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1 Introduction

Generalized symmetries have come to play an important rôle in quantum field theory.
Nevertheless, they retain an air of mystery. In [1], a q-form global symmetry in spacetime
dimension d was defined as ‘topological operators Ug(M (d−q−1)) associated to codimension
q + 1 manifolds Md−q−1 that fuse according to a group law Ug(M (d−q−1))Ug′(M (d−q−1)) =
Ug′′(M (d−q−1))’ (where g′′ = gg′), but this leaves us with several questions. Firstly, the
definition makes sense for every 0 ≤ q + 1 ≤ d, so do the individual groups assemble
themselves into some larger structure, and if so how? Secondly, we know that even in
quantum mechanics, there exist ordinary symmetries in which the associated operators
do not quite fuse according to a group law (or to put it more prosaically, do not form a
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representation). For example, a rotation of an electron is represented projectively and a
reversal of time is represented antilinearly. Can such symmetries be generalized? Thirdly,
what does ‘topological’ mean, exactly, and how does it relate to our usual understanding of
ordinary symmetries in quantum mechanics as (unitary) operators that commute with the
hamiltonian operator? Fourthly, can we give a meaning to gauging a generalized symmetry?
If so, can it always be done, or are there possible ’t Hooft anomalies? If it can be done, is
the resulting theory unique?

Here, we wish to shed some light on such questions by studying generalized symmetries
in a simplified arena in which we replace the usual dynamical quantum field theories of
physics with topological field theories and we forget the smooth Lie group structure with
which the symmetry groups of physics are usually endowed (though we make some remarks
about Lie groups and the connection to Noether’s theorem in section 8).

Such theories are somewhat boring, dynamically speaking, in that the theories are
few and far between and, in any given one of them, very little can actually happen. But,
as we will see, this disadvantage is offset by the consequent advantage that they exhibit
larger amounts of symmetry than theories with additional structures. Moreover, they can
be formulated precisely using the language of category theory, and we can often calculate
everything we desire. (Indeed, many of the mathematical constructions we describe are
known to mathematicians, or at least will come as no surprise, but the interpretation in
terms of generalized symmetries of physics is hopefully new.)

Generalized symmetries by their very nature require us to use higher categories, which
in practice involves a great deal of faff. Fortunately, almost all of it can be avoided by
going all the way to infinity and observing that both the generalized symmetries and the
topological field theories on which they act form very special cases of ∞-categories, namely
∞-groupoids, in which all morphisms are invertible. As such, they can be replaced by
topological spaces, or rather homotopy types, and the requisite mathematics can mostly be
phrased in terms of homotopy theory. To translate back to physics requires us to return to
higher categories, whose terminology we use in a colloquial sense, except when it comes to
concrete examples.

So, for example, a point Z in a topological space Θ representing some ∞-groupoid of
topological field theories corresponds to an object, i.e. a specific topological field theory, a
path between two points corresponds to a 1-morphism between the corresponding topological
field theories, a homotopy between two paths corresponds to a 2-morphism, and so on.

Our questions above are easily answered using this language. To give a sketch, it is
convenient to distinguish the three mathematical notions of a group, an action of that group,
and a fixed point of that action, and to generalize each of these.

In our simplified arena, a generalized group can be completely characterized by the
homotopy type of a pointed connected topological space, or equivalently the classifying
space BG of a single topological group G (which is not unique). The semi-infinite tower
of homotopy groups πq+1(BG) ' πq(G) encode the abstract groups of q-form symmetries
for each non-negative integer q. The tower comes equipped with a rich structure. For
example, for q ≥ 1 the groups are abelian, in agreement with expectations for generalized
symmetries. Furthermore, there is an action of the ordinary symmetry group π0(G) on each
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of the generalized symmetry groups πq(G), induced by the action of the topological group
G on itself by conjugation. Thus, an answer to our first question is: a generalized group
is the classifying space of a topological group (and an ordinary group corresponds to the
special case of a discrete group).

A generalized action of a generalized group on some space Θ of topological field theories
is then a fibration over BG, together with an identification of Θ with the fibre over the
basepoint. (Many, but not all, of these arise via a continuous action of G on Θ as the
bundle EG×G Θ→ BG.) A generalized fixed point is a homotopy fixed point, namely a
section of the fibration (in the case of the bundle EG×G Θ→ BG, this is equivalently a
G-equivariant map from EG to Θ).

Our second question can then be answered as follows. Every space Θ admits the trivial
action of G, in which no points are moved. By passing back to the language of category
theory, one sees that the corresponding homotopy fixed points (which are simply maps
BG→ Θ) correspond to true representations. But a specific Θ may also admit non-trivial
actions of G, and we will see in examples how these reproduce projective and antilinear
representations, and more besides. In category-theoretic language, these exotic possibilities
arise because topological field theories (and presumably quantum field theories in general)
form an ∞-groupoid, whose morphisms record (some of) their internal structure. So the
right notion of a (generalized) group action is not one on a set, but on an ∞-groupoid, and
the right notion of a fixed point is a limit in the sense of ∞-categories.

To answer the third question, consider again the homotopy fixed points of the trivial
action, i.e. the maps BG → Θ. Looping such a map, we obtain a map from G to
the space, ΩZΘ, of loops in Θ based at Z ∈ Θ. On the category-theoretic side, these
correspond to the automorphisms of the topological field theory Z, whose objects are
invertible natural transformations from the topological field theory to itself. They thus
commute with all possible dynamical evolutions. This is just the same as what happens for
ordinary symmetries in quantum mechanics, except that in topoogical field theories the
possible dynamical evolutions are different in nature, being evolutions along spacetimes with
non-trivial topology or along spacetimes equipped with non-trivial geometric structures.
There are induced homomorphisms πq(G)→ πq+1(Θ, Z), showing that the composition of
natural transformations respects the group law on the nose. For non-trivial actions, we
get transformations whose composition does not respect the group law on the nose, but is
merely coherent with respect to it.

On the category theory side, a q-form symmetry corresponds to choices of (q + 1)-
transfors of TFTs (where a 0-transfor is a functor, a 1-transfor a natural transformation,
etc.). Part of the data of such a (q + 1)-transfor is the assignment of top-level morphisms
in the target category to codimension (q + 1)-manifolds. This is in accordance with the
notion of a q-form symmetry given in [1]. In particular, 0-form symmetries assign top-level
morphisms to codimension 1-manifolds. On looping, these morphisms descend down to
linear maps between vector spaces.

To deal with the fourth question, of gauging generalized symmetries, we equip the
bordism category underlying topological field theories with tangential structure. One can
do this in a very general way, following Lurie [2], that allows for gauge symmetries that act
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non-trivially on spacetime. By introducing a notion of fibrations of tangential structures, we
construct maps, in the language of homotopy theory, which we call globalization maps, that
send spaces of theories with gauge symmetry to spaces of theories with global symmetry.
This gives a convenient framework for discussing ‘t Hooft anomalies, which can be seen to
be of one of two kinds. The first is an anomaly afflicting an entire space of theories with
global symmetry, so we call it a metaphysical ’t Hooft anomaly, and arises when that space
is not the image of any globalization map. An example familiar from quantum mechanics
are theories with genuinely projective representations (meaning the associated 2-cocycle is
not a coboundary) of an ordinary symmetry group.

The second kind of anomaly is that even if a suitable globalization map exists, it may
fail to be surjective (on π0); a theory with a global symmetry lying outside the image will
then be anomalous. We call these unphysical ‘t Hooft anomalies, for reasons which will
soon become clear.

These considerations also show that one can have what we call ‘t Hooft ambiguities.
Namely, even if a theory is non-anomalous, so it is in the image of some globalization map,
there is no guarantee that that map is unique, nor that it injects. So there may be many
ways to gauge a global symmetry.

In the case of topological field theories that are fully local (or fully extended in the
mathematicians’ jargon), the cobordism hypothesis implies that the globalization maps are
homotopy equivalences, so unphysical anomalies and ambiguities are necessarily absent.1
They thus arise purely in theories that fail to fully respect the sacred physics principle of
locality, hence the moniker unphysical.

Our approach also allows us to shed further light on several earlier observations in the
literature regarding symmetries (generalized or ordinary) of topological field theories.

To set the scene for this, consider the example of the orientable topological field theory
in d = 2 obtained by quantizing a classical field theory with gauge symmetry Z2

n, as
described in [4]. For now we will be deliberately vague regarding whether this theory is
considered to be fully extended or not, as well as regarding what the target category is.

The classical action of this theory is specified by p ∈ H2(B(Z2
n),C∗) ' Zn. In [1], it was

argued that this theory has 0- and 1-form symmetries given by Z2
n/k, where k = gcd(p, n).

To make sense of this in our language requires us to consider the theories to be fully
extended (with values in a certain bicategory of algebras over C). We will then show that
in fact Z2

n/k is merely a subgroup of π1(Θ, Z) ' Sn2/k2 (i.e. the permutation group on
n2/k2 elements) and of π2(Θ, Z) ' (C∗)n

2/k2
for the corresponding theory Z. These larger

symmetries cannot be seen by inspection of the classical action. More generally, we show
how to compute π1(Θ, Z) and π2(Θ, Z) for every fully-extended topological field theory in
d = 2 and show how they arise as subgroups of Sm and (k∗)m, for some m ∈ N (which are
π1(Θ, Z) and π2(Θ, Z) for every possible Z for the base case of topological field theories
defined on manifolds equipped with 2-framings) with values in algebras over any separably
closed field k. We also show how one may characterize all possible homotopy fixed points
of all possible actions in such cases.

1A similar observation was made in [3].
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These results are suspiciously close to those of [5], which showed that 0-form symmetries
of unextended oriented topological field theories whose corresponding commutative Frobenius
algebras are semisimple act on a basis of idempotents by permutations preserving the trace
map, while 1-form symmetries act by multiplication of idempotents by elements of C∗. In fact
this is no coincidence, because the semisimple commutative Frobenius algebras correspond
precisely to oriented topological field theories which are extendable: by extending, one can
make a proper definition of a 1-form symmetry, and show that the conditions obtained
in [5] are not only necessary, but also sufficient. Our results thus not only generalize those
of [5], but also place them in their proper context.

The same (unextended) Z2
n gauge theory appears elsewhere [6] as an example of a

theory with ordinary global symmetries that ostensibly suffer from a ‘t Hooft anomaly.
This seems odd, given that the theory is extendable, and given that for extended theories
the cobordism hypothesis implies that the globalization map is a homotopy equivalence.
The resolution of this apparent paradox is as follows. Ref. [6] in fact describes a method
for constructing theories with global symmetries that are free of ‘t Hooft anomalies (see
the diagram in eq. (9.1)). The construction only works if a certain necessary condition is
satisfied. Ref. [6] defines a theory to be ‘anomalous’ if that condition is violated, but that
merely means that the construction cannot be carried out. As a result one does not even
have a theory of which one can ask the question of whether it is anomalous or not, in the
usual sense.

