 11
(2011) 097 [arXiv:1108.0885] [INSPIRE].

[35] A. Mironov, A. Morozov and S. Natanzon, Algebra of differential operators associated with
Young diagrams, J. Geom. Phys. 62 (2012) 148 [arXiv:1012.0433] [INSPIRE].

[36] A.S. Alexandrov, A. Mironov, A. Morozov and S. Natanzon, On KP-integrable Hurwitz
functions, JHEP 11 (2014) 080 [arXiv:1405.1395] [INSPIRE].

[37] A.S. Alexandrov, On W-operators and superintegrability for dessins d’enfant, Eur. Phys. J.
C 83 (2023) 147 [arXiv:2212.10952] [INSPIRE].

[38] A. Mironov, V. Mishnyakov, A. Morozov, A. Popolitov, R. Wang and W.-Z. Zhao,
Interpolating Matrix Models for WLZZ series, arXiv:2301.04107 [FIAN/TD-01/23]
[IITP/TH-01/23] [ITEP/TH-01/23] [MIPT/TH-01/23] [INSPIRE].

[39] A. Mironov, V. Mishnyakov, A. Morozov, A. Popolitov and W.-Z. Zhao, On KP-integrable
skew Hurwitz τ -functions and their β-deformations, Phys. Lett. B 839 (2023) 137805
[arXiv:2301.11877] [INSPIRE].

[40] I.P. Goulden and D.M. Jackson, The KP hierarchy, branched covers, and triangulations,
arXiv:0803.3980.

[41] P. Zograf, Enumeration of Grothendieck’s dessins and KP hierarchy, arXiv:1312.2538
[INSPIRE].

[42] J. Ambjørn and L. Chekhov, The matrix model for dessins d’enfants, Ann. Inst. H. Poincare
D Comb. Phys. Interact. 1 (2014) 337 [arXiv:1404.4240] [INSPIRE].

[43] M. Kazarian and P. Zograf, Virasoro constraints and topological recursion for Grothendieck’s
dessin counting, Lett. Math. Phys. 105 (2015) 1057 [arXiv:1406.5976] [INSPIRE].

[44] A. Mironov and A. Morozov, Sum rules for characters from character-preservation property
of matrix models, JHEP 08 (2018) 163 [arXiv:1807.02409] [INSPIRE].

[45] A. Mironov and A. Morozov, Superintegrability summary, Phys. Lett. B 835 (2022) 137573
[arXiv:2201.12917] [INSPIRE].

[46] A. Mironov, A. Morozov and Z. Zakirova, New insights into superintegrability from unitary
matrix models, Phys. Lett. B 831 (2022) 137178 [arXiv:2203.03869] [INSPIRE].

[47] D. Bessis, A New Method in the Combinatorics of the Topological Expansion, Commun.
Math. Phys. 69 (1979) 147 [INSPIRE].

[48] D. Bessis, C. Itzykson and J.B. Zuber, Quantum field theory techniques in graphical
enumeration, Adv. Appl. Math. 1 (1980) 109 [INSPIRE].

[49] C. Itzykson and J.B. Zuber, The Planar Approximation. Part 2, J. Math. Phys. 21 (1980)
411 [INSPIRE].

[50] L. Chekhov, A. Marshakov, A. Mironov and D. Vasiliev, DV and WDVV, Phys. Lett. B 562
(2003) 323 [hep-th/0301071] [INSPIRE].

[51] S. Kharchev, A. Marshakov, A. Mironov and A. Morozov, Generalized
Kazakov-Migdal-Kontsevich model: Group theory aspects, Int. J. Mod. Phys. A 10 (1995)
2015 [hep-th/9312210] [INSPIRE].