The outline of the paper is as follows. In section 2, we give a brief introduction to
∞-categories and describe some examples relevant for topological field theory. In section 3
we define generalized groups and generalized global symmetries of topological field theories.
In section 4 we define generalized gauge symmetries, construct the globalization maps,
and define ’t Hooft anomalies and ambiguities in that context. In sections 5–7 we discuss
examples of topological field theories in d = 1 and d = 2. In section 8 we discuss Lie group
symmetries and in section 9 we compare our results with earlier literature.

2 Topological field theories

2.1 Unextended topological field theories

To set the scene, we begin with a review of unextended topological field theories, formulated
using the category-theoretic approach pioneered by Atiyah, Kontsevich, and Segal. We
need the notions of category, functor, natural transformation, and equivalence of categories,
all of which are standard and may be found in [7]. To set the notation, a category2 C is
a collection of objects with a set of composable morphisms between each pair of objects;
given a pair of categories C and D, the functors between them themselves form the objects
of a category Fun(C,D) whose morphisms are the natural transformations.

We also need extra structure on a category C, namely a symmetric monoidal structure,
for which definitions may be found in [8]. Roughly, we have a functor ⊗ : C × C → C, a

2A note on notation: since categories and higher categories can be thought of as special cases of infinity
categories, we use a sans serif font for all of them (and even the same letter C to denote a generic one),
except in the case of ∞-groupoids, which will later be treated as topological spaces.
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unit object 1 ∈ C, natural braiding isomorphisms sa,b : a ⊗ b ∼→ b ⊗ a that square to the
identity, and natural isomorphisms a ⊗ 1 ∼→ a exhibiting 1 as a unit. A dual to a is an
object a∨ along with an evaluation morphism ev : a∨⊗ a→ 1 and a coevaluation morphism
coev : 1→ a⊗ a∨ obeying certain familiar conditions; we say that a is invertible if these
morphisms are, moreover, isomorphisms. Given a pair of symmetric monoidal categories,
there is a notion of a (strong) symmetric monoidal functor; these form the objects of
a symmetric monoidal category Fun⊗(C,D), whose morphisms are the monoidal natural
transformations.

For unextended topological field theory in spacetime dimension d, we start from
the symmetric monoidal category Bordd,1. An object in Bordd,1 is a closed (i.e. compact
without boundary) (d− 1)-manifold M . (In general, we may wish to equip manifolds with
additional structures, such as an orientation or spin structure, but since this will not play a
significant rôle until section 4, we elide it for now.) A morphism from M to N in Bordd,1
is an equivalence class of compact d-manifolds W whose boundary is identified with the
disjoint union M ∐

N , where two W ’s are considered equivalent if they are related by a
diffeomorphism which is the identity on the boundary.3 Composition of bordisms is defined
by gluing manifolds along the appropriate boundary components. The product in the
symmetric monoidal structure is given by the disjoint union of manifolds (so we denote it∐) and the unit is given by the empty manifold ∅. Physically, W represents the ‘spacetime’
of a euclidean quantum field theory evolving in euclidean time from space M to space N ,
but the evolution is allowed to be topologically non-trivial.

An unextended topological field theory is then a symmetric monoidal functor Z out of
Bordd,1 to some target symmetric monoidal category, which we must now choose. Given
that we are modelling a euclidean theory, and given that there is no obvious available
notion of a Wick rotation to a lorentzian theory, it seems artificial to demand the usual
quantum-mechanical structure of complex Hilbert space and operators that are self-adjoint
or isometries (or hermitian and unitary in the physics lingo), or even some Wick-rotated
version thereof. We therefore choose the target to be Vectk whose objects are vector spaces
over an arbitrary field k, whose morphisms are k-linear maps, and whose product is the
usual tensor product of vector spaces (so the unit may be taken to be k). Physically,
the fact that Z is a functor, so preserves composition, encodes (partially) the fact that
theories of physics should be local. Indeed, going backwards we see that we can recover
the evolution along W from the evolution along bordisms obtained by cutting it along an
arbitrary submanifold of codimension one.4 The symmetric monoidal structure of Z allows
for composite systems to be entangled in the usual way.

The correlation functions of the theory are encoded as follows. The usual local operators
of quantum field theory are supported on points, and the effect of inserting such operators
at points w1, . . . , wi, . . . , wn in a closed d-manifold W is found by deleting disjoint open
neighbourhoods of each wi in W , resulting in a compact d-manifold with boundary W ′,

3We remark that this unpleasantry is already a good motivation to go to (∞, 1)-categories, in which a
morphism is simply a bordism.

4We remark that the fact that we are only allowed to cut along codimension one means that, locality is
not fully manifest. This is already a good motivation to go to (∞, d)-categories.
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which in turn defines a bordism from ∐
i S

d−1 to the empty d-manifold ∅. Applying the
functor Z returns a linear map Z(W ′) : ⊗

i Z(Sd−1) → k. The vectors in Z(Sd−1) may
thus be regarded as the local operators of the theory, and the linear map Z(W ′), which
returns a complex number given a choice of local operator at each wi, may be regarded as
the correlation function.

Key to our story will be the category TFTd,1 := Fun⊗(Bordd,1,Vectk) of symmetric
monoidal functors. Its objects are topological field theories and its morphisms (which are
monoidal natural transformations) give us a way to compare topological field theories with
one another and thus detect at least some of their structure. In particular, the presence of
a morphism between two theories that is an isomorphism allows us to conclude that they
are physically equivalent, since they will lead to theories in which the correlation functions
(and ultimately the observables) are related to one another in the same way.

In fact, every morphism in TFTd,1 is a isomorphism (so TFTd,1 is a groupoid). To
show this, we need to show that given a natural transformation η : Z → Z ′ and any closed
d-manifold M , the induced linear map ηM : Z(M)→ Z ′(M) is an isomorphism. Regarding
the ‘cylinder’ M × I as a bordism M

∐
M → ∅ or ∅ →M

∐
M and applying Z furnishes

us with evaluation and coevaluation maps that exhibit Z(M) as a dual of itself and the
dual map η∨M : Z ′(M)→ Z(M) turns out to be the sought-after inverse to ηM .

Even though every morphism in a groupoid such as TFTd,1 is an isomorphism, the
groupoid can tell us much more than just whether two theories are equivalent, because each
theory (and indeed any object in any category) has associated to it a group of automorphisms,
namely the isomorphisms from the theory to itself. It is natural to guess that this group is
related to the global symmetry of the theory and this guess is confirmed by picking apart
the definition of an automorphism of Z ∈ TFTd,1: it is, for each closed d-manifold M , a
linear isomorphism ηM : Z(M) → Z(M) such that, for any bordism W : M → N , the
diagram

Z(M) Z(N)

Z(M) Z(N)

ηM

Z(W )

ηN

Z(W )

(2.1)

commutes. So the components of η are linear maps (for each state space Z(M)) that
commute with the dynamical evolutions Z(W ) along all possible euclidean spacetimes W .
This looks very close to the usual quantum-mechanical notion of a unitary operator on the
Hilbert space of states that commutes with the unitary time evolution operator, except that
the notion of unitarity has gone and that the evolutions are now trivial (since the cylinder
M × I is the identity bordism on M , it gets sent by the functor Z to the identity linear
map on Z(M)), unless spacetime is topologically non-trivial. Moreover, the diagram shows
that the components of η are compatible with locality, expressed in terms of cutting and
pasting of bordisms.

We could, therefore, make an intrinsic definition of the global symmetry group of
Z to be its group Aut(Z) of monoidal natural automorphisms, or alternatively make an
extrinsic definition of a global symmetry of Z as a group G together with a homomorphism
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G→ Aut(Z), but we will see in the next section that it pays to do something which is naïvely
rather different, namely to consider fixed points (in a appropriate sense) of actions of G on
the groupoid TFTd,1. In fact this turns out to generalize the notion of a homomorphism
G → Aut(Z) (which is recovered as a fixed point of the trivial action of G on TFTd,1).
Doing so allows us to capture the notion that an element of a physical symmetry group
need not fix Z, but rather can send it to an isomorphic theory, without affecting physical
observables. We will see in section 6, moreover, that this generalization is needed to describe
well-known physical phenomena such as the behaviour of electrons under spatial rotations
and time-reversal invariance.

Before doing that, we describe extended topological field theories. These will be needed
not only to define generalized global symmetries in section 3, but also to formulate physics
in a way which is fully local. As we will argue in section 6, certain ‘t Hooft anomalies are
best viewed as arising from a failure to define a theory in such a way and so should be
regarded as unphysical.

2.2 Extending topological field theories downwards

We have already seen that defining topological field theories using ordinary categories only
captures a part of the local structure of physics. To fully capture locality, the theory should
be defined not only on closed (d − 1)-manifolds and d-manifolds with boundary, but on
manifolds with corners of all possible codimensions, so that dynamics can be reconstructed
by pasting together simplices.

For that, we require higher categories. Roughly, these should consist of objects,
morphisms, higher morphisms, and so on, which can be composed in multiple ways in a
coherent fashion. Precise definitions are, however, somewhat involved. Since we will only go
one step higher in our examples, and since we will anyway soon need the yet more general
notion of an ∞-category, we will content ourselves here with sketching the simplest case,
namely a bicategory. Full details are given in, e.g., [9].

A bicategory, C, is a collection of objects with a category C(a, b) for each ordered pair
(a, b) of objects in C. The objects of C(a, b) are called 1-morphisms and the morphisms of
C(a, b) are called 2-morphisms. In addition, there is a functor C(b, c) × C(a, b) → C(a, c)
known as horizontal composition, with a unit 1-morphism 1a ∈ C(a, a) whilst composition
within C(a, b) is called vertical composition. An equivalence between objects a and b is a pair
of 1-morphisms f : a↔ b : g and a pair of 2-morphisms α : 1a → g ◦ f and β : f ◦ g → 1b,5
that are isomorphisms in C(a, a) and C(b, b) respectively.

Given two bicategories, we have the notion of a functor between them; given two functors
we have the notion of a transformation, and given two transformations we have the notion
of a modification. The functors, transformations, and modifications assemble themselves
respectively into the objects, 1-morphisms, and 2-morphisms of a functor bicategory.

We will also need a symmetric monoidal structure on bicategories and the corresponding
bicategory of symmetric monoidal functors.

5We reluctantly perpetuate the now-standard practice of denoting both horizontal composition of 1-
morphisms and vertical composition of 2-morphisms with ◦, with ∗ being used for horizontal composition of
2-morphisms.
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An example of a symmetric monoidal bicategory, which will play the rôle of the target
bicategory in our examples, is Algk: an object is an algebra over a field k, a 1-morphism
from an algebra A to an algebra B is an (A,B)-bimodule, and a 2-morphism is an (A,B)-
bilinear map. The horizontal composition of 1-morphisms is given by the tensor product
of bimodules (over the algebra in the middle) and the symmetric monoidal structure is
given by the tensor product over k. The relevance of this bicategory to physics is as follows.
Given any (symmetric) monoidal bicategory C, the endomorphisms of the unit object form
a (symmetric) monoidal category, which we denote ΩC. This looping construction extends
to higher monoidal categories and is adjoint to a delooping construction, which sends a
monoidal higher category C to a monoidal category BC one level higher with a single
object whose endomorphisms are C. The unit object of the bicategory Algk is k and its
endomorphism category consists of k-vector spaces and k-linear maps. Thus, Algk may be
regarded as an extension (not unique) of the usual target category Vectk of unextended
topological field theories. Looping again, we obtain the symmetric monoidal 0-category
(i.e. commutative monoid) of linear endomorphisms of k, which is isomorphic to k itself.
This provides a target for maximally unextended theories, in which the source ‘category’
contains only closed d-manifolds, which we discuss as a toy example in section 5.

2.3 Extending topological field theories upwards

It is convenient, for a number of reasons, to extend topological field theories upwards as
well, using the language of ∞-categories. One is that, as we have already hinted, it leads to
a simplification of the domain. Another is that the connection with homotopy theory is
more explicit. A third is that it then becomes obvious that symmetries of topological field
theories should be described by homotopy fixed points of group actions, since homotopy
limits are the only kind of limits in the ∞-categorical context.

As for higher categories, we shall content ourselves with a sketch of the relevant concepts
and definitions. For more details, see [2].

An (∞, n)-category C has objects, and morphisms of all levels, where the morphisms at
level greater than n are invertible, but now in a recursive sense. So a morphism f is invertible
if there exists a morphism g in the other direction along with morphisms α : 1 → g ◦ f
and β : f ◦ g → 1 at one level higher that are themselves invertible. An ∞-category is
n-truncated if the morphisms at level greater than n are equivalent to identity morphisms.
Evidently, a higher n-category can be identified with an n-truncated ∞-category (which we
hope excuses the somewhat overloaded notation). Going in the other direction, we obtain
the homotopy n-category of an ∞-category C by replacing the morphisms at level n with
their equivalence classes under the equivalence described above.

Given two (∞, n)-categories C,D, there is an (∞, n)-category of functors Fun(C,D) from
one to the other, and if D is n-truncated then Fun(C,D) is an n-truncated category. There is
an (∞, n+ 1)-category Catn, whose objects are (∞, n)-categories and whose endomorphisms
are the (∞, n)-categories of functors.

An (∞, 0)-category, in which all morphisms are invertible, is also called an ∞-groupoid
and corresponds, via the homotopy hypothesis, to a homotopy type, i.e. a topological space
up to weak homotopy type. In one direction, this correspondence is given by forming the
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fundamental ∞-groupoid of a topological space X: objects are points in X, 1-morphisms
are continuous paths, 2-morphisms are homotopies between paths, and so on.

The (∞, p)-category Bordd,p has objects given by (d − p)-manifolds (with suitable
corners), 1-morphisms given by (d−p−1)-manifolds, . . . , p-morphisms given by d-manifolds,
(p+ 1)-morphisms given by diffeomorphisms of d-manifolds, (p+ 2)-morphisms given by
isotopies of diffeomorphisms, and so on.

In this picture, topological field theories are (∞, p)-functors from Bordd,p to some target
(∞, p)-category D. An argument similar to the one we gave for unextended topological field
theories shows that the category Fun⊗(Bordd,p,D) is in fact an ∞-groupoid, or a homotopy
type [2, Remark 2.4.7]. In our examples, we will take D to be p-truncated, so that a
topological field theory factors through the homotopy p-category of Bordd,p. Moreover,
Fun⊗(Bordd,p,D) is a homotopy p-type.

3 (Generalized) global symmetries

3.1 Ordinary global symmetries

Before discussing generalized global symmetries, let us consider how to describe ordinary
global symmetries of topological field theories. As usual in mathematics, it is convenient to
separate the notions of a group, an action of that group on something, and a fixed point of
that action.

The most straightforward example is that of a group action on a set S, where a group
action is a homomorphism from G to the group Aut(S) of bijections of S. A fixed point is
an element of S that is fixed by each element of G and the set of all fixed points forms a
subset SG of S.

This can be formulated using the language of category theory as follows. A group
G can be considered as a category (in fact, a groupoid) BG with a single object and an
isomorphism for each element of G. A group action of G on S is then a functor from BG

to the category Set, whose objects are sets and whose morphisms are functions, that sends
the single object of BG to the set S. The fixed point set SG along with its inclusion in S
then arises as the limit (in the category theory sense) of this functor.

From here it is easy to see what an ordinary global symmetry of a topological field
theory should be. Topological field theories do not form a set, but rather an ∞-groupoid,
which we generically denote by Θ. To discuss a G-symmetry of a topological field theory
Z ∈ Θ we should therefore first give a G-action on the ∞-groupoid Θ of topological field
theories of interest, i.e. an ∞-functor BG → Gpd∞ sending the unique object of BG to
Θ, and then the ∞-limit ΘhG of this functor should be thought of as an ∞-groupoid of
topological field theories equipped with G-symmetry. The ∞-functor ΘhG → Θ sends a
topological field theory equipped with a G-symmetry to the underlying topological field
theory. It need not be either essentially surjective or injective (unlike the inclusion SG ↪→ S),
reflecting the fact that not every theory need admit a symmetry for the given action, and
that if it does the symmetry need not be unique.

Now the advantage of working exclusively with ∞-groupoids, as we have done, becomes
clear: it is that the category of such is equivalent to the category of spaces, and the
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categorical constructions we have just described have down-to-earth interpretations in terms
of homotopy theory of topological spaces and the familiar tools of algebraic topology can
be used to study them.

The following, then, is a reformulation of the above in terms of topological spaces.
Firstly, the ∞-groupoid BG corresponds to the classifying space BG of the group G,
considered as a pointed space (this excuses the clash of notation). Then, giving an action of
G on the ∞-groupoid Θ of topological field theories corrresponds to giving a commutative
square of spaces

Θ E

{∗} BG

π

which is a homotopy pull-back, i.e. giving a fibration π : E → BG of spaces, along with
an identification π−1(∗) = Θ of the fibre over the basepoint ∗ ∈ BG with Θ. Finally, the
∞-groupoid ΘhG corresponds to the space of sections s : BG→ E of the fibration π, and
the forgetful morphism ΘhG → Θ corresponds to the map sending a section s to the point
s(∗) ∈ Θ = π−1(∗).

As we will see in section 6 in the examples with d = 1, corresponding to quantum
mechanics, these notions naturally give rise to global symmetries with the usual physical
properties. In particular, the oriented topological field theories in d = 1 correspond to
finite dimensional vector spaces, with equivalences given by linear isomorphisms. For the
trivial action of G on this groupoid, the groupoid of homotopy fixed points has objects
that are finite-dimensional representations of G and morphisms that are invertible G-
equivariant linear maps. For non-trivial actions, we obtain both projective and semi-linear
representations, and more besides.

An important subtlety is the following. In defining the notion of a global symmetry, we
did not take the symmetric monoidal structure of topological field theories into account. We
could instead have defined a group action to be an∞-functor from BG to the (∞, 1)-category
of symmetric monoidal ∞-groupoids. This makes a difference when we try to take the limit,
since ΘhG must itself then be a symmetric monoidal ∞-groupoid. This would exclude, for
example, projective representations, the category of which (for a specified cocycle) does
not have the necessary monoidal structure. Since these are well-known to occur as global
symmetries in Nature, we consider our construction to be the appropriate one.

3.2 Generalized global symmetries

Our formulation of ordinary global symmetries of topological field theories makes it easy
to extend to generalized symmetries. Indeed, in the categorical language, the group G

is considered as a 1-truncated ∞-groupoid with a single object. So the only non-identity
morphisms are the 1-morphisms, and these correspond to the elements of G. The only
change we need to make to consider generalized symmetries is to relax the requirement that
our ∞-groupoid be 1-truncated. So it may now have invertible morphisms at all levels, and
these give rise, albeit indirectly, to higher-form symmetries.
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On the homotopy theory side, an ∞-groupoid with a single object corresponds to
a pointed connected topological space. Every such space has the homotopy type of the
classifying space BG of some topological group G, so we continue to refer to it as such. It is
important to note, however, that G is not necessarily unique. For example, any connected
Lie group has a maximal compact subgroup, and the embedding is both a homomorphism
and a homotopy equivalence. Since the classifying space construction can be made functorial,
we conclude that the classifying space of any connected Lie group has the same homotopy
type of a maximal compact subgroup.6

With this change made, everything goes through as before. A generalized group action
of G on Θ is again an ∞-functor BG→ Gpd∞ sending the unique object of BG to Θ, or
equivalently, on the homotopy theory side, a fibration π : E → BG with fibre Θ over the
basepoint, and ΘhG is the limit of this ∞-functor, or equivalently the space of sections of
π : E → BG.

Thus we have an extrinsic notion of generalized global symmetry. Let us now give, as
we did earlier for ordinary symmetries, an intrinsic notion, and connect the two. As we saw
in the previous section, for any ordinary category, there is a natural notion of the symmetry
of an object, given by the group of automorphisms of that object, with multiplication given
by composition of morphisms. (For an object in a groupoid, such as a TFT, every morphism
is an isomorphism, so we can equivalently consider the endomorphisms.) For an object Z in
an ∞-groupoid Θ, the morphisms from that object to itself themselves form an ∞-groupoid.
The corresponding space is the homotopy pullback of {Z} ↪→ Θ←↩ {Z}, i.e. the loop space
ΩZ(Θ). To see that this is sensible, note that an object in the fundamental ∞-groupoid of
the space Θ is a point Z ∈ Θ and a 1-morphism from Z to Z is a path from Z to Z in Θ,
i.e. a loop at Z. Now, ΩZ(Θ) does not quite have the structure of a group,7 but rather that
of an H-group. That is, it has a multiplication (given by concatenation of loops) and an
identity (given by the constant loop at Z), such that the usual group axioms are obeyed up
to homotopy.