– 33 –

https://doi.org/10.1007/JHEP11(2011)097
https://doi.org/10.1007/JHEP11(2011)097
https://arxiv.org/abs/1108.0885
https://inspirehep.net/literature/922020
https://doi.org/10.1016/j.geomphys.2011.09.001
https://arxiv.org/abs/1012.0433
https://inspirehep.net/literature/879191
https://doi.org/10.1007/JHEP11(2014)080
https://arxiv.org/abs/1405.1395
https://inspirehep.net/literature/1294695
https://doi.org/10.1140/epjc/s10052-023-11308-1
https://doi.org/10.1140/epjc/s10052-023-11308-1
https://arxiv.org/abs/2212.10952
https://inspirehep.net/literature/2616995
https://arxiv.org/abs/2301.04107
https://inspirehep.net/literature/2621948
https://doi.org/10.1016/j.physletb.2023.137805
https://arxiv.org/abs/2301.11877
https://inspirehep.net/literature/2627204
https://arxiv.org/abs/0803.3980
https://arxiv.org/abs/1312.2538
https://inspirehep.net/literature/1411017
https://doi.org/10.4171/aihpd/10
https://doi.org/10.4171/aihpd/10
https://arxiv.org/abs/1404.4240
https://inspirehep.net/literature/1291065
https://doi.org/10.1007/s11005-015-0771-0
https://arxiv.org/abs/1406.5976
https://inspirehep.net/literature/1341562
https://doi.org/10.1007/JHEP08(2018)163
https://arxiv.org/abs/1807.02409
https://inspirehep.net/literature/1681272
https://doi.org/10.1016/j.physletb.2022.137573
https://arxiv.org/abs/2201.12917
https://inspirehep.net/literature/2022618
https://doi.org/10.1016/j.physletb.2022.137178
https://arxiv.org/abs/2203.03869
https://inspirehep.net/literature/2048026
https://doi.org/10.1007/BF01221445
https://doi.org/10.1007/BF01221445
https://inspirehep.net/literature/140666
https://doi.org/10.1016/0196-8858(80)90008-1
https://inspirehep.net/literature/152693
https://doi.org/10.1063/1.524438
https://doi.org/10.1063/1.524438
https://inspirehep.net/literature/142681
https://doi.org/10.1016/S0370-2693(03)00543-4
https://doi.org/10.1016/S0370-2693(03)00543-4
https://arxiv.org/abs/hep-th/0301071
https://inspirehep.net/literature/611509
https://doi.org/10.1142/S0217751X9500098X
https://doi.org/10.1142/S0217751X9500098X
https://arxiv.org/abs/hep-th/9312210
https://inspirehep.net/literature/361508


J
H
E
P
0
3
(
2
0
2
3
)
1
1
6

[52] A. Orlov and D.M. Shcherbin, Hypergeometric solutions of soliton equations, Theor. Math.
Phys. 128 (2001) 906 [Teor. Mat. Fiz. 128 (2001) 84].

[53] A. Orlov, Hypergeometric functions as infinite-soliton Tau functions, Theor. Math. Phys.
146 (2006) 183.

[54] A.S. Alexandrov, A. Mironov, A. Morozov and S. Natanzon, Integrability of Hurwitz
Partition Functions. Part I. Summary, J. Phys. A 45 (2012) 045209 [arXiv:1103.4100]
[INSPIRE].

[55] A. Marshakov, A. Mironov and A. Morozov, From Virasoro constraints in Kontsevich’s
model to W constraints in two matrix model, Mod. Phys. Lett. A 7 (1992) 1345
[hep-th/9201010] [INSPIRE].

[56] A. Mironov, A. Morozov and G.W. Semenoff, Unitary matrix integrals in the framework of
generalized Kontsevich model. Part 1. Brezin-Gross-Witten model, Int. J. Mod. Phys. A 11
(1996) 5031 [hep-th/9404005] [INSPIRE].

[57] I.P. Goulden, D.M. Jackson and A. Vainshtein, The number of ramified coverings of the
sphere by the torus and surfaces of higher genera, Ann. Combinator. 4 (2000) 27
[math/9902125].

[58] A. Okounkov and R. Pandharipande, Gromov-Witten theory, Hurwitz theory, and completed
cycles, Ann. Math. 163 (2006) 517 [math/0204305] [INSPIRE].

[59] S.K. Lando, Combinatorial Facets of Hurwitz numbers, in Applications of Group Theory to
Combinatorics, J. Koolen, J.H. Kwak and M.Y. Xu eds., Taylor & Francis Group, London,
U.K. (2008), pp. 109–132.

[60] M. Mulase, S. Shadrin and L. Spitz, The spectral curve and the Schrödinger equation of
double Hurwitz numbers and higher spin structures, Commun. Num. Theor. Phys. 07 (2013)
125 [arXiv:1301.5580] [INSPIRE].

[61] S. Shadrin, L. Spitz and D. Zvonkine, Equivalence of ELSV and Bouchard-Mariño
conjectures for r-spin Hurwitz numbers, Math. Ann. 361 (2015) 611 [arXiv:1306.6226].