To see the relation between the extrinsic and intrinsic symmetries, consider the special
case of a trivial fibration E = Θ × BG. A section of this is simply a map BG → Θ. It
sends ∗ ∈ BG to some Z ∈ Θ and looping we get a map ΩBG→ ΩZ(Θ) and consequently
homomorphisms πq(G) ' πq+1(BG) → πq+1(Θ, Z), corresponding to actions of q-form
symmetry groups πq(G) on the theory Z.

Passing back to the category theoretic side, we see that π0(G) acts by transformations,
π1(G) acts by modifications, and so on. Now, part of the data of a transformation is a
1-morphism in the target for each object in the source, a 2-morphism in the target for
each 1-morphism in the source, &c, whereas the data of a modification is a 2-morphism
in the target for each object in the source, &c, &c. Spacetime evolutions are associated
to d-morphisms, and we see that then the q-form symmetries act on what the topological
field theory associates to manifolds of codimension q + 1, exactly as we expect for q-form
symmetries.

6We will use this fact later when we discuss generalized gauge symmetries to replace general linear groups
by orthogonal groups.

7It is, however, a theorem that every loop space has the homotopy type of a topological group.
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Moreover, we see that a non-trivial q-form symmetry can only arise for a topological
field theory that has been extended at least q+1 times. (Our convention is that a maximally
unextended theory is a functor out of a 0-category, i.e. a set, whose objects are closed
d-manifolds.) So for a topological field theory formulated using ordinary category theory
(i.e. once extended, according to the convention just given), we can have at most an ordinary
symmetry. But maximally extended theories, in which locality is fully manifest, can have
q-form symmetries for all q ≤ d− 1.8

4 Generalized gauge symmetries

We now wish to describe generalized gauge symmetries of topological field theories. An
ordinary gauge theory corresponds to equipping spacetime M with a principal G-bundle,
or equivalently a map from M to BG. Since we saw in the last section that a generalized
global symmetry can be obtained by replacing the abstract group G by a topological group,
it is natural to suppose that the same is true in the gauge case.

As we shall see, it is fruitful to do something more general than equip manifolds
with maps to BG. Indeed, as well as giving us a notion of gauge symmetries that act
non-trivially on spacetime, it allows us to subsume the notion of spacetime structures, such
as an orientation or a spin structure. We refer to gauge symmetries that act trivially on
spacetime as internal gauge symmetries.

This construction closely follows [2], though the interpretation in terms of generalized
symmetries is presumably new.

Letting X be a topological space, and ξ a rank d real-vector bundle over X, we define
the p-category (X,ξ)Bordd,p as follows: a (p − k)-morphism, for 0 ≤ k ≤ p − 1 is a triple
(M,f, s) consisting of:

• a (d− k)-dimensional manifold M , with boundary, corners, &c;

• a continuous map f : M → X;

• an isomorphism of real vector bundles s : TM ⊕ Rk → f∗ξ, where TM is the tangent
bundle of M , Rk is the trivial rank-k real vector bundle over M , and ⊕ denotes the
Whitney sum of bundles.

For p-morphisms, we take the equivalence class of such triples up to structure- and corner-
preserving diffeomorphisms.

One source of (X, ξ)’s is as follows: if G is a topological group and χ : G → O(d)
is a d-dimensional representation, we can take X = BG and ξ to be the vector bundle
EG×G Rd over BG.

Instead of writing (BG,EG×GRd)Bordd,p, we denote this category by GBordd,p, with
the homomorphism χ left implicit. Similarly, by GTFTd,p we denote the ∞-groupoid of
symmetric monodial functors from GBordd,p to some symmetric monodial p-category C.

8As we shall see in an example in 5, at the level of the action it makes sense to speak of q-form
symmetries acting on q-times extended theories. But the resulting fixed points represent properties, rather
than structures, of the corresponding theories.
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Some relevant examples are: (i) ∗TFTd,p corresponds to framed TFTs (where ∗ denotes
the group with one element); (ii) SO(d)TFTd,p, with χ the obvious inclusion, corresponds
to oriented TFTs, since our conditions correspond to a reduction of structure group from
SO(d)→ O(d); and (iii) O(d)TFTd,p, with χ the identity map, corresponds to unoriented
TFTs, which we earlier denoted simply TFTd,p.

A notion of equivalence of tangential structures is naturally built in as follows. A map
ξ → ξ′ of vector bundles which covers a homotopy equivalence X → X ′ and induces a linear
isomorphism on fibres, gives an equivalence (X,ξ)Bordd,p

∼→ (X′,ξ′)Bordd,p of categories, and
therefore an equivalence (X′,ξ′)TFTd,p

∼→ (X,ξ)TFTd,p of spaces of TFTs.

4.1 Globalization maps

We now wish to make a connection between generalized global symmetries and generalized
gauge symmetries and to discuss possible generalized ‘t Hooft anomalies, i.e. obstructions
to gauging generalized global symmetries.

As we will see, this question of physics has a natural mathematical formulation in
terms of globalization maps relating spaces of theories with various combinations of gauged
and global symmetries. These globalization maps formalize, in the topological field theory
context, the physicist’s notion (for Lie group gauge symmetries of theories on spacetime Rd)
of ‘turning off the gauge field’. The issue of ‘t Hooft anomalies can then be broken down
into whether a suitable globalization map exists and, if so, whether it surjects (on π0). For
maximally-extended theories, the cobordism hypothesis guarantees the latter.

Let us first try to develop some intuition for globalization maps by describing the
simplest case in which we have an internal gauge symmetry G (i.e. the homomorphism χ

maps G to the identity element in O(d)) which we wish to globalize. We can achieve this
by restricting a topological field theory to spacetime manifolds equipped with the trivial
G-bundle, which defines a functor GTFTd,p →∗ TFTd,p, and then consider the effect of
bundle automorphisms, which allows us to factor GTFTd,p →∗ TFTd,p through ∗TFThG

d,p ,
where the action of G on ∗TFTd,p is the trivial one. (In the physicist’s lingo, we switch off
the gauge field and do a constant gauge transformation.)

More generally, we might want to retain some normal subgroup of G as a gauge
symmetry (or as a spacetime structure), or preserve an existing global symmetry, or both.
The following construction allows us to cover all of these possibilities, and more besides.

We consider the following data: a tangential structure (X, ξ) and a fibration Π : X → B.
For each point b ∈ B we then have a space Xb := Π−1(b) with a vector bundle ξb := ξ|Xb

on it, so we think of this data as a continuous family of tangential structures {(Xb, ξb)}b∈B
parameterised by B. To this data we may associate the family of bordism (∞, p)-categories
{(Xb,ξb)Bordd,p}b∈B , and by applying the functor Fun⊗(−,C) to each member of this family
we obtain a family of ∞-groupoids {(Xb,ξb)TFTd,p}b∈B parameterised by B. Equivalently,
we have a space (X,ξ;Π)TFTd,p and a fibration

τ : (X,ξ;Π)TFTd,p −→ B

such that τ−1(b) = (Xb,ξb)TFTd,p.
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The inclusions ib : Xb → X are by definition covered by bundle isomorphisms ξb →
i∗bξ, so we can canonically consider any manifold equipped with a (Xb, ξb)-structure as
being equipped with a (X, ξ)-structure: this defines symmetric monoidal functors (ib)∗ :
(Xb,ξb)Bordd,p → (X,ξ)Bordd,p and hence restriction functors

i∗b : (X,ξ)TFTd,p −→ (Xb,ξb)TFTd,p.

Thus any topological field theory defined for (X, ξ)-manifolds provides a theory for (Xb, ξb)-
manifolds, varying continuously with b ∈ B. That is, there is a map

Π∗ : (X,ξ)TFTd,p −→ {Sections of τ : (X,ξ;Π)TFTd,p → B}.

This map is contravariantly functorial in the data (Π : X → B, ξ). In particular, if Γ is a
group of symmetries of this data then it acts on source and target of this map, and we can
further take the (∞-)fixed points for these Γ-actions.

The most important source of examples for us will arise from having a group extension
1→ K → G

q→ Q→ 1 and a representation χ : G→ O(d), then taking X = BG, B = BQ,
Π = Bq : BG→ BQ, and ξ = EG×G Rd. In this case the construction gives a homotopy
pull-back square

KTFTd,p
(G;q)TFTd,p

{∗} BQ,

τ

which as usual corrresponds to an (∞-)Q-action on KTFTd,p, along with a map

Π∗ : GTFTd,p −→ {Sections of τ : (G;q)TFTd,p → BQ},

where the latter corresponds to the (∞-)fixed points of the Q-action, and might equally well
be denoted by KTFThQ

d,p . In physics terms, this corresponds to passing from a (generalized,
not necessarily internal) gauge symmetry G to a normal subgroup K, such that the quotient
group Q becomes a global symmetry.

A notable example comes from the degenerate extension 1→ 1→ G
Id→ G→ 1. In this

case the homotopy pull-back square

∗TFTd,p
(G;Π)TFTd,p

{∗} BG

τ

can be identified with that given by the G-action via χ on ∗TFTd,p by the symmetries of
the tangential structure (∗,Rd), and so the map in question is

Id∗ : GTFTd,p −→ {Sections of τ : (G;Id)TFTd,p → BG} = ∗TFThG
d,p .

Physically, we have turned all of the gauge symmetry into a global symmetry (of d-framed
TFTs).
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4.2 Anomalies and the cobordism hypothesis

The globalization map allows us to discuss the notion of ‘t Hooft anomalies (i.e. global
(generalized) symmetries that can’t be gauged) in a precise way. Indeed, we see that to
be anomaly-free, a theory Z ∈ Θ must be in the image of some globalization map. This
condition can be violated in two ways.

Firstly, the space Θ in which Z lives may not be the target of any globalization map;
if so we say we have a metaphysical anomaly, since the anomaly afflicts the entire space
of TFTs. Indeed, to be the target of a globalisation functor, the action of this global
symmetry has to be of a special kind, namely it must act via symmetries of the tangential
structure. An example of such an anomaly, as we will later see, is given by representations
of topological field theories in d = 1 that are genuinely projective, i.e. those that correspond
to cohomologically non-trivial group cocycles.9

Secondly, we may have a globalization map, but Z may not be in its image. We call
this an unphysical anomaly, because it cannot arise in theories that are maximally extended,
ergo fully local, as we believe theories of physics should be. This follows by the cobordism
hypothesis, whose proof is sketched in [2], which implies that the map

π∗ : (X,ξ)TFTd,d −→ {Sections of τ : (X,ξ;π)TFTd,d → B}

is a weak homotopy equivalence.
So (up to equivalence), any theory in the target corresponds to a unique theory in the

source, meaning that neither ‘t Hooft anomalies nor ‘t Hooft ambiguities (by which we
mean multiple gauge theories with the same image under globalization) can arise in this
way. But for non-maximally extended theories where the cobordism hypothesis does not
apply, we may also find that the globalization maps fail to be either surjective or injective
(on π0), leading to what we call unphysical ’t Hooft anomalies or ambiguities, respectively.

It is natural to ask whether one can also have metaphysical ambiguities, in the sense
that there exist globalization maps from multiple sources to a given target. But to give
this concept any teeth, one would first need to impose some coarse notion of equivalence
on tangential structures, presumably based on considerations from physics. If not, then
for underlying spaces of TFTs that are homotopy n-types, one will always find ambiguities
between tangential structures whose Xs are equivalent as n-types.

5 Maximally-unextended theories

We begin our discussion of examples by considering a case which, although uninteresting as
far as physics is concerned, nevertheless illustrates the mathematics well enough. To wit,
we consider TFTs that are maximally unextended, in that the (truncated) bordism category
is a 0-category, or set, whose objects are diffeomorphism classes of closed d-manifolds.

Such theories contain no physics, because they contain no relations (beyond those
implied by the symmetric monoidal structure) between observables: a theory is specified

9More generally, any space of TFTs with global symmetry that does not admit a suitable symmetric
monoidal structure must be anomalous.
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by its values on diffeomorphism classes of connected manifolds, and those values are
independent of one another. Nevertheless, the constructions described in previous sections
can be carried out.

On the homotopy theory side, the space Θ has the homotopy type of a discrete space
(so each of its connected components is contractible). We claim that an ∞-action of G then
corresponds to the usual notion of a set-theoretic action of π0(G) on π0(Θ), and a homotopy
fixed point corresponds to a set-theoretic fixed point. To see this, note that as the notion
of ∞-action is intrinsically homotopy-invariant, there is no loss of generality in replacing Θ
with the homotopy equivalent discrete space π0(Θ). Then a fibration π : E → BG with fibre
π0(Θ) is a covering space, so is determined by the monodromy action of π0(G) = π1(BG, ∗)
on π−1(∗) = π0(Θ). A homotopy fixed point of this action is by definition a section s of π.
As BG is path-connected, by the uniqueness of lifts to covering spaces such a section is
uniquely determined by s(∗) ∈ π−1(∗) = π0(Θ). Considering s as a map of covering spaces
from the trivial covering space id : BG → BG to π : E → BG, we see that s(∗) ∈ π0(Θ)
must be invariant under the monodromy of π, i.e. must be a G-fixed point. This identifies
ΘhG ' π0(Θ)hG = π0(Θ)G, as claimed.

5.1 d = 1

Things are particularly simple when d = 1, where ∗TFT1,0 is equivalent to the space k,
equipped with the discrete topology. To show this, observe that the source ∗Bord1,0 is the
symmetric monoidal ∞-groupoid consisting of finite disjoint unions of framed circles. The
corresponding homotopy type is the free E∞-algebra on the space

{framings of S1}//Diff(S1).

The space of framings of S1 is the same as the space of orientations of S1, and consists
of two contractible path components. The action of an orientation-reversing element of
Diff(S1) interchanges these components, so the resulting homotopy type is BDiff+(S1), the
classifying space of the group of orientation-preserving diffeomorphisms of S1, which in
turn is equivalent to BSO(2) ' CP∞. The target category is obtained by looping Vect,
so it is the set of linear maps k → k with the symmetric monoidal structure given by
tensor product, which is isomorphic to k itself with symmetric monoidal structure given by
multiplication. It follows that ∗TFT1,0 is the space of continuous maps BDiff+(S1)→ k,
which as BDiff+(S1) is connected is simply isomorphic to the space k with the discrete
topology. In other words, such a theory is determined by its value on any framed circle,
and this value can be chosen freely.10

Now let us consider the possible gauge symmetries. For simplicity, we consider here only
internal gauge symmetries, so we take a topological group G and the trivial representation
χ : G → O(1), and describe GTFT1,0. Now the source is the symmetric monoidal ∞-
groupoid GBord1,0, whose corrresponding homotopy type is the free E∞-algebra on the space

{framings of S1, f : S1 → BG}//Diff(S1).
10We shall later see that the extended theories in d = 1 have values on a framed circle given by the trace

of the identity map on some finite-dimensional vector space, so the extendable theories are those which take
the value

∑n

i=1 1 ∈ k, for some n ∈ {0, 1, 2, . . . }.
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Following the discussion above we only need to understand the set of path-components of
this space, which is the same as {f : S1 → BG}//Diff+(S1), and as the group Diff+(S1) is
connected the path components of this are identified with π0{f : S1 → BG}, or in other
words with the set Conj(π0G) of conjugacy classes of elements of π0G. Thus GTFT1,0 is
identified with the set of k-valued functions on this set, i.e. the k-valued class functions on
π0G.11 Thus we might as well takeG to be discrete in what follows. By the general arguments
already given, the possible global symmetries of KTFT1,0 correspond to fixed points of some
action of some discrete group Q on the set of class functions K → k, so let us now consider
the globalization maps. Starting from an internal gauge symmetry based on discrete group
G as above, every fibration Π of tangential structures is equivalent to a short exact sequence
∗ → K → G→ Q→ ∗ of groups. For such a sequence, there is an action of Q ' G/K on
the set CK of conjugacy classes of K given by ρ : G/K × CK → CK : ([g], [k]) 7→ [gkg−1].
The fibration τ corresponds to the Q action on Map(CK , k) that is induced by ρ, and
Π∗ corresponds to the map Map(CG, k) → Map(CK , k)Q given by restriction. Since a
normal subgroup of G is a union of conjugacy classes, it is easy to see that the map Π∗
always surjects, but injects iff K = G. So there are no unphysical anomalies, but plenty of
unphysical ambiguities.

In contrast, we certainly have metaphysical anomalies, for any Q-action on Map(CK , k)
that is not of the form above (e.g. one that does not fix the image of all maps) cannot
be gauged.

6 Maximally-extended theories

We now wish to focus on the case of maximally-extended theories, with p = d. Not only
are these the ones of interest to physics (being fully local), but they also lead to a number
of simplifications thanks to the cobordism hypothesis. Theories that are not maximally
extended are less pleasant and will be studied in section 7.

At least in low dimension d, maximally-extended theories are fairly simple to classify
and study. In the following subsections, we focus on the cases of d = 1, and d = 2, where
we investigate symmetries and anomalies in more detail. Unfortunately, for d > 2, there
is even less consensus on what a suitable target category for TFTs might be, let alone an
description of the corresponding space of TFTs.

6.1 d = 1

Here we will classify group actions on framed (equivalently oriented), fully-extended TFTs
for d = 1 valued in Vectk. It is easily shown that ∗TFT1,1 is equivalent to the groupoid (i.e.
1-truncated ∞-groupoid) of finite-dimensional vector spaces (including the zero-dimensional
space) and linear isomorphisms.

Though this case of ‘topological quantum mechanics’ may seem rather boring from the
dynamical perspective, we will see that it admits a rich variety of global symmetries.

11The extendable theories are given by the class functions that are characters of representations of π0G.
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As a topological space, we may take the 1-type

∗TFT1,1 =
∐
n≥0

BGL(n, k), (6.1)

the disjoint union of the classifying spaces of the groups GL(n, k) with the discrete topology.
As we have discussed, an (∞-)action of G on ∗TFT1,1 corresponds to the data of a homotopy
pull-back square

∗TFT1,1 E

{∗} BG.

π

As two GL(n, k) for different n cannot be isomorphic [10], we must have E ' ∐
n≥0En, and

assuming En → BG is splittable (if not, the space of homotopy fixed points will be empty)
we must have En ' BG̃n for topological groups G̃n fitting into splittable extensions

0→ GL(n, k) β−→ G̃n
α−→ G→ 0. (6.2)

Having fixed a G-action on ∗TFT1,1 as above, we find that

∗TFThG
1,1 '

∐
n≥0
{splittings s of α : G̃n → G}//GL(n, k),

where // denotes the action groupoid (or homotopy quotient) for the GL(n, k)-action on the
set of splittings by conjugation. As GL(n, k) is discrete, splitting such an extension is the
same as splitting π0α : π0G̃n → π0G, so we may as well suppose that G is discrete.

Group extensions of G by GL(n, k) are classified by the non-abelian group cohomology
H2(G,GL(n, k)) (see e.g. [3, 11]), in which a 2-cocycle is a pair (σ : G → Aut(GL(n, k)),
ε : G × G → GL(n, k)) of functions satisfying certain conditions.12 Two pairs (σ, ε) and
(σ′, ε′) represent the same cohomology class (which we denote Jσ, εK ∈ H2(G,GL(n, k))) iff
there exists a function t : G→ GL(n, k) such that

σ′(g)(N) = t(g)σ(g)(N)t(g)−1,

ε′(g1, g2) = t(g1)σ(g1)(t(g2))ε(g1, g2)t(g1g2)−1, (6.3)

for all N ∈ GL(n, k) and g, g1, g2 ∈ G.
As described above, we are only interested in short exact sequences which admit a

splitting, since otherwise there will be no homotopy fixed points. In terms of non-abelian
group cohomology, a sequence splits iff its cohomology class has a representative of the
form Jσ, IK where I(g1, g2) = 1 is the constant map, in which case σ is a homomorphism.
Indeed given a section s of the sequence, we can define σs : G→ Aut(GL(n, k)) : g 7→ (N 7→
β−1(s(g)β(N)s(g)−1)) and Jσs, IK is the cohomology class of the SES. This reproduces the
well-known fact that a sequence splits iff it is equivalent to a semi-direct product.

12To wit (letting 1 denote the identities in both G and GL(n, k)): σ(1) = idGL(n,k), ε(1, 1) = 1,
σ(g1g2)(N) = ε(g1, g2)−1σ(g1)(σ(g2)(N))ε(g1, g2), and ε(g1, g2)ε(g1g2, g3) = σ(g1)(ε(g2, g3))ε(g1, g2g3).
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The set of sections of a sequence with representative 2-cocycle (σ, ε) can be conveniently
described as follows: it is in bijection with functions r : G → GL(n, k) that are twisted
versions of representations, in the sense that

r(g1)σ(g1)(r(g2))ε(g1, g2) = r(g1g2). (6.4)

From the homotopy quotient, we see that two twisted representations r and r′ are to be
considered equivalent if there exists an M ∈ GL(n, k) such that

Mr(g)ε(1, g) = r′(g)σ(g)(M)ε(g, 1) (6.5)

for all g ∈ G.
In the special case when σ and ε are both trivial, eq. (6.4) corresponds to the condition

for standard representations, and eq. (6.5) the usual equivalence of representations. More
generally, if just σ is the trivial map, then eq. (6.4) corresponds to the condition for
projective representations with twisting ε, and, since ε(1, g) = ε(g, 1) in this case, eq. (6.5)
corresponds to the usual ‘linear equivalence’ of projective representations.