[62] R. Kramer, D. Lewanski, A. Popolitov and S. Shadrin, Towards an orbifold generalization of
Zvonkine’s r-ELSV formula, Trans. Am. Math. Soc. 372 (2019) 4447 [arXiv:1703.06725]
[INSPIRE].

[63] V. Mishnyakov and N. Terziev, to appear.

[64] A. Mironov and A. Morozov, Bilinear character correlators in superintegrable theory, Eur.
Phys. J. C 83 (2023) 71 [arXiv:2206.02045] [INSPIRE].

[65] R. Wang, C.-H. Zhang, F.-H. Zhang and W.-Z. Zhao, CFT approach to constraint operators
for (β-deformed) hermitian one-matrix models, Nucl. Phys. B 985 (2022) 115989
[arXiv:2203.14578] [INSPIRE].

[66] E.B. Dynkin, Calculation of the coefficients in the Campbell-Hausdorff formula (in Russian),
Dokl. Akad. Nauk SSSR 57 (1947) 323.

[67] N. Jacobson, Lie Algebras, John Wiley & Sons (1966).

[68] A. Mironov and A. Morozov, Superintegrability as the hidden origin of the Nekrasov calculus,
Phys. Rev. D 106 (2022) 126004 [arXiv:2207.08242] [INSPIRE].

[69] W. Fulton, Young Tableaux, in London Mathematical Society Student Texts 35, Cambridge
University Press, Cambridge, U.K. (1996) [DOI:10.1017/CBO9780511626241].

– 34 –

https://doi.org/10.1023/A:1010402200567
https://doi.org/10.1023/A:1010402200567
https://doi.org/10.4213/tmf484
https://doi.org/10.1007/s11232-006-0018-4
https://doi.org/10.1007/s11232-006-0018-4
https://doi.org/10.1088/1751-8113/45/4/045209
https://arxiv.org/abs/1103.4100
https://inspirehep.net/literature/893196
https://doi.org/10.1142/S0217732392001014
https://arxiv.org/abs/hep-th/9201010
https://inspirehep.net/literature/319799
https://doi.org/10.1142/S0217751X96002339
https://doi.org/10.1142/S0217751X96002339
https://arxiv.org/abs/hep-th/9404005
https://inspirehep.net/literature/37686
https://doi.org/10.1007/pl00001274
https://arxiv.org/abs/math/9902125
https://doi.org/10.4007/annals.2006.163.517
https://arxiv.org/abs/math/0204305
https://inspirehep.net/literature/1383332
https://doi.org/10.4310/CNTP.2013.v7.n1.a4
https://doi.org/10.4310/CNTP.2013.v7.n1.a4
https://arxiv.org/abs/1301.5580
https://inspirehep.net/literature/1216593
https://doi.org/10.1007/s00208-014-1082-y
https://arxiv.org/abs/1306.6226
https://doi.org/10.1090/tran/7793
https://arxiv.org/abs/1703.06725
https://inspirehep.net/literature/1519569
https://doi.org/10.1140/epjc/s10052-023-11211-9
https://doi.org/10.1140/epjc/s10052-023-11211-9
https://arxiv.org/abs/2206.02045
https://inspirehep.net/literature/2091706
https://doi.org/10.1016/j.nuclphysb.2022.115989
https://arxiv.org/abs/2203.14578
https://inspirehep.net/literature/2058973
https://doi.org/10.1103/PhysRevD.106.126004
https://arxiv.org/abs/2207.08242
https://inspirehep.net/literature/2116067
https://doi.org/10.1017/CBO9780511626241

	Introduction
	Basic example: Hermitian Gaussian model
	Description of the model
	Spectral curve
	Spectral curve from the W-representation

	An infinite set of WLZZ models. Negative branch
	Description of the models
	Model with m>=3
	W-representation of the m=3 model
	Spectral curve
	Spectral curve from the W-representation

	Model with generic m

	From Hurwitz model to Lambert curves
	Hurwitz model and its spectral curve
	Cut-and-join operators and higher Lambert curves
	Completed cycles or not?
	Spectral densities with tr(A**(k))=delta(k,s)

	An infinite set of WLZZ models. Positive branch
	Description of the models
	Model with m=2
	Spectral curve, m=2
	Spectral curve vs. hat(W)**(spec), m=2
	Spectral curve in the m=1 model
	Spectral curve in the m=3 model
	Generic m

	Exponentiation principle
	Comments
	W-representation vs. W-constrains
	Large N limit of superintegrability relation
	Large N limit of double averages

	Conclusion