It follows from the above discussion that all we need to describe a splittable short exact
sequence is a homomorphism σ : G→ Aut(GL(n, k)). Thus we need to describe all possible
automorphisms of GL(n, k).

These are indeed known, though complicated [12]. In a nutshell, all automorphisms
arise from: (i) inner automorphisms; (ii) field automorphisms of k; (iii) the involution given
by taking the inverse transpose; and (iv) homomorphisms χ : GL(n, k)→ k∗.

Let us now spell out some examples of physical interest, corresponding to the different
types of automorphism of GL(n, k) described above. We will see that Nature makes use of
all but the last one.

The usual representations of physics arise from the trivial action, which exists for every G.
Here σs sends all of G to the identity automorphism and we may take G̃n = GL(n, k)×G
for all n. For a given n, the space of sections are then in 1–1 correspondence with
homomorphisms r : G → GL(n, k), i.e. representations of dimension n. A morphism
between two homotopy fixed points with representations r1, r2 : G→ GL(n, k) corresponds
to an M ∈ GL(n, k) such that Mr1(g) = r2(g)M , for all g ∈ G, i.e. the usual notion of
equivalence of representations.

More generally, inner automorphisms of GL(n, k) give rise to projective representations,
as described above. We remark that the possible occurrence of projective representations
in physics is usually derived from the axiom that physical states in quantum mechanics
correspond to rays in Hilbert space. Here we have no such axiom (the notion of a ray in a
vector space certainly makes sense, but it is not clear what ‘physical’ should mean, given that
we have no way of extracting real numbers that could be interpreted as predictions for physics
measurements),13 but it is nevertheless reassuring to see that projective representations are
nevertheless allowed by the primitive requirements of locality and entanglement that the
axioms of topological field theories encode.

13Even for k = C, we have no way to identify R ⊂ C.
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When the homomorphism of G → Aut(GL(n, k)) is induced by a homomorphism
G → Aut(k), we get semi-linear representations. An important case for physics occurs
when k = C and we choose some involution of C (which defines a complex conjugation in
C relative to the real line, defined as the fixed point subset). Then we get the antilinear
representations, of which time reversal symmetry is an example. Here, though, we have no
notion of time and no notion of unitarity.

Next consider the inverse transpose automorphism. This has a special rôle to play,
because it corresponds to the O(1)-action on ∗TFT1,1. By the cobordism hypothesis, its
groupoid of homotopy fixed points should be equivalent to the groupoid of topological
field theories on unoriented manifolds. To see this, let G = O(1) = {+1,−1}, and let
G̃n = GL(n, k) oO(1), where the semi-direct product is defined via the multiplication rule

(M2, 1) · (M1,±1) = (M2M1,±1), (M2,−1) · (M1,±1) = (M2(M−1
1 )T ,∓1). (6.6)

A splitting s of the corresponding extension is specified by its value A ∈ GL(n, k) on
−1 ∈ O(1). By considering s(−1 ·−1) = s(1), we find that AT = A. So splittings correspond
to non-degenerate symmetric bilinear forms. A morphism between the splittings correspond-
ing to A1, A2 ∈ GL(n, k) is given by an M ∈ GL(n, k) such that MA1M

T = A2, which
corresponds to the usual notion of equivalence of non-degenerate symmetric bilinear forms
(i.e. ∗TFThO(1)

1,1 is equivalent to the groupoid of finite-dimensional vector spaces equipped
with non-degenerate symmetric bilinear forms and whose morphisms are linear isomorphisms
which preserve the forms under pullback, which is indeed the same as O(1)TFT1,1).

It is difficult to say much more for generic fields k. However, for algebraically closed
fields (such as C) all A are equivalent to the identity matrix, and their automorphisms are
isomorphic to O(n, k). Thus, in this case we have that

O(1)TFT1,1 =
∞∐
n=0

BO(n, k). (6.7)

When k = R, Sylvester’s law of inertia tells us that, up to equivalence, the A are given by
diagonal matrices whose diagonal entries are ±1, with automorphisms given by O(p, q,R).
Thus we have

O(1)TFT1,1 =
∞∐
p=0

∞∐
q=0

BO(p, q,R). (6.8)

In closing, it is perhaps of interest to speculate whether there might exist yet more
ways of realizing symmetries, as yet unknown to physics. At least when k = C, this seems
unlikely. All the field automorphisms of C are either of order two, so define a real line
and a complex conjugation as needed to define the values of physical observables, or are
of infinite order. But complex conjugation is the only automorphism of C considered
as an R-algebra. The only non-trivial automorphisms obtained from homomorphisms
χ : GL(n,C)→ C∗ correspond to powers of the determinant map. For a non-zero power,
the resulting automorphism of GL(n,C) generates a subgroup isomorphic to Z, so doesn’t
admit a non-trivial automorphism from a finite group.
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6.2 d = 2

We now carry out an analysis of the possible generalized global symmetries of framed TFTs
in d = 2 valued in Algk. As we will see, this can be done in full, at least when the field k is
separably closed, though the result is somewhat complicated.

Keeping k general to begin with, the cobordism hypothesis [2] states that the bicategory
of framed TFTs valued in Algk is given by the core of the fully-dualizable objects in Algk,
where a k-algebra A is fully-dualizable iff it is separable, meaning that A ⊗k K is finite
dimensional and semisimple for every field extension K ⊃ k. Choosing K = k, we see
that A itself is finite dimensional and semisimple, so we can apply the Artin-Wedderburn
theorem. To do so, we need to know the finite-dimensional division algebras over k. Since
A is separable, these must be too, so we are looking for finite-dimensional division algebras
whose centres are finite-dimensional separable field extensions of the field k.

In general, this is difficult, as can be seen by considering the extreme case in which
k is perfect (meaning that every algebraic extension is separable), in which case every
finite-dimensional division algebra over k is valid and being separable is equivalent to being
finite dimensional and semisimple. This case includes all fields of characteristic zero and all
finite fields, so probably every field that could be of interest to physicists. But finding the
division algebras, even for a specific k, is a hard (though well-studied) problem.

Instead we choose to focus here on the opposite extreme in which k is separably closed
(meaning that no algebraic extension is separable), in which case the only division algebra
is k itself. This case includes the one of most interest, namely k = C (which is algebraically
closed so separably closed).

Separably closed fields. For separably closed fields k, the Artin-Wedderburn theorem
tells us that every separable algebra is isomorphic as an algebra to a finite product of matrix
algebras over k, but every such algebra is Morita equivalent to kn for some positive integer
n. Generalizing the arguments in [13], one finds

∗TFT2,2 ∼=
∐
n≥1

ESn ×Sn K(k∗, 2)×n (6.9)

where the permutation group Sn acts on K(k∗, 2)×n by permuting the factors. (We remark
that unlike for theories in d = 1, the sum here starts from n = 1, since there is no
zero-dimensional algebra.)

As usual, an action of G on ∗TFT2,2 is described by a homotopy pull-back square

∗TFT2,2 E

{∗} BG.

π

As the path-components of ∗TFT2,2 have non-isomorphic fundamental groups (namely
the distinct symmetric groups), the G-action preserves path-components and so there is a
corresponding decomposition E = ∐

n≥1En. As we are only interested in G-actions which
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admit homotopy fixed points, writing Xn = ESn ×Sn K(k∗, 2)×n we are therefore looking
for homotopy fibre sequences

Xn −→ En
π−→ BG (6.10)

which admit a section. Using that π1(Xn) = Sn and π2(Xn) = (k∗)⊕n with Sn-module
structure given by permuting the summands, we can understand such a homotopy fibre
sequence by developing the diagram

K((k∗)⊕n, 2) K((k∗)⊕n, 2) ∗

Xn En BG

BSn E′n BG

π

p
s

π′

s0=ps

(6.11)

in which all rows and columns are homotopy fibre sequences, by letting π′ be the fibrewise
1-truncation of π. The bottom row, with a choice s0 of section, is classified by the data of:

(i) a homomorphism π0G→ Aut(Sn).

Given such a choice, which in particular identifies E′n ' B(Sn o G), the middle row is
classified by the data of:

(ii) a Sn o π0G-module structure on (k∗)⊕n extending the Sn-module structure,

(iii) a class k ∈ H3(B(SnoG); (k∗)⊕n) which vanishes when restricted to H3(BSn; (k∗)⊕n).

In order for the resulting π to admit a section, this should satisfy

(iii’) k ∈ H3(B(Sn oG); (k∗)⊕n) vanishes when restricted to H3(BG; (k∗)⊕n).

In this case the homotopy classes of sections s lifting the given s0 are given by the reasons
this class vanishes, i.e. are a torsor for H2(BG; (k∗)⊕n).

The data in (i) and (ii) can be packaged together as follows. There is a group
Aut(Sn, (k∗)⊕n) consisting of pairs of a group isomorphism f0 : Sn → Sn and a f0-linear
module isomorphism f1 : (k∗)⊕n → (k∗)⊕n, and (i) and (ii) combined correspond to a
homomorphism

φ : π0G→ Aut(Sn, (k∗)⊕n).

To analyse this group, first note that for n 6= 6 all automorphisms f0 of Sn are inner, and it
is clear that these admit a canonical corresponding f1. On the other hand, for n = 6 the
outer automorphism f0 of S6 does not admit a corresponding f1 (unless k∗ is trivial), so
for the data (ii) to exist, in (i) we must choose a homomorphism π0G → Inn(Sn). This
discussion gives us a split extension

1→ AutZ[Sn]((k∗)⊕n)→ Aut(Sn, (k∗)⊕n)→ Inn(Sn)→ 1.
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n 1 2 3 4 ≥ 5
H2(Sn; (k∗)⊕n) 0 0 k∗/(k∗)2 k∗/(k∗)2 k∗/(k∗)2 ⊕ k∗[2]
H1(Sn; (k∗)⊕n) 0 0 k∗[2] k∗[2] k∗[2]

Table 1. k∗[2] and k∗/(k∗)2 denote the kernel and cokernel respectively of the squaring map
(−)2 : k∗ → k∗.

The kernel in this extension can be interpreted as the subgroup of GL(n,EndZ(k∗)) consisting
of those matrices which centralise the permutation matrices. It is easy to see that these are
the invertible matrices which have a common entry at all diagonal positions and another
common entry at all off-diagonal positions, i.e. invertible matrices of the form


a+ b b . . . b

b a+ b . . . b
...

... . . . ...
b b . . . a+ b

 a, b ∈ EndZ(k∗) (6.12)

Such a matrix is invertible for n > 1 if and only if both a and a + n · b are invertible in
EndZ(k∗).

The scope of the data in (iii) (satisfying (iii’)) can be analysed by considering the Serre
spectral sequence for the bottom row of (6.11) with (k∗)⊕n-coefficients. This describes the
group K of all possible k’s in terms of an exact sequence

H0(BG;H2(Sn; (k∗)⊕n)) H2(BG;H1(Sn; (k∗)⊕n)) K

H1(BG;H2(Sn; (k∗)⊕n)) H3(BG;H1(Sn; (k∗)⊕n))

d2

d2

(6.13)

As a Sn-module we have (k∗)⊕n = coIndSn
Sn−1

k∗, so by Shapiro’s lemma we have
H i(Sn; (k∗)⊕n) ∼= H i(Sn−1; k∗), which may be determined using the Universal Coefficient
Theorem and the known low-degree homology of symmetric groups: the result is shown
in table 1. The group Aut(Sn, (k∗)⊕n) acts on H i(Sn; (k∗)⊕n) by functoriality of group
cohomology in the group and in the module. The subgroup Inn(Sn) ≤ Aut(Sn, (k∗)⊕n)
given by the splitting acts trivially on H i(Sn; (k∗)⊕n), because inner automorphisms act
trivially on cohomology [14, Proposition III.8.3]. A matrix of the form (6.12) in the subgroup
AutZ[Sn]((k∗)⊕n) ≤ Aut(Sn, (k∗)⊕n) acts as a + n · b ∈ EndZ(k∗) on H i(Sn−1; k∗), so by
the induced map on the k∗[2] and k∗/(k∗)2 in table 1. This describes the π0G-action on
H i(Sn; (k∗)⊕n) with which the cohomology groups in (6.13) are taken.

If k is a separably closed field of characteristic 6= 2 then it is closed under the formation
of square roots, and so k∗/(k∗)2 is trivial, and k∗[2] = {±1}, which has no automorphisms.
Thus for n ≥ 5 the group K fits into an exact sequence

H0(BG; {±1}) d2→ H2(BG; {±1})→ K → H1(BG; {±1}) d2→ H3(BG; {±1}).
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(If the π0G-action on Sn is trivial then the d2-differentials are zero, so K is determined up
to an extension problem.) If instead k has characteristic 2 then k∗[2] is trivial, so for n ≥ 3
there is an isomorphism

K
∼→ H1(BG; k∗/(k∗)2),

where π0G acts on k∗/(k∗)2 as described in the previous paragraph.
Let us now discuss the space of sections of (6.10), i.e. the homotopy G-fixed points of

the G-actions on Xn that we have just described. As we have classified such fibrations with
a choice of section s0 : BG→ E′n of π′ : E′n = B(Sn oG)→ BG, we may as well focus on
the space Γ(π)s0 of sections of π : En → BG such that ps is in the path component of s0.
Composing with p gives a fibration

p∗ : Γ(π)s0 → Γ(π′)s0

to the space of sections of π′ in the path component of s0. Precisely as in the previous
section, the space Γ(π′) is homotopy equivalent to {splittings of Sn o π0G→ π0G}//Sn.
Thus the path-component of s0 is a classifying space for the stabiliser StSn(s0) ≤ Sn, which
may be seen to be the subgroup of elements which centralise Im(π0G → Inn(Sn)). The
fibre F of p∗ over s0 is the space of sections s : BG→ En such that ps = s0. This may be
viewed as the space of trivialisations of the (trivial) class (s0)∗(k) ∈ H3(BG; (k∗)⊕n), so its
set of path components is a torsor for H2(BG; (k∗)⊕n), and

πi(F, s) ∼= H2−i(BG; (k∗)⊕n) for i > 0.

The long exact sequence on homotopy groups for the fibration p∗ then gives

0→ H1(BG; (k∗)⊕n)→ π1(Γ(π), s)→ StSn(s0) ∂→ H2(BG; (k∗)⊕n)→ π0(Γ(π)s0)→ ∗
H0(BG; (k∗)⊕n) ∼→ π2(Γ(π), s)

and all higher homotopy groups of Γ(π) are trivial. The map ∂ is a crossed homomor-
phism, i.e. an element of H1(StSn(s0);H2(BG; (k∗)⊕n)), and corresponds to restricting
k ∈ H3(B(Sn o G); (k∗)⊕n) to the subgroup StSn(s0) × G ≤ Sn o G and then applying
the map

Ker(H3(B(StSn(s0)×G); (k∗)⊕n)→ H3(BG; (k∗)⊕n))→ H1(StSn(s0);H2(BG; (k∗)⊕n))

coming from the Serre spectral sequence for StSn(s0)×G→ StSn(s0).
As an example, let us consider the trivial G-action on ∗TFT2,2. A G-homotopy

fixed point whose underlying topological field theory is an algebra Morita equivalent
to kn corresponds to a section s of the trivial fibration BG × Xn → BG, or in other
words to a map f : BG → Xn. In terms of our classification this corresponds to the
homomorphism π0G

π1f→ Sn → Inn(Sn) and the Sn o π0G-module structure on (k∗)⊕n
induced by (σ, g) 7→ σ · π1f(g) : Sn o π0G→ Sn and the usual Sn-module structure. As the
underlying fibration is trivial, k = 0 and so the crossed homomorphism ∂ is trivial. We have
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StSn(s0) = {σ ∈ Sn centralising Im(π1f : π0G→ Sn)}. The discussion above then gives

H2(BG; (k∗)⊕n)/StSn(s0) ∼→ {those elements of π0(∗TFThG
2,2) inducing the splitting π1f}

0→ H1(BG; (k∗)⊕n)→ π1(∗TFThG
2,2 , s)→ StSn(s0)→ 0

H0(BG; (k∗)⊕n) ∼→ π2(∗TFThG
2,2 , s).

For example, taking G = Sn and f : BSn → Xn to be the map that acts on the algebra
kn by permuting the factors, then for n ≥ 3 there are no elements centralising all of Sn so

π1(∗TFThG
2,2 , s) ∼= H1(BSn; (k∗)⊕n) ∼= H1(BSn−1; k∗) ∼= k∗[2]

π2(∗TFThG
2,2 , s) ∼= H0(BSn; (k∗)⊕n) ∼= k∗.

On the other hand if n = 2 then H1(BS2; (k∗)⊕2) ∼= H1(BS1; k∗) = 0 so

π1(∗TFThG
2,2 , s) ∼= S2

π2(∗TFThG
2,2 , s) ∼= H0(BS2; (k∗)⊕2) ∼= k∗.

These groups are abstractly isomorphic to the above if k does not have characteristic 2, but
their origin, and presumably therefore the physical interpretation, is different.

As another example, let G be a connected group and f : BG → Xn be a map. This
map must be trivial on π1, so π0(∗TFThG

2,2) ∼= H2(BG; (k∗)⊕n)/Sn, and the f corresponds
to an Sn-orbit of an element ξ ∈ H2(BG; (k∗)⊕n) = H2(BG; k∗)n. Such a theory has

π1(∗TFThG
2,2 , s) ∼= {stabiliser of Sn-action on ξ}

π2(∗TFThG
2,2 , s) ∼= H0(BG; (k∗)⊕n) ∼= (k∗)⊕n.

This generalises [13, Lemma 3.3.1]. In particular, letting G = SO(2) act trivially on ∗TFT2,2

we obtain a space with π0(∗TFThSO(2)
2,2 ) ∼= H2(BSO(2); (k∗)⊕n)/Sn ∼= (k∗)⊕n)/Sn. Since

the action of SO(2) ⊂ O(2) via tangential symmetries on ∗TFT2,2 trivializes [13], and
Spinr(2) ∼= SO(2), this reproduces the classification of TFTs with r-spin structure for any
r ≥ 1 [9, 15], and shows that abstractly their classification is independent of r. Namely [9],
since every algebra is Morita equivalent to kn, the components are given by a choice of n
and a choice of Frobenius structure on kn. The latter is classified by the trace (i.e. identity)
map on each factor of k, each of which may be multiplied by a non-vanishing (to ensure
non-degeneracy) element in k, i.e. an element in k∗, up to permutation. However, the map
∗TFThSO(2)

2,2 → ∗TFThSpinr(2)
2,2 induced by the covering map Spinr(2) → SO(2) is not an

equivalence: the functoriality with respect to G of our arguments above allows us to see that
on π0 it sends each of the n elements of k∗ to its rth power, while it induces an isomorphism on
all higher homotopy groups. In particular, we note that if two oriented theories differ in their
structure-constants by rth roots of unity, then they become isomorphic as r-spin theories.
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7 Non-maximally-extended examples

Here we discuss the example of TFTs in d = 2 based on ordinary categories rather than
bicategories. We will see by means of an example that, even by taking just one step down
the ladder compared to the maximally-extended case, unphysical anomalies can arise, in
that a globalization map can fail to be π0-surjective.

We consider the well-studied case of oriented topological field theories in d = 2 with a
finite group internal gauge symmetry. So we consider the homomorphism χ : G× SO(2)→
O(2) : (g, s) 7→ s, with G finite, along with the globalization map

Π∗ : G×SO(2)TFT2,1 → MapG(EG, SO(2)TFT2,1) ∼= Map(BG, SO(2)TFT2,1). (7.1)

To describe the category G×SO(2)TFT2,1, let us introduce some definitions. A Frobenius
G-algebra over k is a pair (A, η) consisting of a G-graded k-algebra A (so A = ⊕g∈GAg
such that AgAh ⊆ Agh), and η : A×A→ k is a k-bilinear form, or equivalently a k-linear
map A⊗A→ k, such that: η(Ag ⊗Ah) = 0 if gh 6= 1; η is non-degenerate when restricted
to Ag ⊗ Ag−1 ; and η(ab, c) = η(a, bc) [16]. A Frobenius algebra is a Frobenius G-algebra
with G given by the trivial group.

A crossed G-algebra over k is a triple (A, η, φ), where (A, η) is a Frobenius G-algebra over
k and φ : G→ Aut(A) is a group homomorphism such that: φg preserves η; φg(Ag) ⊆ Aghg−1 ;
φg|Ag = id; for a ∈ Ag and b ∈ Ah then φh(a)b = ba; and for g, h ∈ G and c ∈ Aghg−1h−1

we have that Tr(cφh : Aa → Aa) = Tr(φg−1c : Ab → Ab) [16]. We remark that a crossed
G-algebra for G = ∗ is a commutative Frobenius algebra.

The category G×SO(2)TFT2,1 is equivalent to that whose objects are crossed G-algebras
and whose morphisms are unital algebra maps f : A → B which are G-equivariant
and preserve η [17]. In turn, SO(2)TFT2,1 is equivalent to the category whose objects are
commutative Frobenius algebras with unit and whose morphisms are Frobenius algebra maps.

On the right-hand side of our globalization map, we therefore have the category whose
objects are commutative Frobenius algebras equipped with a G-action and whose morphisms
are G-equivariant isomorphisms of commutative Frobenius algebras.

From this point of view, the globalization map takes (A, η) to its principal component
(Ae, η|Ae⊗Ae) equipped with the homomorphism which sends g ∈ G to φg|Ae [17].

To exhibit an unphysical ‘t Hooft anomaly, observe that for an object in SO(2)TFThG
2,1

to be gaugeable, we require that for each g ∈ G the corresponding algebra morphism φg
have integer trace [16]. An example of an object in SO(2)TFThG

2,2 which fails this criterion
may be given as follows: let A = C[x, y]/(x2, y2) with trace η(1, xy) = 1 and η(1, r) = 0 for
r = 1, x, y. The automorphism

x 7→ ux, y 7→ u−1y

has trace given by 2 + u+ u−1 which is generically non-integral. Thus if the action of G on
A involves such an automorphism it is not gaugeable.

We remark that the algebra A is not semi-simple, since any semi-simple Frobenius
algebra only has integral traced automorphisms. Thus we know that A cannot descend
from a fully-extended theory by looping.
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8 Lie group symmetries and Noether’s theorem

Up until now, we have treated the individual q-form symmetry groups for each q of
topological field theories as abstract groups, without the smooth (i.e. Lie group) structure
with which symmetries in physics are usually endowed. Doing so allowed us to package
the tower of q-form symmetries into a single topological group, and so on. But it brings
significant disadvantages. In particular, there is no possibility of deriving a generalized
version of Noether’s theorem, which associates conserved currents to a Lie group symmetry.

In this section, we take a first step in the direction of extending our results to Lie groups
by sketching a version of Noether’s theorem for ordinary global Lie group symmetries of
unextended oriented topological field theories.

Let us first ask roughly what form this ‘theorem’ might take. In physics, we have a
Lie group of symmetries of a theory and Noether’s theorem gives us, for each element in
the corresponding Lie algebra, a conserved current or a conserved charge. The conserved
current is usually thought of as a vector or a 1-form, but this requires a Hodge structure of
some kind (e.g. from a metric), which is not available to us in topological field theory. In
fact, the conserved current arises as a differential form whose degree is one less than the
dimension of spacetime W . Current conservation is then simply the statement that the
form is closed.

The degree of the form is such that one can integrate it on a closed oriented submanifold
M of codimension one (or more generally a closed cycle). We call the value of the integral,
which will vanish if the manifold bounds in W , the charge on M . This can be viewed as
a vast generalization of the usual notion in physics that ‘the charge is conserved’, which
amounts to the statement that the charge evaluated on one connected component of the
boundary of M × I equals to the charge on the other connected component. Importantly,
it allows for spacetime evolutions that are topologically non-trivial, which is just as well,
since these are the only non-trivial evolutions in a TFT.

In the above, we tacitly assumed that our theory was a classical one, in which the
conserved charge is a number (obtained from fields satisfying the equations of motion).
In quantum field theory, we instead obtain the Ward identities for correlation functions
involving the conserved charge. This is what we want to reproduce in TFT. We shall do
so in the following way: a correlator is interpreted as the result of applying a functor to a
bordism to the empty set obtained by cutting out tubular neighbourhoods of the supports of
the operators appearing in the correlator. For a conserved charge, this means a submanifold
M of codimension one, whose normal bundle will be trivial (since everything is oriented)
and whose tubular neighbourhood has boundary M ∐

M . We will see that we get a map
g → Z(M) ⊗ Z(M)∨ which picks out the conserved charges. They are conserved in the
sense that, if the bordism when cut contains a piece M → ∅, then the correlation function
vanishes when evaluated on elements of Z(M) ⊗ Z(M)∨ in the image of the above map
from g. The requirement that the bordism factors in this way corresponds to our earlier
requirement that the conserved charge is to be evaluated on a cycle that bounds.

Let us see in more detail how this happens. We suppose that we are given a TFT
whose automorphism group can be given a smooth structure, such that it acts smoothly on
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the vector space Z(M) assigned to each object M in the bordism category. For example,
for oriented theories in d = 1, we have seen that this group is GL(n, k) for some n, so this
is certainly the case for R or C. We take a Lie group G and a smooth homomorphism into
the automorphism group (which corresponds to our earlier notion of the trivial action of
the group on the space of TFTs).

Differentiating the map G → GL(Z(M)) for each object then gives a map g →
End(Z(M)), which, since Z(M) is finite-dimensional, is canonically isomorphic to Z(M)⊗
Z(M)∨. The latter space can be interpreted as the vector space of operators associated
to a codimension one submanifold M of some spacetime W . Indeed, when everything is
oriented, the normal bundle of M in W is necessarily trivial and so the boundary of a
tubular neighbourhood is given by two copies of M with opposite orientations, to which
the TFT functor assigns Z(M)⊗ Z(M)∨.

Now let us consider the effect of inserting these operators into correlation functions.
Let W : N → N ′ be a cobordism with M embedded in the interior of W . Excising an open
tubular neighbourhood of M in W , we obtain another cobordism W̃ : N ∐

M
∐
M∨ → N ′.

Given ξ ∈ EndZ(M), we form the linear map

Z(N) id⊗ξ̃−−−→ Z(N)⊗ Z(M)⊗ Z(M∨) Z(W̃ )−−−→ Z(N ′) (8.1)

where ξ̃ : k→ Z(M)⊗Z(M∨) is the linear map such that ξ̃(1) is the element corresponding
to ξ. Our map g→ Z(M)⊗ Z(M)∨ picks out a distinguished subspace of such linear maps
and gives it the structure of an algebra, just as we expect for conserved charges.

To see the sense in which charges are conserved, force N ′ to be the empty set. Combining
g→ End(Z(M)) and (8.1) we get a natural map Z(N)⊗ g→ k, but it is easy to show that
this map is in fact the zero map. Translating back to physics, we see that any correlation
function with an insertion of a conserved charge on M vanishes, when M is nullbordant in
W , as desired.

9 Discussion

In closing, we would like to show how our results shed some light on the previous literature.
We begin with ‘t Hooft anomalies of ordinary symmetries of non-maximally extended
orientable TFTs, which were studied in [6] (and formalized and generalized in [3, 11]). In
our notation (omitting the SO(2) factors corresponding to orientation), the idea can be
described as follows. Letting K be an ordinary group acting trivially on TFT2,1, a TFT
in TFTK

2,1 ' Map(BK,TFT2,1) may not have a preimage in KTFT2,1 under the obvious
globalization map. In [6], this problem was studied using an approach which is natural
from the physicist’s (if not the physics) point of view, namely to study K symmetries
of quantum theories which arise by quantizing classical theories. We have not discussed
quantization in the present work, but for the discussion that follows it suffices to know
that there exists an orbifoldization functor [18] from the category of finite groups to the
category of spaces that sends a group G to GTFT and that for the homomorphism G→ ∗
to the trivial group this corresponds, when restricted to invertible theories in GTFT to
quantization à la Dijkgraaf-Witten [4].
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Given a short exact sequence ∗ → H → G → K → ∗ of finite groups, there is a
commutative diagram

GTFT2,1
KTFT2,1

MapK(EK,HTFT2,1) Map(BK,TFT2,1)

Glob Glob (9.1)

The proposal of [6] is, given K, to start from an invertible theory in HTFT2,1 (with the
trivial H action) and to ask if there exists an extension G of K by H and a theory in the
resulting GTFT2,1 (with the trivial G action) that maps to it under the left-hand map
followed by composition with the map that forgets the K symmetry. If so, one may say that
the corresponding theory in MapK(EK,HTFT2,1) is non-anomalous, since one can follow
the diagram to find a theory in the top right-hand corner that is a gauging of the theory in
the bottom right-hand corner that is the quantization of the theory in MapK(EK,HTFT2,1).
In [6] and [3, 11], obstructions to this were given, as well as sufficient conditions for the
construction to go through.

Though this construction is well-motivated from the physics point of view, it seems
unreasonable to us to describe failures of this construction as anomalies, as in [6]. When
the construction fails, one is not even given a quantum theory with global K symmetry in
Map(BK,TFT2,1) for which one can ask the question of whether K is gaugeable. Moreover,
any theory in K which one actually can construct by quantizing a classical theory is auto-
matically gaugeable, because the Dijkgraaf-Witten construction extends to fully-extended
theories [19], where the cobordism hypothesis applies.

The same trick of extending theories can be applied to understanding the results
of [5], where it is shown that 0- and 1-form symmetries of a sub-class of oriented non-
maximally extended TFTs in d = 2 (i.e. SO(2)TFT2,1) valued in VectC, to wit those
corresponding to commutative Frobenius algebras that are additionally semisimple, are
given by permutations and phasings, respectively. These are the symmetries in the intrinsic
sense of being automorphisms of the TFTs and the result comes as no surprise once we
observe that the semisimple algebras are the ones that arise from fully-extended TFTs upon
looping. So the automorphism groups can be read off directly from (6.9) and correspond to
permutations of the simple factors that preserve the trace map and rephasings (or rather
elements in C∗ given that we have no inner product structure).

Finally, generalized symmetries of certain extended, oriented topological field theories
in d = 2 are described in [1], namely those obtained by quantizing classical Zn1 × Zn2

gauge theories. The resulting algebra is the twisted group algebra Cωp [Zn1 × Zn2 ] where
ωp((a1, b1), (a2, b2)) = exp(2πipa1b2/GCD(n1, n2)). The algebra Cωp [Zn1 × Zn2 ] is Morita
equivalent (and therefore equivalent in TFT2,2) to the algebra kn1n2/m2 where m =
GCD(n1, n2)/GCD(p, n1, n2) is the dimension of the irreducible projective representation
with twisting ωp, and n1n2/m

2 their number. Correspondingly the automorphism groups are
Sn1n2/m2 and (C∗)n1n2/m2 , which are substantially larger than the Zn1/m×Zn2/m subgroups
obtained in [1] by inspection of the classical action. This example shows that, at least
for spaces of topological field theories with their large number of equivalences, studying
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classical actions gives a rather poor guide to the resulting quantum physics. Happily, the
power of the cobordism hypothesis for physical (i.e. fully-extended) theories suggests that
we may one day no longer need to.
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